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Abstract	
	

Methane	is	one	of	major	contributors	to	global	warming.	The	rumen	microbiota	is	directly	

involved	 in	methane	production	 in	 cattle.	 The	 link	between	variations	 in	 rumen	microbial	

communities	 and	host	 genetics	has	 important	 applications	 and	 implications	 in	bioscience.	

Having	 the	 potential	 to	 reveal	 the	 full	 extent	 of	 microbial	 gene	 diversity	 and	 complex	

microbial	interactions,	integrated	metagenomics	and	network	analysis	holds	great	promises	

in	this	endeavour.	This	study	investigates	the	rumen	microbial	community	in	cattle	through	

the	 integration	 of	 metagenomic	 and	 network-based	 approaches.	 Based	 on	 the	 relative	

abundance	of	1570	microbial	genes	identified	in	a	metagenomics	analysis,	the	co-abundance	

network	was	constructed	and	functional	modules	of	microbial	genes	were	identified.	One	of	

the	main	contributions	is	to	develop	a	random	matrix	theory-based	approach	to	automatically	

determining	 the	 correlation	 threshold	 used	 to	 construct	 the	 co-abundance	 network.	 The	

resulting	network,	consisting	of	549	microbial	genes	and	3349	connections,	exhibits	a	clear	

modular	structure	with	certain	trait-specific	genes	highly	over-represented	in	modules.	More	

specifically,	all	the	20	genes	previously	identified	to	be	associated	with	methane	emissions	

are	found	 in	a	module	(hypergeometric	test,	p	<	10-11).	One	third	of	genes	are	 involved	 in	

methane	 metabolism	 pathways.	 The	 further	 examination	 of	 abundance	 profiles	 across	 8	

samples	 of	 genes	 highlights	 that	 the	 revealed	 pattern	 of	metagenomics	 abundance	 has	 a	
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strong	association	with	methane	emissions.	Furthermore,	the	module	is	significantly	enriched	

with	 microbial	 genes	 encoding	 enzymes	 that	 are	 directly	 involved	 in	 methanogenesis	

(hypergeometric	test,	p	<	10-9).	

	
	
Keywords—rumen	microbial	community,	metagenomics,	network-based	approaches,	
random	matrix	theory	
	
Highlights:	
	

• RMT-based	approach	can	be	used	to	automatically	determine	the	correlation	

threshold	used	to	construct	the	co-abundance	network	

• The	constructed	co-abundance	network	exhibits	a	clear	modular	structure		

• Certain	trait-specific	genes	including	those	associated	with	methane	emissions	are	

highly	over-represented	in	modules	

• Key	biological	mechanisms	associated	with	methane	emission	including	those	

directly	involved	in	methanogenesis	were	revealed.	

	
	 	



1 Introduction 

As	one	of	 the	most	 complicated	anaerobic	microbial	ecosystems	 in	nature	 [1],	 the	 rumen	

provides	 an	 environment	with	 stable	 and	 favorable	 physiological	 conditions	 for	microbial	

growth	and	fermentation.	Microbes	in	the	rumen	are	a	complex	ecosystem	predominantly	

consisting	of	bacteria,	archaea,	protozoa	and	fungi.	These	microorganisms	confer	the	ability	

to	break	down	complex	polysaccharides	and	harvest	energy	from	otherwise	indigestible	food	

components	[2],	[3].	It	has	been	shown	that	Bos	taurus	gut	microbiota	has	a	paramount	role	

in	cattle	performance,	productivity,	health	and	immunity	[4].		

However,	the	rumen	microbes	are	also	responsible	for	the	production	of	the	highly	potent	

greenhouse	gas	methane	and	nitrogen-rich	wastes	causing	not	only	 the	 loss	of	 feed	gross	

energy	but	also	contributing	to	the	greenhouse	gas	emissions	and	global	warming	[1],	[5],	[6].	

Understanding	the	topological	difference	in	gut	microbial	community	composition	is	crucial	

to	provide	knowledge	on	the	functions	of	each	member	of	the	microbiota	to	the	physiological	

maintenance	of	the	host.	Thus	a	better	understanding	of	the	composition	of	rumen	microbial	

communities	and	the	association	between	host	genetic	and	microbial	activities	has	significant	

applications	and	implication	in	bioscience	[6],	[7].	

Early	 exploration	 of	 rumen	 microbiology	 was	 mainly	 dominated	 by	 culture-based	

approaches.	Examples	include	the	description	of	well	characterized	rumen	bacteria	based	on	

the	 isolation	 of	 the	 functionally	 significant	 bacterial	 groups	 [9],	 [10].	 While	 successfully	

identifying	more	than	200	microbial	species	including	bacteria	and	protozoa	from	the	rumen	

[1],	 [8],	culture-dependent	techniques	requiring	a	careful	design	of	protocol	 for	growth	of	

organism	exhibit	several	significant	limitations	[11].	They	are	not	only	time	consuming	and	

cumbersome	[8]	but	more	importantly,	culture-based	studies	are	usually	unable	to	reveal	the	



full	extent	of	microbial	diversity	due	to	the	nature	of	protocol	design	and	constraints	due	to	

culture	conditions	[11],	[12].	

	Advances	in	next-generation	sequencing	(NGS)	have	opened	up	new	avenues	in	microbial	

ecology	studies.	Metagenomics,	defined	as	the	direct	genetic	analysis	of	DNA	from	microbial	

communities	 sampled	 in	 their	 specific	 environment	 without	 prior	 need	 for	 culturing,	 is	

offering	unparalleled	coverage	and	depth	in	determining	microbial	gut	dynamics	as	long	as	

the	analytic	resources	are	available	[13],	[14].		

A	number	of	metagenomics	studies	have	investigated	rumen	microbial	populations.	These	

include	 research	 by	 Henderson	 et	 al.	 [7],	 which	 investigated	 whether	 the	 microbial	

community	composition	was	influenced	by	diet,	host	species,	or	geography.	It	has	been	found	

that	the	composition	of	rumen	microbial	community	varies	with	diet	and	host,	but	similar	

bacteria	and	archaea	dominated	in	nearly	all	samples.	Based	on	the	simultaneous	exploration	

of	rumen	microbiota	and	the	metabolic	phenotype,	the	study	carried	out	by	Morgavi	et	al.	[5]	

brought	new	insights	on	the	interactions	between	microbial	populations	and	the	association	

with	the	host.	By	varying	a	host’s	diet,	Faith	et	al.	[15]	predicted	a	human	gut	microbiota's	

response	to	diet	in	gnotobiotic	mice,	in	which	60%	of	the	variation	in	species	abundance	was	

predicted	due	to	the	differences	in	diet.	

More	recently,	based	on	the	relative	abundance	of	1570	microbial	genes	 identified	in	a	

metagenomics	analysis,	Roehe	and	his	colleagues	[6]	developed	new	selection	criteria	to	be	

used	for	predicting	methane	emissions	and	other	traits	such	as	feed	conversion	efficiency.	

Using	 the	 partial	 least	 squares	 analysis,	 20	 and	 49	 microbial	 genes	 were	 found	 to	 be	

associated	 with	 methane	 emissions	 and	 feed	 conversion	 efficiency	 in	 cattle	 respectively.	

Furthermore,	functional	clusters	of	microbial	genes	were	identified	based	on	the	analysis	of	

the	co-abundance	network	in	which	the	correlation	threshold	was	manually	set	to	0.9.	



By	extending	our	preliminary	analysis	[16],	this	study	aims	to	further	examine	the	rumen	

microbial	community	in	cattle	through	the	integration	of	metagenomic	and	network-based	

approaches.	The	main	objectives	include	

• to	develop	an	automatic	 computational	 technique	 to	objectively	determine	 the	

correlation	threshold	used	to	construct	a	condition	specific	co-abundance	network.		

• to	 adopt	 network	 systems	 biology	 approaches	 for	 the	 identification	 of	 key	

biological	mechanisms	associated	the	methane	traits	

The	rest	of	the	paper	is	organized	as	follows.	Section	II	briefly	describes	the	methodology	

and	 datasets	 under	 study.	 The	 detailed	 description	 of	 automatic	 determination	 and	 its	

implementation	 is	 provided.	 The	 results	 and	 discussion	 are	 presented	 in	 Section	 III.	 The	

conclusions,	together	with	future	research,	are	given	in	Section	IV.	

2 Methodologies 

The	framework	for	integrated	metagenomic	analyses	adopted	in	this	study	is	illustrated	in	

Fig.	1.	Based	on	the	relative	abundance	of	1570	microbial	genes	identified	in	a	metagenomics	

analysis,	a	random	matrix	theory	(RMT)-based	approach	used	to	automatically	determine	the	

correlation	threshold	for	the	construction	of	the	co-abundance	network	has	been	developed.	

By	incorporating	domain	knowledge	including	KEGG	pathways,	trait	specific	genes	and	genes	

encoding	 enzymes	 involved	 in	 methanogensis,	 the	 co-abundance	 network	 was	 further	

analysed	in	terms	of	topological	structure,	functional	enrichment	and	biological	relevance.	

	

	



	

2.1 Metagenomic	data	

The	metagenomics	 data	 applied	 in	 this	 research	were	 released	 by	 the	 recent	 studies	

conducted	at	 the	Beef	 and	Sheep	Research	Centre	of	 Scotland’s	Rural	College	 [3].	A	brief	

overview	of	experiment	design	and	DNA	sequencing	is	given	below.	The	reader	is	referred	to	

[3]	and	[6]	for	a	detailed	description	of	data	generation.	

2.1.1 Experiment	design	and	methane	measurements	
	

	A	2	×	2	 factorial	design	experiment	was	performed	using	two	breed	types	 (Aberdeen	

Angus	(AA)	and	Limousin	(LIM)	rotational	crosses)	and	two	diets	(defined	as	concentrate	(CON)	

and	forage	(FOR))	using	72	steers	from	a	two-breed	rotational	cross	between	AA	and	LIM.	All	

Fig.	1	The	framework	for	integrated	metagenomic	analyses	of	the	rumen	micobiome	



animals	were	raised	on	the	Research	Farm.	Methane	emissions	of	 individual	animals	were	

measured	in	respiration	chambers	[15].		

2.1.2 DNA	sequencing	and	KEGG	analysis	
	

A	total	of	8	extreme	animals	were	identified	for	deep	sequencing	analysis	(4	high	and	4	

low)	 based	 on	methane	 emissions	 balanced	 for	 breed	 type	 (Aberdeen-Angus	 or	 Limousin	

cross)	and	diet	(CON	or	FOR)	as	depicted	in	Table	I.	DNA	was	extracted	from	rumen	samples	

and	subject	to	qPCR	for	the	16S	rRNA	genes	to	determine	the	abundance	[6].	Sequence	data	

between	8.6	 and	 14.6	GB	per	 sample	 (between	43.4	 and	 72.7	million	 paired	 reads)	were	

assembled	de	novo.	To	identify	the	microbial	genes,	the	genomic	reads	were	aligned	to	the	

KEGG	genes	database	allowing	for	up	to	a	10%	mismatch.	The	read	and	best	hits	belonging	to	

a	single	KEGG	orthologue	group	(KO)	were	retained.	 In	total	3970	KEGG	gene	orthologues	

were	 identified	 in	 rumen	 contents	 samples,	 of	 which	 1570	 genes	 showed	 a	 relative	

abundance	of	more	than	0.001%.	

TABLE	I	THE	CHARACTERISTICS	OF	8	SAMPLES	USED	IN	THE	SRUC	STUDIES.	AA:	ABERDEEN	ANGUS;	LIM:	
LIMOUSIN	CROSS;	CON:	CONCENTRATE	BASED	DIET;	FOR:	FORAGE	BASED	DIET;	DMI:	DRY	MATTER	INTAKE;	

AND	FCR:	FEED	CONVERSION	RATIO	

	

Animal	code	 Breed	 Diet	 Methane	emission	
group	 Methane	(kg/DMI)	 FCR	(kg	intake/kg	gain)	

2019N0001	 AA	 CON	 LOW	 7.635	 6.102	

2019N0002	 AA	 CON	 HIGH	 18.137	 6.096	

2019N0003	 LIM	 CON	 LOW	 9.290	 9.327	

2019N0004	 LIM	 CON	 HIGH	 20.130	 8.039	

2019N0005	 AA	 FOR	 LOW	 17.412	 10.381	

2019N0006	 AA	 FOR	 HIGH	 32.415	 6.719	

2019N0007	 LIM	 FOR	 LOW	 19.373	 8.065	

2019N0008	 LIM	 FOR	 HIGH	 30.372	 8.118	



2.2 RMT-based	approaches	

Since	the	influential	work	carried	out	by	Wigner	in	1950’s	[18],	RMT	has	found	a	wide	range	

of	applications	across	a	number	of	areas	including	physics,	finance	and	bioinformatics	[17]	-	

[20].	One	of	applications	areas	is	to	determine	a	threshold	to	objectively	separate	signal	from	

noise	which	 is	based	on	 the	 following	 two	universal	predictions	associated	with	 statistical	

properties	of	the	nearest	neighbor	spacing	distribution	(NNSD)	of	unfolded	eigenvalues,	i.e.	

𝑃 𝑠 .	

• The	 NNSD	 of	 any	 random	matrix	 representing	 systems	 largely	 composed	 of	 noise	

closely	 follows	 Gaussian	 orthogonal	 ensemble	 (GOE)	 statistics	 [17],	 [20].	 Let	 N	

represent	 the	 order	 of	 the	matrix,	𝑒$ 	be	 the	 unfolded	 eigenvalue	 and	 	𝑠$ = 𝑒$&' −

𝑒$	 𝑖 = 1, 2,3,⋯ ,𝑁 − 1 	denote	 the	 spacing	 between	 consecutive	 eigenvalues	 after	

unfolding.	 It	 has	 been	 shown	 that	 the	 distribution	 can	 be	well	 represented	 by	 the	

Wigner	surmise	[18]	as	described	by	Eq.	(1).	

• For	 a	 non-random	 matrix	 in	 which	 no	 correlation	 between	 nearest-neighbor	

eigenvalues	is	observed,	the	NNSD	tends	to	follow	the	Poisson	distribution	as	shown	

in	 Eq.	 (2),	 indicating	 the	 system	 represented	 by	 the	 matrix	 can	 be	 separated	 into	

several	relatively	 independent	clusters	 in	which	members	exhibit	similar	behaviours	

and	properties	[20],	[21].	

			It	has	been	highlighted	that	the	transition	of	NNSD	between	GOE	and	Poisson	statistics	

as	illustrated	in	Fig.	2	can	potentially	serve	as	a	reference	point	to	automatically	construct	

a	 condition-specific	 correlation	 network	 by	 removing	 random	 noise	 in	 an	 objective	

manner	[17].	

𝑃 𝑠 =
𝜋
2 ×𝑠×𝑒

(4567 8)	 (1)	

𝑃 𝑠 = 𝑒46	 (2)	



	

Fig.	 2	 Transition	 between	 GOE	 and	 Poisson	 distributions	 in	 RMT.	 The	 blue	 dotted	 line	 depicts	 the	 GOE	
distribution	while	the	solid	red	curve	represents	a	Poisson	distribution.	The	transition	of	NNSD	between	GOE	
and	Poisson	 statistics	 can	potentially	 serve	as	a	 reference	point	 to	 construct	a	 condition-specific	 correlation	
network	by	separating	high	and	weak	correlation.	

2.3 Construction	of	co-abundance	networks	

Based	on	the	recent	study	[6]	which	demonstrates	that	the	abundance	of	a	suite	of	microbial	

genes	was	 highly	 informative	 for	 predicting	 certain	 traits	 and	 the	 co-abundance	 network	

exhibits	a	modular	structure,	we	hypothesized	that	the	correlation	matrix	derived	from	the	

abundance	of	microbial	genes	under	different	conditions	can	be	broken	into	two	parts:	the	

high	correlation	part	encoding	the	correlation	of	microbial	genes	specified	to	the	changes	in	

conditions	and	the	weak	correlation	part	associated	with	non	condition	specific	correlation	

between	gene	abundances.	In	order	to	construct	a	network	specified	to	the	conditions	under	



study,	we	gradually	remove	pairs	with	absolute	correlation	values	below	the	selected	cutoff	

values	as	illustrated	in	Fig.	3.	

	

Let	𝑔$; 	denote	 the	 abundance	 of	microbial	 gene	 i	 in	 sample	k.	 The	 pair-wise	 similarity	

between	two	microbial	genes	was	estimated	using	Pearson	correlation	coefficient,	𝑐(𝑔$, 𝑔=)	

as	defined	below	where	𝑔$ 	is	the	average	abundance	of	gene	i	over	the	samples.		

Fig.	3	A	diagram	to	illustrate	the	key	steps	to	construct	the	co-abundance	network.	



The	eigenvalues	were	calculated	based	on	the	Eq.	 (4)	where	M	 is	an	n	by	n	correlation	

matrix,	l	 is	an	eigenvalue,	v	 is	 the	corresponding	eigenvector	and	 I	 is	 	 the	n	by	n	 identity	

matrix.	

2.4 Centrality	metrics	

The	 constructed	 network	 was	 further	 analysed	 using	 a	 number	 of	 topological	 metrics	

including	 degree,	 betweenness,	 eigenvector,	 bridging,	 closeness,	 PageRank,	 and	 power	

centralities,	 which	 have	 been	 previously	 applied	 to	 identified	 key	 players	 in	 biological	

processes.	A	brief	definition	of	 eigenvector,	 pagerank	and	power	 centralities	 is	 presented	

below.	A	detailed	description	of	the	rest	of	metrics	can	be	found	in	[23]	and	[24].	

Let	𝐴 ∈ ℝA×A	be	an	adjacency	matrix	associated	with a graph 𝐺 = 𝑉, 𝐸 	representing	a	

network	where	𝑁 = |𝑉|	representing	the	number	of	nodes	in	the	network	and	E is the set of 

links between nodes.	Each	entry	𝐴$= 	indicates	the	strength	of	association	between	nodes	𝑣$ 	

and	𝑣=.	Eigenvector,	pagerank	and	power	centralities	of	nodes	𝑣$ 	denoted	by	𝐸𝐶$,	𝑃𝑅$,	and	

𝑃𝐶$	respectively	can	be	calculated	using	Eqs.	(5),	(6)	and	(7)	respectively	as	defined	below:	

where	l	is	the	eigenvalue,	α	is	used	to	normalize	the	measure,	β	sets	the	dependence	of	each	

nodes	centrality	to	the	adjacent	nodes	and	𝑁(𝑣$)	is	the	set	of	neighbours	of		nodes	𝑣$.		

𝑐 𝑔$, 𝑔= =
(𝑔$; − 𝑔$)(𝑔=; − 𝑔=)I

;J'

(𝑔$; − 𝑔$)KI
;J' (𝑔=; − 𝑔=)KI

;J'

	 (3)	

𝑀 − 𝜆𝐼 𝑣 = 0	 (4)	

𝐸𝐶$ =
1
𝜆

𝐴$=×𝐸𝐶=
=∈A PQ

	 (5)	

𝑃𝑅$ =
1 − 𝑑
𝑁

+ 𝑑× 𝐴$=×
𝑃𝑅=
𝑁 𝑗=∈A PQ

	 (6)	

𝑃𝐶$ = (𝛼 − 𝛽×𝑃𝐶=)𝐴$=
=∈A PQ

	 (7)	



2.5 Evaluation	metrics	and	software	packages	used	

2.5.1 Chi-square	goodness-of-fit	test	

To	 check	whether	 the	distribution	of	 nearest	 neighbor	 eigenvalues	 spacing	 follows	 the	

Poisson	statistic	as	defined	by	Eq.	(2),	the	Chi-square	(𝜒K)	goodness-of-fit	test	was	applied	

with	the	null	and	alternative	hypotheses	being	as	follows:	

𝐻Y:	𝑃 𝑠 	follows	the	Poisson	distribution.	

𝐻':	𝑃 𝑠 	does	not	follow	the	Poisson	distribution.	

Let	𝜒K(𝑑𝑓, 𝛼)		be	the	critical	value	of	Chi-square	with	df	degrees	of	freedom	at	a	significant	

level	of	a	(a	is	set	to	0.01	in	this	study).	The	𝐻Y	will	be	rejected	if	the	calculated	𝜒K	is	greater	

than	𝜒K(𝑑𝑓, 𝛼).	

2.5.2 Enrichment	analysis	

The level of the enrichment of certain trait specific genes was quantitatively expressed by 

the hypergeometric distribution probability calculated as follows. 

where	K	is	the	number	of	genes	that	fall	into	a	module,	k	is	the	number	of	trait-specific	genes	

in	the	module,	N	is	the	total	number	of	genes	included	in	the	network	and	n	is	the	number	of	

genes	associated	with	a	trait	found	in	the	network.	

2.5.3 Software	packages	used	

The	estimation	of	the	distribution	of	unfolded	eigenvalue	spacing	was	implemented	using	

the	pipeline	of	Molecular	Ecological	Network	Analysis	[22].	The	NNSD	was	plotted	using	the	

R	package	RMThreshold	(https://cran.rproject.org/web/packages/RMThreshold/index.html).	

The	 computation	 of	 topological	 parameters	 was	 with	 the	 NetworkAnalyzer	 [23]	 and	

CentiScaPe	 [24]	 plugins	 and	 the	 iGraph	 library	 in	 R	 available	 in:	 http://igraph.org/r/doc/.	 The	

construction	 of	 co-abundance	 network	 and	 interaction	 visualization	 of	 networks	 were	

𝑝 = 1 −
𝐾
𝑖

]4'

$JY

𝑁 − 𝐾
𝑛 − 𝑖

𝑁
𝑛 	 (8)	



achieved	 using	 ExpressionCorrelation	 plugin	 available	 at	

http://www.baderlab.org/Software/ExpressionCorrelation	 and	 Cytoscape	 3.3	 [25]	

respectively.	

3 Results and discussion 

3.1 The	conformity	of	the	co-abundance	network	

To	apply	 the	RMT-based	algorithm	to	determine	a	signal-noise	 threshold	 for	a	matrix,	 the	

matrix	 must	 meet	 certain	 criteria.	 For	 example,	 the	 matrix	 must	 be	 large,	 real-valued,	

symmetric	and	should	not	have	a	rank	much	smaller	than	its	dimension.	The	eigenvalues	must	

be	unfolded.	

To	assert	if	the	co-abundance	network	is	well-conditioned	for	the	proposed	algorithm,	we	

applied	the	validation	function	provided	by	the	RMThreshold	package.	The	matrix	associated	

with	the	co-abundance	network	is	not	sparse	and	has	a	rank	of	7.		Two	unfolding	methods	

have	 been	 tested.	 One	 is	 based	 on	 the	 estimation	 of	 the	 Gaussian	 kernel	 density	 of	 the	

eigenvalue	 spectrum;	 another	 is	 based	 on	 fitting	 the	 cumulative	 eigenvalue	 distribution	

function	to	a	cubic	spline.	As	depicted	 in	Fig.	4,	 the	scatter	plot	of	 the	derived	eigenvalue	

spacing		has	a	linear	trend	line	with	a	slope	of	zero	and	an	intersect	of	one	(dotted	line	in	

Fig.4(a)),	suggesting	the	average	eigenvalue	spacing	is	kept	to	one	over	the	whole	spectrum	

and	thus	confirming	 the	eigenvalues	have	been	correctly	unfolded.	As	expected,	when	no	

threshold	is	applied,	the	NNSD	is	close	to	the	GOE	distribution	with	small	eigenvalue	spacings	

approaching	zero	(Fig.4	(b))	highlighting	the	co-abundance	network	is	dominated	by	noise.	



	
	

Fig.	4	Diagnostic	results	after	the	validation:	(a)	a	scatterplot	of	the	eigenvalue	spacing	with	linear	fit	(red	
dotted	line);	and	(b)	the	NNSD	distribution.	

	

3.2 The	impact	of	the	threshold	

As	shown	in	Fig.	5,	the	selection	of	the	cutoff	value	has	significant	impact	on	the	NNSD	derived	

from	the	co-abundance	matrix.	As	expected,	the	NNSD	clearly	follows	the	GOE	distribution	

when	 no	 threshold	was	 applied	 (Fig.	 5(a)),	 suggesting	 that	 the	 correlation	matrix	 directly	

derived	 from	 the	 abundance	 data	 failed	 to	 distinguish	 condition	 specific	 relationship	



embedded	 in	 the	 correlation	 matrix	 from	 random	 noise.	 As	 the	 threshold	 is	 increased	

gradually,	the	clear	transition	of	the	NNSD	from	GOE	to	Poisson	was	observed	(Fig.	5	(b)	to	

Fig.	5(d)).	This	was	further	confirmed	when	we	examined	small	eigenvalue	spacings	(<0.003)	

and	 the	 log	 likelihood	of	 the	empirical	NNSD	as	depicted	 in	Figs	6	and	7	 respectively.	 For	

example,	as	shown	in	Fig.	6,	the	percentage	of	small	spacings	approaches	zero	for	threshold	

less	 than	0.9	which	suggests	 that	eigenvalues	somehow	repel	each	other.	This	 implies	 the	

data	are	still	largely	covered	by	noise.	When	the	threshold	has	increased	to	a	sufficiently	high	

level,	the	log	likelihood	of	the	NNSD	belonging	to	Poisson	distribution	increased	sharply	(blue	

curve	with	triangle	markers),	indicating	the	patterns	hidden	by	noise	start	to	prevail.		

As	depicted	in	Fig.	5(c),	the	NNSD	began	to	deviate	from	GOE	at	the	threshold	of	0.95.	It	

appears	to	closely	follow	the	Poisson	distribution	when	the	threshold	set	to	0.99	(Fig.	5(d)).	

This	was	indeed	the	case	when	we	applied	the	Chi-square	goodness	of	fit	test,	in	which	the	

null	 hypothesis	 that	 the	 data	 are	 governed	 by	 a	 Poisson	 statistic	 was	 accepted	 (𝜒K =

84.85, 𝑝 = 0.019)	as	shown	in	Table	II.	

Thus,	the	clear	transition	from	GOE	to	Poisson	statistics	at	the	threshold	of	0.99	was	used	

as	 a	 reference	 point	 to	 construct	 the	 co-abundance	 network	 in	 which	 condition	 specific	

relationships	encoded	in	the	correlation	matrix	can	be	better	represented.		



	

Fig.	5	The	NNSD	of	the	correlation	matrix	constructed	from	the	abundance	of	1570	microbial	genes	across	8	samples	with	
different	thresholds:	(a)	threshold	=	0.0;	(b)	threshold	=	0.90;	(c)	threshold	=	0.95;	and	(d)	threshold	=	0.99.	

	
Fig.	6	The	percentage	of	small	eigenvalue	spacings	(less	than	0.003)	derived	at	different	threshold	

	



	
Fig.	7	The	distance	of	the	empirical	NNSD	to	the	GOE	and	Poisson	distributions	at	the	different	thresholds.	

TABLE	II	CHI-SQUARE	(𝝌𝟐)	GOODNESS-OF-FIT	TESTS	ASSOCIATED	WITH	EACH	THRESHOLD	

Threshold	 𝜒K	 p-value	

0.90	 619.87	 0.000	

0.91	 624.34	 0.000	

0.92	 573.66	 0.000	

0.93	 544.35	 0.000	

0.94	 435.24	 0.000	

0.95	 411.12	 0.000	

0.96	 262.98	 0.000	

0.97	 215.84	 0.000	

0.98	 108.40	 0.000	

0.99	 84.85	 0.019	

	

	

3.3 Co-abundance	network	
	
The	network	analysis	of	microbial	gene	abundance	was	 illustrated	 in	Fig.	8,	 in	which	each	

node	stands	for	a	microbial	gene	and	the	strength	of	each	edge	denotes	the	correlation	in	

their	abundance.	Only	the	correlations	between	microbial	gene	abundances	across	8	samples	

greater	than	0.99	were	kept.	The	network	including	549	genes	and	3349	links	shows	a	clear	

modular	structure	with	the	largest	component	(Module	A)	having	237	nodes	and	2860	edges.	

The	topological	parameters	of	the	top	3	 largest	components,	 i.e.	Modules	A,	B,	and	C,	are	



shown	 in	Table	 III,	each	having	a	clustering	coefficient	significantly	greater	 than	a	random	

graph	constructed	on	the	same	number	of	nodes.	

	

Fig.	8	Network-based	approach	to	the	correlation	analysis	of	microbial	gene	abundance.	The	threshold	used	to	construct	the	
co-abundance	 network	 was	 set	 to	 0.99.	 The	 network,	 in	 which	 each	 node	 represents	 a	microbial	 gene	 and	 each	 edge	
indicates	the	correlation	in	their	abundance,	exhibits	a	clear	modular	structure.	The	average	abundance	of	genes	in	top	3	
largest	modules,	i.e.	Modules	A,	B,	and	C,	across	8	samples	were	shown.	The	whole	network	constructed	is	shown	at	the	
bottom	 right.	 The	 red	 triangle	nodes	denote	genes	associated	with	methane	emissions	while	 green	diamond	nodes	are	
microbial	genes	linked	to	feed	conversion	efficiency.	
	

TABLE III THE TOPOLOGICAL FEATURES OF TOP 3 LARGEST MODULES, I.E. MODULES, A, B, AND C. CPL: 
CHARACTERISTICS PATH LENGTH	

Parameters	 Module	A	 Module	B	 Module	C	

Number	of	nodes	 237	 91	 41	

Number	of	edges	 2860	 219	 77	

Network	diameter	 11	 14	 13	

Network	radius	 6	 7	 7	

Network	density	 0.102	 0.053	 0.094	

Clustering	coefficient	 0.621	 0.469	 0.392	

CPL	 3.671	 4.888	 4.449	

Network	centralization	 0.158	 0.082	 0.138	

Network	heterogeneity	 0.736	 0.531	 0.163	

	

3.4 Topological	analysis	
In	an	attempt	to	assess	the	topological	relevance	of	each	node,	which	may	be	linked	to	

critical	roles	in	certain	biological	mechanisms,	we	computed	centrality	indexes	for	each	node	



including	 degree,	 betweenness,	 eigenvector,	 bridging,	 closeness,	 PageRank,	 and	 power	

centralities,	 each	 representing	 a	 process	 by	 which	 a	 node	 might	 influence	 the	 flow	 of	

information	through	a	network	[26].	For	example,	it	has	been	suggested	that	a	node	with	high	

betweeness	often	 referred	 to	bottlenecks	plays	an	 important	 role	 in	maintaining	network	

integrity	 and	 paths	 of	 information	 flow	 [27].	 Pangrank	 centrality	 can	 be	 used	 to	 identify	

important	nodes	of	low	degree	[28].	Peng	and	Schork	[29]	explored	the	application	of	network	

centrality-based	analysis	 to	 the	 identification	of	potential	 therapeutic	 targets	 for	a	 tumor.	

They	highlighted	that	eigenvector	centrality	has	the	potential	to	reveal	genes	that	could	serve	

as	 alterative	 therapeutic	 targets	 as	 nodes	 captured	 by	 eigenvector	 centrality	 are	 often	

connected	to	otherwise	critical	nodes.	

Table	IV	shows	the	top	5	ranked	microbial	genes	according	to	7	centralities.	Interestingly,	

the	top	5	genes	in	Module	B	ranked	by	power	centrality		include	two	genes,	i.e.	K00584	and	

K00201,	that	are	directly	involved	in	methanogenesis	[3].	

TABLE	IV	THE	TOP	5	GENES	RANKED	BY	7	CENTRAKITY	METRICS	IN	MODULES	A,	B	AND	C	

Centrality	indexes	 Top	5	ranked	microbial	genes	in	Module	A	

Degree	 K02315,	K00878,	K00111,	K04070,	K00805	

Betweeness	 K02566,	K05297,	K07078,	K01682,	K11358	

EigenVector	 K06923,	K00878,	K00111,	K00805,	K04070	

Bridging	 K01626,	K00016,	K01615,	K01878,	K03152	

Closeness	 K05297,	K01682,	K11358,	K02315,	K06967	

PageRank	 K01295,	K00763,	K02315,	K00878,	K09687	

Power	Centrality		 K07078,	K05810,	K06399,	K01992,	K07464	

Centrality	indexes	 Top	5	ranked	microbial	genes	in	Module	B	

Degree	 K01959,	K07161,	K03432,	K09482,	K04483	

Betweeness	 K03679,	K00400,	K07161,	K01959,	K04483	

EigenVector	 K01959,	K07161,	K03432,	K04483,	K07574	

Bridging	 K03390,	K09726,	K00440,	K00125,	K03679	

Closeness	 K07161,	K04483,	K03679,	K03420,	K00125	



PageRank	 K07161,	K01959,	K03432,	K09482,	K03044	

Power	Centrality		 K09726,	K06863,	K00584,	K00201,	K14105	

Centrality	indexes	 Top	5	ranked	microbial	genes	in	Module	C	

Degree	 K13542,	K03500,	K06969,	K07090,	K03458	

Betweeness	 K13542,	K07090,	K09117,	K00956,	K03500	

EigenVector	 K02203,	K09816,	K02048,	K03529,	K06023	

Bridging	 K06023,	K00956,	K09117,	K06179,	K00974	

Closeness	 K13542,	K00375,	K00394,	K00974,	K07090	

PageRank	 K13542,	K07090,	K06969,	K03500,	K03458	

Power	Centrality		 K11189,	K00882,	K04758,	K03500,	K02654	

	

Further	analysis	was	performed	to	discern	if	top	ranked	genes	using	topological	analysis	

metrics	 on	 the	 co-abundance	 similarity	 network	 overlaped	 with	 KEGG	 pathways.	 We	

hypothesized	 that	 application	 of	 these	 metrics	 are	 important	 as	 previous	 studies	 have	

uncovered	key	players	from	biological	networks	using	metrics	such	as	degree	(hubs),	whereby	

network	hubs	are	often	essential	[30].	For	each	centrality,	a	ranked	list	including	the	top	20%	

genes	were	selected	and	analysed.	This	percentage	was	selected	as	 it	has	been	previously	

applied	as	a	cut-off	threshold	in	the	study	[31].		

A	total	of	8	KEGG	pathways	are	shown	representing	the	top	pathways	enriched	with	genes	

obtained	from	the	various	topological	analyses	(Table	V).	As	shown	in	Table	V,	all	the	metrics	

have	high	overlap	with	the	metabolic	pathways.	Interestingly,	we	can	see	that	the	ranked	list	

derived	from	Module	B	using	Degree,	Bridging	and	PageRank	centralities	have	the	highest	

overlap	 with	 the	 methane	 metabolism	 pathway	 and	 microbial	 metabolism	 in	 diverse	

environments	(which	is	of	interest	as	it	is	related	to	methane	production).	Furthermore,	these	

overlaps	are	statistically	significant	(Fisher	Exact	Test,	p<0.05).	

	



TABLE	V	THE	OVERLAPPED	BETWEEN	THE	TOP	RANKED	GEGES	IDENTIFIED	BY	7	CENTRALITIES	WITH	KEGG	PATHWAYS.	

Module	A	

Centrality		 KO00680	 KO01100	 KO01110	 KO01130	 KO02010	 KO01120	 KO01230	 KO01200	

Degree	 0	 10	 7	 3	 2	 2	 5	 1	

Betweeness	 0	 14	 7	 6	 3	 2	 4	 2	

Eigenvzector	 0	 9	 6	 2	 2	 1	 4	 0	

Bridging	 0	 18	 7	 6	 3	 3	 4	 0	

Closeness	 0	 9	 9	 5	 2	 2	 5	 0	

PageRank	 0	 12	 7	 4	 3	 1	 4	 0	

Power	
Centrality		

0	 14	 8	 7	 0	 2	 4	 1	

Module	B	

Centrality		 KO00680	 KO01100	 KO01110	 KO01130	 KO02010	 KO01120	 KO01230	 KO01200	

Degree	 7	 11	 2	 2	 0	 8	 2	 7	

Betweeness	 5	 9	 0	 0	 0	 6	 1	 5	

EigenVector	 5	 8	 1	 1	 0	 6	 2	 5	

Bridging	 7	 8	 0	 0	 0	 7	 0	 3	

Closeness	 4	 6	 0	 1	 0	 5	 1	 3	

PageRank	 3	 9	 2	 2	 0	 4	 2	 3	

Power	
Centrality		

5	 7	 1	 1	 0	 5	 0	 4	

Module	C	

Centrality		 KO00680	 KO01100	 KO01110	 KO01130	 KO02010	 KO01120	 KO01230	 KO01200	

Degree	 0	 1	 1	 0	 0	 0	 0	 0	

Betweeness	 0	 2	 1	 1	 0	 1	 0	 0	

EigenVector	 0	 1	 1	 0	 1	 0	 0	 0	

Bridging	 0	 1	 0	 1	 0	 1	 0	 0	

Closeness	 0	 2	 1	 1	 1	 1	 	 	

PageRank	 0	 2	 1	 0	 0	 1	 0	 0	

Power	
Centrality		

0	 4	 2	 1	 0	 5	 0	 0	

*KO00680:	Methane	metabolism;	 KO01100:	Metabolic	pathways;	 KO01110:	 Biosynthesis	 of	 secondary	
metabolites;	 KO01130:	 Biosynthesis	 of	 antibiotics;	 KO02010:	 ABC	 transporters;	 KO01120:	 Microbial	
metabolism	in	diverse	environments;	KO01230:	Biosynthesis	of	amino	acids;	 KO01200:		Carbon	metabolism	



3.5 Biological	relevance	

We	first	checked	the	abundance	profile	of	genes	in	each	module	across	8	samples	as	depicted	

in	Fig.	8.	Interestingly,	genes	in	both	Modules	A	and	C	have	a	higher	level	of	abundance	in	the	

low	methane	emission	group	(2019N001,	2019N003,	2019N005,	and	2019N007)	than	in	the	

other	 4	 samples	 with	 high	 methane	 emission,	 i.e.	 2019N002,	 2019N004,	 2019N006,	 and	

2019N008	(t-test,	p<0.00001).	On	the	contrary,	a	significantly	high	level	of	abundance	was	

observed	in	the	samples	in	the	high	methane	emission	group	for	91	genes	found	in	Module	B	

(t-test,	p	=	4.2E-18)	 in	which	more	than	two	third	of	genes	 in	Module	B	have	abundances	

differing	between	the	high	and	low	methane	emission	groups	(T-test,	p<0.05).	This	suggests	

that	 Module	 B	 be	 heavily	 linked	 to	 methane	 emissions.	 The	 examination	 of	 abundance	

profiles	of	35	genes	grouped	in	the	sub-region	in	Fig.	8	further	confirms	the	observation	as	

shown	in	Fig.	9	in	which	all	the	genes	have	a	low	level	of	abundance	in	the	samples	assigned	

to	the	low	methane	emission	group	especially	in	the	2019N001,	2019N003,	and	2019N005	

samples.	The	top	10	ranked	genes	based	on	7	centralities	are	shown	in	Table	VI.	Unexpectedly,	

among	 these	 35	 genes,	 K00400	 involved	 in	 Methane	 metabolism	 pathway	 (ko00680)	 is	

ranked	 at	 the	 top	 in	 terms	 of	 5	 centrality	 metrics	 used	 (degree:	 5;	 closeness:	 0.0029;	

betweenness:	2005.81;	eigenVector:	0.050;	and	bridging	centrality:	160.36).	

TABLE	VI	THE	TOP	10	GENES	IN	THE	SUB-REGION	IN	FIG.	4	RANKED	BY	7	CENTRALITY	INDEXES	

Ranking	 Degree	 Betweenness	 Bridging	 Closeness	 Eigenvector	 pagerank	 Power	

1	 K00400	 K00400	 K00400	 K00400	 K00400	 K03044	 K00584	
2	 K00577	 K00581	 K00581	 K00581	 K00581	 K07041	 K00201	
3	 K02007	 K03045	 K06174	 K02930	 K02007	 K14128	 K02322	
4	 K14128	 K02930	 K04076	 K00577	 K00577	 K00400	 K00399	
5	 K03044	 K02122	 K02930	 K14128	 K13812	 K02007	 K04076	
6	 K00581	 K00577	 K00203	 K03045	 K02930	 K00577	 K06932	
7	 K03045	 K04076	 K03045	 K02007	 K00672	 K03045	 K00441	
8	 K00672	 K06174	 K02122	 K00672	 K14128	 K02322	 K11600	
9	 K07041	 K02007	 K00577	 K13812	 K00441	 K13525	 K14123	
10	 K13812	 K00203	 K00672	 K00441	 K03388	 K00581	 K00205	

	



	

Fig.	9	The	heatmap	of	the	relative	abundance	of	microbial	genes	grouped	in	the	sub-region	in	Fig.	8	

An	analysis	with	regard	to	the	distribution	of	microbial	genes	strongly	associated	with	traits	

indicates	that	methane	emission-specific	genes	are	highly	over-represented	in	Module	B.	For	

example,	all	the	20	genes	identified	to	be	associated	with	methane	emissions	by	Roehe	et	al.	

[6]	represented	by	red	triangle	nodes	in	Fig.	8	were	found	in	Module		B	(hypergeometric	test,	

p	 <	 10-11).	 Out	 of	 25	 genes	 encoding	 enzymes	 that	 are	 directly	 involved	 in	 the	methane	

production	pathway	studied	in	Wallace	et	al.	[3],	18	were	found	in	the	network,	15	of	which	

were	assigned	to	Module	B	(hypergeometric	test,	p	<	10-9)	as	dispicted	in	Table	VII.	

	



TABLE	VII	ABUNDANCE	PROFILE	OF	GENES	ENCODING	ENZYMES	INVOLVED	IN	METHANOGENESIS	

KEGG	genes	
Abundance	in	
low	emission	

group	

Abundance	in	
high	emission	

group	

p	value		
(t	test)	

Encoding	enzymes	
involved	in	

methanogenesis	

K00123	 0.092	 0.250	 0.002	 EC:1.2.1.2	
formate	dehydrogenase	

K00200	 0.058	 0.154	 0.002	 EC:1.2.99.5	
formylmethanofuran	

dehydrogenase	K00201	 0.066	 0.181	 1.1E-06	

K00672	 0.017	 0.048	 0.014	

EC:2.3.1.101	
Formyl	methanofuran--

tetrahydromethanopterin	
N-formyl	transferase	

K01499	 0.024	 0.080	 0.027	

EC:3.5.4.27	
Methenyl	

tetrahydromethanopterin	
cyclohydrolase	

K00577	 0.022	 0.063	 0.022	
EC:2.1.1.86	

tetrahydromethanopterin	
S-methyltransferase	

K00581	 0.035	 0.102	 0.006	

K00584	 0.035	 0.106	 0.011	

K00399	 0.102	 0.275	 7.6E-05	
EC:2.8.4.1	

methyl-coenzyme	M	
reductase	

K00401	 0.069	 0.185	 0.025	

K00402	 0.035	 0.101	 0.017	

K00440	 0.032	 0.083	 0.042	 EC:1.12.98.1	
coenzyme	F420	
hydrogenase	K00441	 0.016	 0.047	 0.029	

K03388	 0.117	 0.334	 0.002	 EC:1.8.98.1	
heterodisulfide	reductase	K03390	 0.015	 0.047	 0.036	

	

We	then	turned	to	the	analysis	of	the	involvement	of	KEGG	pathways	in	each	module.	A	

total	of	86,	45,	and	23	pathways	were	found	to	be	involved	by	microbial	genes	in	Modules	A,	

B,	C	respectively.	As	expected,	the	largest	portion	of	genes	in	each	module	are	involved	in	

KEGG	metabolic	pathway	(KO01100).	However,	a	close	look	reinforces	our	observation	that		

genes	 in	 Module	 B	 have	 a	 strong	 association	 with	 methane	 emission.	 Nearly	 one	 third	

microbial	genes	grouped	in	Module	B	are	involved	in	methane	metabolism	pathway.	There	



are	 a	 total	 of	 36	KEGG	genes	 in	 the	 co-abundance	network	 that	 are	 involved	 in	methane	

metabolism	pathway,	30	of	which	are	found	in	Module	B	(hypergeometric	test,	p	<	10-10)	as	

illustrated	in	Fig.	10.	

	

Fig.	10	KEGG	methane	metabolism	pathway	with	EC	gene	numbers	found	in	Module	B	(Highlighted	in	red).	The	genes	and	
their	coding	enzymes	are	listed	at	the	bottom.	

	

4 Conclusions 

Recent	years	have	seen	a	growing	use	of	metagenomics-based	approaches	to	study	the	full	

extent	of	microbial	diversity,	as	well	as	the	association	between	host	genetic	and	microbial	

activities.	 This	 study	 investigated	 the	 rumen	 microbial	 community	 in	 cattle	 through	 the	

integration	 of	 metagenomics	 and	 network-based	 approaches.	 Based	 on	 the	 relative	



abundance	of	1570	microbial	genes	identified	in	a	metagenomics	analysis,	the	co-abundance	

network	was	constructed	and	functional	modules	of	microbial	genes	were	identified.	One	of	

the	main	contributions	is	to	develop	a	RMT-based	approach	to	automatically	determine	the	

correlation	threshold	used	to	construct	the	co-abundance	network.	It	has	been	shown	that	

the	 network	 exhibits	 a	 highly	 modular	 structure	 with	 each	 module	 well	 separated.	 The	

involvement	of	KEGG	pathways	in	each	module	was	analysed	and	compared.	A	close	look	at	

the	 abundance	 profiles	 highlights	 that	 two	 modules	 i.e.	 Modules	 B	 and	 C	 are	 strongly	

associated	 with	 methane	 emissions	 and	 feed	 conversion	 efficiency	 respectively	

(hypergeometric	test,	p	<	10-6).	

This	 study	 contributes	 to	 the	 development	 of	 automated	 computational	 methods	 to	

supporting	the	identification	of	functional	modules	of	microbial	genes	through	integration	of	

metagenomics	and	network-based	approaches.	Given	that	the	association	between	microbial	

genes	 can	 be	 realized	 via	 different	mechanisms,	we	 are	 now	working	 toward	 a	multiplex	

network-based	approach	to	the	analysis	of	the	composition	of	rumen	microbial	community	

[32],	[33].	In	addition	we	are	building	user	friendly	interfaces	to	this	metagenomics	analysis	

on	the	Simplicity	bioinformatics	cloud	computing	platform	to	provide	access	to	this	analysis	

to	researchers	working	on	metagenomics	projects	in	a	reproducible	manner	[34].	

This	 research	has	been	undertaken	as	 the	European	Commission	 (EC)	 funded	MetaPlat	

project	(www.metaplat.eu).	The	EC	increasingly	requests	that	funded	projects	follow	specific	

data	management	regulations,	to	optimize	sharing	of	research	results	and	its	later	validation	

through	proper	reproducibility.	In	essence,	sharing	and	later	validation	is	enforced	from	the	

EC,	because	research	undertakings	are	expensive	and	the	return	on	investment	needs	to	be	

secured	 by	 research	 purchasers	 through	 proper	 management	 of	 the	 knowledge	 that	 is	

required	for	long	term	research	reuse.	As	such,	we	are	working	on	OAIS	(Reference	Model	for	



an	Open	Archival	Information	Systems,	(cf.	[35],	ISO	14721),	that	builds	a	framework	of	terms	

and	concepts	to	specify	an	archival	 information	system.	Within	OAIS	so	called	Information	

Packages	(IP)	is	used	to	describe	the	relation	of	applied	research	data,	beside	the	knowledge	

required	to	enable	its	later	comprehensive	reuse.	In	terms	of	OAIS	this	is	classified	as	Content	

Information	and	Preservation	Description	Information.	

Our	 hypothesis	 is	 that	 enabling	 extensive	 reproducibility	 for	 long	 term	 reusability	 is	

fundamentally	dependent	on	the	substantial	and	consistent	representation	of	all	information	

that	came	into	existence	along	the	phases	of	the	introduced	information	lifecycle.	We	argue	

that	the	OAIS	Information	Model,	could	act	here	as	an	abstract	specification	of	the	structure	

and	 the	 constituting	 components	 of	 a	 metagenomics	 research,	 that	 could	 be	 refined	 by	

means	of	further	introduced	community	specific	standards.	Hence,	we	will,	in	the	course	of	

the	 project	 runtime,	 elaborate	 on	 the	 comprehensive	 representation,	 integration	 and	

validation	of	introduced	standards	into	the	OAIS	information	Model	by	means	of	technologies	

in	 the	 context	 of	 the	 Semantic	 Web.	 Furthermore,	 we	 will	 undertake	 research	 in	 the	

unambiguous	documentation	of	involved	resources	and	their	interrelation	(e.g.	SRUC	data	set,	

technologies	like	NetworkAnalyzer	or	CentiScaPe	and	applied	methods)	and	to	clearly	specify	

all	these	resources	in	compliance	to	OAIS.	

In	the	current	study,	the	co-abundance	network	was	constructed	by	computing	pairwise	

correlation	between	two	microbial	genes,	which	includes	both	direct	and	indirect	associations.	

An	 important	 part	 of	 our	 future	 research	 is	 to	 investigate	 direct	 associations	 between	

variables	by	calculating	partial	correlation	and	its	impact	on	the	network	modular	structure	

[36],	 [37].	Another	potential	direction	of	the	future	research	 is	 to	explore	the	potential	 to	

detect	critical	states	of	key	players	associated	with	methane	emission	[38].	
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