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Abstract—Cellular radio based localization can be an impor-
tant complement or alternative to other localization technologies,
as base stations continuously transmit signals of opportunity
with beneficial positioning properties. In this paper, we use
the long term evolution (LTE) cell-specific reference signal for
this purpose. The multipath component delays are estimated by
the ESPRIT algorithm, and the estimated multipath component
delays of different snapshots are associated by global nearest
neighbor with a Kalman filter. Rao-Blackwellized particle filter
based simultaneous localization and mapping (SLAM) is then
applied to estimate the position of user equipment and that
of the base station and virtual transmitters. In a measurement
campaign, data from one base station was logged, and the analysis
based on the data shows that, at the end of the measurement,
the SLAM performance is 11 meters better than that with only
inertial measurement unit (IMU).

Index Terms—MPC delay, SLAM, positioning, particle filter,
LTE, CRS.

I. INTRODUCTION

Reliable and accurate location information is a critical
requirement of safety and traffic efficiency applications for
intelligent transport systems (ITS). Global navigation satellite
systems (GNSS) are the most common systems used for
positioning in the world. However, sub-meter level accuracy
is not yet available with any mass market GNSS technology.
In addition, in critical environments, such as urban canyons or
indoors, the position accuracy using GNSS can be drastically
reduced. There is a variety of systems that can be used to
support GNSS in such challenging scenarios. Those include
radar or lidar, as well as camera based systems. However
different weather and daylight conditions pose severe chal-
lenges to such systems. IMU is not sensitive to weather or
daylight conditions, but it has accumulated error, so a stand
alone IMU is not suitable for long time localization. Hence, in
order to achieve robust and precise localization, a combination
of different sensors with complementary properties should
eventually be used. Since wireless signals, such as LTE and
5G NR, are insensitive to weather and daylight conditions and
have no accumulated error, they can be used as complementary
signals for localization.

There are some challenges of using wireless signals for
positioning. For example, in urban canyons and tunnels,
multipath effects, low received signal power and non line-
of-sight (NLoS) propagation reduce the positioning accuracy.
Exploiting multipath propagation instead of mitigating the
multipath effect is attracting a great deal of research interests.
The authors of [1], and [2] interpret the effect of an electro-
magnetic wave reflected on a surface as a signal emitted from

a virtual transmitter (VT), and based on this interpretation,
multipath component (MPC) delays can be used not only to
estimate the trajectory of the receiver but also to estimate the
surrounding features by employing a simultaneous localization
and mapping (SLAM) algorithm. Some additional information
from the vehicle, such as the heading and speed information
from an IMU, can be used as the control input of the SLAM
algorithm to further improve the performance.

There are many studies that have investigated the posi-
tioning algorithms using wireless signals. The paper [3] uses
the estimation of signal parameters via rotational invariance
technique (ESPRIT) algorithm to estimate the delay of the first
arrival path, and tracks the path delay from one snapshot to the
next. However, the study only considers the first arrival path,
and does not take advantage of the multipath information. The
paper [4] exploits all the multipath information and considers
them as signals transmitted from synchronous VTs, which can
further increase the positioning accuracy. The authors use the
Kalman enhanced super resolution tracking (KEST) algorithm
to estimate and track the MPCs, but this algorithm still has
high computational complexity compared with the ESPRIT
algorithm. The paper [5] develops a belief propagation (BP)
algorithm for feature-based SLAM with probabilistic data
association (DA) using MPC parameters extracted from radio
signals as input measurements, it has good performance but it
is rather complex. In this paper, a low complexity algorithm
only exploitting the MPC delays is developed to verify the
idea of wireless SLAM with commercial LTE signals. Single
antenna LTE cell-specific reference signal (CRS) transmitted
from commercial base station is logged by a single antenna
user equipment (UE) for positioning.

The structure of the paper is as follows. Section II introduces
the system model. Section III describes the super resolution
algorithm (SRA) to estimate the multipath delays in each
snapshot. Section IV explains the data association based on
global nearest neighbor (GNN) with a Kalman filter. Section V
explains the Rao-Blackwellized particle filter (RBPF) based
SLAM used to estimate the trajectory of UE and the posi-
tions of BS and VTs. Section VI presents the measurement
campaign logged data analysis results based on the proposed
algorithm. Finally, section VII summarizes the paper.

Notation: Matrices and vectors are denoted as uppercase
and lowercase boldface letters, respectively, e.g., A ∈ CM×N
and a ∈ CM . IP is the P × P identity matrix, 0P×Q is an
P ×Q all-zero matrix, and 0P is a length P all-zero vector.
The operators (·)T , (·)H , (·)−1, and (·)† denote the transpose,



the Hermitian transpose, the inverse, and the Moore-Penrose
pseudoinverse of a matrix, respectively. E[·] is the expected
value of a random variable (RV). |·| and arg(·) are the absolute
value and the argument of a complex number, respectively. ‖·‖
denotes the norm of a vector. c ' 3 · 108 m/s is the speed of
light.

II. SYSTEM MODEL

In the LTE system, the baseband signal is an orthogonal
frequency division multiplexed (OFDM) signal described as:

sp(t) =

k=−1∑
k=−Nsc/2

Sp[k +Nsc/2]ej2πk∆ft

+

k=Nsc/2−1∑
k=0

Sp[k +Nsc/2]ej2π(k+1)∆ft,

t ∈ [−TCP , Ts],

(1)

where Sp[k], k ∈ [0, Nsc−1] is the transmitted signal at the k-
th subcarrier and the p-th antenna port, where p ∈ [1, . . . , 4] is
the antenna port number for CRS, and Nsc is the number of the
subcarrier to be transmitted. Further, t denotes the continuous
time variable, TCP is the duration of the cyclic prefix (CP),
Ts = 1/∆f is the duration of the actual OFDM symbol, and
∆f is the subcarrier spacing. For more details about parameter
settings, please refer to [6] and [7].

The multipath channel is modeled as the following chan-
nel impulse response (CIR) and channel frequency response
(CFR)

h(t) =

L−1∑
l=0

hlδ(t− τl), (2)

H(f) =

L−1∑
l=0

hle
−j2πfτl , (3)

where δ(·) denotes the Dirac delta function, hl ∈ C is
the complex channel gain associated to the l-th path, τl is
the corresponding delay, with τ0 < · · · < τL−1, and L
is the number of multipath components. It should be noted
that we have neglected dense multipath components (DMC)
for simplicity, though this has shown to affect positioning
performance in a negative way. The received signal at the
UE side is the convolution of the transmitted signal sp(t) and
the CIR h(t). After synchronization and removal of CP, the
received signal is transformed into the frequency domain with
fast Fourier transform (FFT), and represented as:

Rpt [k] = Hp
t [k] · Sp[k] + nt[k], k ∈ [0, Nsc − 1], (4)

where nt[k] is complex white Gaussian noise with zero mean
and variance of σ2

n/2. For the CRS signal, the transmitted
signal Sp[k] is known at UE side, and the CFR at CRS sub-
carriers can be acquired through least squares (LS) estimation
as:

Ĥp
t [k] = Rpt [k]/Sp[k]. (5)

III. SUPER RESOLUTION ALGORITHM BASED MPC DELAY
ESTIMATION

In [3] the authors use a super resolution algorithm to
estimate the delay of the first arriving path form many BSs to
localize the UE, however, it is possible to estimate the delays
of many MPCs from a single BS, and use them to locate the
UE, BS and VTs.

The CFR estimates Ĥp
t [k] are arranged in length M snap-

shots x̂pt [k], which are used to build the so-called data matrix
X̂p
t , i.e.,

X̂p
t =

1√
N

[x̂pt [0], ..., x̂pt [N − 1]] ∈ CM×N , (6)

x̂pt [k] =
[
Ĥp
t [k], ..., Ĥp

t [k +M − 1]
]T
∈ CM , (7)

where N = 2Ntot−M +1 is the number of stacked columns,
2Ntot is the number of CRS subcarriers in one symbol, which
is 200 for the LTE system with 20 MHz bandwidth. M is
a design parameter of the SRA. M is usually chosen as
M = m̄2Ntot, with m̄ ∈ [0, 1] being a parameter subject
to empirical tuning.

A singular value decomposition of the data matrix X̂p
t is

computed as X̂p
t = U ·Σ ·VH , with the matrices U ∈ CM×M

and V ∈ CN×N being unitary, and Σ ∈ CM×N being a
diagonal matrix with the singular values σ1 ≥ ... ≥ σM
in the main diagonal. This permits the evaluation of the
parameters σ2

m, m = 1, ...,M , which are the eigenvalues
of the autocorrelation matrix R̂x = X̂p

t · X̂
pH
t ∈ CM×M .

Since vehicle speeds are fairly low at urban areas, the vehicle
position not change much over a short time interval, e.g., it
changes 0.1 m in 10 ms for a vehicle with speed of 10 m/s,
and R̂ can be averaged over n ms, such that

R̃x =
1

n

n∑
t=1

X̂p
t · X̂

pH
t , (8)

Here n is the number of subframes used for averaging, which
depends on the vehicle speed and channel condition.

In [3], the minimum description length (MDL) criterion is
used to estimate the number of multipath components L̂. Here
we use another method that decides the number of multipath
components based on an SNR threshold, i.e., the number
of multipath components equals the maximum index m that
satisfies the following criteria:

10log10

(
σ2
m

2/M
∑M
m=M/2 σ

2
m

)
> SNRthr, (9)

where SNRthr is a predefined SNR threshold.
After the eigenvalues of Ψ are found, a classical ESPRIT

approach is used to estimate multipath delays based on the



following matrix manipulations:

Us = U ·
[
IL̂ 0L̂×(M−L̂)

]T
∈ CM×L̂, (10a)

Us,1 = [IM−1 0M−1] ·Us ∈ C(M−1)×L̂, (10b)

Us,2 = [0M−1 IM−1] ·Us ∈ C(M−1)×L̂, (10c)

Ψ = U†s,1 ·Us,2 ∈ CL̂×L̂. (10d)

Finally, the L̂ eigenvalues ψ0, ..., ψL̂−1 of Ψ are computed
and then used to evaluate the multipath delay as:

τ̂l = − 1

2π∆fmCRS
arg{ψl}, l = 0, ..., L̂− 1, (11)

where ∆fmCRS is the subcarrier spacing between two adja-
cent CRS subcarriers. The estimated MPC delay is converted
into estimated MPC propagation distance by

d̂l = τ̂l · c, (12)

where c denotes the speed of light. If the BS and UE are
not perfectly synchronized in reality, then the estimated MPC
delay also includes the synchronization error.

IV. DATA ASSOCIATION BASED ON GLOBAL NEAREST
NEIGHBOR WITH A KALMAN FILTER

The estimated MPC delays of different snapshots have to
be associated to each other to achieve continuous trajectories,
which represent how the distance between the vehicle and the
BS or VTs change with the movement of the vehicle. The
Kalman filter is used to predict and update the states of MPC
delays. The method used here is similar to the one described
in the paper [8], but with the MPC delay estimates.

The state equation is written as

θ
(n)
l = Φθ

(n−1)
l + w

(n)
l , (13)

where θ(n)
l =

[
d̃

(n)
l v(n)∆T

]T
, d̃(n)

l is the updated delay of

the l-th MPC, v(n) is the velocity of the vehicle, and ∆T is the
sampling interval between snapshots. Further, w

(n)
l denotes

the state noise with covariance matrix Ql, and Φ is the state
transition matrix given by

Φ =

[
1 1
0 1

]
, (14)

The observation model is written as

d̂
(n)
l = Fθ

(n)
l + u

(n)
l , (15)

where d̂(n)
l is the estimated MPC delay from previous section,

F is given by

F =
[
1 0

]
, (16)

and u(n)
l denotes the observation noise with covariance rl. The

derivation of the Kalman filter is straightforward and leads to
the following prediction and update equations

Prediction:

θ
(n|n−1)
l = Φθ

(n−1|n−1)
l , (17a)

M
(n|n−1)
l = ΦM

(n−1|n−1)
l ΦT + Ql, (17b)

Update:

K
(n|n)
l = M

(n|n−1)
l FT (FM

(n|n−1)
l FT + rl)

−1, (17c)

θ
(n|n)
l = θ

(n|n−1)
l + K

(n|n)
l (d̂

(n)
l − Fθ

(n|n−1)
l ), (17d)

M
(n|n)
l = (I−K

(n|n)
l F)M

(n|n−1)
l . (17e)

There is an association problem between the predictions
of the Kalman filter and the MPC delay estimates. In the
area of multitarget tracking (MTT), many methods have been
developed to solve the data association problem, such as the
joint probabilistic DA (JPDA) filter [9], the joint integrated
probabilistic DA (JIPDA) filter [10], and the belief propagation
based data association algorithm [5], these methods are effec-
tive but also have high complexity. Here we apply a simple
global nearest neighbor data association method that could be
sufficient for the LTE system with a single receiver antenna.
It will be interesting to investigate the performance of data
association with these advanced algorithms in the future.

V. RAO-BLACKWELLIZED PARTICLE FILTER BASED SLAM

After associating all the MPC delay estimates, RBPF based
SLAM algorithm is used to find out the trajectory of the
vehicle and the positions of the BS and VTs. Here only 2-
dimensional positioning is considered, but it can be extended
to 3-dimensional straightforwardly. For each time instant tk,
the relevant MPC delay estimates are condensed as the vector
d̃(tk) with

d̃(tk) =
[
d̃0(tk), ..., d̃N(tk)−1(tk)

]T
, (18)

where the number of VTs at time tk is denoted by N(tk).
In order to use the VTs for positioning, their states have to

be estimated during the receiver movement. Hence, the state
vector y(tk) at time instant tk is defined by

y(tk) =
[
yu(tk)T ,yV T,0(tk)T , ...,yV T,N(tk)−1(tk)T

]T
, (19)

with the receiver state

yu(tk)T =
[
ru(tk)T ,vu(tk)T , bu(tk), ρu(tk)

]T
, (20)

where ru(tk) is the receiver position, vu(tk) is the receiver
velocity, bu(tk) and ρu(tk) is the receiver’s clock bias and
drift, respectively. The parameters representing the VT of the
i-th MPC are defined as

yV T,i(tk) =
[
rV T,i(tk)T , dV T,i(tk)

]T
, (21)

where rV T,i(tk) is the position of the i-th VT and dV T,i(tk)
is its additional propagation distance. For solving the SLAM
problem, i.e., estimating the state vector at time steps 0 to k of



y(t0:k), a recursive Bayesian filtering approach is followed. In
general, recursive Bayesian filtering provides a methodology
to optimally estimate parameters in non-stationary conditions
[11]. It consists of two steps, the prediction step and the update
step. As illustrated in [12], assuming a first-order Markov
model and independence among the measurements for the
single VT, the transition prior can be expressed here as

p(y(tk)|y(tk−1) = p(yu(tk)|yu(tk−1)

N(tk)−1∏
i=0

p(yV T,i(tk)|yV T,i(tk−1). (22)

As mentioned in [12], the positions of the VTs are considered
time-invariant. Hence, it can obtain for the i-th MPC

p(yV T,i(tk)|yV T,i(tk−1) = δ(yV T,i(tk)− yV T,i(tk−1)). (23)

For the transition prior probability density function (PDF) of
the user state yu(tk), p(yu(tk)|yu(tk−1), velocity informa-
tion from IMU is included. The receiver position ru(tk) is
calculated as

ru(tk) = ru(tk−1) + (tk − tk−1)vu(tk), (24)

where the receiver velocity is modeled as:

vu(tk) = [vx(tk) vy(tk)]T + [nx(tk) ny(tk)]T , (25)

where vx(tk) and vy(tk) are the x-axis and y-axis velocities,
nx(tk) and ny(tk) are the noise of x-axis and y-axis, which are
from the noise of accelerometer and gyroscope. The modeling
of IMU from [13] is adopted here.

Assuming the elements of d̃(tk) to be independent Gaussian
distributed, the PDF p(d̃(tk)|y(tk) for the update step of the
Bayesian filter can be expressed as

p(d̃(tk)|y(tk) =
∏N(tk)−1
i=0

1√
2πσd,i(tk)

e
− (d̃i(tk)−di(tk))2

2σ2
d,i

(tk) , (26)

where σ2
d,i(tk) denotes the corresponding noise variance of

the distance measurement. The predicted propagation distances
di(tk) are calculated as

di(tk) = ‖ru(tk)− rV T,i(tk)‖F + dV T,i(tk) + bu(tk) · c, (27)

where ‖·‖F is the Frobenius norm.

VI. MEASURED DATA ANALYSIS

A data logging system based on the LabVIEW Communi-
cations LTE Application Framework was developed for USRP
2953R to log the LTE signal from a commercial base station.
The measurement campaign was conducted in Gothenberg,
Sweden. The base station is to the south of the origin in
fig. 2 around 500 meters away, and it transmits a 20 MHz
LTE signal with a center frequency of 2.63 GHz and cell ID
of 104. During the measurement, an OXTS Initial+ was used
to record the vehicle trajectory with centimeter-level accuracy
and used as the vehicle ground truth. The IMU data is used as
the control input of SLAM, which is modeled from the ground
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Fig. 1. MPC delay estimates and data association.

truth with accelerometer noise density of 0.0053 m/s2/
√
Hz

and gyroscope noise density of 0.0240 °/s/
√
Hz.

The estimated MPC delays from the CFR before data
association, and after data association with the Kalman filter
are shown in fig. 1. Different MPC trajectories are shown in
the figure. The trajectory with the shortest MPC distance is
the LOS component from the BS, and the other trajectories
are from the VTs. The LOS component has the highest SNR,
and is more stable and has less fluctuation than the other
trajectories. While the trajectory with the largest distance has
the worst SNR and is the most unstable.

The MPC delay estimates after data association are fed into
RBPF based SLAM to estimate the trajectory of the vehicle
and the positions of the BS and VTs. Both the number of
particle for the vehicle and the BS or VTs are set to 2000.
Since no angular information is used in the system, the initial
positions of the BS and VTs are set as circles with radii equal
to corresponding MPC distances of first snapshot and standard
deviations of 20 meters. The estimated trajectory of UE by
SLAM and by IMU only, as well as the ground truth of the
vehicle are shown in fig. 2, and their absolute errors to ground
truth are shown in fig. 3. We can see from the figures that the
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Fig. 2. Trajectories of ground truth, SLAM, and IMU.
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SLAM error is 11 meters smaller than that of IMU only at the
end of the measurement. Since the SLAM is not convergent
at the beginning of the measurement, it has bigger error than
that of IMU only.

Since the true positions of the VTs are not available, the
positions of VTs estimated by maximum likelihood estimation
(MLE) are compared with the SLAM estimates. In the MLE,
we use the ground truth vehicle trajectory ru,GT (tk) and the
estimated MPC delays to estimate the positions of BS and
VTs, which reach the minimum of the following cost function:

arg min
rV T,i

K∑
k=1

‖‖ru,GT (tk)− rV T,i‖F − d̃i(tk)‖2F . (28)

Figure 4 shows the comparison between the estimated
positions of the BS and VTs from MLE and mean values from
the SLAM. From the figure, we can see the SLAM estimates
converge to that of the MLE gradually. At the end of the
measurement, the position difference between the MLE and
the mean of SLAM for the BS is 2.7 meters, and the position
differences for the VTs vary from 14 to 30 meters.

VII. SUMMARY

In this paper, a low complexity LTE MPC delay based
SLAM framework is introduced. It estimates the MPC delays
with the CRS signal and the ESPRIT algorithm, associates
the MPC delays of different snapshots to each other by the
GNN algorithm and a Kalman filter, then exploits the Rao-
Blackwellized particle filter based SLAM to estimate the
vehicle trajectory and positions of the BS and VTs. Measured
data shows improved performance compared with IMU only
case. The next step is to explore the performance of the SLAM
system with angular information, and investigate how accurate
angular information can help to improve the localization
accuracy.
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