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1. Introduction

In many situations, data to be analyzed can be arranged into a matrix,
which is often called a data matrix. Therefore, some general matrix fac-
torization methods, such as principle component analysis (PCA) or single
value decomposition (SVD) [1, 2], independent component analysis (ICA)
[3, 4], and network component analysis (NCA) [5, 6], have been widely used
as very important unsupervised learning tools in discovering the underlying
structures of data. Furthermore, many data such as image pixel data [7], text
association data [8], and protein-protein interaction data [9] can be arranged
into a nonnegative matrix whose elements are nonnegative. The general fac-
torizations of nonnegative matrices by SVD, ICA and NCA contain negative
entries and thus have difficulties for interpretation. Therefore, nonnegative
matrix factorization (NMF) [10] has advantages over general factorizations.
In contrast to those general factorizations, the nonnegativity in NMF ensures
factors contain coherent parts of original data [11, 12].

In recent years, NMF has become a very popular unsupervised or semi-
supervised learning method useful in various applications including data clus-
tering [13, 14, 15], image processing [16, 17, 18], semantic analysis of docu-
ments [19, 20, 21], and biological data analysis [22, 23, 24, 25]. One of the
main reasons that NMF has become popular is that Lee and Seung [10, 26]
proposed a very simple and computationally efficient multiplicative update
algorithm for solving NMF. However, Lee and Seung’s algorithm has sev-
eral weaknesses. To address these weaknesses, Lin proposed a few improved
methods [27, 28], which yet converge slower than Lee and Seung’s algorithm.
Recently, Li et al. [29] proposed a fast multiplicative update algorithm for
solving the NMF, which overcomes the drawbacks of both Lee and Seung’s
algorithm and Lin’s algorithm by guaranteeing the convergence to a station-
ary point with some zero values for the initialization. Besides algorithms
for basic NMF, algorithms are also proposed for constrained NMF, struc-
tured NMF, and generalized NMF. A comprehensive reviews about these
algorithms can be found in [30].
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This study focuses on symmetric NMF (SYM-NMF), which is a special
case of constrained NMF. SYM-NMF tries to find a nonnegative matrix with
a reduced rank to approximate a given symmetrical nonnegative data matrix.
Mathematically, given a symmetrical nonnegative matrix A with the size of
n × n, and a positive integer r < n, SYM-NMF finds a nonnegative matrix
U = (uik) ∈ Rn×r such that

A ≈ UUT .

Although there are several ways to measure the difference between A and
its approximation UUT such as the generalized Kullback-Leibler divergence
between A and UUT [10], this study adopts the Euclidean distance between
A and UUT in terms of the matrix Frobenius norm as follows

min
U
f(U) = min

U

1

2

∥∥∥A− UUT
∥∥∥2
F
,

subject to uik ≥ 0, ∀i, k,
(1)

where
∥∥X∥∥

F
=
√∑n

i=1

∑m
j=1 x

2
ij is the Frobenius norm of a matrix X =

(xij) ∈ Rn×m. Note that each nonnegative constraint is subject to only
a single variable. Furthermore, the objective function in (1) can also be
expressed in terms of matrix elements as follows

f(U) =
1

2

∥∥∥A− UUT
∥∥∥2
F

=
1

2

n∑
i=1

n∑
j=1

(aij −
r∑
s=1

uisujs)
2. (2)

Although SYM-NMF is a special case of NMF, the algorithms for general
NMF cannot be directly applied to solve SYM-NMF [31]. Actually several
algorithms for SYM-NMF have been proposed [31, 32, 33, 34]. However,
their convergence and/or initialization have not been well addressed. In
addition, these algorithms assume that matrix A in (1) is positive definite in
order that the convergence can be guaranteed. However, in practice, many
nonnegative symmetric matrices are not positive definite, for example, the
adjacent matrices of networks [35, 36].

In this study we propose a converged algorithm for SYM-NMF (CAS-
NMF) and prove that our CASNMF does not only converge to a stationary
point, but also could apply to the wider range of SYM-NMF problems as it
does not require that A is positive definite for convergence. Moreover, CAS-
NMF does not require that the initial values of matrix U are nonzero, which
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is very useful in applications of SYM-NMF to semi-supervised machine learn-
ing [13, 14]. In Section 2, we first describe the Karush–Kuhn–Tucher (KKT)
optimality conditions of optimization problem (1), with which a stationary
point should be satisfied. Then, we review several existing algorithms for
solving optimization problem (1) and discuss their relationships and conver-
gence. In Section 3, we describe our new algorithm CASNMF for solving
optimization problem (1), analyze its properties, and prove its convergence
by using local auxiliary functions [37]. We also compare our CASNMF with
the best algorithms reviewed in Section 2. To verify our theoretical results,
in Section 4 we apply our proposed CASNMF algorithm, as well as the best
existing algorithms reviewed in Section 2 to three data sets. The experimen-
tal results are analyzed and discussed. In Section 5, we conclude this study
and discuss some directions of future work. The novelties of study include:
1) CASNMF is applicable to non-positive definite matrices (especially net-
work adjacent matrices); 2) CASNMF can guarantee to converge to a local
minimum stationary point; 3) initial values are not necessarily non-zeros;
4) CASNMF converges to a smaller local minimum, compared to the best
existing algorithms.

2. KKT optimality conditions and existing algorithms for SYM-
NMF

Although the optimization problem (1) is not convex in U , a local optimal
solution of U should be a stationary point according to the optimization
principle [38]. By the definition U is a stationary point of the optimization
problem (1) if it satisfies the following KKT optimality conditions [38]:
For ∀i, k

uik ≥ 0, (3a)

∂f(U)

∂uik
≥ 0, (3b)

and uik
∂f(U)

∂uik
= 0, (3c)

where
∂f(U)

∂uik
= 2

n∑
m=1

(
r∑
s=1

(umsuis)− ami)umk, (4)
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is the partial derivatives of f(U) with respect to uik, seeing Appendix A for
its derivation.

To solve the optimization problem (1), Zass and Shashua [31] proposed
the following Algorithm 1.

Algorithm 1. Zass and Shashua’s Algorithm [31]
For t = 1,2,. . .

ut+1
ik = utik

(AU t)ik − aiiutik
[U t(U t)TU t]ik − [U t(U t)T ]iiutik

, ∀i, k. (5)

By ignoring the diagonal elements of matrix A, they proved [31] that the
objective function of problem (1) was non-increasing with the update rule
(5). When converging, U t(U t)T tends to A and the denominator tends to
the numerator in formula (5). However, they did not prove that the solution
converges to a stationary point [31]. In addition, it is unreasonable to simply
ignore the diagonal elements of matrix A in (1) for making the problem
manageable.

Long et al. empirically proposed the following Algorithm 2 [32] without
a rigorous derivation. Actually Long’s algorithm can be viewed as a revision
of Lee and Seung’s algorithm [10, 29] for the general NMF by forcing that
the second matrix is the transpose of the first matrix.

Algorithm 2. Long’s 2005 Algorithm [32]
For t = 1,2,. . .

ut+1
ik = utik

(AU t)ik
[U t(U t)TU t]ik

, ∀i, k. (6)

The update rule (5) can also be viewed as the revised version of update
rule (6) by neglecting the diagonal elements of matrices A and UUT in prob-
lem (1). Later on, Long et al. [33] proposed another algorithm (Algorithm
3) with a rigorous derivation.

Algorithm 3. Long’s 2007 Algorithm [33]
For t = 1,2,. . .

ut+1
ik = utik

4

√
(AU t)ik

[U t(U t)TU t]ik
, ∀i, k. (7)
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Long et al. [33] proved that Algorithm 3 guaranteed that the objective
function of problem (1) was non-increasing with the increase of iterations.
However, they did not prove that Algorithm 3 converges to a stationary point.
He et al. [34] proposed an algorithm (Algorithm 4) to improve Algorithm
3 and proved that their algorithm would converge to a stationary point if
matrix A is definite positive.

Algorithm 4. He’s Algorithm [34]
For t = 1,2,. . .

ut+1
ik = utik

3

√
(AU t)ik

[U t(U t)TU t]ik
, ∀i, k. (8)

He et al. [34] formulated the update rules (7) and (8) as the α-weighted
geometric mean between uik and updated rule (6) by the following formula

ut+1
ik = (utik)

1−α
[
utik

(AU t)ik
[U t(U t)TU t]ik

]α
= utik

[
(AU t)ik

[U t(U t)TU t]ik

]α
,

(9)

where 0 ≤ α ≤ 1. The rules (6)–(8) are the formula (9) with α = 1, 1/4 and 1/3,
respectively. Furthermore, He et al. [34] proved that the larger the value of
α, the faster the solution of problem (1) with the rule (9) converges. How-
ever they illustrated by simulation that Algorithm 2 would not converge to
a local minimum as the objective function of problem (1) is oscillating with
the increase of iterations. Therefore, it is suggested that α = 0.99 should be
used.

Ding et al. [12] proposed the following algorithm without a rigorous
derivation.

Algorithm 5. Ding’s Algorithm [12]
For t = 1,2,. . .

ut+1
ik = utik

(
1− β + β

(AU t)ik
[U t(U t)TU t]ik

)
, ∀i, k, (10)

where 0 < β ≤ 1. Ding et al. suggested that in practice β = 1/2 should
be a good choice [12, 21]. However, the convergence of this algorithm has
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not been proved yet. It is obvious that the update rule (10) becomes the
update rule (6) when β = 1. He et al. [34] formulated the update rule (10)
as the β-weighted arithmetic mean between uik and the update rule (6) by
the following formula

ut+1
ik = (1− β)utik + βutik

(AU t)ik
[U t(U t)TU t]ik

= utik

(
1− β + β

(AU t)ik
[U t(U t)TU t]ik

)
.

(11)

Furthermore, He et al. [34] proved that the larger the value of β, the faster
the solution of problem (1) with the rule (11) converges. As Algorithm 2 does
not converge to a local minimum as the objective function of problem (1) is
oscillating with the increase of iterations [34], it is suggested that β = 0.99
should be used.

Actually descent methods are widely used to find a local minimum of an
objective function [38]. Typically descent methods need to define a search
step size and a search direction such that the value of the objective function
is decreasing (at least non-increasing) with increasing the number of itera-
tions. As it is the steepest descent direction for minimizing the objective
function, the negative gradient is naturally chosen as the search direction.
The resulting methods are called the gradient descent algorithms. Applying
the gradient descent method to the optimization problem (1) yields to the
gradient descent algorithm (Algorithm 6), where ε(utik) is the search step size
at iteration t.

Algorithm 6. Gradient descent algorithm
For t = 1,2,. . .

ut+1
ik = utik − ε(utik)

∂f(U t)

∂utik
, ∀i, k. (12)

In principle, on the one hand, the small positive search step sizes ε(utik)
can warrant that the value of objective function is decreasing (at least non-
increasing) with increasing the number of iterations. However, it would be
very slow to converge with the small search step sizes. On the other hand,
the larger the search step size, the faster the value of objective function
is decreasing, but the updated variables may not satisfy the constraints.
Therefore, although the negative gradient descent is known as the steepest
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descent, the gradient descent algorithm could very slowly converge to a local
minimum or even not converge to any local minimum without a smart choice
of search step sizes, especially for the optimization problems with constraints
such as optimization problem (1).

By taking the following search step size

εDing(u
t
ik) =

βutik
2[U t(U t)TU t]ik

, ∀i, k. (13)

we can obtain the update rule (10) of Algorithm 5 for 0 < β ≤ 1 and thus the 
update rule (6) of Algorithm 2 with β = 1 in (13). As a result, Algorithms 1, 
2 and 5 can be viewed as the special case of the gradient descent algorithm 
(Algorithm 6) while Algorithms 3 and 4 can be viewed as some types of 
”mean” between uik and the gradient descent algorithm. From (13), we can 
see that the larger the value of β, the larger the search step size is and thus 
the faster the solution of problem (1) with the rule (11) converges, which is 
in agreement with the conclusion in [34].

It can be seen that all Algorithms 1–5 can guarantee that all updated 
elements of matrix U are nonnegative if all initial values are nonnegative. 
However, one can observe that the update rules in these algorithm contain 
a factor uik. Therefore, if at some iteration step t0, it turns out utik = 0, the 
value of uik will have no chance to be updated for all iterations t > t0 even 
though the KKT conditions (3b) and (3c) are not satisfied yet. As a result, 
these algorithms cannot converge to a stationary point even if they converge. 
With this observation, the elements of matrix U for Algorithms 1–5 should 
not be initialized as 0. However, in some applications of SYM-NMF such 
as semi-supervised machine learning for clustering [13, 14], one may have to 
initialize some elements of U as 0. In addition, these algorithms are not well 
defined if denominators in the update rules (5-10) are zero. Although a small 
positive number can be added to the denominator as in [27], the convergence 
speed may slow down.

Furthermore, among all these algorithms, Algorithm 2 may not converge 
as simulated in [34]. The convergence of Algorithm 5 was not provided. 
Although Algorithms 1 and 3 can be proved to converge in [31, 33], they were 
not provided with the proof to converge to a stationary point. Algorithm 4 is 
the only one that was proved to converge to a stationary point. However, to 
guarantee its convergence, Algorithm 4 assumes that matrix A is positive 
definite and the initial values are nonzero [34]. Actually, these assumption are
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too strong in many applications of SYM-NMF. For example, applying SYM-
NMF for clustering nodes based on the adjacent matrix of a network [35].

3. CASNMF and its convergence

Before describing our new algorithm CASNMF, we would like to discuss
about the parameter r in SYM-NMF, which is the number of columns of
matrix U . In most applications, one may know the range of values of r
if not knowing its exact value. In some situations, one may want to find
the minimal value of r such that the approximation of SYM-NMF is good
enough. Under no circumstances, one expects the resultant matrix U has
a zero column. In practice, if these situations happen, one can reduce the
value of r by removing zero columns in U .

3.1. New update algorithm for SYM-NMF

To address the weaknesses of Algorithms 1–5, we propose the following
update algorithm for solving the optimization problem (1).

Algorithm 7. CASNMF for SYM-NMF

1) Initialize u1ik ≥ 0, for all i, k,

2) For t = 1,2,. . .
If U t is stationary, i.e., satisfies KKT optimality conditions (3), then stop
Else

If
∑n

m=1(u
t
mk)

2 +Dt
ik = 0,

ut+1
ik =

√
bti, ∀i, k, (14)

Else

ut+1
ik = max(0, ut+1

ik ), ∀i, k, (15)
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where

bti = aii −
r∑
s=1

(utis)
2, (16)

ut+1
ik = utik −

1

2

(∑n
m=1(u

t
mk)

2 +Dt
ik

) ∂f(U t)

∂utik
, (17)

Dt
ik = max[0,−btt + (utik)

2 + 2utikd
t + (dt)2/2], (18)

dt =
|
∑n

m=1(
∑r

s=1(u
t
msu

t
is)− ami)utmk|∑n

m=1(u
t
mk)

2
. (19)

As can be seen, different from Algorithms 1–5, the search step sizes of
our newly proposed Algorithm 7 are

εWu(u
t
ik) =

1/2∑n
m=1(u

t
mk)

2 +Dt
ik

. (20)

Ding’s algorithm with β = 1 in (13) is the same as Long’s 2005 algorithm
and both of them converge the fastest among Algorithms 1–5. In this case,
we have the following search step size.

εDing(u
t
ik) =

utik
2[U t(U t)TU t]ik

=
utik

2
∑n

m=1

∑r
s=1 u

t
isu

t
msu

t
mk

=
(1/2)utik∑n

m=1

∑r
s=1
s 6=k

utisu
t
msu

t
mk +

∑n
m=1(u

t
mk)

2utik
=

1/2∑n
m=1(u

t
mk)

2 + Et
ik

,
(21)

where Et
ik =

∑n
m=1

∑r
s=1
s 6=k

utisu
t
msu

t
mk/u

t
ik. In principle, if Et

ik is larger than

Dt
ik, we can conclude that CASNMF (Algorithm 7) converges faster than

Algorithms 1–5. Although it is not easy to say whether Et
ik is larger than

Dt
ik for all iterations t, it is true that Et

ik is larger than Dt
ik for many cases

when t is large. Actually, as t → ∞ (i.e., after enough iterations), we have
that

∑r
s=1(u

t
is)

2−aii → 0 and dt → 0. As a result, we have that Dt
ik → (utik)

2

as t→∞. Therefore, when utik is smaller, our algorithm will converge faster.
On the other hand, as in most cases

∑n
m=1

∑r
s=1
s 6=k

utisu
t
msu

t
mk is strict positive,

Et
ik will be larger when utik is smaller. As a result, Algorithms 2 and 5 will

converge slower. In applications, the optimal matrix U typically has many
zeros or small elements [10, 12, 29, 30]. Therefore, our algorithms should
converge faster than Algorithms 1 to 5 in practices.
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Note that when utik = 0, and ∂f(U t)/∂utik < 0, the (i, k)-th element of U
still has a chance to be updated and the updated value of ut+1

ik is positive in
CASNMF. However in Algorithms 1–5, as long as utik = 0 for some t, then
for t + 1, t + 2, . . . , the (i, k)-th element of U has no chance anymore to be
updated even if ∂f(U t)/∂utik < 0 is true, which violates the KKT optimality
condition (3b). Therefore, different from initializations of Algorithms 1–
5, the initial values of elements of matrix U could be zeros for CASNMF.
However, if all elements in a whole column of U are zero at iteration t, we
may have

∑n
m=1(u

t
mk)

2 + Dt
ik = 0. Therefore, uik will be updated by (14).

Furthermore, if aii = 0 for all i, the elements in the k-th column of U will
actually have no chance to be updated by (14) and (16). To avoid this case
happened at the beginning, the initial matrix U should have no zero column.
If matrix U would have a zero column when the algorithm converges, the
zero column should be removed although all elements of zero column also
satisfy all KKT optimality conditions (3). Note that the minimum value of
objective function (1) will not be affected after the zero column is removed.

For all Algorithms 1–5, the main cost is dominated by computing ma-
trix multiplications (AU t) and [U t(U t)TU t], each of which takes the order of
O(n2r) operations at each iteration for updating all elements of U . There-
fore, the computational complexity order of all Algorithms 1–5 is #iterations
∗O(n2r). For our presented Algorithm 7, the main cost for updating one ele-
ment utik is dominated by computing ∂f(U t)/∂utik =

∑n
m=1(

∑r
s=1(u

t
msu

t
is)−

ami)u
t
mk, which takes the order of O(nr) operations. As a result, at each iter-

ation for updating all elements of U , it takes the order of O(n2r2) operations.
Therefore, the computational complexity order of presented Algorithm 7 is
#iterations ∗O(n2r2). As typically r � n is true and our algorithm needs
much less number of iterations, the computational complexity of our pre-
sented Algorithm 7 would not be increased greatly, compared to Algorithms
1–5.

3.2. Proof of convergence

An auxiliary function is required for the proof of convergence of CASNMF
like in the case of general NMF [26, 27, 28, 29]. For the general NMF, the ob-
jective function is quadratic in the elements of two factor matrices and thus
the second derivatives of the objective function with respect to the elements
of two factor matrices are constant and the higher derivatives are zeros [29].
However, for the SYM-NMF, the objective function is a fourth degree poly-
nomial in the elements of the factor matrix U and thus the second derivatives
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of the objective function with respect to the elements of the factor matrix
are still a function of the elements of the factor matrix U (see Appendix
A). Although a global auxiliary function was proposed in [34] for the SYM-
NMF, it requires that matrix A is positive definite. In this study, different
from the auxiliary functions used in [26, 27, 28, 29] for the convergences of
algorithms for the general NMF or the one used in [34] for the convergence
of algorithms for the special SYM-NMF, we introduce the concept of local
auxiliary function and its important property below.
Definition: Let F be a function of a single variable u and G be a function
of two variables u and u

′
, where u is any real number while |u−u′ | <= d and

d is a nonnegative number. G(u, u′) is a local auxiliary function for F (u) if
the following conditions are true

G(u, u) = F (u) and G(u, u′) ≥ F (u). (22)

The concept of local auxiliary function is very useful in proof of conver-
gence because of the following property.

Lemma 1. If G(u, u′) is a local auxiliary function for F (u), then F is non-
increasing under the following update

ut+1 = arg min
u,|u−ut|≤dt

G(u, ut), (23)

and |ut+1 − ut| ≤ dt where dt(≤ d) is a nonnegative number.

The proof is straightforward by considering

F (ut+1) ≤ G(ut+1, ut) ≤ G(ut, ut) = F (ut). (24)

To prove the convergence of their algorithm (Algorithm 4) for SYM-NMF
[34], He et al. designed a global auxiliary functions for the objective function
(1). However, two assumptions are required to prove the convergence of their
algorithm: (1) matrix A should be definite positive and (2) every element of
matrix U t at any t should be nonzero. These two strong assumptions make
their algorithm inapplicable to many practical problems.

Theorem 2. With the update rules of our proposed CASNMF, the objective
function of problem (1) is non-increasing with the increase of iterations and
actually is decreasing as fast as possible because the largest possible search
step was chosen at each iteration.
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Proof. In the following, we derive the formulas for updating the (i, k)-th
element of U in our presented Algorithm 7. Given a matrix U t, we would like
to understand how the objective function of optimization problem (1) changes
when only the (i, k)-th element uik of U t is deviated from U t. By Taylor series,
the objective function of optimization problem (1) can be expended in the
(i, k)-th element of U as follows

f(U)

= f(U t) +
∂f(U t)

∂utik
(uik − utik) +

1

2

∂2f(U t)

∂(utik)
2

(uik − utik)2

+
1

6

∂3f(U t)

∂(utik)
3

(uik − utik)3 +
1

24

∂4f(U t)

∂(utik)
4

(uik − utik)4

= f(U t) +
∂f(U t)

∂utik
(uik − utik) +

1

2

∂2f(U t)

∂(utik)
2

(uik − utik)2

+ 2utik(uik − utik)3 +
1

2
(uik − utik)4

= f(U t) +
∂f(U t)

∂utik
(uik − utik)+

1

2

[
2

( n∑
m=1

u2mk +
r∑
s=1

u2is + u2ik − aii
)

+

4utik(uik − utik) + (uik − utik)2
]
(uik − utik)2.

(25)

Here, we define the following function with respect to uik

G(U,U t) = f(U t) +
∂f(U t)

∂utik
(uik − utik)

+

[ n∑
m=1

(utmk)
2 +Dt

ik + αik

]
(uik − utik)2,

(26)

where
Dt
ik = max[0,−bti + (utik)

2 + 2utikd
t + (dt)2/2]. (27)

From (26), we can see that G(U,U t) = f(U) when U t = U . In addition,
for any αik ≥ 0, the third term in (26) is greater than or equal to the third
term in (25) if |uik − utik| ≤ dt while the first two terms in (25) and (26) are
the same. Therefore, by the definition of the local auxiliary function, for any

13



αik ≥ 0, function defined in (26) is the local auxiliary function for function
(25) if |uik − utik| ≤ dt. Minimizing function (26) with respect to uik yields
the following update rule for uik:

u
t+1
ik = utik −

1

2

(∑n
m=1(u

t
mk)

2 +Dt
ik + αik

) ∂f(U t)

∂utik
, (28)

for any positive value of dt. Furthermore, if |ut+1
ik − utik| ≤ dt for some dt ,

then we have

arg min
uik,|uik−utik|≤dt

G(U,U t)

= utik −
1

2

(∑n
m=1(u

t
mk)

2 +Dt
ik + αik

) ∂f(U t)

∂utik
. (29)

Actually from (28), we have

|ut+1
ik − utik| =

1

2

(∑n
m=1(u

t
mk)

2 +Dt
ik + αik

)∣∣∣∣∣∂f(U t)

∂utik

∣∣∣∣∣
≤
∣∣∑n

m=1(
∑r

s=1(u
t
msu

t
is)− ami)utmk

∣∣
2
∑n

m=1(u
t
mk)

2
.

(30)

Therefore, if the value of dt is computed by (19), we can obtain the
formula (28).

By Lemma 1, replacing utik with u
t+1
ik calculated by (19), (27) and (28)

for any αik ≥ 0 and keeping other elements in U t unchanged, the value of
objective function in the optimization problem (1) is non-increasing.

Note that when αik = 0, formula (28) becomes formula (17), that is

u
t+1
ik = ut+1

ik . The update rule (28) is actually a gradient descent rule with
the search step size.

ε(utik) =
1

2

(∑n
m=1(u

t
mk)

2 +Dt
ik + αik

) . (31)

The larger the value of ε(utik), the faster the value of the objective function
in (1) is decreasing. For the given matrix U t, the largest value of ε(utik) is

14



1/2
(∑n

m=1(u
t
mk)

2 + 2Dt
ik

)
at αik = 0. However, when the value of ε(utik) is

too large, the updated value of u
t+1
ik by (28) could be negative, which violates

the KTT optimality condition (3a). Therefore, we need to carefully choose
the value of αik to make sure that all KKT optimal conditions (3) would be
satisfied while the value of the objective function in (1) is decreasing as fast
as possible, which means that we should choose the largest possible search
step size at each iteration.

Here we consider two cases: (I)
∑n

m=1(u
t
mk)

2+Dt
ik = 0 and (II)

∑n
m=1(u

t
mk)

2+
Dt
ik 6= 0. For case (I), we have utik = 0 for all i = 1, . . . , n and thus∑r
s=1(u

t
is)

2 − aii = −bti ≤ 0. Furthermore, from equations (A2)–(A4) in
Appendix A we have

∂f(U t)

∂utik
= 0,

∂2f(U t)

∂(utik)
2

= 2

( r∑
s=1

(utis)
2 − aii

)
= −2bti,

∂3f(U t)

∂(utik)
3

= 0,
∂4f(U t)

∂(utik)
4

= 12.

Thus the function f(U) in (25) becomes

f(U) = f(U t)− btiu2ik + u4ik/2

= f(U t)− (bti)
2/2 + (u2ik − bti)2/2.

(32)

As ∂f(U t)/∂utik = 0, the KKT optimality conditions are satisfied for any

nonnegative uik. Furthermore, from (32) when uik =
√
btt, the function f(U)

reaches the minimum. Therefore by using formula (14) to calculate ut+1
ik , the

values of objective function is decreasing as fast as possible.
For case (II), we need to carefully choose the nonnegative αik such that

the updated value of u
t+1
ik calculated by (28) is nonnegative and the value

of the objective function in (1) is decreasing as fast as possible. We need
to consider two cases again: (a) ∂f(U t)/∂utik < 0 and (b) ∂f(U t)/∂utik ≥ 0.

For case (a), the updated value of u
t+1
ik calculated by (28) is positive for any

value of nonnegative value of αik. Thus we take αik = 0 to have the largest
search step size 1/

(
2
∑n

m=1(u
t
mk)

2 + 2Dt
ik

)
and then formula (28) becomes

(17). For case (b), the inequality

1

2
(∑n

m=1(u
t
mk)

2 +Dt
ik + αik

) ∂f(U t)

∂utik
≥ 0, (33)
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is true. If utik = 0, we can choose αik = +∞ in (28) to get ut+1
ik = 0. We can

also get ut+1
ik = 0 by formula

ut+1
ik = max(0, ut+1

ik ),

as ut+1
ik calculated by (17) is non-positive. If utik > 0, we should choose αik

to make sure that the inequality

utik −
1

2
(∑n

m=1(u
t
mk)

2 +Dt
ik + αik

) ∂f(U t)

∂utik
≥ 0, (34)

is true. Solving (34) and considering αik ≥ 0 yields

αik ≥ max(0,
1

2utik

∂f(U t)

∂utik
−

n∑
m=1

(utmk)
2 −Dt

ik).

To have the largest possible search step size, we take the minimum value
of αik as follows

αik = max(0,
1

2utik

∂f(U t)

∂utik
−

n∑
m=1

(utmk)
2 −Dt

ik).

If αik = 0, the value of u
t+1
ik calculated by (27) (i.e. (17)) is nonnegative.

If αik = 1
2utik

∂f(Ut)
∂utik

−
∑n

m=1(u
t
mk)

2 − Dt
ik > 0, then the value of u

t+1
ik

calculated by (28) is exactly 0 while the value of ut+1
ik calculated by (17) is

nonpositive. Therefore, again we can have

ut+1
ik = max(0, ut+1

ik ).

In summary, for case (b), we have the formulas (15) and (17)–(19) to
update the value of uik which can guarantee that the updated value of ut+1

ik

is nonnegative and the value of the objective function (1) is non-increasing
with the increase of iterations and actually is decreasing as fast as possible
because the largest possible search step was chosen at every iteration.

In the following we prove that the sequence of matrices {U t, t = 1, 2, . . . }
produced by CASNMF has at least one limit point which is also a stationary
point.

Theorem 3. The sequence of matrices {U t, t = 1, 2, . . . } produced by CAS-
NMF has at least one limit point.
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Proof. By Theorem 2, the sequence {f(U t), t = 1, 2, . . . } is non-increasing.
As function f(U) is bounded below, limt→∞ f(U t) exists and is finite. As

matrix A is bounded,
∥∥U t(U t)T

∥∥2
F

is bounded for all t ≥ 1. Furthermore,
from Inequality (B.1) in Appendix B, the sequence {U t, t = 1, 2, . . . } is
bounded in matrix Frobenius norm for all t ≥ 1. Thus {U t, t = 1, 2, . . . } has
at least one limit point.

Theorem 4. Assume that {U t, t = 1, 2, . . . } is produced by CASNMF and
converges to U∗. Then U∗ satisfies KKT optimality conditions (3).

Proof. If U∗ satisfies
∑n

m=1(u
∗
mk)

2 + D∗ik = 0 for some i and k, we have
u∗mk = 0 for m = 1, . . . , n, which means the k-th column of U∗ are zero.
Although all the elements in the k-th column of U∗ satisfy KKT conditions,
it should be removed from the optimal solution as discussed before.∑n

m=1(u
∗
mk)

2 +D∗ik 6= 0 for some i andOn the other hand, if U ∗ satisfies 
k, from Algorithm 7, we have

u∗ik = max

(
0, u∗ik −

1

2
(∑n

m=1(u
∗
mk)

2 +D∗ik

) ∂f(U∗)

∂u∗ik

)
. (35)

If u∗ik = 0, from equation (35), ∂f(U∗)
∂u∗ik

≥ 0 is true, and thus KKT optimal-

ity conditions (3) for u∗ik are satisfied.
If u∗ik > 0, from equation (35), we have

u∗ik = u∗ik −
1

2
(∑n

m=1(u
∗
mk)

2 +D∗ik
) ∂f(U∗)

∂u∗ik
,

which means that ∂f(U∗)
∂u∗ik

= 0, and thus KKT optimality conditions (3) for

u∗ik, are satisfied again. Therefore, in summary, U∗ satisfies KKT optimality
conditions (3).

4. Experiments

Our proposed algorithm (CASNMF) has been theoretically proven to
converge fast in terms of the number of iterations with the largest possible
search step size at every iteration and can converge with zero initial values
and general symmetrical nonnegative matrix A. In this section we carry
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out numerical experiments on three datasets to illustrate its performance
in practices. CASNMF is compared with two other best algorithms: He’s
algorithm with α = 0.99 and Ding’s algorithm with β = 0.99. All these
three competing algorithms are coded in MATLAB R2013a and their codes
can be available from the authors on request. The algorithms are judged to
converge if the following criterion is met:∣∣OBJ t −OBJ t−1∣∣

OBJ t
≤ ε,

where OBJ t is the value of objective function (1) at iteration step t, and ε
is a small positive number and is set as 10−6 in this study. To avoid too long
running time, the program stops when the pre-defined maximum number
of iterations (which is 2000 in this study) is reached. These algorithms are
run on a desktop with specifications: a processor of Intel (R)Core (TM) i7-
4770 CPU @ 3.40GHZ 3.40GHZ, a RAM of 8.00GB(7.8GB usable), and a
64 bit operating system of Windows 7 Enterprise. In our experiments, all
three programs are run with two synthetic networks and one real-life network
data. Furthermore, as the initialization of NMF could be critical issues in
some applications because of its local convergence [39], especially with initial
zero values, our experiments take initial values of U in the two following
cases:

Case I: set uik = |N(0, 1)|,∀i, k,
Case II: set uik = |N(0, 1)|,∀i, k, and then randomly set 30% of elements

in U as zeros,
where N(0, 1) stands for the standard normal distribution. Case I is to set the
nonzero initial values while Case II is to set 30% of initial values as zeros. In
the following experiments, the same sets of initial values are generated from
Case I or Case II for all three competing algorithms when they are compared
on the three network datasets.

Synthetic Dataset 1 is created as the adjacent matrix of an undirected
network which consists of six separated cliques with sizes of 20, 20, 25, 25,
30, and 30. All diagonal elements of the matrix are zeros. We applied all
three competing algorithms to the adjacent matrix of this network with 100
different initial values in each of two cases for r = 6, respectively. The results
are recorded in Table 1, which shows the number of convergences to different
values of objective function (1). Specifically, for all three algorithms the
value of objective function (1): c1) diverges (not converge); c2) converges to
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72.00 (the smallest minimum value of objective function for this dataset in
all experiments); c3) converges to 252.50, or c4) converges to 433.00.

Table 1: Results of Synthetic dataset 1

He’s algorithm
with

Ding’s
algorithm with

our algorithm:
CASNMF

α = 0.99 β = 0.99
initial values of Case I

# convergences to
OBJ.72 19 (503) 31 (486) 43 (32)

(average iterations)
# convergences to

OBJ.252.5 17 (483) 29 (452) 57 (98)
(average iterations)
# convergences to

OBJ.433 1 (470) 1 (460) 0
(average iterations)

# Divergences 63 39 0

initial values of Case II
# convergences to

OBJ.72 NA NA 66 (30)
(average iterations)
# convergences to

OBJ.252.5 NA NA 34 (92)
(average iterations)
# convergences to

OBJ.433 100 100 0

From Table 1, one can observe that CASNMF converges for all 100 runs
with different initial values of Case I while He’s algorithm and Ding’s algo-
rithm diverge for 63 and 39 runs, respectively. CASNMF converges for all
100 runs with different initial values of Case II while He’s algorithm and
Ding’s algorithm diverge for all runs. These results illustrate that CASNMF
outperforms He’s algorithm and Ding’s algorithms in term of convergences
and robustness to the initial values. Furthermore, the number of runs with
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convergence to the smallest minimum value (72.00) of objective function (1)
of CASNMF is much more than those of He’s algorithm and Ding’s algo-
rithm. In addition, from Table 1 we can see that in cases that all algorithms
converged to the same values of the objective function (1), CASNMF con-
verged with much less number of iterations than both He’s algorithm and
Ding’s algorithm. These results further illustrate that CASNMF has greater
capability to converge to the optimal value of objective function (1) than
both He’s algorithm and Ding’s algorithm.

Figure 1: The heatmap of the optimal matrix U with the objective function value of 72
for Synthetic Dataset 1.

According to the principle of SYN-NMF [12, 21], ideally the largest com-
ponents in each column of U should correspond to a dense community in a
network [35]. The heatmap of the optimal matrix U with the objective func-
tion value of 72 is depicted in Figure 1. From this figure, one can see that
each column of matrix U represents a clique and all six cliques have no over-
lap, which is the real situation of this synthetic dataset. From the matrix U
with case OBJ.252.5, the similar heatmap can be obtained. However, from
the matrix U with case OBJ.433, the heatmap cannot reflect the six true
cliques. After carefully checking, we find that the solution series for both
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cases OBJ.72 and OBJ.252.5 converge to a stationary point while the solu-
tion series for case OBJ.433 does not converge to a stationary point although
it converges to a limit point. From Table 1, CASNMF always converges to
a stationary point while other two competing methods do not. Therefore,
we can conclude that CASNMF is a powerful and robust algorithm to detect
dense communities in a network.

Synthetic dataset 2 is created as aij = |N(0, 1)| with n = 500. To
fairly compare them, all three competing algorithms are run on this dataset
with r = 30, starting with the same sets of 50 different initial values of Cases
I and II, respectively. The results are recorded in Table 2.

Table 2: Results of Synthetic dataset 2

He’s algorithm
with α = 0.99

Ding’s
algorithm with

β = 0.99

our algorithm:
CASNMF

initial values of Case I
Minimum OBJ 1665.70 1665.70 1658.50
Maximum OBJ 1705.90 1716.90 1660.50
Average OBJ 1672.72 1670.64 1658.36
STDEV OBJ 13.93 13.38 0.49

initial values of Case II
Minimum OBJ 1852.70 1822.50 1658.30
Maximum OBJ 1846.60 1856.90 1660.50
Average OBJ 1835.36 1837.82 1659.24
STDEV OBJ 5.60 9.20 0.43

From Table 2, we can observe that all three competing algorithms con-
verge for all different initial values of both Cases I and II. Over 50 different
initial values of Case I, all three competing algorithms converge; however,
the average optimal value of objective function of CASNMF is 1658.36 while
those of He’s algorithm and Ding’s algorithm are 1672.72 and 1670.64, re-
spectively. Furthermore, the standard deviation of CASNMF is 0.49 while
those of He’s algorithm and Ding’s algorithm are 13.93 and 13.38, respec-
tively. These results illustrated that CASNMF more robustly converges to
the optimal value of objective function (1) than both He’s algorithm and
Ding’s algorithm. In addition, the minimum optimal value of objective func-
tion of CASNMF over 50 runs is smaller than those of He’s algorithm and
Ding’s algorithm while the maximum optimal value of objective function of
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CASNMF is even less than the minimum optimal value of objective function
of He’s algorithm and Ding’s algorithm over 50 runs. These results illustrate
that CASNMF outperforms He’s algorithm and Ding’s algorithm in terms of
finding the minimum optimal value of objective function (1).

For initial values of Case II, although all three competing algorithms
converge again, He’s algorithm and Ding’s algorithm converge to much larger
values of objective function (1) than CASNMF. Furthermore, the results of
CASNMF in Case I and Case II have no significant difference while the results
of He’s algorithm and Ding’s algorithm are significantly different. Especially,
the average, minimum and maximum optimal values of objective function (1)
in Case II are much larger than them in Case I for both He’s algorithm and
Ding’s algorithm, which indicates that in Case II He’s algorithm and Ding’s
algorithm may actually have stopped before the optimal value of objective
function (1) is reached.

Real-life dataset is the adjacent matrix of protein-protein interaction
network which was applied to identify protein complexes [40, 41]. In this net-
work, there are 5014 proteins and 44695 interactions. Thus, its adjacent ma-
trix is a 5014×5014 symmetric nonnegative matrix with 44695 elements being
1 and others being 0. All three competing algorithms are run on this large
and sparse adjacent matrix with various values of r(= 10, 20, 30, 50, 100),
starting with the same sets of 10 different initial values of Cases I and II,
respectively. Table 3 records the results with r = 50.

Table 3: Results of PPI Network with r=50

He’s algorithm
with α = 0.99

Ding’s
algorithm with

β = 0.99

our algorithm:
CASNMF

initial values of Case I
Average OBJ NA 17822.75 17769.4
STDEV OBJ NA 24.12 11.02

Diverged 10 2 0
initial values of Case II

Average OBJ NA 18804.2 17762.8
STDEV OBJ NA 31.12 7.61

Diverged 10 5 0

From Table 3, we can see that our algorithm CASNMF converges with
all 20 different initial values while He’s algorithm diverges with them and
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Ding’s algorithm converges with some initial values while diverging with
other initial values. Although Ding’s algorithm can converge, it converges
to a much larger value of objective function (1) than CASNMF. Further-
more, CANSNMF is more robust than Ding’s algorithm in terms of standard
deviation of converged values of objective function. In contrast, CASNMF
converges to the steady values of objective functions with initial values of
both cases. Although the results with other values of r(= 10, 20, 30, 100) are
not presented in this paper, the same conclusions can be drawn as those with
r = 50, too.

5. Conclusions

In this paper, we have studied SYM-NMF which is formulated as the op-
timization problem (1). After analyzing the existing algorithms we have pro-
posed a converged algorithm (CASNMF) for solving this problem. Based on
optimization principle and local auxiliary function method, we have proved
that our algorithm converges to a stationary point even if matrix A is not
positive definite and elements of initial U can be zero. The experimental
results on three datasets have also verified our theoretical results. From
computational experiments on three datasets with different initial values,
our proposed CASNMF always converges to a stationary point while He’s al-
gorithm and Ding’s algorithm often diverge or converge to a non-stationary
point. In addition, our proposed CASNMF converges to a stationary point
with a smaller objective function value than He’s algorithm and Ding’s algo-
rithm when they converge. One direction of our future work is to apply the
CASNMF to solve problems in complex network analysis.
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Appendix A.

In this Appendix, we derive the derivatives of the objective function (1)
with respect to an element uik of matrix U , which are used in the proof
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of Theorems 2 and 4. The objective function (1) can be expressed by the
elements of U as follows:

f(U) =
1

2

∥∥∥A− UUT
∥∥∥2
F

=
1

2

n∑
m=1

n∑
l=1

(aml −
r∑
s=1

umsuls)
2

=
1

2

n∑
m=1

n∑
l=1

[
a2ml − 2aml

r∑
s=1

umsuls + (
r∑
s=1

umsuls)
2

]
.

(A.1)

Taking the first derivative of the objective function (1) with respect to uik
yields to

∂f(U)

∂uik
=

1

2

n∑
m=1

n∑
l=1

[
− 2aml

r∑
s=1

(δikmsuls + umsδ
ik
ls )

+2(
r∑
s=1

umsuls)
r∑
s=1

(δikmsuls + umsδ
ik
ls )

]

= −
n∑
l=1

ailulk −
n∑

m=1

amiumk +
n∑
l=1

r∑
s=1

uisulsulk +
n∑

m=1

r∑
s=1

umsuisumk

= 2
n∑

m=1

(
r∑
s=1

(umsuis)− ami)umk,

(A.2)

where δikms = 1 if i = m and k = s, and 0 otherwise. The second derivative
of the objective function (1) with respect to uik can be obtained as follows.

∂2f(U)

∂(uik)2
=

∂

∂uik

[
2

n∑
m=1

(
r∑
s=1

(umsuis)− ami)umk
]

= 2
n∑

m=1

( r∑
s=1

(δikmsuis + umsδ
ik
is )

)
umk

+ 2
n∑

m=1

( r∑
s=1

(umsuis)− ami
)
δikmk

= 2
[
u2ik +

n∑
m=1

u2mk +
r∑
s=1

u2is − aii
]
.

(A.3)
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Furthermore, the third and fourth derivatives of the objective function (1)
with respect to uik are

∂3f(U)

∂(uik)3
=

∂

∂uik
2
[
u2ik +

n∑
m=1

u2mk +
r∑
s=1

u2is − aii
]

= 12uik, (A.4)

∂4f(U)

∂(uik)4
= 12. (A.5)

From the above, the second derivatives are still function of elements of U
while the third and fourth derivatives are non zeros, which are different from
the situation in the general NMF.

Appendix B.

In this Appendix, we present a Theorem and its proof. This Theorem is
used in the proof of Theorem 3.
Theorem: Let U ∈ Rn×r. Then we have that∥∥U∥∥2

F
≤
√
r
∥∥UUT

∥∥
F

(B.1)

Proof. By the definition of Frobenius norm, we have that∥∥U∥∥2
F

= Trace(UUT ) =
r∑
s=1

σ2
s (B.2)

∥∥UUT
∥∥2
F

= Trace(UUTUUT ) =
r∑
s=1

σ4
s (B.3)

where σs(s = 1, 2, . . . , r) is the singular value of U . By applying Cauchy–
Schwarz inequality to (B.2), we have

∥∥U∥∥2
F

=
r∑
s=1

σ2
s =

r∑
s=1

(1∗σ2
s) ≤

√√√√( r∑
s=1

12

)( r∑
s=1

(σ2
s)

2

)

=
√
r

√√√√( r∑
s=1

σ4
s

)
Substituting (B.3) to the above equation yields to (B.1).
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