
Ferropericlase Control of Lower Mantle Rheology:
Impact of Phase Morphology
M. Thielmann1, G. J. Golabek1, and H. Marquardt2

1Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany, 2Department of Earth Sciences, University
of Oxford, Oxford, UK

Abstract The rheological properties of Earth's lower mantle play a key role for global mantle
dynamics. The mineralogy of the lower mantle can be approximated as a bridgmanite-ferropericlase
mixture. Previous work has suggested that the deformation of this mixture might be dramatically affected
by the large differences in viscosity between bridgmanite and ferropericlase. Here, we employ numerical
models to establish a connection between ferropericlase morphology and the effective rheology of the
Earth's lower mantle using a numerical-statistical approach. Using this approach, we link the statistical
properties of the two-phase composite to its effective viscosity tensor using analytical approximations. We
find that ferropericlase develops elongated structures within the bridgmanite matrix that result in
significantly lowered viscosity. While our findings confirm previous endmember models that suggested a
change of mantle viscosity due to the formation of interconnected weak layers, we show that significant
rheological weakening can thus be already achieved even when ferropericlase does not form an
interconnected network. Additionally, the alignment of weak ferropericlase leads to a pronounced viscous
anisotropy that develops with total strain, which may have implications for understanding the viscosity
structure of Earth's lower mantle as well as for modeling the behavior of subducting slabs. We show that to
capture the effect of ferropericlase elongation on the effective viscosity tensor (and its anisotropy) in
large-scale mantle convection models, the analytical approximations that have been derived to describe the
evolution of the effective viscosity of a two-phase medium with aligned elliptical inclusions can be used.

1. Introduction
The Earth's lower mantle links the hot, vigorously convecting outer core to the upper mantle and ultimately
the Earth's surface. It therefore has a strong impact on the dynamics of outer core and mantle convec-
tion and consequently also on Earth's thermal evolution. Despite its importance, the rheological properties
of the Earth's lower mantle are not very well constrained. Seismic tomography provides a glimpse into
the present-day structure of the Earth's mantle. Although the resolution becomes worse with depth, these
tomographies have revealed a number of large- and smaller-scale heterogeneities in the lower mantle (e.g.,
Garnero & McNamara, 2008; Hedlin et al., 1997; Kaneshima & Helffrich, 2010). In particular, it has been
shown that only a fraction of subducting slabs directly sink into the lower mantle but that they rather stag-
nate at 660-km depth (Fukao et al., 2009). This stagnation is most likely related to the phase transition of
ringwoodite to bridgmanite and ferropericlase. Additionally, a large number of slabs seems to stagnate at
1,000-km depth (e.g., Fukao et al., 2009; Goes et al., 2017). The cause of this stagnation has been attributed
to a viscosity increase occurring at this depth (Marquardt & Miyagi, 2015; Rudolph et al., 2015).

In a lower mantle of pyrolitic composition, bridgmanite is expected to compose the largest part of the lower
mantle (with estimates ranging from approximately 70–90%), followed by ferropericlase and calcium silicate
perovskite (e.g., Hirose et al., 2017; Stixrude & Lithgow-Bertelloni, 2012). It has been suggested that the
rheology of the Earth's lower mantle is governed by the rheology of its two main constituents bridgmanite
and ferropericlase; however, both rheologies are not very well known at lower mantle conditions and are
subject of active research (e.g., Girard et al., 2016; Immoor et al., 2018; Kaercher et al., 2016; Merkel et al.,
2003; Miyagi & Wenk, 2016; Reali et al., 2019). The rheology of calcium silicate perovskite is even less known
due to experimental difficulties (Miyagi et al., 2009; Nestola et al., 2018). It has been argued that due to
the absence of seismic anisotropy, the lower mantle should be deforming in diffusion creep (Karato & Li,
1992). The viscosity of bridgmanite is estimated to be significantly larger than that of ferropericlase, thus
resulting in significant viscosity variations depending on the quantity and degree of interconnectivity of
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the weak phase (Yamazaki & Karato, 2001). Compositionally induced variations of lower mantle viscosity
may therefore have a significant impact on lower mantle dynamics and related phenomena (Ballmer et al.,
2017). However, it is not yet clear to which degree the assumption of perfectly interconnected ferropericlase
layers is valid. Laboratory experiments (Girard et al., 2016; Kaercher et al., 2016) indicate that ferropericlase
may indeed control lower mantle rheology due to the formation of interconnected layers, thus potentially
resulting in strain localization in the lower mantle.

The issue of strain localization due to weak phase alignment is not only of importance in the lower mantle
but even more so in the lithosphere, where it may result in large-scale shear zones that ultimately enable
subduction initiation (e.g., Montési, 2013). For this reason, past numerical studies of such systems have
attempted to develop a parameterization of the impact of weak phase topology on the effective rheology
for specific inclusion shapes such as layers, squares, or ellipses (e.g., Dabrowski et al., 2012; Fletcher, 2009;
Handy, 1990, 1994; Takeda, 1998; Takeda & Griera, 2006; Treagus, 2003; Tullis et al., 1991). More recently,
both Cook et al. (2014) and Gerbi et al. (2015) also considered the effect of more complex morphologies on
the effective rheology of power law materials.

In this study, we extend previous studies by employing a combined numerical-statistical approach to
establish a connection between the phase morphology of ferropericlase and the effective rheology of the
bridgmanite-ferropericlase mixtureby using statistical descriptors. We then show how a randomly dis-
tributed weak phase affects the effective viscosity even without interconnection and that elongation may
result in significant weakening. We then compare the numerical results to analytical approximations for
two-phase composites, which are used in conjunction with the statistical description of the weak phase mor-
phology. Finally, we study the formation of elongated structures due to simple shear deformation and their
corresponding effective rheology using numerical models as well as analytical approximations.

2. Methodology
As mentioned above, we follow a statistical-numerical approach to investigate the effective rheology of
bridgmanite-ferropericlase mixtures. This approach consists of the following steps: (1) characterization of
ferropericlase morphology, (2) artificial sample generation for direct numerical modeling, (3) direct numer-
ical modeling, and (4) the prediction of numerical results via an analytical approximation. In the following
sections, each step will be described in detail. In Section 2.1, we show how a random heterogeneous
two-phase medium can be characterized in a statistical manner and how key statistical properties can be
extracted from this description. In Section 2.2, we explain how these statistical properties can be used to
create artificial samples that will then be later used for direct numerical modeling as described in Section
2.3. Finally, in Section 2.4, we shortly discuss different analytical approximations that have been proposed
to describe the effective rheology of two-phase media.

2.1. Characterization of Ferropericlase Morphology
The microstructure of bridgmanite-ferropericlase mixtures has been investigated by several researchers.
Yamazaki et al. (2009) synthesized (Mg,Fe)SiO3 perovskite and ferropericlase under hydrostatic conditions.
The observed texture shows that ferropericlase does not take a specific shape, but is rather randomly dis-
tributed (see Figure 1). As the sample has been synthesized under hydrostatic conditions, ferropericlase
and bridgmanite grains exhibit rather isotropic shapes with no visible shape preferred orientation. On the
other hand, the grains in the deformed sample in Girard et al. (2016) exhibit an elongated structure. In both
cases, the observed ferropericlase structures are rather randomly distributed. It is therefore necessary to
characterize these structures using more general statistical descriptors.

Two-phase media can be characterized by a number of statistical descriptors (e.g., Torquato, 2002), some
of which will be described below. A two-phase medium is defined by the following function (e.g., Jiao &
Chawla, 2014):

I(i)(x) =

{
1 if in phase 1
0 otherwise

(1)

Several questions arise when the microstructure of a two-phase medium is investigated. One of these ques-
tions is: Choosing an arbitrary point x1 within this medium, what is the probability of finding phase i at
this point? The answer to this question is given by the so-called 1-point probability function S(i)

1 (x), which
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Figure 1. (top left) Back-scattered electron images by SEM of a perovskite and ferropericlase mixture with ≈30%
ferropericlase content. Reprinted from Yamazaki et al. (2009) Copyright (2019), with permission from Elsevier.
Ferropericlase grains are shown in light color. (bottom left) SEM back-scattered image of a deformed
bridgmanite-ferropericlase mixture. From Girard et al. (2016) Reprinted with permission from AAAS. The sample was
deformed to a shear strain of 1. Ferropericlase grains are shown in light color. (middle) The 2-point probability
functions S2 of ferropericlase of the undeformed and deformed sample. Insets show a zoom on the central region
(indicated by a white dashed line in the main images), where the 1∕e contour line is depicted in gray. (right) The
2-point cluster functions of ferropericlase of the undeformed and deformed sample. Image section and colors are the
same as for the 2-point probability functions. Insets show a zoom on the central region (indicated by a white dashed
line in the main images), where the 1∕e contour line is depicted in gray.

describes the probability of finding phase i at any given point x and is given by the average of I(i)(x):

S(i)
1 (x) = ⟨I(i)(x)⟩ (2)

which is equivalent to the volume fraction. A second question is: What is the probability of finding two
arbitrary points x1 and x2 within the same phase i? The 2-point probability function S(i)

2 (x1, x2) gives the
probability of finding phase i at both points x1 and x2:

S(i)
2 (x1, x2) = ⟨I(i)(x1)I(i)(x2)⟩ (3)

The 2-point probability function is also known as the autocorrelation function (e.g., Torquato, 2002) and has
been used to analyze the fabrics of geological materials, in particular to determine the grain size and shape
preferred orientation of thin sections (e.g., Heilbronner, 1992).

While the 2-point probability function does contain some information about the morphology of phase i, it
does not contain information on the connectivity between different clusters of this phase, where a cluster is
defined as a region of phase i that can be reached from a point in that phase without having to go through
another phase 𝑗 (Torquato, 2002). This information is contained in a subset of the 2-point probability func-
tion, the 2-point cluster function C(i)

2 (x1, x2) (Jiao et al., 2009; Torquato et al., 1998), which answers the
question: What is the probability of finding two arbitrary points x1 and x2 within the same cluster of phase i?
As we only investigate the effect of a single additional phase (ferropericlase) on the effective rheology in this
study, we will drop the index i in the following and refer to the 2-point probability and the 2-point cluster
functions as S2 and C2, which will be used to describe the morphology of ferropericlase inclusions.

For a statistically homogeneous and isotropic medium, both the 2-point probability and the 2-point cluster
function only depend on the distance r = |r| = |x2−x1| between the points x1 and x2. However, if a medium
is anisotropic, both probability functions are not only a function of the length r but also of the orientation
𝜃 of r. For this reason, 2-point correlation functions are often computed in multiple directions (e.g., Jiao &
Chawla, 2014; Sheehan & Torquato, 2000).
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Here, we compute the 2-point probability and cluster functions not only for a certain set of directions but
obtain a complete two-dimensional image of S2 and C2. For the two samples presented in Yamazaki et al.
(2009) and Girard et al. (2016) these functions are shown in Figure 1 together with the original scanning
electron microscope backscatter images. The isotropic nature of the undeformed sample is directly visible in
the circular shape of the 2-point cluster function, whereas the anisotropic structure of the deformed sample
is reflected by the tilted ellipsoidal shape of the 2-point cluster correlation function.

As the 2-point cluster function contains significantly more information than the 2-point probability func-
tion, it is generally considered to be superior to other 2-point statistical descriptors (Jiao et al., 2009). The
2-point cluster functions have been frequently employed to determine the effective mechanical properties
of two-phase composites in order to generate materials with desired properties (e.g., Torquato, 2010). Addi-
tionally, these correlation functions have not only been used to quantify mechanical but also hydraulic and
electrical properties (e.g., Torquato, 2002). In this study, we aim to connect the properties of the 2-point clus-
ter function of the ferropericlase inclusions to the rheological properties of the ferropericlase-bridgmanite
mixture.

The 2-point probability and 2-point cluster functions can be used to statistically determine the morphol-
ogy (size of inclusions and their anisotropy) of the random heterogeneous two-phase mixture given by
the bridgmanite/ferropericlase mixtures. As we can see in Figure 1, both probability functions capture the
isotropic and anisotropic nature of the two-phase mixture. To quantify the degree of anisotropy, we can
now compute the correlation lengths c∗i of the two probability functions, which are defined as the distance
over which C(i)

2 (x1, x2) (or S(i)
2 (x1, x2)) decreases by 1∕e (e.g., Taconet & Ciarletti, 2007). A similar procedure

was employed in Heilbronner (1992) to determine the grain size in thin sections. If the fabric is isotropic,
the 1∕e-isoline exhibits a circular shape (see gray line in inset in the top right image of Figure 1) and the
correlation length can be obtained by fitting a circle to this isoline to obtain a single value for c∗. In the
anisotropic case, the 1∕e-isoline exhibits an elliptical shape, which can be fitted with an ellipse whose semi-
major and semiminor axes correspond the the correlation lengths c∗x and c∗

𝑦
. Additionally, the angle 𝜃 of

the semimajor axes with the horizontal yields information about the average orientation of ferropericlase
inclusions.

2.2. Artificial Generation of Heterogeneous Random Media
As can be seen in Figure 1, the distribution of ferropericlase in the ferropericlase-bridgmanite composite is
rather random. This calls for a statistical approach to determine the effect of weak phase elongation on the
effective viscosity. We therefore have to create a large number of artificial samples with prescribed statistical
properties. The distribution of the two phases is set via the following procedure (Cahn, 1965; Roberts &
Teubner, 1995; Vel & Goupee, 2010): For an artificial sample with the desired statistical properties (given by
the correlation lengths cx, c𝑦 and 𝜃, which are input parameters), a correlated random surface is generated
by convoluting an uncorrelated Gaussian distribution of random numbers zu(x, 𝑦) with a two-dimensional
Gaussian autocovariance function F(x, 𝑦):

z(x, 𝑦) = A∫
∞

−∞
F
(

x − x′, 𝑦 − 𝑦′
)

zu
(

x′, 𝑦′
)

dx′d𝑦′ (4)

where zu(x, 𝑦) and F(x, 𝑦) are given by

zu(x, 𝑦) =
1√
2𝜋

e−
1
2 (x2+𝑦2) (5)

F(x, 𝑦) = e−
1
2 (e1x2−2e2x𝑦+e3𝑦

2) (6)

The term in the exponent in equation (6) is the general equation of a tilted ellipse with its center at the
origin. Consequently, the factors e1, e2, and e3 can be computed from the semimajor and semiminor axes
(given here by input parameters cx and c𝑦) as well as the inclination angle 𝜃:

e1 = cos2(𝜃)
c2

x
+ sin2(𝜃)

c2
𝑦

e2 = sin(2𝜃)
2c2

x
− sin(2𝜃)

2c2
𝑦

e3 = sin2(𝜃)
c2

x
+ cos2(𝜃)

c2
𝑦

(7)
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Figure 2. Example of an isotropic (top) and anisotropic (bottom) random surface conversion to binary phase
distributions for different values of weak phase fraction Φ in a square domain with a nondimensional edge length 1
(as in all cases presented here). In both cases, the inclination angle is 0.

The prefactor A in equation (4) is then chosen such that the values of z(x, 𝑦) lie in the interval [0, 1]. The
random surface is then converted into a binary distribution by choosing a threshold level p𝜙 below which
z(x, 𝑦) corresponds to Phase 2, otherwise to Phase 1. p𝜙 can then be iteratively adapted until the desired
fraction 𝜙 of Phase 2 is reached (see Figure 2 for an example of a random surface and its conversion into
binary distributions).

The main purpose of this study consists of linking the topology of media with different amounts of layering
to their effective rheology. The layering (i.e., anisotropy) can be controlled by varying the value of cx . How-
ever, it turns out that simply increasing cx results in an undesired increase of weak phase cluster size and
a decrease in cluster number (see Figure 3). A remedy to this issue consists of additionally rescaling c𝑦 as
follows:

c𝑦 =
cx,iso

2

cx
(8)

where cx,iso = c𝑦,iso are the correlation lengths for the isotropic case where the product of cx,isoc𝑦,iso equals the
product cxc𝑦. Due to this rescaling, the number of clusters as well as their area is preserved in the resulting
anisotropic random structure (Figure 3).

2.2.1. Distribution Properties
To assess the effect of the binarization process on the statistical properties of the artificially generated
random media, we computed the effective correlation lengths c∗x and c∗

𝑦
for samples with given correla-

tion lengths ranging from cx ∈ [0.05, 0.5]. c𝑦 was computed according to equation (8). For each value
of cx, we created 2,500 samples and computed the effective correlation lengths c∗x and c∗

𝑦
as described

Figure 3. Effect of scaling c𝑦 according to equation (8) on the resulting
cluster number and sizes. (left) Isotropic example with cx,iso = 0.05 and
c𝑦,iso = 0.05. (middle) Anisotropic distribution with cx = 0.15 and nonscaled
c𝑦. Right: Anisotropic distribution with cx = 0.15 and scaled c𝑦. In the
nonscaled case, there are significantly fewer and larger clusters compared
to the scaled case.

in Section 2.1. Not surprisingly, our procedure to generate heterogeneous
media with given correlation lengths cx and c𝑦 produces binary distribu-
tions with a range of values for c∗x and c∗

𝑦
, as can be seen in Figure 4. As

the size of the weak phase clusters depends on their desired volume frac-
tion, we do not expect c∗x and c∗

𝑦
to equal cx and c𝑦. However, it turns out

that c∗x is a linear function of cx and that the scaling relationship (8) is not
affected by the binarization process. The effective correlation length c∗

𝑦
is

therefore given by

c∗
𝑦
=

c∗x,iso2
c∗x

(9)

where c∗x,iso = c∗
𝑦,iso is the effective correlation length in the corresponding

isotropic case.
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Figure 4. Effect of the binarization on the correlation lengths of artificially created random media for a volume
fraction of 𝜙 = 0.1 (results for 𝜙 = 0.05 and 𝜙 = 0.2 can be found in the appendix). (top left) Probability density
function p(x) of the effective horizontal correlation length c∗x for different values of prescribed correlation length cx for
1,000 samples each. Histograms in gray show the distribution of computed values, colored lines show a fitted
nonparametric kernel-smoothing distribution function. (bottom left) Same as the top plot, but for values of c∗

𝑦
. (top

right) Effective horizontal correlation length c∗x versus prescribed correlation length cx . Values for c∗x were obtained by
computing the maximum location of the respective kernel-smoothing distribution function shown on the left. The solid
line shows a linear fit through the data, with its equation given in the plot. (bottom right) Effective vertical correlation
length c∗

𝑦
versus effective horizontal correlation length c∗x . Values for c∗

𝑦
were obtained in the same way as for the plot

above. The solid line denotes a fit to the data using a function of the same form as (8). The obtained constant
approximately corresponds to the product of c∗x,isoc∗

𝑦,iso, which shows that the scaling relationship (8) between both
correlation lengths is not affected by the binarization process.

As weak phase clusters become increasingly elongated, they may at some point span the domain. The forma-
tion of such spanning clusters is very important in two-phase media, as it has a strong impact on mechanical
properties (e.g., Roberts & Garboczi, 2002). However, in the samples shown here, the occurrence of a span-
ning cluster may be related to sample size and correlation lengths of the clusters and as such exhibit a finite
size effect. Consequently, it is important to distinguish samples with spanning clusters from those with-
out spanning clusters, as they may exhibit different mechanical properties. For large elongations, the 1∕e
contour line of the cluster correlation function C(i)

2 (x1, x2) may also not form an ellipse but span the entire
domain and a determination of the effective correlation lengths is not possible.

2.3. Direct Numerical Modeling
2.3.1. Governing Equations
In its simplest form, the creeping flow of mantle rocks can be described with the incompressible Stokes
equations:

∇ · v = 0
−∇P + ∇ · (𝜂∇v) = 0

(10)

where v denotes the velocity vector, P pressure, and 𝜂 the viscosity (the forcing term due to gravity has been
neglected here). Recent studies (Girard et al., 2016; Nzogang et al., 2018) indicate that the deformation of
bridgmanite and ferropericlase may be accomodated via dislocation activity and thus potentially giving rise
to nonlinear behavior. However, given the uncertainties related to the extrapolation of laboratory data to
the Earth, it is unclear which deformation mechanism is active in the lower mantle. In this study, we thus
focus on linear viscous rheologies for simplicity. In the case of an isotropic, linear viscous material, 𝜏i𝑗 can
be related to the strain rate tensor .

𝜀i𝑗 via

𝜏i𝑗 = 2𝜂 .
𝜀i𝑗 (11)
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where .
𝜀i𝑗 is given by

.
𝜀i𝑗 =

1
2

(
𝜕vi

𝜕x𝑗
+

𝜕v𝑗
𝜕xi

)
(12)

We can now nondimensionalize these equations using characteristic scales for viscosity, length, and time
which are given by

𝜂c = 𝜂1 lc = L tc =
.
𝜀−1

BG (13)

where we choose the characteristic scales as the viscosity of the host material 𝜂1, the size of the model domain
L, and the background strain rate .

𝜀BG. This procedure significantly reduces the number of free parameters,
as host viscosity and background strain rate take the nondimensional value of 1. The computed effective
viscosities from these models are then also normalized by the host viscosity.
2.3.2. Numerical Solution of the Governing Equations
The system of equations given in (10) is solved in primitive variable formulation using the hybrid finite
element particle-in-cell method by employing an optimized version of the open-source code MVEP2 (e.g.,
Thielmann et al., 2014). The model domain consists of a 1 × 1 quadratic box. In order to properly resolve
the given structures, the model domain is discretized using a regular mesh of 1, 024 × 1, 024 Q1P0 elements
(see also appendix A). For advection we employ passive markers using a Runge-Kutta fourth-order scheme.
In time-dependent simulations, we employ a constant nondimensional time step of 10−4, which implies
that the system experiences the same amount of overall strain per time step. We use initially 16 markers
per cell to track the different phases, which amounts to ≈16.8 million markers. If the number of mark-
ers per cell falls below six markers, 10 new markers are inserted with their properties being determined
by the nearest neighboring marker. Material properties are interpolated from markers to nodes via har-
monic interpolation to the integration points. To obtain the different components of the viscosity tensor,
two deformation steps are performed, one in pure shear and one in simple shear. Coordinate updates (in
time-dependent simulations) are only done after a simple shear step with a constant nondimensional time
step Δt = 5 · 10−4.
2.3.3. Postprocessing
As already discussed above, even though we assume the viscosity of the individual phases to be isotropic, the
effective viscosity of the two-phase medium can be anisotropic due to the morphology of the weak phase,
which implies that viscosity is not a scalar, but rather a tensor. To determine the different components of
the viscosity tensor 𝜂i𝑗kl, we extract the spatial averages of the stress tensor ⟨𝜏i𝑗⟩ and ⟨ .

𝜀i𝑗⟩ from the numer-
ical simulations. Using equation (21), we then compute the respective components of the viscosity tensor,
keeping in mind that ⟨ .

𝜀s
xx⟩ = 0 and ⟨ .

𝜀s
x𝑦⟩ = 1 in simple shear and ⟨ .

𝜀p
xx⟩ = 1 and ⟨ .

𝜀p
x𝑦⟩ = 0 in pure shear.

Simple shear boundary conditions are employed by setting the horizontal velocity of the top boundary con-
dition to a nondimensional value of 2 and its vertical velocity to 0 to obtain a nondimensional strain rate of
1. Bottom boundary conditions are zero velocity for both horizontal and vertical velocity components. Side
boundaries are periodic. In the case of pure shear deformation, vertical velocities at top and bottom bound-
aries are set to −1 and 1, respectively. Finally, we obtain the principal components 𝜂n and 𝜂s of the viscosity
tensor and its orientation 𝜃𝜂 through principal component analysis.

In addition to computing these components directly from the spatial averages of stress and deformation rate
tensors, we also characterize each sample using the 2-point cluster correlation function C(i)

2 (x1, x2), where we
obtain the correlation lengths c∗x and c∗

𝑦
as well as the inclination 𝛼 by fitting an ellipse to the 1∕e contour line.

2.4. Analytical Approximations
The effective rheology of two-phase aggregates has been the subject of many studies in the past. The bounds
for the effective viscosity of a two-phase medium with Newtonian rheologies are given by the Voigt and
Reuss bounds (e.g., Handy, 1990; Takeda, 1998):

𝜂up = (1 − 𝜙) 𝜂1 + 𝜙𝜂2 = 𝜂1 (1 − 𝜙 + Δ𝜂𝜙) (14)

𝜂low =
[
(1 − 𝜙) 𝜂1

−1 + 𝜙𝜂2
−1]−1 = 𝜂1

(
1 − 𝜙 + 𝜙Δ𝜂−1)−1 (15)

where 𝜂1,2 are the viscosities of the two phases, 𝜙 is the volume fraction of Phase 2, and Δ𝜂 = 𝜂2∕𝜂1 is the vis-
cosity contrast between Phase 2 and Phase 1. The two bounds represent the upper and lower bounds on the
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viscosity of a two-phase mixture. The Voigt bound (or the arithmetic mean) describes the volume-averaged
effective viscosity of a layered material, which is deformed in pure shear, with the layering being orthogonal
to the compression direction. The Reuss bound (harmonic mean) describes the volume-averaged effective
viscosity of a layered medium being deformed in simple shear with the layering being parallel to the shear
direction (e.g., Schmeling et al., 2008). With increasing viscosity contrast between the two deforming phases,
these bounds diverge and predict significantly different values for the effective viscosity. However, both end-
member models assume a layered structure of the two phases. This severely limits the applicability of these
bounds (e.g., in geodynamical models). As a potential remedy, several researchers have proposed different
approaches to overcome this issue (e.g., Dabrowski et al., 2012; Fletcher, 2009; Treagus, 2002; Vel et al., 2016).
However, each of these approaches either only deals with very specific inclusion shapes (Dabrowski et al.,
2012; Fletcher, 2004; Treagus, 2002) or only considers statistically isotropic two-phase random media (Vel
et al., 2016). Here, we combine these previous works to study the effect of weak phase morphology using
random heterogeneous media. Based on the observation that the 2-point cluster function of the deformed
aggregate from Girard et al. (2016) exhibits an elliptical shape, we turn to analytical solutions that address
the effective rheology of a two-phase medium containing aligned elliptical inclusions. In particular, we
employ the anisotropic differential effective medium (aDEM) approach presented in Dabrowski et al. (2012)
as well as the self-consistent approximation (SCA) developed by Treagus (2003) and Fletcher (2004), which
are summarized below.
2.4.1. The aDEM Approach
The aDEM approach extends the differential effective medium approach (Bruggeman, 1935) (based on the
assumption of circular inclusions) to systems with aligned elliptical inclusions. Contrary to circular inclu-
sions, the presence of aligned elliptical inclusions gives rise to a nonisotropic viscosity tensor. In plane strain
deformation in the x𝑦 plane, this tensor can be described by a normal viscosity 𝜂n, a shear viscosity 𝜂s, and a
misalignment angle 𝜑. Based on the differential effective medium approach, Dabrowski et al. (2012) derived
a system of coupled differential equations that can be used to compute the normalized (with the host viscos-
ity 𝜂1) effective normal and shear viscosity 𝛽n = 𝜂n∕𝜂1 and 𝛽s = 𝜂s∕𝜂1 of a composite with aligned elliptical
inclusions:

d𝛽n

d𝜙
= 1

1 − 𝜙

(
Δ𝜂 − 𝛽n

) √
𝛿 + p√

𝛿
Δ𝜂
𝛽n

+ p
(16)

d𝛽s

d𝜙
= 1

1 − 𝜙

(
Δ𝜂 − 𝛽s

) √
𝛿 + p√

𝛿 + pΔ𝜂
𝛽s

(17)

where 𝛿 = 𝛽n∕𝛽s and p = 0.5 (a∕b + b∕a) are anisotropy factor and shape factor, with a and b being the
semimajor and semiminor axis of the elliptical inclusion Δ𝜂 denotes the viscosity contrast between both
phases. The coupled system of equations (16) and (17) can be integrated numerically to obtain the desired
values for 𝛽n and 𝛽s.
2.4.2. The SCA Approach
Another commonly employed approximation to compute effective medium properties is the SCA
(Budiansky, 1965; Hill, 1965). For the same system of aligned ellipses as described in the section above, the
first expression to compute 𝛽n and 𝛽s based on SCA was proposed by Treagus (2003):

pT𝛽
2 +

[
(1 + Δ𝜂) −

(
1 + pT

)
(1 − 𝜙 + 𝜙Δ𝜂)

]
𝛽 − Δ𝜂 = 0 (18)

where 𝛽 may be either the normal or shear viscosity. To obtain the normal viscosity 𝛽n, the shape factor pT
equals shape factor p mentioned above, whereas it equals p−1 to compute the shear viscosity 𝛽s.

However, this approximation did not consider the effective host to become anisotropic as soon as an inclu-
sion was added and thus yields too low values for 𝛽s. This was incorporated by Fletcher (2004), who took into
account the host anisotropy. To compute the effective normal and shear viscosities 𝛽n and 𝛽s, the following
system of nonlinear equations has to be solved for 𝛽n and 𝛿 (Fletcher, 2004):

p𝛽2
n +

{√
𝛿 [𝜙 + (1 − 𝜙) Δ𝜂] − p (1 − 𝜙 + 𝜙Δ𝜂)

}
𝛽n −

√
𝛿Δ𝜂 = 0 (19)

𝛽2
n + 𝛽n

{
p
√
𝛿 [𝜙 + (1 − 𝜙) Δ𝜂] − 𝛿 (1 − 𝜙 + 𝜙Δ𝜂)

}
− p𝛿

√
𝛿Δ𝜂 = 0 (20)

where p and 𝛿 are the same shape factor and anisotropy factor as described above.
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2.4.3. Deformation and Rotation of an Elliptical Viscous Inclusion
The theoretical considerations described above provide estimates for the normalized effective viscosity
(given by 𝛽n and 𝛽s in a reference frame that is aligned with the principal axes of the aligned inclusions).
Generally, the viscosity tensor relating the spatial averages of the deviatoric stress tensor components ⟨𝜏xx⟩
and ⟨𝜏x𝑦⟩ to the deformation rate tensor components ⟨ .

𝜀xx⟩ and ⟨ .
𝜀x𝑦⟩ is given by (e.g., Weijermars, 1992)( ⟨𝜏xx⟩⟨𝜏x𝑦⟩

)
= 2

(
𝜂xxxx 𝜂xxx𝑦

𝜂xxx𝑦 𝜂x𝑦x𝑦

)( ⟨ .
𝜀xx⟩⟨ .
𝜀x𝑦⟩

)
, (21)

where the components of 𝜂i𝑗kl in the x𝑦 plane can be computed from the effective normal and shear viscosity
𝜂n and 𝜂s as well as the orientation 𝜃𝜂 of the major ellipse axes to the horizontal (e.g., Weijermars, 1992):

𝜂xxxx = 𝜂ncos22𝜃𝜂 + 𝜂ssin22𝜃𝜂
𝜂xxx𝑦 =

(
𝜂n − 𝜂s

)
cos 2𝜃𝜂 sin 2𝜃𝜂

𝜂x𝑦x𝑦 = 𝜂nsin22𝜃𝜂 + 𝜂scos22𝜃𝜂

(22)

When in addition the weak phase morphology of a random heterogeneous medium is modified during
deformation, its viscosity tensor changes continuously. In simple shear, weak phase clusters become more
elongated and rotate in the shear direction. The rotation and stretching of ellipses during deformation has
been extensively studied (e.g., Bilby & Kolbuszewski, 1977; Mulchrone & Walsh, 2006) and also applied
to systems of aligned ellipses (Dabrowski et al., 2012; Fletcher, 2009). The change of aspect ratio r and
orientation 𝜃 of an elliptical inclusion is given by

.r = 2r .
𝜀incl

xx (23)

.
𝜃 = W incl

x𝑦 + r2 + 1
r2 − 1

.
𝜀incl

x𝑦 (24)

where .
𝜀incl

xx , .
𝜀incl

x𝑦 and W incl
x𝑦 are deformation and vorticity inside the inclusion. These can be related to the far

field deformation rates and vorticity as follows (Dabrowski et al., 2012; Fletcher, 2009):

.
𝜀incl

xx =

√
𝛽n
𝛽s

+ p

Δ𝜂n

√
𝛽n
𝛽s

+ p

.
𝜀∞xx (25)

.
𝜀incl

x𝑦 =

√
𝛽n
𝛽s

+ p√
𝛽n
𝛽s

+ Δ𝜂n
𝛽n
𝛽s

p
D∞

x𝑦 (26)

W incl
x𝑦 = W∞

x𝑦 +
1
2

(
a
b
− b

a

) Δ𝜂n
𝛽n
𝛽s

− 1√
𝛽n
𝛽s

+ Δ𝜂n
𝛽n
𝛽s

p

.
𝜀∞x𝑦 (27)

where Δ𝜂n = 𝜂incl
𝜂n

= 𝛽incl
𝛽n

is the ratio between inclusion viscosity and the normal host viscosity (or their
respective normalized values).

Comparing the analytical prediction to the results from numerical models, Dabrowski et al. (2012) showed
that the analytical solution does predict the evolution of a two-phase medium with initially spherical inclu-
sions up to a shear strain of 𝛾 = 1. At larger strains, predictions and model results start to diverge, the main
reason being the interaction between different inclusions which result in nonelliptical inclusion shapes.

3. Results
3.1. Instantaneous Simulations
To determine the impact of weak phase topology, in particular of the elongation in shear direction, we first
conducted a series of simulations where we prescribed the degree of layering via the correlation length cx.
For the isotropic case, the correlation lengths cx,iso and c𝑦,iso were set to a value of 0.05. The result of two
such simulations with a weak phase fraction of 𝜙 = 0.2, a viscosity contrast of Δ𝜂 = 10−2, and different
elongations cx = 0.05 and cx = 0.4 (the respective values for c𝑦) is shown in Figure 5, where the distribution
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Figure 5. Stress fields of a statistically isotropic (left) and anisotropic
(right) random heterogeneous medium with a weak phase fraction of
𝜙 = 0.2. The weak phase is 100 times weaker than the surrounding
medium. The presence of the weaker phase results in significant stress
heterogeneity. Due to the viscosity contrast, stresses in the weaker phase
are significantly reduced. It can be seen that the overall stress level is lower
in the medium with strongly elongated inclusions.

of the effective stress 𝜏II within both samples is shown. Due to the viscos-
ity contrast between both materials, stresses within the sample are highly
heterogeneous, with stresses in the weak phase being significantly lower.
Stress levels in the strong phase are generally higher in the isotropic case
than in the anisotropic (elongated) case.

For each combination of cx ,𝜙 andΔ𝜂, we conducted 2,500 realizations per
combination (427,500 simulations in total). We then separated the data
set into two parts, one containing the samples without a spanning weak
phase cluster and one containing the samples with one or more spanning
weak phase cluster(s). For each realization, we also computed the shear
and normal viscosities 𝜂s and 𝜂n according to (21) as well as the effective
correlation lengths c∗x and c∗

𝑦
.

In general, the existence of one or more spanning clusters does not sig-
nificantly affect the value of 𝜂n and the analytical predictions do fit quite
well. In the case of 𝜂s, results are more scattered and realizations with
one or more spanning clusters exhibit significantly lower values for 𝜂s,

in particular for higher viscosity contrasts. At a viscosity contrast of Δ𝜂 = 10−1, the aDEM and the SCA
approximations yield similar results, with the aDEM approximation performing slightly better than the
SCA approximations. At larger viscosity contrasts, the viscosity predictions of the different approximations

Figure 6. Effective viscosity of random heterogeneous composites depending on weak phase morphology. Shown are the effective normal and shear viscosities
𝜂n and 𝜂s with respect to the aspect ratio of r = c∗x∕c∗

𝑦
. Gray colors indicate the frequency of 𝜂n and 𝜂s for a given aspect ratio (and only for nonspanning

clusters), with darker and less transparent colors indicating higher densities. White symbols indicate a fit to the maxima of the frequency distribution. Crosses
indicate the results for spanning clusters. Dashed lines indicate the theoretical upper and lower bound given in (14) and (15). Solid lines denote the aDEM
approximation by Dabrowski et al. (2012) and the SCA approximations by Fletcher (2004) and Treagus (2003).
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Figure 7. Evolution of a two-phase medium with 20% weak material (100 times weaker) in simple shear. Initially, the
morphology of the weak phase was statistically homogeneous. (top) Second invariant of the strain rate field. Colors
have been clipped to a strain rate range between 10−2 and 102. (bottom) Normalized strain rate probability
distributions within the strong (blue) and weak (red) phase.

diverge. The best viscosity prediction is made by the SCA approximation of Fletcher (2004). The aDEM
approach tends to overestimate the shear viscosity for larger viscosity contrasts, whereas the SCA approxima-
tion by Treagus (2003) underestimates it. Interestingly, these two approximations seem to form an envelope
of the numerically determined effective viscosities, in particular at larger viscosity contrasts.

In summary, both numerical results and analytical approximations show that the existence of a weak phase
does have an effect on effective composite rheology, even though the weak phase does not form an inter-
connected network. As expected, this effect becomes more pronounced for larger elongations. The effect
of random weak phase morphology can be quantified with a statistical description employing the 2-point
cluster function C2 and analytical approximations.

Figure 8. Evolution of weak phase morphology, corresponding cluster correlation function as well as normal and shear
viscosity of the same sample shown in Figure 7. (top) Snapshots of weak phase distribution and corresponding cluster
correlation function (zoomed in on a radius of 0.2 around the origin) for different strains. (bottom) Evolution of
effective normal and shear viscosity versus strain. Red dots and gray boxes denote strains of the snapshots shown in the
top row. Dashed lines correspond to the theoretical lower and upper viscosity bounds.
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Figure 9. Effective viscosity evolution of random heterogeneous composites in simple shear deformation. Shown are the mean effective normal and shear
viscosities 𝜂n and 𝜂s of 10 samples per simulation set with respect to the accumulated shear strain 𝜀 (solid black lines). Dashed lines indicate the theoretical
upper and lower bound given in (14) and (15). Solid colored lines denote the aDEM approximation by Dabrowski et al. (2012) and the SCA approximations by
Fletcher (2004) and Treagus (2003). Gray areas indicate where numerical results become less reliable due to loss of resolution.

3.2. Microstructure Evolution During Simple Shear Deformation
The results of the previous section have shown that it is possible to quantify the effect of weak phase
morphology on the effective rheology of a random heterogeneous medium by using a combination of
its statistical description, namely, the 2-point cluster function together with an analytical approxima-
tion. However, the simulations shown were only “instantaneous” simulations and did not address the
formation of elongated structures during deformation. To further explore the potential of the combined
statistical-analytical approach to predict not only effective viscosities for a given microstructure but also its
evolution during deformation, we conducted an additional set of experiments for the same volume fractions
and viscosity contrasts shown in Figure 6. For each parameter combination, we deformed 10 different ran-
dom samples up to a strain of 5 (which amounts to 104 time steps per sample). The initial phase morphology
was chosen to be statistically isotropic.

The temporal evolution of a sample with a volume fraction of 20% and a viscosity contrast Δ𝜂 = 10−2 is
shown in the top row of Figure 7. As expected the weak phase becomes increasingly elongated during defor-
mation and eventually forms thin layers along which deformation is localized. This increasing localization
can be seen in the strain rate distributions within both the hard and weak phase shown in the bottom row
of Figure 7. Here, the normalized probability distribution of the second invariant of the strain rate tensor .

𝜀II
is shown for both the hard and the weak phase. The increased localization within the weak phase causes a
shift of the maximum of the weak strain rate distribution to significantly larger values.

The morphology of the weak phase can be described using the 2-point cluster function C2(x). The shape
of C2(x) reflects the increasing weak phase elongation and aligned layer formation during simple shear
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Figure 10. Comparison of numerically obtained inclination angle (left) and aspect ratio (right) to analytical
predictions. Shown are the results from the simulation set with Δ𝜂 = 10−2 and Φ = 0.2 as an example (all other
simulation sets show the same behavior). The dashed black line denotes the inclination angle obtained from principal
component analysis of the viscosity tensor, whereas the solid black line denotes the inclination angle (left) and aspect
ratio (right) obtained from analysis of the 2-point cluster function. Gray areas indicate strains at which results become
unreliable due to loss of resolution.

deformation (Figure 8). Employing the same procedure as in the single step simulations, we extract the
effective normal and shear viscosity of the deformed material using equation (21) and (22). As expected, the
normal and shear viscosities 𝜂n and 𝜂s exhibit an increase respectively a decrease corresponding to weak
layer formation. We observe this behavior for all samples.

In Figure 9, we show the average evolution of the effective normal and shear viscosities for phase fractions
Φ of 0.05, 0.1, and 0.2 and viscosity contrasts Δ𝜂 of 10−1, 10−2, and 10−3. The evolution of normal viscosities
(upper lines) is predicted fairly well by all approximations at smaller viscosity contrasts but shows increasing
discrepancies at larger viscosity contrasts. Here, the analytical approximations tend to overestimate normal
viscosities. All analytical approximations predict shear viscosities decreasing faster than what is observed
in the numerical models and also predict considerably smaller viscosities at large strains. At large strains,
some numerical results even indicate an increase in shear viscosity. However, this increase is related to a
loss of resolution where the thickness of elongated structures becomes less than the grid resolution. For this
reason, numerical results at strains above 3 become inaccurate.

The discrepancy between analytical predictions and numerical results can be explained with the differences
between the assumptions made for the analytical approximations and the actual numerical model setup.
All analytical approximations assume that the weak phase is distributed as elliptical inclusions that do not
interact with each other. The assumption of elliptical inclusions also implies that the deformation gradient
within each inclusion is constant (Eshelby, 1957), which is not the case for randomly heterogeneous media.
The heterogeneity of the deformation field within the weak phase can also be seen in Figure 7, where we
observe a large range of strain rates in the weak phase.

These discrepancies in strain rates do not seem to have such a large effect on the prediction of the inclination
angle. Both the inclination angle obtained from principal component analysis of the viscosity tensor 𝜃𝜂 and
the angle extracted from the 2-point cluster correlation function 𝜃C2 provide very similar results and are
predicted very well by the analytical approximations, as can be seen in Figure 10. However, the aspect ratio
is predicted to increase much faster than what we observe in the numerical models, which also saturate at
larger strains. The saturation behavior of the numerically determined aspect ratio can be explained with
the finite size effect of the model domain that limits the horizontal extent of the 2-point cluster correlation
function, while the lesser increase in aspect ratio may be related to the fact that the analytical predictions
assume a constant strain rate field within an ellipse to determine the change in inclination angle. As already
stated above, this assumption does not represent the actually observed strain rate field within the weak
phase (Figure 7) and is likely the cause for the discrepancy between analytical predictions and numerical
results.
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4. Discussion
In geodynamics, the rheology of the lower mantle is commonly assumed to be linear viscous and isotropic.
Based on a large set of numerical simulations, we have shown here that the elongation of ferropericlase can
have a significant impact on the effective viscosity and produces viscous anisotropy.

Notably, the viscosity of the lower mantle will already be significantly lowered upon deformation even
before the weak ferropericlase develops an interconnected weak layer network. This is contrary to previous
works that suggested a binary viscosity scenario, where either bridgmanite dominates lower mantle viscosity
through the formation of a load-bearing framework or ferropericlase dominates viscosity once an intercon-
nected weak layer network forms (Ballmer et al., 2017; Marquardt & Miyagi, 2015). Our modeling shows
that there is a gradual transition between these two endmember scenarios. This implies that strain local-
ization might become self-accelerating in lower mantle regions where initial deformation occurred, such as
around subducting slabs that enter the lower mantle.

However, the resulting viscous anisotropy can reach several orders of magnitude between normal and shear
direction. Importantly, the direction of lowest viscosity is not exactly aligned with the shear direction. Upon
initial deformation, the angle between viscosity minimum and shear direction is about 45◦, but continuously
rotates toward the shear direction during further deformation. The development of viscous anisotropy in
the vicinity of subducting slabs where deformation will be localized is likely to affect the slab's descent into
the lower mantle. One can envisage a scenario where the slab rotates in the lower mantle to move along the
direction of minimal viscosity.

The presence of viscous anisotropy in the lower mantle is of relevance for modeling a wide range of geo-
physical measurements, including the overall viscosity profile of the lower mantle or postglacial rebound
(Christensen, 1987). The here-predicted viscous anisotropy in the lower mantle is significantly larger than
the viscous anisotropy predicted for olivine in the upper mantle that has been invoked to explain several
large-scale geophysical phenomena (Hansen et al., 2012).

The development of a preferred orientation of ferropericlase in the bridgmanite matrix might also contribute
to seismic anisotropy observations in the uppermost lower mantle (Ferreira et al., 2019) and possibly the
D” layer (Kendall & Silver, 1996) given that the velocity contrast between bridgmanite and ferropericlase is
sufficiently strong. Qualitatively, we would expect a VSH > VSV seismic shear wave splitting below regions
where slabs move horizontally in the uppermost mantle, consistent with recent observations (Ferreira et
al., 2019), which would require significantly differing seismic properties of ferropericlase and bridgmanite.
The seismic anisotropy originating from crystallographic preferred orientation (CPO) alignment, however,
may be reduced due to the heterogeneous deformation field in ferropericlase (e.g., Miyagi & Wenk, 2016).
This may (at least partly) explain the absence of significant seismic anisotropy in most of the lower mantle.
In the lowermost mantle, however, the transition of bridgmanite to postperovskite potentially results in a
significant viscosity decrease of the matrix surrounding the ferropericlase inclusions (e.g., Ammann et al.,
2010), which may result in a less heterogeneous deformation field and thus allow for consistent CPO evo-
lution resulting in a stronger seismic anisotropy. However, this strongly depends on the active deformation
mechanisms at this depth, which are yet unclear (e.g., Reali et al., 2019). Further studies are required to bet-
ter quantify the effect of rheology on ferropericlase shape preferred orientation formation, CPO evolution,
and the related seismic anisotropy.

Our results show that the prediction of the mechanical properties of a random heterogeneous
bridgmanite-ferropericlase mixture can be predicted via a combination of statistical descriptors, namely, the
2-point cluster correlation function and analytical approximations for simpler systems of aligned ellipses.
While the analytical predictions for the effective viscosity at given aspect ratios do successfully predict the
numerical results, predictions for the evolution of aspect ratio and inclination angle predict a faster increase
in aspect ratio than what is observed in numerical models. The most likely explanation for this discrepancy
lies within the overestimation of elongation. This issue will have to be addressed in future studies.

The simulations performed in this paper as well as the analytical predictions only consider two-dimensional
structures and deformations. However, both deformation and structures in nature represent 3-D problems.
Faccenda et al. (2019) performed 3-D models for the evolution of initially spherical inclusions during simple
shear for viscosity contrasts of 0.1, 1, and 10. For weak inclusions, they observe flattening of the inclu-
sions and out of plane spreading. The 2-D models assume the weak ferropericlase inclusions to be infinitely
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stretched in this direction, which is why they can be seen as an extreme endmember of the 3-D case. The
results presented in this study therefore have to be seen as conservative estimates for specific geometries. In
his review on the subject, Jiang (2016) presents a comprehensive overview of the theoretical developments
of the deformation of viscous inclusions and also provides general expressions of inclusion deformation for
the 3-D case. However, “The behaviors of viscous inclusions in general anisotropic materials are terra incog-
nita” (Jiang, 2016), and research in this field is still ongoing. Extension of the numerical-statistical approach
presented in this study to 3-D is in principle straightforward. At present, it is still hampered by the signifi-
cant computational expense that comes with modeling the deformation of random heterogeneous media in
3-D with a satisfactory resolution, which should be remedied in the future.

Lastly, the rheology of the Earth's lower mantle is determined not only by the interaction between bridg-
manite and ferropericlase but by a large number of other parameters. Christensen (1987) already stated that
“unfortunately, at the moment it is not clear if any of the predicted effects can be linked to observation in
a definite manner, in order to decide whether or not viscous anisotropy plays a role in the mantle. In most
cases there will be a trade-off with the influence of temperature, pressure, or stress on the rheology.” This
statement is still true as of today and all these effects have to be quantified in order to render a judgment on
the importance of anisotropy development due to ferropericlase elongation.

Figure A1. Effect of numerical resolution (nel denotes the number of elements used in each direction) on model
results for (left) normal viscosity and (right) shear viscosity for different amounts of elongation (see legend). The weak
phase is 100 times weaker than the strong phase.
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5. Conclusions
In this study, we present a numerical-statistical approach to determine the effective viscosity of random
heterogeneous two-phase media to estimate the impact of ferropericlase elongation on lower mantle rheol-
ogy. We used the 2-point cluster correlation function to statistically describe microstructures that have been
observed in experiments. These statistical properties were then used to artificially generate samples with
equivalent properties. For a range of weak phase (ferropericlase) fractions and viscosity contrasts between
the strong (bridgmanite) and weak phase (ferropericlase), the effective viscosity tensor was then numeri-
cally computed. Based on the observation that the 2-point cluster correlation function of the observed media
exhibits an elliptical shape, we used analytical approximations for two-phase media with aligned elliptical
inclusions to predict the effective viscosity tensor depending on inclusion elongation, phase fraction, and
viscosity contrast. Numerical and analytical values were shown to agree very well, in most cases.

To determine the capability of the numerical approximations to predict not only the viscosity tensor
of a given microstructure but also its evolution during simple shear deformation, we also performed
time-dependent numerical simulations. For each simulation, we extracted the evolution of the viscosity
tensor as well as the evolution of weak phase morphology as described by the 2-point cluster correlation
function. Using the same connection between 2-point cluster correlation function, its elliptical shape, and
the effective viscosity tensor, we used analytical solutions for the evolution of a two-phase composite with
aligned elliptical inclusions to predict the weak phase morphology during simple shear deformation. These
predictions do fit the numerical results to first order but tend to overestimate the stretching of the weak
phase and thus predict stronger weakening over time compared to the numerical results. Further research
is thus needed to better understand the differences between general random heterogeneous media and sys-
tems consisting of aligned elliptical inclusions. The extension of the 2-D results to 3-D likewise needs further
research. Nevertheless, the present study shows that existing analytical predictions for the effective vis-
cosity of two-phase composites can be indeed used to first order to predict the viscosity evolution of the
bridgmanite-ferropericlase mixture in the lower mantle due to ferropericlase elongation.

Appendix A: Resolution Study
To determine the reliability of our model results with respect to model resolution, we performed a series of
resolution tests for varying amounts of weak phase elongation. As can be seen in Figure A1, results for the
effective normal viscosity 𝜂n converge at moderate resolutions, but a much higher resolution is needed to
resolve the effective shear viscosity 𝜂s. For strongly elongated structures, results do not converge even at the
highest resolution of 1,024 elements but show starting asymptotic behavior, as it is not possible anymore
to resolve the vertical dimensions of some of the weak phase clusters. It is thus important to keep in mind
that numerical results tend to be less accurate in case of strongly elongated clusters and likely overestimate

Figure B1. Same as Figure 4 but for 𝜙 = 0.05.
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Figure B2. Same as Figure 4 but for 𝜙 = 0.2.

the shear viscosity. Given the results of this resolution study, we conducted all simulations at a resolution of
1,024 × 1,024 elements.

Appendix B: Correlation Length Conversion
As shown in Figure 4, binarization of a correlated Gaussian random field impacts on the resulting effective
correlation length of C(i)

2 (x1, x2) but conserves the prescribed aspect ratio. Here, we additionally provide the
results for weak phase (ferropericlase) fractions of 0.05 (Figure B1) and 0.2 (Figure B2).
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