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Purpose: Bolus-based dynamic contrast agent (CA) perfusion measurements of the 
heart are subject to systematic errors due to CA bolus dispersion in the coronary ar-
teries. To better understand these effects on quantification of myocardial blood flow 
and myocardial perfusion reserve (MPR), an in-silico model of the coronary arteries 
down to the pre-arteriolar vessels has been developed.
Methods: In this work, a computational fluid dynamics analysis is performed to in-
vestigate these errors on the basis of realistic 3D models of the left and right porcine 
coronary artery trees, including vessels at the pre-arteriolar level. Using advanced 
boundary conditions, simulations of blood flow and CA transport are conducted at 
rest and under stress. These are evaluated with regard to dispersion (assessed by the 
width of CA concentration time curves and associated vascular transport functions) 
and errors of myocardial blood flow and myocardial perfusion reserve quantification.
Results: Contrast agent dispersion increases with traveled distance as well as vessel 
diameter, and decreases with higher flow velocities. Overall, the average myocardial 
blood flow errors are −28% ± 16% and −8.5% ± 3.3% at rest and stress, respectively, 
and the average myocardial perfusion reserve error is 26% ± 22%. The calculated 
values are different in the left and right coronary tree.
Conclusion: Contrast agent dispersion is dependent on a complex interplay of sev-
eral different factors characterizing the cardiovascular bed, including vessel size and 
integrated vascular length. Quantification errors evoked by the observed CA disper-
sion show nonnegligible distortion in dynamic CA bolus-based perfusion measure-
ments. We expect future improvements of quantitative perfusion measurements to 
make the systematic errors described here more apparent.
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1 |  INTRODUCTION

Despite continuous improvement of prevention and therapy, 
cardiovascular diseases, and particularly coronary artery dis-
ease, represent the most frequent cause of death in industrial 
countries (about 17%).1 Coronary artery disease is caused by 
arteriosclerosis of coronary arteries, a chronically progress-
ing degeneration of vessel walls leading to vessel narrowing 
(stenosis) or occlusion, which can give rise to myocardial 
ischemia and infarction.2

Dynamic MRI before, during, and after the passage of 
a rapidly injected contrast agent (CA) bolus allows the as-
sessment of pathologically induced changes in myocardial 
blood flow (MBF) or myocardial perfusion reserve (MPR) 
for clinical decision making,3-6 whether induced by an epi-
cardial stenosis or microcirculatory dysfunction.7,8 Although 
most clinical perfusion MRI measurements are qualitative or 
semiquantitative (such as using the upslope technique), there 
is an increased interest in quantitative perfusion in terms of 
MBF in milliliters of blood per minute per gram of tissue 
or MPR. Tracer-kinetic models such as the Fermi-model9 
MMID4 (Multiple path, Multiple tracer, Indicator Dilution, 
4 region model; National Simulation Resource, University 
of Washington, Seattle, Washington)10,11 or Patlak plot anal-
ysis12 allow the calculation of absolute MBF values. These 
techniques of tracer kinetic modeling are increasingly auto-
mated to improve their robustness and reproducibility.13,14

All bolus-based perfusion measurement techniques re-
quire exact knowledge of the temporal evolution of the CA 
bolus entering the voxel or region of interest (i.e., the arte-
rial input function [AIF]). For technical reasons, the AIF 
cannot be quantified directly but is usually estimated in the 
left ventricle (LV).15-17 Computational fluid dynamics (CFD) 
simulations—as they have been widely used for general in-
terpretation of perfusion MRI data18-21—have shown that the 
CA bolus experiences dispersion during its passage through 
the epicardial vasculature toward the myocardial region of 
interest.22-24 This widening is erroneously attributed to the 
microcirculation, and therefore leads to a systematic under-
estimation of the MBF and an overestimation of the MPR 
values. Interestingly, CFD simulations demonstrate that 
these effects occur even in nonstenotic (i.e., normal) vessels. 
Vascular stenosis introduces further complexity.25

These earlier studies suggest systematic MBF underesti-
mation due to various influencing factors such as blood flow 
velocity, length, curvature, and branching of the analyzed 
vascular segment(s), as well as stenosis shape and degree. 

Furthermore, these studies indicate a decreasing influence of 
smaller vessels on dispersion, suggesting that the CA bolus 
dispersion effects do not occur in vessels beyond a certain 
limiting vessel generation.

In this work, for the first time an analysis of CA trans-
port in the complete healthy porcine coronary vasculature, 
including both left and right coronary arteries down to the 
pre-arteriolar level, is performed. The use of high-resolution 
ex vivo 3D morphologic coronary tree geometries obtained 
from an imaging cryomicrotome26 allows for the generation 
of a detailed in silico model of CA transport. Furthermore, 
to achieve realistic hemodynamic conditions, an advanced 
boundary condition (BC) is used, which includes coronary 
flow effects due to tissue pressure acting on the downstream 
microvasculature.27

The simulations are performed under physiological con-
ditions of rest and stress. The calculated bolus dispersion and 
resulting systematic errors of MBF and MPR quantification 
from CA bolus-based MRI are analyzed with regard to vessel 
sizes and the distance to the vascular tree inlet.

2 |  METHODS

2.1 | Segmentation of porcine coronary 
vasculature

The data source consists of a high-resolution imaging cry-
omicrotome data set of an ex vivo porcine heart (male do-
mestic Yorkshire pig, ~30 kg).26 In a procedure comparable 
to what is applied in Boutsianis et al,28 the heart was ar-
rested in diastole using the King’s College London injection 
method; hence, the extracted 3D vascular models represent 
geometries where coronary flow is dominant. With the soft-
ware package SimVascular (version 2, SimTK, simvascular.
github.io29), 3D models of both the left coronary tree (LCT) 
and right coronary tree (RCT) starting at the left main and 
right coronary artery, respectively, are segmented from a 
high-resolution imaging cryomicrotome data set of an ex 
vivo porcine heart (male domestic Yorkshire pig, approxi-
mately 30 kg).26 Vessel diameters down to 300 µm are in-
cluded in this procedure (Supporting Information Video S1). 
Using the software packages Meshmixer (Autodesk, San 
Rafael, California) and ICEM-CFD (ANSYS, Canonsburg, 
Pennsylvania), the 3D geometries are carefully optimized 
and prepared for the simulations. This includes the creation of 
perpendicular outlet areas at the end of the segmented vessel 
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branches and naming of associated surface triangles (INLET, 
WALL, OUTLET1, …). Vessel bifurcations are smoothed 
using adequate coronary artery disease software, applying 
meticulous user intervention. Due to the high level of detail 
in the data sets, the total model creation and preparation takes 
several months to complete, although allowing analysis of 
much smaller vessels than in, for example, Boutsianis et al.28

2.2 | Volume discretization

The vascular geometries are discretized using the software 
package cfMesh (Creative Fields, London, United Kingdom), 
yielding mesh sizes of 13 830 835 (96% hexahedral type, 
duration mesh creation: 1.5 hours) on the LCT grid and 
6 975 193 (95%, 20 minutes) on the RCT grid. The chosen 
resolution is based on the mesh convergence analyses in 
Refs23,25,30,31.

2.3 | Computational fluid dynamics 
simulations

The CFD simulations are performed in a 2-step procedure 
with the open-source software package OpenFOAM version 
2.3.0 (OpenCFD, ESI Group, Bracknell, United Kingdom) 
using the finite volume method. First, blood flow is calcu-
lated by solving the Navier-Stokes equation, as follows:

where ρ is the density, t is the time, u is the velocity, p is the 
fluid pressure, and μ is the fluid viscosity. Subsequently, the 
advection diffusion equation,

is solved to simulate CA transport based on the solution for u of 
Equation 1. Here, c denotes CA mass concentration in the fluid 
and D is its diffusion coefficient.

2.3.1 | Blood flow

Simulation of blood flow in the segmented 3D models re-
quires a well-defined set of BCs. At the inlets, the volume 
flow curves from Figure 1A are applied. These are computed 
based on the electrical circuit analog of cardiac circulation 
(Figure 1B).27 The obtained volume flow curves are in ac-
cordance with Refs27,32,33 and include systolic retrograde 
coronary blood flow.34

In the circuit from Figure 1B, the pulsatile energy “stored” 
due to the microcirculatory compliance C during the time in-
terval Δt is given by

(1)�

(
�u

�t
+u∇u

)
=∇p+�Δu,

(2)�c

�t
=DΔc+u∇c,

(3)pC (t)=pC (t−Δt)+
1

C ∫
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F
(
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)
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(4)≈pC (t−Δt)+
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C
⋅ (F(t)−F(t−Δt)),

F I G U R E  1  A, Volume flow curves assigned at the model inlets of the left main coronary artery (LMCA) and right coronary artery (RCA) for 
hemodynamic rest and stress states. The volume flow curves are computed using the analog model in (B). The curves used for the stress simulations 
are obtained by reducing the cardiac cycle duration by 10% and adapting the assigned resistance and compliance values. B, Electrical circuit analog 
of coronary blood circulation. The resistance RArt and the capacitance C, corresponding to vascular flow resistance and vessel compliance within 
tissue, respectively, can be treated as assembeld in parallel (RC circuit), with applied voltages in terms of pressures pAo and pMyo, representing the 
pressures in the aorta and the myocardium, respectively. The relation between the flow resistances in the arteries and veins, RArt, RVen, 
and the compliance C of the myocardial vessels determine the blood flow F and the pressure at capillary level pCap. This model is used to generate 
the inflow curves shown in (A) as well as the capillary pressure curves that are used to calculate the outlet pressures at each time step of the 
computational fluid dynamics (CFD) simulations according to Equation 5. The approximation of the required parameters (RArt, RVen, and CMyo) and 
the outlet resistances is described in section 2.3.1
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where F(t), F(t–Δt) denote flow through the vessel. Please 
note that vessel stiffness is only assumed for vessels larger 
than 300 µm, and not for the smaller vessels considered 
in these precalculations. Depending on the initial “charge” 
of the myocardial compliance, the system at some point 
reaches a stationary periodic state, which is computed it-
eratively. The initial aortic pressure curve is taken from 
Kamoi et al,35 and the corresponding ventricular pressure 
curve is estimated within a physiologic range.36 The du-
ration of the cardiac cycle is scaled to 0.7 seconds, which 
yields a typical heart rate for pigs weighing 25-35 kg,37 
corresponding to the size of the animals from which the 
data set used here was extracted.26

The pressure pCap in Figure 1B represents the pressure in 
the middle of the capillaries. Thus, the resistances RArt and 
RVen each comprise the capillary contributions. The shares of 
arterial (~0%), pre-/arteriolar (~60%), capillary (~25%), and 
venous vessels (~15%) are estimated according to their con-
tributions to total flow resistance.38,39 Depending on the 3D 
model’s inlet radius, the total resistance is estimated accord-
ing to Huo and Kassab.40 Under physiological stress, the con-
tributions of pre-arteriolar, capillary, and venous vessels to 
RArt and RVen are adapted accordingly39: reductions by 86%, 
0% and 98%, respectively.

Because no direct measurement of the parameter C within 
the surrounding tissue is possible, its value is adjusted in 
a sensitivity analysis to obtain physiologic volume flow 
curves. With the help of the open-source software package 
QUCS (Quite Unified Circuit Simulator),41 the RC circuit 
from Figure 1B is established. The value of C is therefore 
adapted to yield realistic ratios of the mean right to left cor-
onary flow (~1:4) and diastolic to systolic flow (~3:1).36 
These steps are performed before the CFD simulations.

The solutions for pCap are mapped onto the segmented 3D 
models to provide the CFD simulations with a well-defined 
set of BCs. The capillary pressure is scaled depending on the 
depth within the myocardium of the outlet under consider-
ation.42 For each model outlet, a downstream arterial resis-
tance Ri is calculated according to the self-similarity of the 
coronary tree.40,43-45

Finally, for each time step t of the Navier-Stokes simula-
tion, the pressure

is computed and assigned at outlet i, where Fi denotes outlet 
flow. This approach ensures that Fi adapt to the conditions 
within the 3D model. At the same time, the prevailing intramyo-
cardial pressure and outlet hemodynamic resistances are taken 
into account. In comparison to previous works in which initially 
considerably simpler22-24 and structured tree outlet BCs25,30 
were applied, this allows CFD simulations based on individual 
aortic pressure curves.

Subsequently, the solutions of the Navier-Stokes equations 
are stored for an entire cardiac cycle (~2 Mio files, 1-2 TB 
per case, a total of about 7-8 TB for 4 simulations: 2 models, 
2 hemodynamic states). The following BCs are used to solve 
Equation 1. At the vessel walls, which are modeled to be stiff, 
a no-slip condition (velocity U = 0) is applied. Blood viscosity 
is modeled according to Ballyk’s generalized power law,46 and 
turbulences are incorporated using the dynamic Smagorinsky 
large-eddy simulation approach.47 Blood is assumed to be in-
compressible with density ρ = 1060 kg/m3. The results from 
the blood flow simulations and their physiological correctness 
have been assessed and discussed in Martens et al.48 Serving 
as a means to subsequently perform CA transport simulations, 
these are not described in detail here.

2.3.2 | CA transport

In the second step of the simulations, the previously stored 
physical fields of the cardiac cycle are repeatedly read back to 
solve Equation 2 and compute the transport of a Gd-DOTA- 
chelate complex (diffusion coefficient D = 2.98E-10 m2s−1),49 
which is used commonly in quantitative myocardial perfu-
sion MRI. This is performed for each hemodynamic state 
until a time of 50 seconds is reached (Figure 1), when it can 
be assumed that all CAs have left the system. Recirculation 
of blood and CA leaving the coronary 3D geometries is 
not modeled. We followed the general assumption that CA 
exchange between blood and extravascular space occurs 
predominantly in the capillaries with their thin endothelial 
layer50 (i.e., not in the larger vessels considered in our CFD 
simulations, which have thicker vessel walls).

Contrast agent inflow at both inlets is modeled by a 
γ-variate function CCA(t)=a

(
t− t0

)b
e−c(t−t0), (a = 1.013E-4; 

b = 2.142; c = 0.454 s−1), a stochastic representation of a 
realistic concentration time curve in the LV.51

2.4 | Computational facilities

All simulations are performed on the High Performance 
Computing cluster CoolMUC-2 at the Leibniz Supercomputing 
Center (LRZ) (Munich, Germany). The computations on the 
LCT and the RCT model are performed in parallel on 140 
and 56 cores, respectively. The required computation times 
are about 2 days on both models for each hemodynamic state 
(total of 8 days).

2.5 | Analysis of CA transport

Contrast agent dispersion is investigated as a function of ves-
sel diameter and integrated distance in the 3D vascular tree 

(5)pi (t)=Fi (t) ⋅Ri+p
Cap

i
(t)



   | 471MARTENS ET Al.

geometries. For this purpose, CA concentration time curves 
at several points along the large epicardial arteries and at all 
outlets are analyzed.

According to Calamante et al,52 dispersed AIFdisp are related 
to the AIFLV using the following mathematical convolution:

where the vascular transport function (VTF) comprises disper-
sion effects. The parameter t0 is the start time of CA inflow at 
the inlet.

By use of zeroth, first, and second momentum of AIFdisp,LV, 
the VTF’s SD and mean vascular transit time (MVTT) 
can be calculated without deconvolution of Equation 6 as 
follows23,52:

The integral momenta f(i) are approximated by 
Riemann sums over all N time steps tk with intervals Δt, 
f (i) =

∑N

k

�
tk
�i

f
�
tk
�
Δt. In addition, the SDs of the AIFdisp are 

used for the analysis:

with mean arrival time T. By definition, T is shifted from 
MVTT by AIF

(1)

LV
∕AIF

(0)

LV
.

As defined in Refs 11 and 53, the relative dispersion (RD) 
is given as

where t=MVTT , T and �=SDVTF, SDAIF, respectively. For 
volume flow F through a vascular volume V, the central volume 
theorem is used53,54:

which can be set up making RD a dimensionless constant char-
acterizing a particular vascular bed. Even though the results 
from Martens et al31 shed doubt on the question of whether 
vascular systems as they are considered here fulfill the re-
quirements for indicator dilution theory (e.g., linear system, 
well-mixed compartment54), in this work, RDVTF,AIF is used 
nonetheless for parametrization of observed dispersion.

2.6 | Estimation of quantification errors

By using the tissue perfusion model MMID4, the CA con-
centration time curves are used to compute the ΔMBF val-
ues. The workflow depicted in Figure 2 is used to make an 
approximation based on the AIFdisp. Thus, comparison of 
MBFFit and the assumed generic value MBFGen allows analy-
sis of MBF quantification errors as follows:

The parameters to generate tissue concentration time 
curves ConcMyo from Figure 2 with MMID4 can be set 
within the software JSim55 and are chosen as in a number of 
other studies.6,9,10,22-25,30,56 At rest, an MBF of 1 mL/min/g  
is assumed. At stress, MBF is assumed to increase to 2.7 
and 2.3 mL/min/g in the LV and RV, respectively. This 
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(11)RDVTF,AIF =
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(12)�∝ t=V∕F,

(13)ΔMBF=
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.

F I G U R E  2  Workflow to estimate change in myocardial blood 
flow (ΔMBF). Arterial input function (AIF) from the left ventricle 
(AIFLV) is used as the input boundary condition (BC) in the CFD 
simulations and delivers the dispersed (real) AIFdisp in the providing 
vessel. Combined with a generic MBFGen and MMID4, this yields a 
myocardial tissue concentration curve ConcMyo, which is subsequently 
used as a synthetic myocardial MRI perfusion measurement, and which 
allows for the calculation of MBFFit using AIFLV and making use of 
the MMID4 (Multiple path, Multiple tracer, Indicator Dilution,  
4 region model) like in a quantitative perfusion MRI study. 
Comparison of MBFFit and MBFGen is then used to estimate the 
systematic error ΔMBF
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corresponds to the overall increase of the volume blood-
flow curves from Figure 1A (i.e., a homogeneous MPR = 
MBFstress/MBFrest = 2.7 [2.3] in the LV [RV], respectively, 
is presumed).

The subsequent MBF calculation is performed with the 
fitting algorithm SENSOP57 within JSim, a modification of 
the well-known Levenberg-Marquardt algorithm.58 Fitting 
with MMID4 is performed with 4 free parameters6,10,59,60: 
plasma flow FP (MBF) 0-7 mL/g/min, permeability surface 
area product vPSg 0.25-8 mL/min/g, plasma volume Vp 0.05-
0.09 mL/g, and the bolus delay −1 to 3 seconds. All other 
parameters are kept constant.

After calculation of ΔMBFRest,Stress, ΔMPR is calculated as

where MPRFit = MBFFit,Stress/MBFFit,Rest and MPRGen = 2.7 and 
2.3 for LV and RV, respectively. Errors of ΔMBF and ΔMPR 
are calculated by Gaussian uncertainty propagation of the stan-
dard errors from the MMID4 fitting.

3 |  RESULTS

3.1 | Quantification of CA dispersion

Figure 3C-H shows the evolution of MVTT, SDAIF, and 
SDVTF (Equations 4-6) at rest along various vessel segments. 
The MVTT increases monotonically in all branches of both 
trees. Results in several vessels show elevated MVTT val-
ues in distal parts when compared with the other branches 
(LCT: diag2, diag3, terminal left anterior descending [LAD] 
branches; RCT: 1, 4, 7). Similarly, branches with more pro-
nounced MVTT increase also show higher increase of SDVTF 
and SDAIF at the same locations.

Nonetheless, SDVTF,AIF shows a qualitatively different 
behavior than MVTT, as this parameter even decreases in 
some branches. For example, diag2 and diag4 show distinct 
SDVTF reductions downstream of approximately 35 mm and 
50 mm, respectively. These positions coincide with the first 
cross section after the bifurcation of the 2 branches from 
the LAD (indicated in black in Figure 2A). Further down-
stream, SDVTF increases again. The behavior in the prox-
imal LAD at these positions is opposed to this and shows 
stronger increase in SDVTF right after the bifurcation. This 
is particularly apparent in the LAD downstream of the bi-
furcation of diag4.

Table 1 lists the maximum and average MVTT and 
SDVTF,AIF values (arithmetic mean, SD). Dispersion in  
the RCT is enhanced compared with the LCT. This is due 
to the fact that, in general, larger volume flows (Figure 1A) 
in the LCT result in markedly higher flow velocities than in 

the RCT. Higher flow velocities have similar effects as an in-
creased diffusion coefficient, causing reduced dispersion.23,24

3.2 | Contrast agent transport mechanisms

Figure 4 shows different phases of the CA passage through 
the coronary trees. For better visualization, a temporally 
shortened bolus (factor 100) is used here. In the LCT, CA 
passes large parts of the left circumflex artery tree before 
it reaches distal segments in the LAD tree. In the RCT, 
transport is considerably slower (Supporting Information  
Videos S2 and S3). After a short time, maximum concentra-
tions in the LCT are well below those observed in the RCT 
(Figure 4, time step 1.85 seconds). The bolus front is spa-
tially more spread in the LCT than the RCT. This may also 
be a result of the higher simulated flow velocities in the LCT, 
causing increased longitudinal diffusion-like effects.61

Figure 5A illustrates CA transport at the bifurcations to 
diag3 and diag4 from the proximal LAD. The CA moves faster 
to diag4 than to diag3. This behavior is also reflected in the de-
creased MVTT and SDVTF,AIF in diag4, compared with diag3 
(Figure 3C,E,G). Dispersion along the proximal LAD, the most 
unidirectional vessel, is also moderately increased, compara-
ble to diag3 (Supporting Information Video S4). Figure 5B  
shows the velocity streamlines in the bifurcation. Highest 
flow velocities are obtained in diag4, where the MVTT and 
SDVTF,AIF increase is smaller. Furthermore, streamlines feed-
ing into this branch originate from central luminal LAD seg-
ments, whereas diag3 is only fed from streamlines near the 
LAD vessel wall, where flow velocities are lower than at the 
vessel center.

The results depicted in Figures 3-5 reflect the influencing 
factors on CA dispersion. Similar observations were made 
previously in synthetic or less detailed studies.31 Due to the 
inhomogeneous CA distribution across the vessel lumen, CA 
transport at bifurcations is strongly influenced by the branch-
ing angle and by the orientation of the daughter vessels with 
respect to the curvature of the upstream vessel (Figure 4). For 
example vessels diag4 and branch 2 have “opportunist” posi-
tions where CA transport takes place faster than in neighbor-
ing vessels. Furthermore, flow velocities in the neighboring 
branches are also smaller than in diag4 and branch 2, which, 
according to earlier studies in simple test geometries,24 re-
sults in more pronounced bolus dispersion.

3.3 | Relative dispersion analysis

The results depicted in Figure 6 show different dependen-
cies of RDVTF,AIF on vessel diameter and distance traveled in 
the coronaries. Qualitatively, as expected, the parameters in-
crease with increasing diameter. The behavior does not differ 

(14)ΔMPR=
MPRFit−MPRGen

MPRGen

,
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strongly between rest and stress states; however, the slopes of 
the linear relationships do vary (Figure 7).

From a mathematical point of view, the general behavior of 
the scatter plots in Figure 6 can be analyzed using the defini-
tion of RDVTF,AIF (Equation 11). With increasing distance from 
the inlet, MVTT and T increase monotonically (Figure 3C,D). 
Figure 6 suggests that the associated SDVTF,AIF values do not 

increase at the same rate. Consequently, RDVTF,AIF gets smaller 
with integrated distance. Because larger vessel diameters will 
naturally be found more proximally, both MVTT and T are 
generally smaller there, resulting in larger RDVTF,AIF at smaller 
distances and, accordingly, larger diameters. Similarly, under 
hyperemic conditions, higher flow velocities result in reduced 
MVTT and T, hence overall increasing RD (Figure 7C).

F I G U R E  3  Evolution of MVTT, SD of the vascular transport function (SDVTF), and SDAIF along single branches of the 3D models. The 
data points represent the values obtained from Equations 4-6 at the cross sections marked (A) and (B). In both coronary trees, MVTT increases 
monotonously. C-H, Behind bifurcations, at the positions marked by the red, brown and orange arrows (E-H), the SDVTF and SDAIF show 
distinctively reduced values when compared with the other vessels forming the bifurcation. Abbreviations: diag, diagonal branch; LCT, left 
coronary tree; LCX, left circumflex artery; RCT, right coronary tree; RV, right ventricle
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The overall mean value (all vessels, rest and stress) of 
RDVTF = 0.57 ± 0.25 is in agreement with available literature 
values of the cardiovascular bed, which shows great variabil-
ity (e.g., values of 0.38 ± 0.0553 and 0.70 ± 0.0762 have been 
found).

We can infer from Figure 6 that more pronounced bolus 
dispersion occurs in large vessels than in small vessels. The 
decrease of RDVTF,AIF with increasing vessel diameter im-
plies that SDVTF,AIF is not proportional to MVTT (T , respec-
tively) for varying vessel diameters. With increased distance, 
vessel diameters become smaller, resulting in monotonically 

increasing MVTT (Figure 3A,B) and T . However, due to the 
complexity of CA transport within the geometry (Figures 4  
and 5, Supporting Information Videos S2-S4), SDVTF,AIF 
underlie strong heterogeneous influences along the vessel 
paths (Figure 3E,F), causing less pronounced increases of 
SDVTF,AIF. As shown in Figures 4 and 5, reduced dispersion 
in smaller vessels is by no means exclusively due to reduced 
vessel sizes. On the contrary, these findings confirm the ob-
servations of an earlier pilot study31 that bolus dispersion 
is strongly heterogeneous and depends on several different 
factors such as vessel bifurcations, branching angles, and 

Artery MVTT (seconds) SDVTF (seconds) SDAIF (seconds)

A, Arithmetic mean values and SDs

LCT 2.5 ± 1.6 2.3 ± 1.2 4.6 ± 0.7

LCX tree 1.4 ± 0.7 1.3 ± 0.3 4.1 ± 0.1

LAD tree 2.8 ± 1.7 2.4 ± 1.3 4.7 ± 0.7

RCT 4.9 ± 3.3 3.7 ± 1.1 5.5 ± 0.8

B, Maximum values

LCT 6.6 5.1 6.4

RCT 14 7.1 8.1

Note: In the LCT, the maximum value is obtained in the most distal LAD branch leading to the right ventricle, and in the RCT, the maximum value is obtained in branch 6.

T A B L E  1  Average and maximum values of MVTT, SDVTF, and SDAIF in the 3 coronary trees

F I G U R E  4  Contrast agent (CA) transport in LCT and RCT (c denotes the CA mass fraction, and the scale on the left applies for all 
screenshots). Top: Transport through the LCT (anterior view [Figure 3]). The CA reaches the distal parts of the left anterior descending (LAD) 
only after it has already passed large parts of the LCX (top right and in the background). Furthermore, it becomes obvious how CA distributes 
inhomogeneously into the different branches of the LAD (particularly diag3 and diag4 from Figure 3 in the middle of the screenshots [Figure 5]). 
Bottom: Transport through the RCA (inferior view [Figure 3]). Due to the lower blood flow velocities in the RCA, CA transport takes place over a 
longer time period than in the LCT, as seen by the comparison of the visualized time steps
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intraluminal CA concentration inhomogeneities due to 
shape variations of vessels in coronary trees.

3.4 | Magnetic resonance imaging 
quantification of ΔMBF and ΔMPR

Overall, ΔMBFRest,Stress values vary widely across the ana-
lyzed geometries (Table 2), with ΔMBFStress values being 
substantially smaller than ΔMBFRest values. Because the var-
iation of ΔMBFStress is smaller than that of ΔMBFRest, the re-
sulting ΔMPR is also subject to great variability. Considering 
the 3 large coronary territories, errors are largest in the RCT 
where the smallest flow velocities occur, and smallest in the 
left circumflex artery, which is traversed fastest by the CA.

To analyze the quantification errors regarding the trav-
eled distance, the maximum distance range is subdivided into 
6 segments of approximately 2 cm length each (Figure 8).  
A clear trend toward larger ΔMBF with increasing distances 
is obvious. As a consequence of the decreasing relationship 
between RDAIF and integrated distance (Figure 6D), one 
would expect asymptotic behavior of ΔMBFRest,Stress. This 
behavior can be observed in Figure 8 if the last 2 distance 
segments of the coronary trees are considered for the rest-
ing state simulations (segments 6-8 and 8-10 for the left 
circumflex artery, and 8-10 and 10-12 for the remaining 
trees). Weaker additional MBF underestimation is obtained 
between these 2 segments. However, looking at the results 
for the stress simulations, the relative increase between the 
last 2 distance segments is comparably higher. This results 
in what can be interpreted as a starting asymptotic behavior 
of ΔMPR toward larger traveled distances, in accordance 
with Sommer et al.30 Comparing the behavior of the rest 

and hyperemic perfusion quantification errors with the re-
sults obtained for RDAIF from Figure 6F,H, this is expected. 
The flatter slope of RDAIF at stress with respect to the inte-
grated distance indicates that under stress the relative con-
tribution of distal vessels to CA dispersion is increased in 
comparison to the rest condition.

4 |  DISCUSSION

We present results underlining our hypothesis that MBF 
quantification by dynamic bolus-based MRI measurements 
is subject to nonnegligible systematic errors. The estimation 
of perfusion quantification errors shows a clear tendency to 
increasing errors with longer traveled distance. Due to the 
reduced additional dispersion in smaller vessels under stress 
conditions in comparison to resting state, MPR quantification 
errors appear to be less pronounced at more distal positions. 
Averaged over all outlets and cross sections, MBF under-
estimation by ΔMBFRest = −28% ± 16% and ΔMBFStress = 
−8.5% ± 3.3%) is obtained. Accordingly, an average MPR 
overestimation ΔMPR = 26% ± 22% is observed.

Two factors are identified as major determinants for pre-
diction of CA bolus dispersion and subsequent estimation of 
perfusion quantification errors:

• The distance traveled by the CA bolus; and
• The general magnitude of flow velocities in the considered 

vascular tree (Figures 4, 5, and 8).

However, as CA dispersion is strongly influenced by sev-
eral factors (e.g., presence of vessel bifurcations, branching 
angles, intraluminal CA concentration inhomogeneities), an 

F I G U R E  5  Anterior view of CA transport and velocity streamlines at the bifurcations into diag3 and diag4 from the LAD. Top: The CA first 
enters the diag4, which bifurcates at a more beneficial angle from the LAD than the diag3 with a steeper branching angle. Moreover, because of the 
upstream curvature of the large LAD, CA accumulates at the side where the ostium of the diagonal vessels 3 and 4 are located. The gray ovals in 
the path of the vessels represent the relevant cross sections from Figure 3A, at which MVTT and SDs are calculated (Figure 3). Ripples in the CA 
flow (e.g., at t = 1.2 seconds) are artifacts from the underlying computational grid. Bottom: The seed of the displayed streamlines is a sphere at the 
center of the LAD at the upper end of the depicted model section. Velocity streamlines show how different intraluminal segments “feed” into the 
branching vessels. Highest flow velocities are reached in diag4, where in the 3 depicted branches, the bolus dispersion is lowest
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F I G U R E  6  Dependence of relative dispersion (RDVTF and RDAIF) on vessel diameter and integrated distance at rest and under stress. A-D, 
The RDVTF shows linearly increasing behavior in dependence of the vessel diameter for both hemodynamic states. Asymptotically decreasing 
behavior is obtained for RDVTF dependence on the traveled distance. Under stress, the obtained RDVTF appears to be generally higher. E-H, The 
RDAIF spans a large range at smaller diameters (approximately 0.25-0.50 at rest and 0.35-0.55 under stress) and asymptotically increases for larger 
vessels. A linear decrease of RDAIF with the integrated distance is observed, with a steeper slope at rest than under stress. Results from linear fitting 
within each coronary tree are shown in Figure 7
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error correction scheme based on these indicators would still 
be subject to large uncertainties. Nonetheless, considering 
that quantitative MRI perfusion measurements of this type 
are integrated more frequently in clinical diagnostics in the 
future, these quantities should be central to such a framework.

Our findings are in accordance with earlier results in sim-
pler geometries,23,24 where higher flow velocities were found 
to have similar effects on CA dispersion as an increased 
diffusion coefficient (i.e., resulting in reduced bolus disper-
sion). Moreover, transport phenomena as they were already 

F I G U R E  7  Linear regression parameters and mean RD in the coronary trees. A, Parameters for linear fitting of RDVTF against the vessel 
diameter. B, Parameters for linear fitting of RDAIF against the integrated distance. C, Obtained mean values of RDVTF and RDAIF over all cross 
sections and model outlets within each coronary tree. In (A)-(C), the error bars represent the standard error of the fitted slope and the SD, 
respectively

Artery ΔMBFRest (%) ΔMBFStress (%) ΔMPR (%)

All −28 ± 16 (−0.7) −11 ± 12 (−2.0) 26 ± 22 (1.6)

LCT −22 ± 14 (−1.1) −7.5 ± 7.6 (−2.4) 24 ± 20 (1.9)

LCX tree −17 ± 8 (−0.3) −4.7 ± 3.5 (−1.5) 16 ± 8.8 (0.8)

LAD tree −27 ± 16 (−0.8) −9.3 ± 8.8 (−2.0) 29 ± 24 (1.4)

RCT −41 ± 14 (−0.2) −23 ± 14 (−1.1) 34 ± 22 (1.0)

Note: Errors are arithmetic SDs. The values in brackets represent the skewness (third momentum) of the distributions (unitless quantity).

T A B L E  2  Obtained ΔMBFRest, ΔMBFStress, and ΔMPR averaged over all vessels and within the large coronary arteries
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observed in Martens et al31 are also found in these highly de-
tailed coronary trees, underlining the complexity of CA dis-
persion in coronary arteries. Our observation that RDVTF,AIF 
depends strongly on vessel diameter, and integrated distance 
corroborates the hypothesis from previous analyses,25,30 which 
proposed a reduced influence of ever smaller vessels on CA 
bolus broadening. In other words, transport processes in the 
large arteries have the dominant effect on CA dispersion.

Our initial assumption of the existence of a limiting 
vessel generation beyond which no more dispersion would 
occur, appears unrealistic considering the results described 
here. To clarify this further, validation on even more de-
tailed cardiovascular geometries will be required. At pres-
ent, we assume that the contribution of smaller vessels to 
overall bolus dispersion approaches zero asymptotically. In 
agreement with the previously performed CFD studies,23,30 
the reduced MBF underestimation at stress results in MPR 
overestimation. This is in contrast to an initially performed 
mathematical analysis of CA dispersion,60 where the as-
sumption was made that AIF dispersion from the LV to the 
tissue can be modeled by a mathematical convolution of the 
AIFLV with a VTF. Because no prior knowledge existed, 
an exponential VTF was assumed in that study to yield a 
general insight regarding the influence of bolus dispersion 
on myocardial perfusion estimates, demonstrating the basic 
observation that AIF bolus dispersion results in systematic 
errors of MBF values. The substantial differences between 
the findings may be due to the fundamentally different 
approaches.

The present analysis does not allow for direct verification 
of the simulation results with parallel MRI measurements; 
however, an indirect validation is possible. Comparison of 
the estimated MBF errors with experimental data obtained 
in animals by the microspheres method63 or clinical data 
from PET and CT myocardial perfusion measurements in 

humans64 permits general assessment of the simulation re-
sults. Particularly, the microsphere method is considered 
the experimental gold standard for the measurement of the 
spatial distribution of MBF. Moreover, the microsphere 
technique does not depend on the acquisition of dynamic 
data; therefore, dispersion-related quantification errors are 
less likely, despite potential minor issues at moderate to 
small spatial scales.65

In fact, several MRI studies reported an underestimation 
of MBF.3,66-73 In those studies, the MBF values were ana-
lyzed with regard to issues of quantification algorithms,69 
applied MRI signal intensity corrections,70 interstudy re-
peatability,71 or motion correction.72 For hyperemia, MBF 
underestimation was more pronounced in comparison to 
microsphere perfusion measurements70,73; however, it is 
well-known that the microsphere technique somewhat over-
estimates MBF in regions of high flow, and underestimates 
MBF in regions of low flow.74 In general, the observation 
in those studies that quantitative perfusion MRI somewhat 
underestimates MBF compared to the microsphere tech-
nique agrees well with our simulation results. Nonetheless, 
the data vary considerably among studies using the micro-
sphere technique. It is generally accepted that endocardial, 
midmyocardial, epicardial, as well as overall averaged ab-
solute perfusion values by MRI and microspheres demon-
strate good agreement3,66,69,70,73 if statistical errors are 
taken into account.

We expect, however, that with further improvements of 
quantitative perfusion measurements, the systematic errors 
described here will become more apparent in the data, espe-
cially if spatial resolution and noise reduction are improved. 
This would allow a more profound investigation of transmu-
ral MBF differences.75,76 It is well-known from the seminal 
papers of Bassingthwaighte63,74,77 that the MBF distribution 
is highly inhomogeneous and obeys fractal relationships. 

F I G U R E  8  Increasing mean ΔMBF and change in myocardial perfusion reserve (ΔMPR) at different distances from the model inlet. In the 
last distance segment, there is no value for LCX
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Because imaging measurements and pixel-by-pixel analy-
sis usually introduce relatively high pixel noise, most PET, 
CT, and MRI studies average the analysis according to seg-
ments.78-81 At this stage, it is unclear how much noise is in-
troduced by imaging processes. Moreover, model fitting or 
deconvolution to noisy signal time curves may also introduce 
noise. It is yet unknown how much of the observed variation 
on a pixel-by-pixel level is physiologic in terms of MBF het-
erogeneity, and how much is related to the measurement and 
analysis process. It will be the aim of future studies to address 
these questions. This would allow us to clarify the reasons 
for MBF underestimation in MRI perfusion measurements in 
comparison to microsphere measurements. In other words, 
light can be shed on the question of whether the observed 
differences between the measurement techniques are due to 
the overestimation of MBF by the microsphere method, or 
due to CA bolus dispersion effects analyzed in this work—or 
possibly a combination of both.

Although perfusion measurements using PET also rely 
on dynamic imaging of tracer uptake in the tissue and sup-
posedly are also subject to systematic errors similar to those 
observed here, they are considered the clinical gold standard. 
The comparison of our results with existing PET data is also 
not straightforward. In Miller,17 several MRI quantification al-
gorithms are compared and, in general, at higher MBF values, 
MRI underestimates MBF in comparison to PET. Overall, in 
Refs 17 and 82, a general MBF underestimation by MRI was 
observed. On the other hand, Fritz-Hansen et al83 found MBF 
underestimation by MRI under stress in comparison to PET 
quantification, and good agreement for resting conditions.

Even though in several of these studies the obtained MBF 
values are calculated on a regional69,71-73,75 or pixel-by-pixel 
basis,3 an association of the quantified tissue voxel or seg-
ment with a specific coronary flow territory is not performed. 
Hence, an assessment of quantified MBF values in relation to 
the distance traveled by CA between the locations of AIF and 
perfusion quantification is difficult. As such, varying MBF 
values at the pixel level—as they are also observed in the 
healthy vasculature3—could possibly be ascribed to hetero-
geneous CA transport processes and subsequent systematic 
MBF quantification errors, as described in this work. To in-
vestigate this hypothesis in more detail, future studies are re-
quired to directly validate the CFD simulations. This could be 
achieved by parallel MBF quantification by MRI and micro-
spheres in combination with the acquisition of morphological 
information of coronary vasculature and precise monitoring 
of hemodynamic and physiological conditions during the 
measurements.

Regarding the comparability of the porcine data set used 
here with the human cardiac vasculature, it should be pointed 
out that the pig’s heart-to-body weight ratio is similar to that 
of an adult human,37 and that the pig’s heart shape is compa-
rable to that of humans. It is therefore conceivable that effects 

described here will occur in humans as well, possibly to a dif-
ferent degree. The complexity of the observed processes sug-
gests that interindividual differences are likely. Depending 
on the exact individual morphology, strongly heterogeneous 
CA bolus dispersion and subsequent MBF underestimation is 
therefore expected. This heterogeneous behavior is also re-
flected in the varying findings from the comparison studies 
discussed previously.

A simplifying assumption made in our study is that of stiff 
vessel walls in the blood flow simulations. The coronary vas-
culature is subject to strong deformations, in both the vessels’ 
lumina and positions. The electrical analog of coronary cir-
culation allows us to incorporate some of these effects in the 
outlet BCs. Although several authors found only a small influ-
ence of vessel motion and wall elasticity on blood flow model-
ing,84-86 the extent of their impact on CA and particle transport 
requires additional analysis.87 This could be done by integrat-
ing fluid–structure interaction methodology in the simulations, 
although at the cost of considerably increased computational 
demands. In CFD simulations, re-entering of blood at the inlet 
or CA leaving the geometries at the outlets (i.e., effects of sec-
ond pass of CA) are generally ignored. The assumption that 
all CA has left the system at 50 seconds is applicable here, as 
no exchange between extravascular interstitial space and the 
blood stream is included. This is considered in the subsequent 
calculation of ΔMBF with MMID4. Using fluid–structure in-
teraction, this could be integrated in future analyses as well, 
which would further increase computational demands.

In addition to these limitations, the following should be 
noted. A γ-variate shape of the AIF at the model inlets is 
assumed in our simulation, neglecting potential bolus dis-
persion between the LV and the coronaries' orifices in the 
aorta. It is unclear to what extent this additional effect may 
modify bolus dispersion. We hypothesize that the additional 
bolus dispersion may be small, s the CA is well-mixed with 
the blood. Modeling of tracer transport above the aortic valve 
was beyond the scope of our study and may be investigated 
in the future. Moreover, with this approach, a homogeneous 
CA distribution is applied across the whole inlet lumen. 
Consequently, effects of heterogeneous CA distribution 
across the aortic lumen on CA inflow at the inlets of the LCT 
and RCT models are not considered. The simulations could be 
extended by integrating an aorta segment. However, it should 
be kept in mind that such an extension would come along with 
further difficulties in computational modeling due to an even 
larger span of vessel generations covered in the models.

Overall, our findings hold important implications for all 
bolus-based methods of perfusion quantification (e.g., MRI, 
PET, CT) as well as general particle or mass transport in the 
blood stream (e.g., drugs, medication). The extent of the in-
fluence of CA dispersion on quantified absolute MBF val-
ues may vary considerably among the different methods and 
could even hold positive effects on limitations of particular 
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methods. For example, distortions of the myocardial tissue 
response function due to the subvoxel intravascular fraction 
of fully saturation-recovered blood signal may be of reduced 
significance due to the dispersion effects discussed here. 
Nonetheless, because the total MRI signal variation from a 
voxel in the myocardium following CA injection contains 
contributions of signal change in the pre-arteriolar, arteriolar, 
capillary, and venular vascular components as well as inter-
stitial space, it is unclear whether there is usable informa-
tion on dispersion in the signal time curve from a myocardial 
voxel. To reduce the systematic error in MBF quantification 
due to CA dispersion, the definition of a local AIF could be 
envisaged.88 The distance traveled by the CA bolus, being 
1 of 2 principally decisive parameters for systematic MBF 
quantification errors, as found in this work, could then be 
corrected.

5 |  CONCLUSIONS

In summary, this work presents for the first time a detailed 
analysis of CA flow through both left and right coronary trees 
down to the pre-arteriolar level using an advanced coronary-
flow BC. Perfusion quantification errors evoked by observed 
CA dispersion show nonnegligible underestimation of MBF 
in dynamic CA bolus-based measurements (e.g., MRI). We 
expect future improvements of quantitative perfusion meas-
urements, especially regarding spatial resolution and noise, 
to make systematic errors as described here more apparent in 
clinical perfusion data. The complexity of the process of CA 
transport and dispersion, as well as subsequent quantification 
errors, emphasizes the necessity for profound validation of 
CFD simulations in future studies.
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

VIDEO S1 Rotating coronary trees. The models of the left 
and right coronary arteries, segmented from the imaging cry-
omicrotome data set, are shown in 360°
VIDEO S2 Contrast agent flow through the rotating model 
of the LCT. Although a shortened bolus (factor 100) flows 
through the coronary tree, the model is rotated. Stripes in 
the CA flow are artifacts from the resolution of the under-
lying computational grid. The used mesh refinement is cho-
sen based on previous benchmarking by a mesh convergence 
study
VIDEO S3 Contrast agent flow through the rotating model 
of the RCA. As in Supporting Information Video S2, 
a shortened bolus (factor 100) flows through the rotat-
ing RCT. Due to lower flow velocities, CA takes longer 
to traverse the full model, resulting in larger CA arrival 
times and bolus widths. The structure of the underlying 

computational grid may be perceptible by stripes in the CA 
flow. The mesh density is based on a previous mesh con-
vergence analysis
VIDEO S4 Contrast agent flow through the vessel segment 
at diag3 and diag4. The CA transport takes place at a faster 
rate in vessels, which are oriented more favorably with re-
gard to the preceding “mother” vessel. This leads to region-
ally varying CA arrival times and dispersion. At the top 
of the LAD, artifacts from the underlying computational  
grid might be visible, as in Supporting Information Videos S2  
and S3
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