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Abstract: Individual events can trigger systemic risks in many complex systems, from natural 

to man-made. Yet, analysts are still usually treating these two types of risks separately. We 

suggest that, rather, individual risks and systemic risks represent two ends of a continuum 

and therefore should not be analyzed in isolation, but in an integrative manner. Such a 

perspective can further be related to the notion of resilience and opens up options for 

developing an integrated framework for increasing the resilience of systems to both types of 

risks simultaneously. Systemic risks are sometimes called network risks to emphasize the 

importance of inter-linkages, while, in contrast, individual risks originate from individual 

events that directly affect an agent and happen independently from the rest of the system. 

The two different perspectives on risk have major implications for strategies aiming at 

increasing resilience, and we, therefore, discuss how such strategies differ between 

individual risks and systemic risks. In doing so, we suggest that for individual risks, a risk-

layering approach can be applied, using probability distributions and their associated 

measures. Following the risk-layering approach, agents can identify their own tipping points, 

i.e., the points in their loss distributions at which their operation would fail, and on this basis 

determine the most appropriate measures for decreasing their risk of such failures. This 
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approach can rely on several well-established market-based instruments, including 

insurance and portfolio diversification. To deal with systemic risks, these individual tipping 

points need to be managed in their totality, because system collapses are triggered by 

individual failures. An additional and complementary approach is to adjust the network 

structure of the system, which determines how individual failures can cascade and generate 

systemic risks. Instead of one-size-fits-all rules of thumb, we suggest that the management 

of systemic risks should be based on a careful examination of a system’s risk landscape. 

Especially a node-criticality approach, which aims to induce a network restructuring based 

on the differential contributions of nodes to systemic risk may be a promising way forward 

toward an integrated framework. Hence, we argue that tailor-made transformational 

approaches are needed, which take into account the specificities of a system’s network 

structure and thereby push it toward safer configurations for both individual risks and 

systemic risks. 

Keywords: Extreme risk, Systemic risk, Resilience, Integration, Risk layering 
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1. Introduction 

Experiences in the past have shown the potential of single events to trigger systemic risks 
(Massaro et al. 2018). For example, the 2011 Thailand flooding and its consequences for 
global supply chains (Chongvilaivan 2012; Haraguchi and Lall 2015) have demonstrated the 
magnitude of potential knock-on effects. Such risks are expected to increase with the grow-
ing interconnectedness of economic processes and to be magnified by changes in the inten-
sity and frequency of weather-related extreme events brought about by climate change (Ghil 
et al. 2011; Field et al. 2012). Along the same line, a review of globally relevant systemic risks 
by Centeno et al. (2015) found strong indications that individual events, even very localized 
ones, may cause large repercussions globally. Guidelines for systemic-risk governance re-
cently published by the International Risk Governance Center (Florin et al. 2018) also strong-
ly emphasize how individual failures may trigger systemic risks. Hence, individual and sys-
temic risk are intrinsically interconnected and need to be analyzed together.  

In reality, however, they are often treated separately, especially in the context how to en-
hance resilience. In this paper we suggest a rationale as well as highlight ways forward for 
developing an integrated analytical framework for increasing a system’s resilience to both 
types of risks. Enormous amount of literature and approaches dealing with each type of risk 
is available (see the discussion further down below). In our paper, as a starting point, we use 
a probabilistic risk-perspective as suggested and often employed in disaster risk research, 
e.g. focusing on the tails of a distribution (Grossi and Kunreuther 2005, SREX 2012, Hinkel et 
al. 2015; NCC editorial 2016, Abadie et al. 2017). This enables the employment of a risk-
layering approach to inform resilience-enhancing strategies that initially focus on individual 
risk but can further be related to systemic risk and resilience through network restructuring. 
This is due to the fact that systemic risk originates from interconnectedness of the network 
underlying a system. The way how a system is defined will be instrumental for the debate 
and our point of departure for our discussion. 

As already indicated above, individual failures may trigger systemic risks. Systemic risk is 
sometimes called network risk to emphasize the importance of inter-linkages (Helbing 2013). 
In contrast, individual risks originate from single events that directly affect an agent and un-
fold in isolation from the rest of the system. While usually treated separately, we first sug-
gest that individual risks and systemic risks may be seen, in fact, as representing the two 
ends of a continuum and therefore should not be analyzed in isolation, but rather in an inte-
grative manner (Hochrainer-Stigler et al. 2018a). From such a perspective, individual risks 
describe how an event perturbs a single component in a system and causes a primary failure, 
whereas systemic risks capture the propensity for cascades of secondary failures to be trig-
gered by such events. The continuum is spanned by the proportion of all failures that are 
secondary with regard to the system’s size, with larger proportions characterizing risk set-
tings at the more systemic end of the spectrum (Figure 1). Quantitative approaches based on 
so-called copula methods are particularly well suited to this integrative perspective (Hoch-
rainer-Stigler et al. 2018b; Pichler and Pflug 2018). More importantly, such a perspective can 
further be related to the notion of resilience and opens up options for developing an inte-
grated framework for increasing a system’s resilience to both types of risks. For example, to 
increase resilience to individual risks, e.g., to accidents leading to material losses, modern 
societies typically rely on some form of diversification, most prominently through insurance 
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(Geneva Association 2010). By not incurring the total material costs of accidents, insured in-
dividuals can recover more quickly. To increase resilience to systemic risks, in contrast, fun-
damentally different approaches are needed, which may, for instance, imply restructuring a 
network’s connectivity (Gao et al. 2016; Poledna and Thurner 2016), e.g. to decrease the 
amount of secondary failures.  

 

Figure 1. The continuum between individual risks and systemic risks. System components 
(green circles) are interacting (black lines) in a networked system. Owing to these interac-
tions, primary failures (red flashes) can trigger secondary failures (orange flashes). The sys-
temic-risk ratio (blue arrow) measures the proportion of all failures that are secondary. Ac-
cordingly, individual risks dominate on the left-hand side (for systemic-risk ratios close to 0) 
and systemic risks dominate on the right-hand side (for systemic-risk ratios close to 1). 

However, insurance and network restructuring are not the only strategies to increase resili-
ence. Indeed, multiple schools of thought dealing with the concept of resilience are present 
in the literature (e.g., National Research Council 2012; Ilmola et al. 2013; Keating et al. 2014; 
Mochizuki et al. 2018). We provide some indicative examples next. Engineering approaches 
were among the first to introduce the term resilience and to examine a system’s resistance 
to disturbances and the speed at which it returns to equilibrium (reviewed, e.g., by Davoudi, 
2012). The current notions of resilience depart from this equilibrium-centric view by embrac-
ing complexity, dynamics, interdependencies, and nonlinearities. From a disaster risk reduc-
tion perspective, Alexander (2013) discusses the use and meaning of the word resilience and 
concludes that this concept may be especially helpful to bridge the gap between dynamic 
and static assessments. In a similar vain, Keating et al. (2014) reviewed different resilience 
approaches and how they had been used in the past to decrease disaster risks and suggested 
to embed resilience within a development context. Recently, Tiernan et al. (2019) identified 
emerging themes for disaster risk reduction in the context of resilience, such as the focus on 
community engagement. In a more general context, Linkov and Trump (2019) provide a 
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comprehensive discussion of resilience approaches, and Florin et al. (2018) as well as Trump 
et al. (2018) provide extensive reviews and corresponding literature. While it is not possible 
to give a comprehensive account of all those discussions and reviews, they indicate that re-
silience can be seen as an emergent property of a system that can be investigated from vari-
ous angles, e.g., by analyzing the persistence of critical functions under environmental 
changes, by identifying thresholds that, when exceeded, precipitate regime shifts, or by in-
vestigating the evolution of recovery capacities, to name just a few (Linkov et al. 2016).  

Traditionally, when studying large and complex systems, such as ecosystems or economies, 
scientists often assume their stability, which allows them to focus on smaller components 
and study them in isolation. A major shift away from this paradigm originated through the 
work of C.S. Holling, who introduced the concept of resilience in ecology to emphasize the 
pre-eminence of nonlinearities, unstable dynamics, and interconnectedness, both in theory 
and observations. In this context, resilience is the “ability to absorb change and disturbance 
and still maintain the same relationships between populations or state variables” (Holling 
1973, p. 14). Insufficiently resilient systems are exposed to knockouts, by which small per-
turbations trigger lasting system-wide collapses, a phenomenon that we now call systemic 
risks (Thurner 2018). Based on our integrated systems approach depicted in Figure 1, under-
standing resilience and systemic risks therefore requires a careful assessment of the dynamic 
interactions between a system’s components. As will be discussed in Section 2, identifying 
strategies to increase resilience often depends on how individual and systemic risks are 
measured. By comparing the most prominent risk measures and how they relate to resili-
ence, we highlight ways forward for developing an integrated framework for increasing a 
system’s resilience to both types of risks. We use as our starting point the probabilistic risk-
perspective, which we then relate to a risk-layer approach for enhancing resilience to indi-
vidual risks, and which we further connect to the systemic risk approach. To the authors’ 
best knowledge, integrating risk layering within network restructuring has not yet been sug-
gested to foster resilience to both individual and systemic risks from a probabilistic risk per-
spective. 

Our paper is organized as follows. Section 2 discusses measures of individual risks and sys-
temic risks. Special attention is given to probability-based concepts commonly employed in 
disaster research, which are particularly appropriate to tackle extreme risks (Field et al. 
2012; United Nations Office for Disaster Risk Reduction 2019). Section 3 then proposes an 
integrated approach based on risk layering and network restructuring. Finally, Section 4 pre-
sents an integrative management approach that jointly tackles individual risks and systemic 
risks. 

2. Measures of Individual Risks and Systemic Risks 

Any complex system can be seen as a set of interconnected elements. Each one of these el-
ements can be at risk, which we from now on call individual risk. A widely accepted and 
comprehensive measure of individual risk is the cumulative distribution function (CDF) of 
losses (Pflug and Römisch 2007). As it is difficult to grasp this entire function at a glance, it 
can be used to define particular measures that focus on specific aspects of individual risk. 
For example, disaster risk research usually focuses on the tails of a distribution, or in other 
words on low-probability high-consequence events. Table 1 shows a selection of measures 
of individual risks and systemic risks currently used by analysts—for a comprehensive treat-
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ment of the former, see Pflug and Roemisch (2007), and of the later, see Bisias et al. (2012), 
Sum (2016), and Hochrainer-Stigler et al. (2019). For example, for frequent events, the ex-
pected loss, the median loss, or the variance of losses may provide the most appropriate 
summary information. For extreme events, on the other hand, tail measures such as the Val-
ue at Risk (VaR) or the Conditional Value at Risk (CoVaR; also called the expected shortfall) 
are more appropriate. These risk measures are often used to determine risk-management 
options. For instance, the expectation and the variance of losses can be used for setting up 
premium payments for insurance schemes or for performing costs-benefit analyses for struc-
tural mitigation measures (Shreve and Kelman 2014, Mechler 2016). For example, Hoch-
rainer-Stigler et al. (2019) used these measures to assess investments in structural-flood 
proofing of low-income, high-risk houses in Uttar Pradesh, India. Applications of the Value at 
Risk, or of other tail indices, include stress testing, the evaluation the probability of ruin, or 
the calibration of back-up capital for risk instruments (Embrechts et al. 2012). For example, 
Abadie et al. (2017) used these measures to determine the acceptable level of risk of low-
probability, high-impact coastal floods in cities. Jongman et al. (2014) performed stress tests 
and used these tail measures to determine the ruin probabilities of the European Union Soli-
darity Fund due to large scale pan-European floods. Thus, cumulative distribution functions 
and their characteristics have a wide area of application and play a prominent role in dis-
courses about individual risks, including extremes (SREX 2012, NCC editorial 2016). 
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Table 1. Selected measures of individual risks and systemic risks.

 

Individual-risk 

measure 

Informal explanation 

Cumulative dis-
tribution function 
(CDF) 

Measures the probability Prob(X ≤ x) 
that the random variable X describing 
losses is less than or equal to a given 
loss x (Bauer 2011). 

Location meas-
ure: 
Expectation E(X) 

Measures the average value of the ran-
dom variable X describing losses over a 
large number of realizations (Sachs 
2012). 

Location meas-
ure: 
Median Med(X) 

Measures the mid-point between the 
higher and lower half of the cumulative 
distribution function of losses (Sachs 
2012). 

Dispersion meas-
ure: 
Variance Var(X) 

Measures how far the values of the 
random variable X describing losses are 
spreading from its expectation (Sachs 
2012). 

Tail measure: 
Value at risk 
(VaR) 

Measures the value that is at risk in a 
system at a given quantile level q, i.e., 
VaR satisfies Prob(X ≤ VaR) = q (Pflug 
and Römisch 2007). 

Tail measure: 
Tail index 

Measures the rate at which the thick-
ness of the tail of a given cumulative 
distribution function of losses is de-
creasing (Embrechts et al. 2012). 

Tail measure: 
Probable maxi-
mum loss (PML) 

Measures the maximum loss that can 
occur in a system (Grossi and Kunreu-
ther 2005). 

 

Systemic-risk 

measure 

Informal explanation 

Systemic ex-
pected shortfall 
(SES) 

Measures the propensity for an institu-
tion to be undercapitalized when the 
whole system is undercapitalized 
(Acharya et al. 2017). 

Conditional value 
at risk (CoVaR) 

Measures the value that is at risk in a 
system at a given quantile level q, condi-
tional on an event stressing a set of 
institutions, i.e., when X is the negative 
random variable describing the system-
level losses triggered by the event, Co-
VaR satisfies Prob(X ≤ CoVaR) = q  (Adri-
an and Brunnermeier 2011). 

ΔCoVaR Measures how the conditional value at 
risk (CoVaR, see above) changes when 
the system’s “normal” operation be-
comes further stressed (Adrian and 
Brunnermeier 2011). 

Systemic risk 
index (SRISK) 

Measures the amount of capital an insti-
tution would need to raise in order to 
function normally given an event that 
stresses a set of institutions (Brownless 
and Engle 2017). 

Distress insur-
ance premium 
(DIP) 

Measures the expected system-level 
loss given that the loss triggered by an 
event that stresses a set of institutions 
exceeds a pre-defined threshold level 
(Huang, Zhou and Zhu 2012). 

Default impact 
(DI) 

Measures the total loss in capital in a 
system caused by the cascade triggered 
by the default of an institution, exclud-
ing the loss from this initial default (Cont 
et al. 2010). 

DebtRank Measures the recursively defined impact 
on a system resulting from an event that 
stresses an institution, allowing only for 
impact pathways that do not visit the 
same institutional links twice (Battiston 
et al. 2012). 

Measures in cop-
ula models 

Measure the conditional value at risk 
(CoVaR, see above) given an event that 
stresses a set of institutions, with insti-
tutions having a nonlinear probabilistic 
dependency structure described by a 
copula (Kovacevic and Pflug 2015). 
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Systemic risks result from the interactions of individual risks. Consequently, systemic risks 
cannot be measured by separately quantifying the contributing parts. Systemic-risk research 
therefore construes systems as networks of interconnected components and thereby focus-
es on the interdependencies among individual risks. The way such interlinkages are analyzed 
may vary markedly between systems of different types, leading to a variety of systemic-risk 
measures that have been proposed in the literature. In the context of network analyses, the 
system components forming the studied network are often referred to as nodes. Some sys-
temic-risk measures focus on the influence of a single node on overall systemic risks, which, 
for instance, may directly be related to its position within the network (e.g., Poledna and 
Thurner 2016). Other measures, in contrast, capture risks for a system as a whole based on 
its network structure (e.g., Kharrazi et al. 2016). Many systemic-risk measures have recently 
been suggested for financial systems, not only driven by the large influence of financial mar-
kets on society, but also because of the increasing availability of high-resolution data. One of 
the most prominent indicators is called DebtRank (Battiston et al. 2012). DebtRank estimates 
the impact of a node’s default on the rest of the network. Inspired by the notion of network 
centrality, DebtRank recursively evaluates how the financial distresses of nodes impact each 
other. Accordingly, DebtRank can be considered as an early-warning indicator for a node be-
ing too central to fail—an important feature aggravating a node’s contribution to systemic 
risk, in addition to being too big to fail (Poledna and Thurner 2016). As indicated in Table 1, 
other measures of systemic risk are also available, such as the Systemic Expected Shortfall, 
which uses pre-defined thresholds—akin to Value at Risk—to quantify a node’s anticipated 
contribution to a systemic crisis (Acharya et al. 2009, Ganin et al. 2017, Massaro et al. 2018). 
Collecting data and applying such measures are the first steps to the development of strate-
gies aimed at enhancing resilience. 

3. Enhancing Resilience: Risk Layering and Network Restructuring 

When the cumulative distribution functions of individual risks are known, a so-called risk-
layering approach can be applied. This approach aims to identify different risk layers, or risk 
components, and to determine, separately for each one of them, the most appropriate op-
tions for increasing its resilience (Mechler et al. 2014). For example, in the case of natural 
disasters, such risk layering uses hazard-recurrence data to identify appropriate interven-
tions. The approach relies on the principle that different risk bearers or stakeholders—e.g., 
in households, businesses, and the public sector—are experiencing different contexts, and 
each of them should therefore adopt the most appropriate strategy given their own risk ex-
posure, the cost efficiency of the risk-mitigating solutions they can use, and their access to 
financing instruments. Hence, through risk layering, individual risk measures, such as the 
ones in Table 1, can directly point to the most appropriate instruments to increase resilience 
(Figure 2). 
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Figure 2. Risk-layering approach for risk reduction and risk financing, based on analyzing a 
system’s cumulative distribution function of losses. Depending on the studied system, the 
levels of losses (horizontal axis) are associated with the quantiles, or cumulative probabili-
ties, of losses (left-hand vertical axis) according to the cumulative distribution function (blue 
curve) and with the expected return periods, or waiting times, separating the occurrence of 
events causing such levels or quantiles of losses (right-hand vertical axis). The transitions be-
tween risk reduction being more effective (yellow region), risk financing being more effec-
tive (orange region), and residual risk having to remain unprotected (red region) are merely 
illustrative and, depending on the studied system, can take other, nonlinear shapes. Moving 
along the cumulative distribution function, the corresponding three intervals—alternatively 
expressed in terms of the levels, quantiles, or return periods of losses—can be read off. 
Adapted from Mechler et al. (2014). 

For example, for events causing low-to-medium-sized losses that happen relatively frequent-
ly, solutions aiming at risk reduction—for instance, by enforcing rules that decrease asset 
exposure to hazards—typically are more cost-effective than solutions aiming at risk financ-
ing. The cost-effectiveness of potential solutions can be assessed using the mean and medi-
an of reduced losses, as in cost-benefit analyses (Mechler 2016). Because the costs of risk-
reducing solutions often increase disproportionately with the severity of the events, other 
instruments are needed for larger disasters. Risk-financing instruments may thus become 
more cost-effective for disasters occurring with lower probability and higher impact that 
have debilitating consequences (catastrophes), which can be quantified by deviation 
measures and tail measures (Table 1). Finally, as suggested by the uppermost layer in Figure 
2, there is a point above which even financial instruments become too costly. These unman-
aged risks are said to be residual and have to be left unprotected. This risk-layering approach 
is readily extended from financial risks to non-financial risks. 

Generally speaking, depending on its own resilience, an agent may or may not be able to 
cope with a particular event. For example, during a financial crisis, a bank may go bankrupt 
as a result of large defaults on its loans. A government may not be able to finance all infra-
structure losses resulting from a disaster because of budget constraints (Hochrainer-Stigler 
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et al. 2015). A firm may go out of business because of sudden changes in market conditions 
(Poledna et al. 2018). Following the risk-layering approach, we suggest that agents can iden-
tify their own tipping points, i.e., the points in their loss distributions at which they would 
fail, and on this basis determine the most appropriate measures for decreasing their risk of 
failing. However, as indicated in Figure 1 to deal with systemic risks, these individual tipping 
points need to be managed together, because system collapses are triggered by individual 
failures. In other words, without any individual failure (e.g., disease, default, bankruptcy, 
stress), no systemic risk can realize. Whether an individual failure occurs, depends on the 
individual’s own resilience, which we suggest can be measured and enhanced using the risk-
layering approach. If an individual is at risk, its failure has the potential to trigger systemic 
risks. How to assess and enhance systemic risk under these circumstances is discussed next.  

Systemic risk is generally investigated using complexity theories, within which network anal-
ysis plays one but very important role (Thurner 2018). Approaching a system as a network of 
connected components is particularly useful to analyze systemic risks, as illustrated by Figure 
1. It intuitively suggests a complementary approach for dealing with systemic risks, which 
consist in adjusting the network structure of a system, thereby changing how individual fail-
ures cascade and generate systemic risks. Inspired by the management of individual risks, 
applying some sort of diversification to the network structure is thought to be a promising 
strategy to reduce systemic risks. This intuition has been tested in various fields, resulting in 
many new findings on the properties of complex networks, as evidenced, e.g., by the large 
body of research on the diversity-stability debate in ecology (e.g., McCann 2000).  

It turns out, however, that diversification does not necessarily increase resilience. On the 
one hand, diversification does indeed enable risk sharing and facilitate post-failure recovery, 
but, on the other hand, it also multiplies the number of contagion pathways that increase 
systemic risks (Gai and Kapadia 2010; Haldane and May 2011; Allen et al. 2012; Battiston et 
al. 2012; Amini et al. 2016). In particular, naïve diversification strategies may cause different 
system components to diversify too similarly: as this may raise systemic risks, diversification 
strategies have been recommended to aim at diverse diversification (Beale et al. 2011). Simi-
lar to diversification, building modularity into a system—i.e., adjusting the degree to which 
the nodes of a system can be decoupled into relatively weakly connected subsets of nodes—
may diminish herding effects (Banerjee 1992; Yang 2013), but in general has equivocal con-
sequences for systemic risks: it often decreases risks for most parts of the system at the ex-
pense of the remaining parts—which may, overall, jeopardize the resilience of the system as 
a whole (May et al. 2008). 

These contradicting consequences of well-intentioned interventions correspond to the nu-
merous “system surprises,” well known to complex-systems scientists (Meadows 2009). Poli-
cies aimed at increasing safety may, in the case of a large event, aggravate losses. For exam-
ple, such “levee effects” took place in New Orleans before Hurricane Katrina caused disas-
trous flooding in the city (Kates et al. 2006). More generally, efficiency does not always go 
hand in hand with resilience, as has been shown for road systems (Hochrainer-Stigler and 
Pflug 2009; Ganin et al. 2016)—which may imply social dilemmas and generate moral haz-
ards. Focusing on resilience in the short term may also stimulate so-called erosive strategies, 
which—for instance, by over-exploiting present resources (Heltberg et al. 2012)—lead to 
medium- and long-term negative impacts on development and well-being (Keating et al. 
2014). 
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Figure 3. Reduction of systemic risk through network restructuring. System components 
(colored circles) are interacting (black lines) in networked systems. By reducing the connec-
tions of too-interconnected-to-fail system components (red and orange circles), a centralized 
network becomes decentralized, which in turn mitigates system risk. 

Instead of one-size-fits-all rules of thumb, the management of systemic risks should there-
fore be based on a careful examination of a system’s risk landscape. A promising strategy, 
called the node-criticality approach, is to reshape a system’s network topology based on the 
differential contributions individual nodes make to systemic risks (e.g., Gephart et al. 2016; 
Colon and Ghil 2017; Colon et al., under review). This proceeds by identifying the nodes that 
are too big to fail, too interconnected to fail, and other type of so-called keystone nodes, 
whose failures are expected to trigger large ripple effects or to lead to a systemic breakdown 
(Paine 1969; see also the critical comments on the keystone concept by Mills et al. 1993). 
Interventions should then be designed to act on those nodes and reduce their criticality, 
without simply transferring it to other nodes. A promising application of this approach is that 
of Poledna and Thurner (2016), who used DebtRank to quantify the marginal contributions 
of individual liabilities to systemic risks in financial networks and calibrated a tax scheme 
that can completely eliminate systemic risks (see Figure 3, which conceptually shows the re-
sult of such an approach on a network). The resultant systemic-risk tax is a concrete policy 
that can increase both individual and systemic resilience (e.g., Adrian and Brunnermeier 
2008; Cooley et al. 2009; Roukny et al. 2013). In other cases, more broadly-based govern-
ance approaches may be necessary (Linkov et al. 2016), which in turn might require changes 
in human behavior (Massaro et al. 2018) or cultural norms (see, e.g., the current “loss and 
damage” debate in the climate-change community; Mechler et al. 2018). 

4. Integrative Management of Individual and Systemic Risks to Enhance Resilience 

Our discussion above has shown that typical strategies aiming at increasing resilience differ 
between individual risks and systemic risks. For individual risks and under a probabilistic risk 
perspective, a risk-layering approach can be applied, using cumulative distribution functions 
and associated measures. This approach can rely on several well-established market-based 
instruments, including insurance and portfolio diversification. In contrast, the conceptual 
underpinnings of strategies for mitigating systemic risks are still being consolidated. Diversi-
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fication is not always possible for reducing systemic risks. Instead, tailor-made transforma-
tional approaches are needed, which take into account the specificities of a system’s net-
work structure and on this basis push or nudge it toward safer configurations. One example 
we gave is the node-criticality approach, which aims to induce network restructuring based 
on the differential contributions of nodes to systemic risks. Individual risks and systemic risks 
can be seen as the two ends of a continuum (Figure 1) and therefore enhancing individual 
and system-wide resilience should be managed not in isolation but rather in an integrative 
manner (Hochrainer-Stigler et al. 2018a). A careful analysis on how system elements are in-
terconnected in the two most extreme cases (Figure 1, no connection or fully connected) 
provides the basis for such an integration and for decision making. 

In line with Pichler and Pflug (2018), we suggest measuring systemic risk in a system by the 
difference between the level of risk when accounting for nodes’ interdependencies and the 
level of risk in a counterfactual system in which nodes are independent (Figure 1, left hand 
side). In the context of Figure 1, this means counterfactually disregarding secondary failures, 
i.e., considering a system with a systemic-risk ratio of 0. Our integrated approach would then 
proceed by first analyzing individual risks in the counterfactual independent scenario, using 
the appropriate measures shown in Table 1, and by envisioning mitigating actions, using the 
risk-layering approach shown in Figure 2. The performance of these actions would set a 
baseline level of risk reduction. Next, the added risks due to interdependencies would be 
assessed, using the appropriate measures shown in Table 1, and managed, using the specific 
strategies for systemic-risk mitigation discussed in Section 3. Doing so, using both the inde-
pendent scenario (as the first step) and the interdependent scenario (as the second step), 
one can assess the appropriateness (Linkov and Trump 2019) of each resilience strategy for 
reducing both types of risks, while explicitly accounting for the inherent tradeoffs (Garnier et 
al. 2013; López-Espinosa et al. 2013; Yongoua Tchikanda 2017). Such an approach would en-
able iterations between mitigating both types of risks, which seems most appropriate for 
systems with high uncertainty, as exist, e.g., in climate-change management (Field et al. 
2012) or insurance-system supervision (International Association of Insurance Supervisors 
2018). It also clarifies the responsibilities of decision makers within a system, with risk layer-
ing being the responsibility of the individual elements while network restructuring being that 
of system-level decision-makers (e.g., regulators). That way, bottom-up and top-down ap-
proaches can be integrated in a seamless fashion. Summarizing our approach we suggest: 

(i) Start with a fully independent network: Measure individual risk and resilience to de-
termine risk of individual failures. Use the risk-layer approach to design resilience so-
lutions. Individual elements are in charge of implementing them (bottom-up). 

(ii) Consider interdependencies: Measure how they increase individual risks and evalu-
ate systemic risk. Use network restructuring to design resilience policies to systemic 
risk, implemented by system-level decision makers (top-down). 

(iii) Integrate both approaches: Analyze potential trade-offs between individual and sys-
tem-wide resilience. Design a collaborative and iterative process to coordinate and 
solve these trade-offs. 

It should be noted that this approach is just one possible way, among others, to move for-
ward with the integration of individual-risk and systemic-risk research. As seen in the con-
text of risk management under climate change, multiple approaches can usefully be inte-
grated by using ensembles of models. Furthermore, our quantitative perspective, which is 
rooted in natural sciences, should be broadened to include social-science aspects. For exam-
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ple, Hochrainer-Stigler et al. (2019) provide new contributions on how this objective can be 
accomplished by using integrative, adaptive, and iterative approaches based on pluralistic 
methodologies, which enable processes of continuous learning, reframing, and transfor-
mation of systems in efforts to decrease systemic risks. Such and similar methods (see espe-
cially Linkov et al. 2016; Renn 2017; Florin et al. 2018) have the potential to bridge the gap 
between strands of research that currently are still pursued in separation (e.g., extreme-
event analyses and systemic-risk analyses). As we have explained here, these strands are es-
sentially connected and need to be approached within an integrated framework to decrease 
current and emerging risks to complex systems with increased effectiveness and efficiency. 
As suggest, from a probabilistic risk-perspective, risk layering can beneficially be integrated 
with network restructuring within a coherent framework to enhance and optimize resilience 
to both kind of risks.   
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