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Abstract: Catheter associated infections are a common complication that occurs in dialysis 

patients. Current strategies to prevent infection include catheter coatings containing heparin, 

pyrogallol or silver nanoparticles, which all have an increased risk of causing resistance in 

bacteria. Therefore, a novel approach for manufacture, such as the use of additive 

manufacturing (AM), also known as 3D-printing, is required. Filaments were produced by 

extrusion using thermoplastic polyurethane (TPU) and Tetracycline Hydrochloride (TC) in various 

concentrations (e.g. 0%, 0.25%, 0.5% and 1%). The extruded filaments were used in a fused 

deposition modelling (FDM) 3D-printer to print catheter constructs at varying concentrations. 

Release studies in phosphate buffered saline (PBS), microbiology studies, thermal analysis, 

contact angle, ATR-FTIR, scanning electron microscopy (SEM) and X-ray Micro Computer 

Tomography (μCT) analysis were conducted on the printed catheters. The results suggested that 

TC was uniformly distributed within the TPU matrix. The microbiology testing of the catheters 

showed that devices containing TC had an inhibitory effect on the growth of Staphylococcus 

aureus NCTC 10788 bacteria. Catheters containing 1% TC maintained inhibitory effect after 

10-day release studies. After an initial burst release in the first 24 h, there was a steady release 

of TC in all concentrations of catheters. 3D-printed antibiotic catheters were successfully printed 

with inhibitory effect on S. aureus bacteria. Finally, TC containing catheters showed resistance 

to S. aureus adherence to their surfaces when compared with catheters containing no TC. 

Catheters containing 1% of TC showed a bacterial adherence reduction of up to 99.97%. 

Accordingly, the incorporation of TC to TPU materials can be effectively used to prepare anti-

infective catheters using FDM. This study highlights the potential for drug impregnated medical 

devices to be created through AM.

Keywords: 3D-printing; Additive Manufacturing; Fused Deposition Modelling; Extrusion; 

Catheters; Dialysis; Drug Release.
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1. Introduction

Additive manufacturing (AM), also known as 3D-printing, is an area which has gained a lot of 

interest in recent years due to its wide range of applications.1–3 3D-printing, allows a model 

which is created using computer aided design to be formed into a physical object. For this 

purpose, a wide variety of materials can be used, ranging from synthetic polymers to 

biomolecules.3–7 Due to this, AM has a wide variety of applications in diverse fields ranging from 

aerospace engineering to medical applications.4 AM includes a wide variety of different types of 

techniques. All these techniques use different types of substrates such as resins, powders, gels 

or ceramics among others.8 However, they all have one thing in common, they produce 3D 

object adding material layer by layer.8 One of the most common and inexpensive types of AM is 

fused deposition modelling (FDM). FDM requires the use of a polymeric filament that is pushed 

through a hot nozzle to melt the polymer and, subsequently, generating the required object.8

Diverse medical applications of 3D-printing have been described including orthopaedics, tissue 

engineering or the manufacture of medical devices.9–13 3D-printing technology allows design and 

fabrication of structures based on images captured from patients with medical imaging 

techniques (i.e. magnetic resonance imaging (MRI) or computer tomography (CT)).3 Accordingly, 

3D-printing can be used to prepare medical devices adapted to a particular patient’s needs. 

Conventional fabrication techniques cannot offer this versatility.

Biocompatible materials such as poly(lactic acid) or thermoplastic polyurethane (TPU) have been 

used extensively for 3D-printing applications.4,14–16 This polymer very desirable for medical 

applications due to its resiliency, inertness in the body and blood compatibly.17 Moreover, it has 

been previously used for healthcare 3D printing applications such as the preparation of bolus 

for radiation therapy18–20 or the development of stents for enterocutaneous fistula surgery.21 

The later work shows not only that the material is biocompatible, but also that 3D printing of 

TPU devices can be prepared for patient benefit.

One potential application of 3D-printing is the manufacture of medical devices such as 

catheters,22 as it opens up the potential for creating patient matched devices specific to their 

anatomy. This would allow the potential for on demand patient matched devices to be created 

in hospital settings. Moreover, the versatility of 3D-printing to use different types of materials 

can be used to add drugs, such as antibiotics, to the resulting structure.6,23,24 This is interesting 

for catheter manufacturing due to the tendency of these medical devices to be colonised by 

bacteria. A high percentage of catheter-related infections occur due to gram positive bacteria 

such as Staphylococcus aureus.25 This is especially problematic for dialysis catheters.
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Catheter-related infections (CRI) in dialysis patients are the second major cause of death among 

these patients and significantly increase the treatment cost.26,27 Staphylococcus aureus in 

Haemodialysis (HD) patients and Staphylococcus aureus and Pseudomonas aeruginosa in 

peritoneal dialysis (PD) patients are the most common causative organisms isolated. Patients 

with CRI are hospitalised more frequently than the general population, and CRI contributes to 

the higher associated mortality of dialysis patients compared to the general population. 

Considering that in the UK around 30,000 people are receiving dialysis treatment,28 it is 

estimated that catheter related infections of these patients are costing the UK National Health 

Service (NHS) ca. £1.4 million per year.27 Accordingly, the use of 3D-printing has potential to 

manufacture anti-infective catheters adapted to patient’s needs.

In the present work, FDM will be explored for first time to our knowledge, to prepare catheters 

containing tetracycline (TC) to prevent bacterial colonisation of the resulting catheters. FDM 

works by extruding a polymer in successive layers onto a build plate where it is then cooled and 

solidified. For this purpose, the selected polymer was TPU, a flexible polymer that has been 

extensively used for biomedical applications (including catheter manufacturing).29–32 Before 

printing the catheters prototypes, TPU filaments containing the antibiotic were required. 

Accordingly, hot-melt extrusion (HME) was used to prepare these filaments. The resulting 

catheters were characterised by a variety of microscopic and spectroscopic techniques, and their 

antimicrobial properties were evaluated.

2. Experimental Section

2.1. Materials

Elastollan®, thermoplastic polyurethane (TPU) elastomer pellets with 75A shore hardness were 

kindly provided by DistruPol Ltd (Dublin, Ireland). Tetracycline Hydrochloride (TC) drug was 

purchased from Sigma Aldrich, (Dorset, UK). Castor oil was obtained from Ransom (Hitchin, UK). 

Phosphate Buffer Solution (PBS) at pH 7.4 prepared using PBS tablets Merck (Darmstadt, 

Germany).

Staphylococcus aureus NCTC 10788 was maintained on cryopreservative beads in 10% glycerol 

at -80°C and grown in Luria-Bertani (LB) broth or Mueller-Hinton Broth (MHB) at 37°C when 

required for the microbiological assessments. Moreover, to perform the different in vitro 

microbiological assays, several broths and solutions were used. For the zone of inhibition assay, 

LB agar and LB soft agar were used. Additionally, for the in vitro adherence assay Mueller-Hinton 

agar (MHA) and tryptone soya broth (TSB), as well as quarter-strength Ringers Solution (QSRS) 

and PBS were used. 
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2.2. Preparation of TC Containing TPU filaments and catheters

HME was used to combine the drug and polymer in order to create filaments which would be 

used for 3D-printing. To ensure an even coating of TC on the surface of the TPU pellets, an oil 

method for coating was used.23 Briefly, a 50 mL Falcon tube was filled with TPU pellets (40 g). 

Then, castor oil (40 µL) was added into the tube and it was vortexed until the pellets were 

properly coated. Subsequently, these oil coated pellets were transferred to a new 50 mL Falcon 

tube to avoid loss of drug, by sticking to leftover oil, on the walls of tube. TC was then added in 

ratios of 0.25% w/w, 0.5% w/w and 1% w/w and vortexed to evenly coat all pellets. Coated 

pellets were added to filament extruder (3Devo, Utretch, The Netherlands) at extrusion speed 

of 5 rpm and filament fan speed of 90%. Finally, the temperature was adjusted through a control 

panel positioned at the side of the extruder and it was between 170 and 190°C, due to the 

existence of 4 heaters. 

2.3. Preparation of TC Containing Catheters Using 3D-Printing.

Once the filaments were extruded, catheters with 5 mm external diameter and 2mm internal 

diameter, as well as squares of 10 mm x 10 mm x 1 mm were 3D-printed using an Ultimaker 3 

(Ultimaker B.V., Geldermalsen, The Netherlands) fused filament fabrication (FFF) system and 

Cura® software. The Ultimaker 3 FFF system was equipped a 0.4 mm nozzle. It is important to 

note that this equipment is a RepRap Open Source FFF equipment.33 The optimised printing 

parameters can be seen in Table 1.

Table 1. 3D printing parameters used for catheter production.

Print-head 
temperature (°C)

Bed 
temperature (°C)

Layer height 
(mm)

Speed 
(mm/s)

Infill density 
(%)

215 60 0.1 12 100

2.4. Characterisation of TPU filaments and 3D printed catheters.

2.4.1. Microscopy

The morphologies of the filaments and the 3D printed catheters were assessed using a Leica EZ4 

W digital microscope (Leica, Wetzlar, Germany). The microscope was equipped with florescence 

filters (excitation 440–460 nm and emission 500 nm) (Nightsea, Lexington, MA, USA) to evaluate 

the distribution of TC within the filaments. Moreover, the surface morphology of the 3D-printed 

catheters containing TC (0.25, 0.5 and 1.0%) and without TC, before and after the 10-days 
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release study were analysed using Scanning Electron Microscope (SEM) (Hitachi TM3030, Tokyo, 

Japan). 

2.4.2. Mechanical properties

TA.XTplus texture analyser (Stable Micro Systems, Surrey, UK) was used to evaluate the elastic 

modulus and the fracture force of the resulting filaments. Pieces of filament of 6 cm were cut 

and clamped vertically into the texture analyser. The distance between both clamps was 2 cm. 

The filament was vertically stretched at a rate of 50 cm/min. The texture analyser stretched the 

filament up to 20 cm. Subsequently the elastic modulus was calculated from the slope from the 

obtained stress/strain curves.

2.4.3. Infrared Spectroscopy

The Fourier Transform Infrared (FTIR) spectra of the resulting TC containing TPU materials were 

recorded using a Spectrum Two™ instrument (Perkin Elmer, Waltham, MA, USA) by the 

attenuated total reflectance (ATR) technique. The spectra were recorded from 4000 cm−1 to 

600 cm−1 with a resolution of 4 cm−1 and a total of 16 scans were collected. 

2.4.4. Thermogravimetric analysis

As the elastomer is exposed to high temperatures during the printing process, the thermal 

degradation behaviour of the polymer was examined. Thermogravimetric analysis (TGA) was 

performed to measure the weight loss of the TC containing TPU materials. For this purpose, 

small fragments of the filaments containing 0% and 1% TC concentration were used. TGA was 

performed on a Q500 Thermogravimetric analysis (TA instruments, Bellingham, WA, USA). Scans 

were run from room temperature to 550°C, at a heating rate of 10°C/min under a nitrogen flow.

2.4.4. Contact angle

The contact angle of water with the surface of the resulting TC containing TPU materials was 

evaluated using an Attension Theta equipment (Attension Theta, Biolin Scientific, Gothenburg, 

Sweden). OneAttension software analysed results to give an indication of the wettability of the 

surface.

2.4.4. X-ray microcomputer tomography

X-ray Micro Computer Tomography (μCT) scans were also performed on 3D-printed catheters. 

A Bruker Skyscan 1275, with a Hamamatsu L11871 source (40kV, 250µA) and 3 MP active pixel 

CMOS flat panel detector was used. Samples were mounted vertically on dental wax and 

positioned 59.791 mm from the source, where camera to source distance was 286 mm. No filter 
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was applied for an exposure time of 49 ms. The images generated were 1944x1413 pixels with 

a resolution of 17 µm per pixel. A total of 1056 images were taken in 0.2° steps around one 

hemisphere of the sample, with an average of 3 frames taken at each rotation step. 

The images were collected, and subsequently a volumetric reconstruction of each sample was 

generated using Bruker’s CTvol software. Attenuation thresholding was conducted manually, in 

order to eliminate speckle around the samples. The same thresholding was applied within 

Bruker’s CTan software, where the samples were further processed.

2.5. TC release Study

A release study was performed to calculate the amount of TC eluting from the resulting 

catheters. Catheters were placed in Eppendorf’s containing 1 mL of PBS which were placed in a 

shaking incubator at 37°C and 40 rpm. Samples were taken at predetermined time intervals 

(each 24 h for 10 days). Catheters were removed from the Eppendorf’s, dried and transferred to 

new Eppendorf’s containing 1 mL of fresh PBS. The concentration of TC was evaluated using a 

UV-visible plate reader (PowerWave XS Microplate Spectrophotometer, Bio-Tek, Winooski, VT, 

USA) at a wavelength of 363 nm.

2.6. In Vitro Microbiological Analysis

Printed catheters were tested for inhibitory effect on a bacterial culture of S. aureus. For this 

purpose, catheters at each concentration (0 -1% of TC) were cut into 4 x 2 mm discs using a 

scalpel. Two sets of catheters discs were tested. Catheters that were used directly after 

3D-printing were referred to as unwashed (UW) catheters, and catheters that were submitted 

to a release in PBS media for 10 days were referred to as washed (W) catheters. Then, UW and 

W catheter discs were placed in a Class II Microbiological Safety Cabinet (BioMAT2) and left 

under UV light for 30 min on each side of the disc to be sterilised. To perform this experiment, 

80 µl of a saturated culture of S. aureus was added to 5 mL of Luria-Bertani (LB) soft agar. This 

mixture was then poured on top of the LB agar plate. Catheter discs were placed in the centre 

of the plate and incubated for 24 hours at 37°C. The inhibition zone diameters were then 

measured in mm. Furthermore, three inoculated plates with no catheter discs were also 

incubated as a positive control. 

Additionally, an in vitro assay of bacterial adhesion onto these printed catheters was performed. 

For this purpose, squares (with the following dimensions: 1cm x 1cm x 0.1cm) were 3D-printed 

using the same filaments as for the catheters containing 0%, 0.25%, 0.5% and 1% TC. This 

analysis was carried out in accordance with previous published work.34,35 In brief, a bacterial 
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suspension of S. aureus (1 × 108 cfu mL-1) in PBS and supplemented with 0.5% TSB (pH 7), was 

diluted (1:100) with PBS containing 0.5% TSB. Replicate samples of the abovementioned 

3D-printed squares were placed in individual wells of a sterile 24-well plate containing 1 mL of 

the respective bacterial suspension with a density of 1 × 106 cfu mL−1. The plate was continuously 

shaken in an orbital incubator at 37°C for 24 hours. The samples were then removed from the 

24-well plate containing the bacterial suspension and the nonadherent bacteria were removed 

by serial washing, first in PBS (1 x 10 mL), and secondly, in QSRS (3 × 10 mL).36 Samples were 

then transferred into fresh QSRS (5mL), sonicated for 15 min and vortexed for 30 s to remove 

adherent bacteria. The sonication technique has previously been demonstrated not to affect 

bacterial viability or morphology.37 A viable count of the QSRS was performed by the Miles and 

Misra serial dilution technique38 followed by plating onto Mueller-Hinton agar to enumerate the 

previously adhered bacteria per sample.  Percentage reductions in the number of adherent 

bacteria to each sample (UW and W catheters containing 0.25%, 0.5% and 1% TC) relative to the 

control samples (UW and W catheters containing 0% TC) were calculated.

2.7. Statistical Analysis

Quantitative data was expressed as a mean ± standard deviation, n=3. The statistical analysis 

was performed using a one-way analysis of variance (ANOVA), p < 0.05 was considered to be 

statistically significant.

3. Results and Discussion

3.1. Preparation and Characterisation of TC Containing TPU Materials

Extrusion of the TPU pellets containing the different TC concentrations produced smooth 

filaments of 2.85 mm in diameter (Figure 1A). Moreover, the colour of the filament darkened as 

the mass of TC added increased, confirming that an increased amount of TC is present in the 

extruded filaments. It can be inferred that the TC was mixed successfully with the TPU matrix. 

This can be confirmed by microscopy (Figure 1A), which show that TC was dissolved in the 

molten TPU within the extruder, as the filaments are homogeneous showing no visible TC 

aggregates. Moreover, fluorescence images did not show any TC aggregate within the material 

(Figure 1B). Additionally, Figure 1C shows the cross section of the filaments. The filaments 

showed homogeneous distribution of TC along the filament and accordingly this suggest that 

the mixing process in the extrusion was successful and that the drug and the polymer should be 

dissolved within the TPU matrix. Moreover, this can be confirmed by SEM, Figure S1 (supporting 

information). These SEM images of the cross section of blank TPU and TPU containing 1% of TC 

filaments showed no visible TC crystals or aggregates in the filaments.
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The good miscibility between TPU and TC can be explained by their chemical structures. The TPU 

used in the present work contains aromatic groups within its polyurethane units.39 On the other 

hand, TC contains a linear fused tetracyclic nucleus structure including a benzene ring and 

multiple conjugated double bonds.40  Accordingly, the interaction between the aromatic 

moieties of TPU and TC can explain the good miscibility between these two compounds. The 

interactions between TPU and TC have been previously reported by Okoli et al.41 These reported 

interactions were based on π-π interactions between the aromatic moieties within TPU and TC.

TPU filaments prepared containing TC were tested to evaluate if the presence of TC influenced 

their mechanical properties. Figure 1D shows the elastic modulus of the filaments as a function 

of the TC content. It is noticeable that the presence of TC did not alter the elastic modulus of 

the materials (p > 0.05). Moreover, the filaments were stretched up to 2000% of the initial 

length. None of the tested specimens fractured during the test.

To the best of our knowledge, there is no report of this type of TPU being used for 3D-printing 

applications. However, Christ et al. described the use of TPU Elastollan 1185A, a similar type of 

TPU, reinforced with carbon nanotubes for 3D-printing applications.42 The obtained elastic 

modulus for these filaments were higher than the ones reported here. However, this type of 

TPU has a higher shore hardness (85A vs 70A) and higher inherent elastic modulus. Moreover, 

the addition of 1% of carbon nanotubes to the TPU significantly increased the elastic modulus 

by more than a 50%. Interestingly, the presence of 1% of TC did not alter the elastic modulus of 

the filaments. Considering that TC was dissolved within the TPU during the extrusion, it can be 

concluded that there are interactions between the drug and the polymer. However, the results 

obtained suggest that the amount of drug incorporated into the polymers was not alter the 

mechanical properties of the material.

FTIR spectroscopy was used to evaluate if there were any interaction between TPU and TC 

(Figure 1E). The FTIR of TC showed peaks assigned to O-H (ca. 3460 cm-1), N-H (ca. 3450 cm-1), 

C=O (1600-1700 cm-1) and =C-N (ca.1460 cm-1) bonds.43 On the other hand, TPU showed the 

characteristic peaks for the urethane group (C=O stretching vibration ca. 1700 cm-1 and N-H 

vibrations 3300-3400 cm-1).44 The FTIR spectra of TPU containing 1% of TC did not any of the 

characteristic TC peaks or any peak shift. This could be due to the low drug content of the 

materials. However, it is obvious by the colour of the resulting materials (Figure 1A-1C) that the 

drug was blended in the TPU matrix. These results are similar to the ones obtained by Okoli et 

al.41 This work described the development of a TPU-based magnetic composite for TC removal 

from aqueous environments. In this work, the only reported changes in the FTIR spectra were 
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related with the interactions between TC and the Fe within the structure. No other FTIR peaks 

showed changes that can suggest any interactions between TPU and TC.

FTIR spectroscopy and mechanical testing were not showing differences between TPU and TC 

containing materials. Accordingly, thermal analysis was performed to establish if there were any 

interactions between TC and TPU. TGA analysis of TPU and TPU containing 1% of TC showed 

differences between these two materials (Figure 1F). The material containing TC showed an 

improved thermal resistance. For this purpose, the onset temperatures (Tonset) for both materials 

were measured. Tonset denotes the temperature at which the weight loss begins. As can be seen 

in Figure 1F, the Tonset of the TPU is shifted to a higher Tonset (from 306.5 to 322.7°C) after the 

addition of 1% of TC (1%). This is largely due to the existing interaction between the drug and 

the TPU polymeric matrix. These results suggest that there are interactions between TC and TPU. 

TC is preventing TPU degradation. Similar results were reported before when TPU was combined 

with Schiff base additives.44 These compounds acted as flame retardant when combined with 

TPU. Hydrogen bonding interactions of O-H groups in the Schiff base compounds with the C=O 

of the urethane group in TPU were reported. TC has multiple O-H groups capable of establishing 

this type of interaction.

Finally, water contact angle with TPU and TC loaded TPU materials was evaluated (Figure 1G). 

The obtained values ranged between 90 and 105°. Accordingly, it can be established that all the 

prepared materials were hydrophobic in nature as water contact angle values were higher than 

90°.45 No significant differences were obtained between all the TC containing TPU materials 

(p > 0.05). However, the contact angle showed lower values when the TC concentration was 

increased from 0.5 to 1%. In the present study, TC was used in its hydrochloride salt form. 

Accordingly, this drug is a hydrophilic drug. This explains why materials containing higher TC 

loadings showed “lower” hydrophilicity.
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Figure 1 (A). Microscopy (A) and fluorescent microscopy (B) images of TPU filaments containing 

0%, 0.25%, 0.5% and 1% of TC. Cross section microscopy image of the filaments (C). Elastic 

modulus of the TC containing filaments (D). FTIR-ATR of TC containing TPU materials (E). TG 

curves TC containing TPU materials (0% and 1% TC) (F). Contact angle of water with the surface 

of TC containing TPU materials (G).

3.2. Preparation of TC Containing Catheters Using 3D-Printing.

TPU and TPU/TC filaments were used to produce catheters using fused deposition modelling. 

Figure 2 shows fragments of catheters produced with the previously mentioned materials. It can 

be seen that catheters containing higher TC loadings showed darker colours (Figure 2A). 

Moreover, due to the inherent flexibility of TPU the resulting catheters were flexible (Figure 2B 

and 2C). Central venous lines require the presence of cuffs to provide stability once they are in 

place. Figure 2D shows that the technique can be used to prepare more sophisticated catheters 

such as cuffed catheters. Moreover, FDM can be used to prepare independent cuffs with and 

without antibiotic (Figure 2D). The development of antiseptic cuffs to prevent catheter-related 

infections has been previously described.46 However, the literature report that the most used 

bactericidal agent for this purpose was silver and it showed limited effectivity.47,48 Accordingly, 

we believe that the use of antibiotic, such as TC, will significantly reduce bacterial colonisation 

of the material. The results showed in the present paper are a proof of concept and, accordingly, 

the catheters used for further studies were on lumen catheters. However, catheters used for HD 

or central venous lines present more complex designs including more than one lumen.49 Figure 

2E-2G shows that FDM can be used to prepare these types of designs. Finally, it is important to 

note that liquid can flow through the catheters without leaking. To illustrate this a methylene 
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blue solution was injected trough a 3D printed catheter (Figure 2H). During the process, no 

leakage was observed.

The use of 3D-printing catheters has been described before.22,24 However, these publications 

described the concept and showed some examples of catheters prepared using poly(lactic acid) 

(PLA),23,24 a commonly used 3D-printing material. This is not a good material for this application 

as full catheters cannot be produced using this material as it is not flexible. Realistically, these 

catheters cannot be used in patients.22 The catheters described here are flexible (Figure 2) as 

they are made of TPU. This is the same material that is used to prepare catheters and central 

venous lines.50 Moreover, FDM allows the on demand preparation of catheters and adaption to 

the needs of the patient. This is especially interesting for children that require catheters with 

non-conventional sizes.51

Figure 2. Catheters produced by Ultimaker3 Printer at concentrations of 0%, 0.25%, 0.5% and 

1% TC showing their flexibility (A, B and C). Longer catheters with and without integrated cuffs, 

and spare printed cuffs with and without antibiotics (D). Different designed catheters used for 

dialysis and central venous lines (with two lumens) (E). Injection of a methylene blue solution 

(0.5mg/mL) through a TPU catheter.
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SEM was used to characterise the surface of the printed catheters. These images show smooth 

uniform layers in the images before release (Figure 3). As can be seen in the Figure 3, there were 

no visible modifications in the layered structure of the catheters after the release study. FDM is 

an AM technique that creates 3D objects by sequential layer deposition.52 SEM images showed 

the layers of the catheters printed using this technique. No differences are observed between 

blank catheters and TC loaded catheters.

The surface of the catheter’s present certain degree of roughness and some minor defects. 

However, the prepared catheters did not leak as shown in Figure 2H. The work described here 

is a proof of concept and more work need to be developed before these materials can be used 

in real patients. One of the key aspects that can be improved for future developments is the 

surface roughness. There are different techniques that can be applied to improve it. The easiest 

one is use solvent vapour to smooth the surface of the prints.53 However, this adds an additional 

step to the process and it is not ideal. An alternative to this is to implement alternative ways of 

printing. Nonplanar 3D printing can be used to obtain smoother surfaces.54,55 This is not a new 

type of 3D printing but a new software algorithm to treat computer generated objects before 

printing. Accordingly, this novel software technique can be implemented in conventional FDM 

printers.

Figure 3. SEM micrography of 3D-printed catheters at concentrations of 0%, 0.25%, 0.5% and 

1% before and after the release study. The scale bar represents 500 μm.

The 3D-printed sample architectures and topologies were analysed through the Bruker Skyscan 

1172 system μCT. As it could be seen in the 3D volume reconstruction (Figure S2 in the 

supplementary material section), performed by using the Bruker’s CTvol software, the drug 

incorporation did not affect the morphology of the 3D-printed samples, which were very similar 
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for all TC concentrations. In addition, even at the highest drug concentration (Figure S2E-S2F) all 

the samples were characterised by a continuous outer shell. In accordance to other studies 

published in the literature, 56–58 and where similar manufacturing processes were applied, this 

might be due the different dimensional range between the polymer, acting as a matrix, and the 

drug. 

The representative images of the samples’ cross sections are shown in Figure 4. It has been 

found that the topology of control specimens (Figure 4A-4B) was comparable to those samples 

characterised by a low drug dose (see Figure 4C-4D). The presence of the drug particles was 

more evident in the samples loaded with 1% of TC, as can be seen in Figure 4E, and for which 

the washing process did not affect the drug retention (Figure 4F). 

Figure 4. µCT cross section images of 0% TC W catheter (A) 0% TC UW catheter (B) 0.25% TC UW 

catheter (C) 0.5% TC UW catheter (D) 1% TC UW catheter (E) and 1% TC W catheter (F).

Furthermore, it is possible to appreciate the distribution of the drug within the 3D structure 

(Figure 5). The presence of the drug in each one of the 3D-printed specimens was assessed by 

further analysis and 3D reconstructions. As reported in Figure 5, the distribution of the drug 

within the 3D volumes was uniform and proportional to the concentration loaded. Moreover, 

even in this case it was demonstrated that the release step (Figure 5F) did not affect the drug 

retention, if compared to the UW catheter (Figure 5E).
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Figure 5. 3D reconstruction of the drug distribution in the 3D-printed volume of the 0% TC W 

catheter (A) 0% TC UW catheter (B) 0.25% TC UW catheter (C) 0.5% TC UW catheter (D) 1% TC 

UW catheter (E) and 1% TC W catheter (F).

3.3. Release Studies

Drug release from catheter structures was analysed using UV analysis. A similar pattern of 

release was followed by the concentration of drug at 0.25% TC and 0.5% TC (Figure 6). There is 

an initial burst release of TC released in the first day and then the amount released begins to 

plateau after the third day. However, catheters containing 1% of TC had a much higher amount 

of TC released initially compared to the previous ones (p < 0.05). At the end of the ten days, 

there is still an increasing level of TC release for the catheters containing 1% of TC. Although 

these catheters had a much larger release of TC, this is was around 4% release of the total loaded 

drug after ten days.  
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Figure 6. Cumulative TC release from 3D-printed catheters containing 0.25%, 0.5% and 1% of TC 

(Means ± S.D; n = 3).

The initial burst release of drug from all of the catheters may be due to the presence of TC on 

the surface of the catheters. The TC present in the outermost layers of the catheter constructs 

would have a smaller diffusion distance into the surrounding medium and so may have caused 

the initial burst release of drug. The abovementioned PLA catheters containing gentamicin 

sulphate (GS) or methotrexate (MTX) showed a similar pattern to the present study, an initial 

burst release during the first few hours followed by a steady release.24 

After ten days, the catheter containing 1% of TC was still releasing and only 4% of the drug was 

released. This sustained drug release profile may be due to the hydrophobic nature (Figure 1G) 

of the TPU polymer, which would therefore slow water penetration into polymer matrix. 

Therefore, this catheter has potential to have prolonged antibacterial effects, as it will be 

discussed in the following section.

3.4. In Vitro Microbiological Analysis

Printed catheters were tested for antimicrobial effect on a bacterial culture of S. aureus. UW 

catheters and W catheters were used for this assay. The results of the zone of inhibition are 

presented in the Figure 7A-7B. A zone of inhibition indicates that S. aureus either at the surface 

of the catheters or even for an area extending outwards form the catheters surface are inhibited. 

Both, UW and W catheters containing TC exhibited zones of inhibition. As expected, the control 

catheters containing no TC had no zones of inhibition. The zones of inhibition were increased by 

increasing the amount of TC. However, statistical analysis showed that there were no significant 
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differences between the zones of inhibition caused by UW catheters containing 0.25% and 0.5% 

TC, and the same was observed for W catheters at the same concentrations. (p > 0.05). 

Therefore, it can be inferred that increase in TC concentration from 0.25% to 0.5% did not have 

a significant impact on the zones of inhibition produced. However, there was a clear increase in 

the zone of inhibition from 0.25% to 1% (p < 0.05) for both UW and W catheters.

On the other hand, comparing UW with W catheters, at 0.25% and 0.5% TC concentrations, there 

was a decrease in the zones of inhibition after ten days releasing TC in PBS (p < 0.05). The average 

zone of inhibition for W catheters at 0.25% and 0.5% TC concentrations were 6.0 and 7.6 mm, 

respectively, compared to 9.3 mm and 11.5 mm before the releasing step (UW catheters). 

Therefore, less TC is diffusing out of the W catheters compared to the UW ones. Nevertheless, 

there was no significant differences between the halos found for both UW and W catheters at 

1% TC (p > 0.05), which is in line with the obtained drug release profile for the catheters 

containing 1% of TC. 

Figure 7. Correlation between the diameter of the inhibition zone of S. aureus and the 

concentration of TC (A). Positive S. aureus control and agar plates showing zones of inhibition of 

UW and W catheters (B). Microbial adherence (%) of S. aureus to UW and W catheters after 24 h 

at 37°C p(HEMA) and copolymers of 2-HEMA and conjugates1−3relative to the p(HEMA) 

homopolymer, denoted control, after 4 and 24 h incubation at 37°C. Columns and error bars 

represent means ± SD (n= 3).
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It is clear that the catheters had bacteriostatic activity on the S. aureus culture (Figure 7A-7B). 

This further supports the hypothesis that extrusion and 3D-printing did not affect the 

bacteriostatic activity of this drug. Catheters containing 0.25% and 0.5% TC had lower 

bacteriostatic activity after the ten-day releasing step. This is due to the release of TC during this 

step, which would have resulted in the majority of drug on the outer layers of the catheters to 

have diffused out. Furthermore, catheters containing 1% TC still had significant bacteriostatic 

activity after the release study. It matched the conclusions of this release study as drug was still 

being eluted from the catheter after ten days. This drug concentration (1%) is relatively low, 

however, it was still able to produce significant zones of inhibition. An issue that exists with 

current coated catheters is the risk of toxicity. The ability to use such small quantities of drug 

and still have bacteriostatic activity minimises the risk of these drug impregnated catheters 

causing toxicity in the patient. Genina et al.59 reported the possibility to print drug-loaded 

intrauterine devices using different grades of ethylene vinyl acetate (EVA) and higher percentage 

of drugs (5 and 15% of indomethacin). Weisman et al.23 conducted a study on 3D-printed 

antibiotic and chemotherapeutic constructs in which 1% and 2.5% gentamicin was used. The 1% 

disc tested in bacterial culture of E. coli had a similar zone of inhibition (12.9 mm) to 1% TC 

catheter in this study (13.0 mm). It is well known that these results depend on the bacteria strain 

used, the amount of it, as well as the type of drug. For instance, in this study 80 µl of a S. aureus 

culture were used compared with the 50 µl used in the previous work.23 

In addition to the zone of inhibition assay, another in vitro assay to study the capacity to avoid 

a biofilm formation on the part of the coated catheters was performed. Bacterial adherence to 

the surface of the catheters was studied with a model of opportunistic pathogen as S. aureus.60 

Moreover, S. aureus is a common causative agent of medical device and bloodstream 

infections.61  

The results of the efficacy of these catheters in resisting adherence of S. aureus relative to the 

control catheters containing no TC are presented in the Figure 7C. The greatest reduction in 

adherence of S. aureus was achieved by UW catheters containing 1% TC with adherence reduced 

by a mean value of 99.97% after 24 hours (Figure 7C). Nevertheless, this excellent reduction 

value is followed closely by the UW catheters containing 0.25% and 0.5% TC as well as the W 

catheters containing 1% TC, which showed reduction in bacterial adherence values of 96.01, 

96.37 and 96.33% after 24 h, respectively. These results agreed with those of studies on zone of 

inhibition. W catheters containing 1% TC were able to avoid a biofilm formation even after ten 

days releasing TC. Indeed, there were not significant differences between all the UW catheters 
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and the W catheter containing 1% TC (p > 0.05). Moreover, even W catheters containing 0.5% 

TC (after ten days releasing TC) showed also good results, in terms of reduction values (84.62%), 

similar to those obtained using nalidixic acid.35 Only W catheters containing small amounts of TC 

(0.25%) showed poor reduction values (23.26%). These results are therefore extremely 

promising considering that antibacterial materials have potential to be used for biomedical 

applications.

‘Nosocomial’ or ‘healthcare associated infections’ (HCAI) affect patients under medical care in 

the different health care facilities, such as hospitals.62 These infections can occur through the 

use of medical devices such as catheters and ventilators employed in modern health care.63 

According to The World Health Organization (WHO), these infections could affect approximately 

15% of all hospitalized patients.64 Moreover, these infections can be caused by bacteria, viruses 

and fugal parasites, however, bacteria are the most common pathogens responsible for HCAI. 

Highly resistant bacteria such as Methicillin-resistant S. aureus are the cause of large part of 

these infections worldwide. This means long stays in the health care facilities while increasing 

health care costs.65 Therefore, these novel 3D-printed antibacterial devices, such as catheters, 

have a great potential to minimise the appearance of these HCAI.

4. Conclusions

This study demonstrates the potential to incorporate drugs into the 3D-printed manufacture of 

medical devices. TC was combined with TPU using single screw HME to yield filaments with the 

drug dissolved in the matrix. This was confirmed by SEM and TGA measurements. Moreover, the 

addition of up to 1% (w/w) of TC did not influence the mechanical or surface properties of the 

resulting material. These filaments were used to successfully prepare catheters via-FDM.

TC containing catheters were capable of releasing TC for periods of up to 10 days. Moreover, 

the drug loaded TC catheters had an inhibitory effect on S. aureus bacteria, which commonly 

causes catheter related infections. This was especially significant for 1% (w/w) catheters. The 

tested catheters showed inhibitory effect on S. aureus bacteria even after being washed for 10 

days in PBS. However only catheters containing 1% (w/w) of TC showed equivalent inhibitory 

effect before and after 10 days of washing. Finally, TC catheters showed resistance to bacterial 

adherence when compared with TPU catheters (up to 99.97% reduction).

These results showed the potential of FDM for anti-infective catheter manufacturing. This is only 

one potential application of this technology. This proof of concept study displays how 

antibacterial catheters can be created to combat catheter related infections associated with 
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dialysis catheters. This is the first study that describes the production of usable anti-infective 

catheters using 3D-printing.

The methods described in the present paper can be applied to various medical devices and a 

range of different drug eluting materials. Further research should be done such as the in vivo 

evaluation of the catheters to fully test their bioactivity and adverse effects. Moreover, 

important aspects such as the sterilisation of such devices should be evaluated. Finally, there 

are regulatory questions still open about the use of 3D-printing for medical device production. 

However, the US Food and Drug Administration (FDA) has started investigate this potential 

technology and has published guidelines for manufacturers on how to use this technology 

appropriately.66

Supporting Information:

SEM images of the cross section of blank and TPU containing 1% of TC filaments. µCT 

reconstructions of all the types of catheters used in this study.
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