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1 Introduction
There is hardly any other field of physics which both fascinates and confuses hu-
manity as much as the behaviour of our galaxy does. The aim of astromathemat-
ics is to clear up this confusion by establishing rigorous analytical results, which
not only allow us to explain acts in the past, but also yield predictions for the
prospective behaviour of galaxies.
In fact, since a galaxy contains up to trillions of stars, it is not feasible to model
each star individually, which would lead to an N -body problem. We will instead
describe the state of a galaxy for a given time t ∈ R by its non-negative density
function f = f(t, x, v). Here, (x, v) ∈ R3×R3 is an element of phase space, where
x denotes the position and v the velocity of a star. Then, integrating the density
f(t) over a certain part of phase space yields the mass contained in this region
at a given time t ∈ R.
We restrict our model to the gravitational interaction of stars. In particular, we
neglect the influence of collisions, as they are only rarely happening. Therefore
the density function f is constant along particle orbits. We will describe the
latter by Newton’s equation of motion, i.e., an individual particle with position
x, velocity v and unit mass satisfies

ẋ = v, v̇ = −∂xU(t, x),

where U = U(t, x) is the gravitational potential of the galaxy. This conservation
property leads to the Vlasov equation

∂tf + v · ∂xf − ∂xU · ∂vf = 0.

By Newton’s law for gravity, paired with the common boundary condition at
spatial infinity, the gravitational potential obeys the Poisson equation

∆U = 4πρ, lim
|x|→∞

U(t, x) = 0 for t ∈ R,

where ρ is the spatial mass density induced by f , more precisely

ρ(t, x) =

ˆ
R3

f(t, x, v) dv for t ∈ R, x ∈ R3.

Note that we normalized the gravitational constant to unity. The latter three
equations combined form the three dimensional, gravitational Vlasov-Poisson
system, which is a closed system of non-linear partial differential equations de-
scribing the time evolution of a galaxy.
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1 Introduction

A much more detailed motivation of this system can be found in [20, 27], for
physical background we refer to [4]. An overview over some systems closely
related to the Vlasov-Poisson system, in particular covering the relativistic and
fluid cases, is given in [23].
The aim of this thesis is to analyse steady states of this system which only depend
on their self-induced particle energy and are called “isotropic”, i.e., we consider
a time independent density of the form

f0(x, v) = ϕ(E(x, v))

for some appropriate function ϕ : R→ [0,∞[, where the particle energy

E(x, v) :=
1

2
|v|2 + U0(x)

is induced by the associated stationary potential U0. A question of particular
interest is the stability of these steady states, since the stability of an equilibrium
determines whether or not it appears in reality. In the last chapter of this thesis
we prove a stability result for the King model, where the ansatz function ϕ is of
the form

ϕ(E) =
(
eE0−E − 1

)
+
, E ∈ R

for some cut-off energy E0 < 0. This model – named in honour of I. King [18]
– is of particular interest from an astrophysics point of view, since it describes
isothermal galaxies. However, for the actual proof of this stability result we need
a couple of tools. These tools are also of interest by themselves.
In the first chapter following the introduction we begin by considering the Vlasov-
Poisson system under the assumption of spherical symmetry. We then rigorously
define the class of isotropic steady states and analyse their effective potential
similar to [10, 19], which is a crucial quantity of equilibria in the radial setting.
Lastly, we introduce some technicalities needed later on, more precisely homo-
geneous Sobolev spaces and the spherical symmetry of functions which are only
defined almost everywhere.
Chapter 3 covers the linear transport operator

D := v · ∂x − ∂xU0 · ∂v,

where U0 is the time independent potential corresponding to a linearly stable
equilibrium, i.e., ϕ is strictly decreasing on its support, cf. [5, 17]. As a matter of
fact, this operator naturally appears when linearising the Vlasov-Poisson system
about the steady state inducing U0, see [17, 27]. Surprisingly, a weak extension
of D is also used in [9, 19] to obtain non-linear stability results. We will therefore
carefully define D in a weak sense on some dense subset of a radial and weighted
L2-space and prove the required properties of the resulting operator, including
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1 Introduction

the skew-adjointness and a characterisation of its kernel. In fact, the kernel of D
has first been rigorously analysed in [3] for smooth and radial functions and the
result is well known as “Jeans’ theorem”, since it was first asserted by J. Jeans
[15, 16] that functions in this kernel can only depend on the particle energy of the
steady state and the modulus of the angular momentum. However, the existing
proof can not be directly applied to the weak extension of the transport operator,
which is why we provide an alternate proof adapted to this new setting.
In the next chapter, we use D to investigate another operator, which we call
“Guo-Lin operator” due to its appearance in [9] and which is of the form

A0ψ := −∆ψ + 4π

ˆ
R3

|ϕ′(E(·, v))| · Pψ(·, v) dv − 4π

ˆ
R3

|ϕ′(E(·, v))| dv · ψ

for appropriate ψ : R3 → R, where P is the orthogonal projection onto ker(D).
It turns out that the most important tool to prove the non-linear stability of the
King model is the coercivity of A0, i.e., a bound of the following kind:

inf
ψ∈H,‖ψ‖6=0

〈A0ψ, ψ〉2
‖ψ‖2

> 0,

where H is some reasonable function space with norm ‖ · ‖. Unfortunately, The-
orem 4.6 implies that this coercivity estimate does not hold true when choosing
H = H2

r (R3) and ‖ · ‖ = ‖ · ‖H1(R3), which is the setting Guo & Lin used in

[9]. Instead, we show the coercivity of the Guo-Lin operator with H = Ḣ1
r (R3)

and its semi-norm ‖ · ‖ = ‖∇ · ‖2 by using Antonov’s coercivity bound [2, 10].
Here, Ḣ1

r (R3) is the radial homogeneous Sobolev space introduced in Chapter 2.
Despite this result being slightly weaker than the one from Guo & Lin, it still
suffices for the application in the final chapter.
We can then prove the stability of the King model against spherically symmetric
perturbations in Chapter 5 using the tools from above. This whole chapter is
based on the second part of [9], where an equal result is shown by a similar ap-
proach. Some of the techniques applied there originate in [22], where non-linear
stability for the 3

2
-dimensional Vlasov-Maxwell system has been shown.
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2 Preliminaries

2.1 The spherically symmetric Vlasov-Poisson
system

As a beginning, we want to introduce the general setting in which we will work
from now on. All the results in this section are quite basic and can be found in
[27] in much greater detail than they are presented here.
As motivated above, we consider the three dimensional, gravitational Vlasov-
Poisson system

∂tf + v · ∂xf − ∂xU · ∂vf = 0,

∆U = 4πρ, lim
|x|→∞

U(t, x) = 0 for t ≥ 0,

ρ(t, x) =

ˆ
R3

f(t, x, v) dv for t ≥ 0, x ∈ R3,

with initial condition

f(0) = f̊ on R3 × R3

for a given function f̊ : R3 ×R3 → R. If not stated explicitly otherwise, · always
denotes the scalar product. We will always restrict ourselves to non-negative,
compactly supported and smooth initial data, more precisely f̊ ∈ C1

c (R3 × R3)
and f̊ ≥ 0, as those launch unique global classical solutions [0,∞[ 3 t 7→ f(t) ∈
C1
c (R3 × R3) of the Vlasov-Poisson system, see [27].

In addition, we only consider the case where f̊ is spherically symmetric on R3×R3.

Definition 2.1: Let n ∈ N.

a) g : Rn → R is spherically symmetric on Rn, if g(Ay) = g(y) for every
rotation matrix A ∈ SO(n) and y ∈ Rn.

b) g : Rn×Rn → R is spherically symmetric on Rn×Rn, if g(Ay,Aw) =
g(y, w) for every rotation matrix A ∈ SO(n) and y, w ∈ Rn.

Note that the symmetry on R3×R3 differs from the one on R6. To be constantly
reminded of this crucial difference, we will always denote the phase space by
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2 Preliminaries

R3×R3. Furthermore, due to the uniqueness of classical solutions of the Vlasov-
Poisson system, the spherical symmetry of f̊ is preserved by the system, i.e., f(t)
is spherically symmetric on R3 × R3 for any t ≥ 0. This causes the gravitational
potential U(t) and the spatial density ρ(t) to be spherically symmetric on R3 as
well.
Moreover, a spherically symmetric function on R3 × R3 can be expressed in the
coordinates

r := |x|, w :=
x · v
r
, L := |x× v|2,

where r is the spatial radius, w is the radial velocity and L is the modulus of the
angular momentum squared. In these coordinates, with some abuse of notation,
the Vlasov-Poisson system for the unknowns

f(t, x, v) = f(t, r, w, L), U(t, x) = U(t, r), ρ(t, x) = ρ(t, r)

takes the form

∂tf + w∂rf +

(
L

r3
− ∂rU

)
∂wf = 0,(

∂2
r +

2

r
∂r

)
U = 4πρ, lim

r→∞
U(t, r) = 0 for t ≥ 0,

ρ(t, r) =
π

r2

ˆ ∞
0

ˆ
R
f(t, r, w, L) dw dL for t ≥ 0, r > 0,

cf. [10].

2.2 Isotropic states and their effective potential
For our stability analysis we restrict ourselves to isotropic steady states, i.e.,
steady states depending only on their self-induced particle energy. We will there-
fore carefully define this class of steady states based on [27].

Definition 2.2: Let U0 ∈ C2(R3) be a time independent and spherically sym-
metric potential vanishing at infinity, i.e., lim|x|→∞ U0(x) = 0. In addition, let

E(x, v) :=
1

2
|v|2 + U0(x), x, v ∈ R3

be its induced particle energy. Then E is obviously constant along solutions of
the characteristic system

ẋ = v, v̇ = −∂xU0(x).
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2 Preliminaries

This means that every function depending only on E solves the Vlasov equation
for the potential U0 (up to regularity issues), which leads to the ansatz

f0(x, v) := ϕ(E(x, v)) for (x, v) ∈ R3 × R3.

Here, ϕ ∈ L∞loc(R) is non-negative and there exists a negative cut-off energy
E0 < 0 satisfying

(i) ϕ(E) = 0 for E ≥ E0.

(ii) ϕ ∈ C1(]−∞, E0[).

(iii) There exists η < E0 such that ϕ > 0 on [η, E0[.

Then f0 is an isotropic steady state of the Vlasov-Poisson system (or
just isotropic state), iff

∆U0 = 4πρ0 = 4π

ˆ
R3

ϕ(
1

2
|v|2 + U0) dv on R3,

where

ρ0 : R3 → [0,∞[, ρ0(x) :=

ˆ
R3

f0(x, v) dv

is the time independent spatial density induced by f0.

Before we get to the properties of such equilibria, we first present the two most im-
portant and popular classes of isotropic states. First, there are the polytropes,
where ϕ is of the form

ϕ(E) = (E0 − E)k+

for some 0 ≤ k < 7
2
. Here, the subscript + denotes the positive part. The other

important example is the so called King model given by

ϕ(E) =
(
eE0−E − 1

)
+
.

Indeed, for the stability analysis in Chapter 5, we will restrict ourselves to models
of the latter kind.
Now we want to note some well known, but very important properties of gen-
eral isotropic states. However, we refer to [3, 23, 28] for a much more detailed
discussion, in particular concerning the existence theory of these states.

Remark 2.3: Let f0 be an isotropic steady state of the Vlasov-Poisson system.

a) We require U0 to be spherical symmetric on R3. However, the results in
[8] imply that every isotropic steady state has to be spherically symmet-
ric anyway, which means that we do not lose steady states by making this
assumption, see also [23, 26].
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2 Preliminaries

b) f0 and ρ0 inherit the spherical symmetry of U0, i.e., f0 is spherically sym-
metric on R3×R3 and ρ0 is spherically symmetric on R3. With some abuse
of notation, we will denote the radial functions by the same symbols, i.e.,
U0(x) = U0(|x|), ρ0(x) = ρ0(|x|) and so on.
This allows us to use the (r, w, L)-coordinates known from Section 2.1, in
which the particle energy takes the form

E(r, w, L) =
1

2
w2 + U0(r) +

L

2r2
.

c) Due to the negative cut-off energy E0 < 0 and the boundary condition of
the gravitational potential U0, the steady state is compactly supported with

supp(f0) ⊂ {(x, v) ∈ R3 × R3 | E(x, v) ≤ E0} ⊂ R3 × R3.

d) The negative cut-off energy also causes the steady state to have finite mass

M0 :=

ˆ
R3

ρ0(x) dx = 4π

ˆ ∞
0

r2ρ0(r) dr = lim
r→∞

m0(r) ∈ ]0,∞[ ,

where m0(r) := 4π
´ r

0
s2ρ0(s) ds denotes the mass “inside” the radius r > 0.

e) Integration of the radial Poisson equation yields the following explicit for-
mula for the gravitational potential and its derivative for r > 0:

U0(r) = −4π

r

ˆ r

0

s2ρ0(s) ds− 4π

ˆ ∞
r

sρ0(s) ds,

U ′0(r) = ∂rU0(r) =
4π

r2

ˆ r

0

s2ρ0(s) ds =
m0(r)

r2
.

In fact, isotropic states are quite general and we have to restrict ourselves to a
smaller class of steady states later on. However, the assumptions from Defini-
tion 2.2 suffice to show some useful properties of the “effective potential” which
we need in the following:

Definition & Theorem 2.4: For a fixed isotropic state f0 and L ≥ 0 we define
the effective potential as

ψL : ]0,∞[→ R, ψL(r) := U0(r) +
L

2r2
.

Note that this quantity appears in the particle energy when expressed in (r, w, L)-
coordinates. We claim the following properties:

a) For any L > 0 there exists a unique rL > 0 such that

min
]0,∞[

(ψL) = ψL(rL) < 0.

Moreover, the mapping ]0,∞[ 3 L 7→ rL is continuously differentiable.

9



2 Preliminaries

b) For any L > 0 and E ∈ ]ψL(rL), 0[ there exist two unique radii r±(E,L)
satisfying

0 < r−(E,L) < rL < r+(E,L) <∞

and such that ψL(r±(E,L)) = E. In addition, the functions

{(E,L) ∈ ]−∞, 0[× ]0,∞[ | ψL(rL) < E} 3 (E,L) 7→ r±(E,L)

are continuously differentiable.

c) For any L > 0 we have ψL(rL) ≥ U0(0) and ψL(rL) ≥ −M
2
0

2L
.

d) For any L > 0 and E ∈ ]ψL(rL), 0[ the radii r±(E,L) from above satisfy

L

2M0

≤ r−(E,L) < rL < r+(E,L) ≤ −M0

E
.

e) For any L > 0, E ∈ ]ψL(rL), 0[ and r ∈ [r−(E,L), r+(E,L)] we have the
concavity estimate

E − ψL(r) ≥ L · (r+(E,L)− r) · (r − r−(E,L))

2r2r−(E,L)r+(E,L)
.

All these results can be found in [10, 19]. For the sake of completeness, we will
also prove them here.

Proof:

a) Since ψ′L(r) = U ′0(r) − L
r3

= r−2(m0(r) − L
r
) by Remark 2.3 for r > 0,

ψ′L(r) = 0 is equivalent to m0(r) − L
r

= 0. Due to the mapping ]0,∞[ 3
r 7→ m0(r)− L

r
being strictly increasing on ]0,∞[ and

lim
r→0

(
m0(r)− L

r

)
= −∞, lim

r→∞

(
m0(r)− L

r

)
= M0 > 0,

there exists a unique radius rL > 0 with ψ′L(rL) = 0 as well as ψ′L(r) < 0 iff
0 < r < rL and ψ′L(r) > 0 if and only if r > rL. This monotonicity together
with limr→0 ψL(r) =∞ and limr→∞ ψL(r) = limr→∞ U0(r) = 0 implies that
ψL(rL) is indeed negative and the minimal value of ψL on ]0,∞[.
Furthermore, since

d

dr

(
m0(r)− L

r

)
= 4πr2ρ0(r) +

L

r2
> 0

for all r > 0, we can obtain the continuous differentiability by the implicit
function theorem.
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2 Preliminaries

b) The monotonicity of ψL from part a) together with the limit of ψL(r) as
r → 0 and r →∞ directly yields the existence and uniqueness of r±(E,L)
with the claimed properties. In particular, since ψ′L(r) 6= 0 for r 6= ψL(rL),
the implicit function theorem once again implies that the mapping (E,L) 7→
r±(E,L) is indeed continuously differentiable on the set given above.

c) The first estimate is easily obtain from U ′0(r) ≥ 0 for r ≥ 0, since this
implies U0(0) = min(U0).
For the second estimate, we first note that for all r > 0

U0(r) = −m0(r)

r
− 4π

ˆ ∞
r

sρ0(s) ds ≥

≥ −1

r

(
m0(r) + 4π

ˆ ∞
r

s2ρ0(s) ds

)
= −M0

r
.

Hence,

ψL(rL) ≥ −M0

rL
+

L

2r2
L

= −m0(rL)

L
M0 +

m2
0(rL)

2L
=

= −M
2
0

2L

(
2
m0(rL)

M0

− m2
0(rL)

M2
0

)
≥ −M

2
0

2L
,

where we used M0 ≥ m0(rL) = L
rL

.

d) Estimating U0(r) like above, we obtain that every r > 0 with E−ψL(r) > 0
also satisfies E+ M0

r
− L

2r2
> 0. Solving this quadratic inequality, we obtain

L

M0 +
√
M2

0 + 2EL
< r <

L

M0 −
√
M2

0 + 2EL
,

note that M2
0 + 2EL > 0 for 0 > E > ψL(rL) by c). Therefore

r−(E,L) ≥ L

M0 +
√
M2

0 + 2EL
>

L

2M0

,

r+(E,L) ≤ L

M0 −
√
M2

0 + 2EL
=
−M0 −

√
M2

0 + 2EL

2E
< −M0

E
.

e) For r ∈ [r−(E,L), r+(E,L)] let

ξ(r) := E − ψL(r)− L · (r+(E,L)− r) · (r − r−(E,L))

2r2r−(E,L)r+(E,L)
.

Then the radial Poisson equation yields

d2

dr2
[rξ(r)] = −2ψ′L(r)− rψ′′L(r) +

L

r3
= −1

r
· d
dr

[
r2ψ′L(r)

]
+
L

r3
=

= −1

r
· d
dr

[
r2U ′0(r)

]
= −4πr2ρ0(r) ≤ 0.
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2 Preliminaries

Thus, the mapping [r−(E,L), r+(E,L)] 3 r 7→ rξ(r) ∈ R is concave with
ξ(r±(E,L)) = 0, which implies the non-negativity of ξ on the interval
[r−(E,L), r+(E,L)] and therefore concludes the proof.

We will need the two radii r± quite often later on, since they bound the r-range of
a trajectory, see Section 3.3. However, it will turn out to be very useful to define
r±(E,L) for as many E,L as possible, in order to avoid constant distinction of
cases.
For this sake, first note that there exists a unique radius r−(E,L) > 0 such that
ψL(r−(E,L)) = E in the case L > 0 and E ≥ 0 as well, since limr→0 ψL(r) =∞
and limr→∞ ψL(r) = 0. Now let

r−(E,L) := rL =: r+(E,L) if L > 0 and E ≤ ψL(rL),

r−(E,L) =: r+(E,L) if L > 0 and E ≥ 0.

2.3 Homogeneous Sobolev spaces
In the following, we need a certain kind of Sobolev space which is not very
common. We therefore explicitly define it here and prove some useful properties.

Definition 2.5: Let

Ḣ1(R3) := {f ∈ L2
loc(R3) | ∇f ∈ L2(R3;R3)}

be the three dimensional, homogeneous Sobolev space of first order.

There are several ways to define homogeneous Sobolev spaces. In fact, Defini-
tion 2.5 has the disadvantage that ‖∇ · ‖2 is only a semi-norm on Ḣ1(R3), since
‖∇f‖2 = 0 does not imply f = 0 almost everywhere. To solve this issue, one
could work with equivalence classes containing functions which are a.e. equal up
to the addition of a constant, i.e., sharing the same gradient. However, it would
then be much more difficult to work with the function itself, since it would only
be fixed up to the addition of a constant.
Another elegant way of defining the homogenous Sobolev space is completing the
space C∞c (R3) with respect the norm ‖∇ · ‖2. However, this also leads to the
latter space and its problems, which is why we chose the definition from above.
We now prove some Poincaré type estimates by applying the ones known from
regular Sobolev spaces.

Lemma 2.6: Let Ω ⊂ R3 be a bounded, non-empty domain with C1 boundary.
Then there exists a constant C > 0, only depending on Ω, such that

‖f‖L2(Ω) ≤ C‖∇f‖L2(Ω) + λ(Ω)−
1
2 |
ˆ

Ω

f |

for every f ∈ Ḣ1(R3).

12



2 Preliminaries

Proof: This is just an easy corollary of Poincaré’s inequality (see [7]), note that
f ∈ H1(Ω) since Ω is bounded.

The lemma above becomes even more useful if we can assure
´

Ω
f = 0. This can

be achieved for any function in Ḣ1(R3) by just adding a constant, which does
not change the semi-norm ‖∇ · ‖2. In this case we even obtain the following:

Lemma 2.7: Let Ω ⊂ R3 be a bounded, non-empty domain with C1 boundary.
Then there exists a constant C > 0, only depending on Ω, such that

‖f‖L6(Ω) ≤ C‖∇f‖L2(Ω)

for all f ∈ Ḣ1(R3) satisfying
´

Ω
f = 0; in particular we get f ∈ L6(Ω).

Proof: Let f ∈ Ḣ1(R3) with
´

Ω
f = 0. From Lemma 2.6 it follows that ‖f‖L2(Ω) ≤

C‖∇f‖L2(Ω). Moreover, a basic corollary of the Gagliardo-Nirenberg-Sobolev in-
equality (see [7]) yields ‖f‖L6(Ω) ≤ C‖f‖H1(Ω). We conclude the desired inequality
by combining these two estimates.

In addition, we get the compact embedding of Ḣ1(R3) into L2(Ω) if we restrict
ourselves to functions with vanishing integral over Ω like in Lemma 2.7, more
precisely:

Lemma 2.8: Let Ω ⊂ R3 be a bounded, non-empty domain with C1 boundary.
Furthermore, let A ⊂ Ḣ1(R3) be bounded with respect to ‖∇ · ‖2, that is to say
supf∈A ‖∇f‖2 <∞, and all f ∈ A satisfy

´
Ω
f = 0.

Then A is precompact in L2(Ω).

Proof: Since A is bounded with respect to ‖∇ · ‖2 and for each function f ∈ A
the integral

´
Ω
f vanishes, Lemma 2.6 yields the boundedness of A with respect

to ‖ · ‖L2(Ω) as well. In other words, A is a bounded subset of H1(Ω). Due to the
properties of Ω, H1(Ω) is compactly embedded into L2(Ω), cf. [1, 7].

2.4 Almost everywhere radial functions
Since we are interested in the spherically symmetric Vlasov-Poisson system, all
the L2-spaces appearing later on can be restricted to radial functions as well.
However, the definition of this symmetry is not as straight forward as for smooth
(and in particular pointwise defined) functions, since we only work with equi-
valence classes of functions in L2. We therefore carefully define this symmetry
and prove some intuitive and useful characterisations by reducing the problem to
smooth functions:

13



2 Preliminaries

Lemma & Definition 2.9: Let f ∈ L1
loc(R3). Then the following statements are

equivalent:

(i) For all A ∈ SO(3) we have f = f(A·) almost everywhere on R3, where the
set of measure zero may depend on the rotation matrix A.

(ii) There exists (fk)k∈N ⊂ C∞r (R3) such that fk → f in L1(BR(0)) for all R >
0, where C∞r (R3) := {g ∈ C∞(R3) | g is spherically symmetric on R3}.

(iii) There exists f r : [0,∞[→ R measurable such that f = f r(| · |) a.e. on R3.

If f has these properties, we will call it spherically symmetric almost every-
where on R3. Also note that in this case f r is uniquely defined a.e. on [0,∞[.

Proof:

(i)⇒ (ii): Let J ∈ C∞c (B1(0)) be a spherically symmetric mollifyer, which means
that J ≥ 0 and

´
R3 J = 1. As usual, let Jk := k3J(k·) for k ∈ N. Obviously,

Jk ∈ C∞c (B 1
k
(0)) is spherically symmetric itself and fk := Jk ∗ f → f in

L1(BR(0)) for any R > 0 by basic convolution theory, cf. [21]. The key of this
whole proof is that fk inherits the symmetry of f , since

fk(Ax) = (Jk ∗ f)(Ax) =

ˆ
R3

Jk(Ax− y)f(y) dy =

=

ˆ
R3

Jk(Ax− Az)f(Az) dz =

ˆ
R3

Jk(A(x− z))f(Az) dz =

=

ˆ
R3

Jk(x− z)f(z) dz = (Jk ∗ f)(x) = fk(x)

for A ∈ SO(3) and x ∈ R3.

(ii)⇒ (iii): By defining f rk : [0,∞[→ R, f rk (r) := fk(re1), we have fk = f rk (| · |)
on R3 for any k ∈ N. A standard change of variables then yields

‖fk − fl‖L1(BR(0)) =

ˆ
BR(0)

|fk(x)− fl(x)| dx =

= 4π

ˆ R

0

r2|f rk (r)− f rl (r)| dr

for k, l ∈ N, which means that (f rk )k∈N is a Cauchy-sequence in

L1
(r 7→r2)([0, R]) := {g : [0, R]→ R measurable |

ˆ R

0

r2|g(r)| <∞}.

14



2 Preliminaries

As a weighted, one-dimensional L1-space, L1
(r 7→r2)([0, R]) is complete, i.e., there

exists f r ∈ L1
(r 7→r2)([0, R]) such that f rk → f r in L1

(r 7→r2)([0, R]). Changing back
into the original variables, we arrive at

‖f rk − f r‖L1
(r 7→r2)

([0,R]) =

ˆ R

0

r2|f rk (r)− f r(r)| dr =

=
1

4π

ˆ
BR(0)

|fk(x)− f r(|x|)| dx

for k ∈ N, i.e., fk → f r(| · |) in L1(BR(0)). Since L1-limits are unique almost
everywhere, we can conclude f = f r(| · |) a.e. on R3.

(iii)⇒ (i): Obvious.

In a completely analogous fashion we can also define the spherical symmetry on
R3 × R3 and prove similar characterisations:

Lemma & Definition 2.10: Let f ∈ L1
loc(R3 × R3). Then the following state-

ments are equivalent:

(i) For all A ∈ SO(3) we have f(x, v) = f(Ax,Av) for almost every (x, v) ∈
R3 × R3, where the set of measure zero may depend on the matrix A.

(ii) There exists (fk)k∈N ⊂ C∞r such that fk → f in L1(B3
R(0)×B3

R(0)) for every
R > 0, where C∞r (R3 × R3) denotes the space of all infinitely differentiable
and spherically symmetric functions on R3 × R3.

(iii) There exists f r : [0,∞[×R × [0,∞[→ R measurable such that f(x, v) =
f r(|x|, x·v|x| , |x× v|

2) for almost every (x, v) ∈ R3 × R3.

If f has these properties, we will call it spherically symmetric almost every-
where on R3 × R3. Also note that in this case f r is uniquely defined a.e. on
[0,∞[×R× [0,∞[.
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3 The transport operator

In this whole chapter, let f0 = ϕ ◦ E be a fixed isotropic state in the sense of
Definition 2.2. In addition, we assume that ϕ is decreasing on its support, i.e.,
ϕ′(E) < 0 for E < E0. The latter property corresponds to the linear stability of
the equilibrium f0, see [5, 17]. However, all the results below could be generalised
to larger classes of steady states.
Let Ω0 denote the set where f0 does not vanish, that is to say

Ω0 := {(x, v) ∈ R3 × R3 | f0(x, v) 6= 0} = {(x, v) ∈ R3 × R3 | E(x, v) < E0}.

Note that Ω0 ⊂ R3 × R3 is a bounded, spherically symmetric domain.
The aim of this chapter is to define and analyse the transport operator induced
by the steady state f0 given by

Df = v · ∂xf − ∂xU0 · ∂vf

for suitable f : Ω0 → R.
In fact, it does not suffice to define D on classically or weakly differentiable func-
tions for the application in the non-linear stability analysis. Instead, we define
the whole transport operator D in a weak sense on some dense subset of a suitable
L2-space. Our approach is similar to the one for the definition of weak derivat-
ives, see [21].
When choosing the right domain of definition, the resulting operator is not only
skew-symmetric, but also skew-adjoint with respect to a properly weighted L2-
scalar product. We also provide an explicit characterisation of the kernel of D,
which is a generalisation of Jeans’ theorem [3] for radial and smooth functions.
All these results have been used in [9, 19] to obtain non-linear stability for equi-
libria of the Vlasov-Poisson system. However, the detailed weak definition of D
as well as the proofs of the results above have not been properly addressed yet.
We also want to note that a similar operator also appears in the stability and
instability analysis in the relativistic case, i.e., when considering the Einstein-
Vlasov system, cf. [11]. The skew-adjointness of the operator then follows ana-
logously as in the non-relativistic case, see [29]. Whether or not the kernel can
be characterised similarly as well is still an open question, even in the case of
smooth functions.
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3 The transport operator

3.1 Weak definition
The standard way to define weak derivatives is to consider the scalar product
with smooth functions and integrate by parts. We will pursue this approach to
define D in a weak sense as well. Therefore, we first have to define D on smooth
functions:

Definition 3.1: For f ∈ C1
c (Ω0) let

Df : Ω0 → R, (x, v) 7→ v · ∂xf(x, v)− ∂xU0(x) · ∂vf(x, v).

Next we have to justify the “integration by parts” formula for smooth functions:

Lemma 3.2: Let χ ∈ C(]−∞, E0[) be an energy weight function.
Then, for any f, g ∈ C1

c (Ω0) we have

ˆ
Ω0

χ(E(x, v))f(x, v)Dg(x, v) d(x, v) = −
ˆ

Ω0

χ(E(x, v))Df(x, v)g(x, v) d(x, v).

Proof: Let (X, V ) : R× R3 × R3 → R3 × R3 be the solution of the characteristic
system of f0

Ẋ = V, V̇ = −∂xU0(X)

satisfying the initial condition

X(0, x, v) = x, V (0, x, v) = v

for x, v ∈ R3, see [27] for the global existence & uniqueness of this characteristic
flow. Here, ˙ denotes ∂t, where we will always write X = X(t, x, v) etc. Applying
the chain rule, we can express the transport operator as follows:

Df(x, v) = ∂t
∣∣
t=0

[f(X(t, x, v), V (t, x, v))] , (x, v) ∈ Ω0.

Furthermore, the particle energy E is conserved along the characteristics (X, V ),
i.e., E(x, v) = E(X(t, x, v), V (t, x, v)) for (x, v) ∈ Ω0 and t ∈ R. In particular,
(x, v) ∈ Ω0 is equivalent to (X(t, x, v), V (t, x, v)) ∈ Ω0 for any t ∈ R.
In addition, since (X, V )(t, ·) is measure preserving (cf. [27]), we obtain

ˆ
Ω0

χ(E(x, v)) · f((X, V )(t, x, v)) · g((X, V )(t, x, v)) d(x, v) =

=

ˆ
Ω0

χ(E(x, v)) · f(x, v) · g(x, v) d(x, v)

17



3 The transport operator

for every t ∈ R by a change of variables. Thus

0 = ∂t
∣∣
t=0

[ˆ
Ω0

χ(E(x, v)) · f((X, V )(t, x, v)) · g((X, V )(t, x, v)) d(x, v)

]
=

=

ˆ
Ω0

χ(E(x, v)) · ∂t
∣∣
t=0

[
f((X, V )(t, x, v)) · g((X, V )(t, x, v))

]
d(x, v) =

=

ˆ
Ω0

χ(E(x, v)) ·
[
Df(x, v)g(x, v) + f(x, v)Dg(x, v)

]
d(x, v).

Note that we can switch the order of differentiation and integration due to the
compact support of f and g.

Since we are dealing with the spherically symmetric Vlasov-Poisson system, we
may restrict ourselves to radial function spaces. For D to work properly on these
spaces however, it has to preserve spherical symmetry. We therefore verify this
property for smooth functions first.
We call a function spherically symmetric on Ω0, if its extension by 0 is spherically
symmetric on R3×R3 in the sense of Definition 2.1. Note that the set Ω0 ⊂ R3×R3

is spherically symmetric, i.e., for any A ∈ SO(3) we have (x, v) ∈ Ω0 if and only
if (Ax,Av) ∈ Ω0, since E is spherically symmetric.
In addition, it will turn out that D reverses v-parity. Also note that Ω0 is obvi-
ously symmetric in v, i.e., (x, v) ∈ Ω0 is equivalent to (x,−v) ∈ Ω0.

Lemma 3.3:

a) Let f ∈ C1
c (Ω0) be spherically symmetric on Ω0. Then Df is spherically

symmetric on Ω0 as well.

b) Let f ∈ C1
c (Ω0) be even in v, i.e., f(x,−v) = f(x, v) for (x, v) ∈ Ω0. Then

Df is odd in v, i.e., Df(x,−v) = −Df(x, v) for (x, v) ∈ Ω0.

c) Let f ∈ C1
c (Ω0) be odd in v. Then Df is even in v.

Proof:

a) Let A ∈ SO(3) and (x, v) ∈ Ω0 be arbitrary. To not get ourselves confused
with matrices and their transposes, · will denote the matrix (instead of the
scalar) multiplication in this part of the proof only, i.e.,

Df(x, v) = vT · ∂xf(x, v)− (∂xU0(x))T · ∂vf(x, v),

where all vectors are interpreted as column vectors. Then

Df(Ax,Av) = (Av)T · ∂xf(Ax,Av)− (∂xU0(Ax))T ∂vf(Ax,Av) =

= vTAT · ∂xf(Ax,Av)− (∂xU0(x))T AT · ∂vf(Ax,Av) =

= vT · ∂xf(x, v)− (∂xU0(x))T · ∂vf(x, v) = Df(x, v),

where we obtained ∂xf(Ax,Av) = A ·∂xf(x, v) as well as similar statements
for ∂vf and ∂xU0 from the spherical symmetry of f .

18



3 The transport operator

b) For (x, v) ∈ Ω0 and f even in v we have

Df(x,−v) = −v · ∂xf(x,−v)− ∂xU0(x) · (∂vf)(x,−v) =

= −v · ∂xf(x,−v) + ∂xU0(x) · ∂v [f(x,−v)] =

= −v · ∂xf(x, v) + ∂xU0(x) · ∂v [f(x, v)] = −Df(x, v).

c) For (x, v) ∈ Ω0 and f odd in v we have

Df(x,−v) = −v · ∂xf(x,−v)− ∂xU0(x) · (∂vf)(x,−v) =

= −v · ∂xf(x,−v) + ∂xU0(x) · ∂v [f(x,−v)] =

= v · ∂xf(x, v)− ∂xU0(x) · ∂v [f(x, v)] = Df(x, v).

Since D preserves spherical symmetry, it is convenient to define the operator D
in (r, w, L)-coordinates as well:

Definition & Remark 3.4:

a) Let

Ωr
0

:= {(r, w, L) ∈]0,∞[×R×]0,∞[| E(r, w, L) < E0},

where E(r, w, L) = 1
2
w2 + ψL(r) as before. The idea behind Ωr

0 is that it
expresses the set Ω0 in (r, w, L)-coordinates. Note however that

{(x, v) ∈ R3 × R3 | (|x|, x · v
|x|

, |x× v|2) ∈ Ωr
0} =

= {(x, v) ∈ Ω0 | x× v 6= 0} ( Ω0,

since Ωr
0 does not contain points with L = 0 (and r = 0). Anyway, these

missing points form a set of measure zero in Ω0 and are therefore negli-
gible.
Also note that just like Ω0, Ωr

0 is a bounded set. To see this, recall that
E(r, w, L) ≥ ψL(r) = U0(r) + L

2r2
≥ U0(r) for (r, w, L) ∈ Ωr

0, where
limr→∞ U0(r) = 0 > E0. This yields the boundedness of r, from which
we may also deduce the one of L and w, since U0 ≥ U0(0).

b) For ζ ∈ C1
c (Ωr

0) let

(Drζ)(r, w, L) := w · ∂rζ(r, w, L)− ψ′L(r) · ∂wζ(r, w, L), (r, w, L) ∈ Ωr
0.

Dr translates D into (r, w, L)-coordinates, which means that for every ξ ∈
C1
c,r(Ω0) := {f ∈ C1

c (Ω0) | f is spherically symmetric on Ω0} such that

ξr ∈ C1
c (Ωr

0) we have

Dr(ξr) = (Dξ)r on Ωr
0,
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3 The transport operator

which can be easily verified by using the chain rule. Here, ξr and (Dξ)r
are defined in the sense of Lemma & Definition 2.10 (after extending ξ on
R3 × R3) , i.e.,

ξr(|x|, x · v
|x|

, |x× v|2) = ξ(x, v) for (x, v) ∈ Ω0 s.t. x× v 6= 0.

Note that ξ ∈ C1
c,r(Ω0) does not imply ξr ∈ C1

c (Ωr
0), since the support of

functions in C1
c (Ωr

0) have to be bounded away from the sets {r = 0} and
{L = 0}. Also, Dξ is spherically symmetric and Lemma 3.2 yields

ˆ
Ωr

0

χ(E(r, w, L)) · ζ1(r, w, L) · (Drζ2)(r, w, L) d(r, w, L) =

= −
ˆ

Ωr
0

χ(E(r, w, L)) · (Drζ1)(r, w, L) · ζ2(r, w, L) d(r, w, L)

by a change of variables for all ζ1, ζ2 ∈ C1
c (Ωr

0) and χ ∈ C(]−∞, E0[).

It turns out that the right space for D to be weakly defined on is the radial subset
of a weighted L2-space. We therefore define spaces of this kind:

Definition 3.5: For a fixed energy weight χ ∈ C(]−∞, E0[) let

L2
|χ|(Ω0) := {f : Ω0 → R measurable | ‖f‖|χ| <∞},

where

‖f‖2
|χ| :=

ˆ
Ω0

|χ(E(x, v))| · |f(x, v)|2 d(x, v).

This norm is based on the (real) scalar product

〈f, g〉|χ| :=

ˆ
Ω0

|χ(E(x, v))| · f(x, v) · g(x, v) d(x, v)

as usual. Furthermore, let

L2
|χ|,r(Ω0) := {f ∈ L2

|χ|(Ω0) | f is spherically symmetric a.e. on Ω0}

be the radial subspace of L2
|χ|(Ω0). Spherical symmetry a.e. on Ω0 is defined simil-

arly to Lemma & Definition 2.10, recall again that Ω0 is a radial subset of R3×R3.
Note however that when extending some element from L2

|χ|(Ω0) by 0 on R3 ×R3,

the resulting function does not have to be in L1
loc(R3 × R3) due to the additional

weight. Nevertheless, since the weight depends only on the spherically symmet-
ric particle energy E, characterisations similar to Lemma & Definition 2.10 also
hold true in the weighted case.
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3 The transport operator

To transfer the well known properties of regular L2-spaces to these weighted
ones, we seek a connection between the convergence in the weighted space and
in the regular one. Unfortunately, since the behaviour of a weight function χ ∈
C(]−∞, E0[) is unknown near the boundary {E = E0}, these two convergences
do not need be equivalent in the general case. They are however, if we can assure
a fixed compact support:

Lemma 3.6: Let χ ∈ C(]−∞, E0[) be such that χ(E) 6= 0 for E < E0. Further-
more, let f : Ω0 → R be measurable with compact support in Ω0, i.e., there exists
a compact subset K ⊂⊂ Ω0 such that f = 0 a.e. on Ω0 \K. Then:

a) If f ∈ L2(Ω0), then f ∈ L2
|χ|(Ω0) as well and

‖f‖|χ| ≤ C‖f‖2,

where the constant C > 0 depends only on the steady state f0, the weight
function χ and the support K.

b) If f ∈ L2
|χ|(Ω0), then f ∈ L2(Ω0) as well and

‖f‖2 ≤ C‖f‖|χ|,

where the constant C > 0 depends only on f0, χ and K.

Proof: Since E is continuous on R3×R3 and K ⊂⊂ Ω0 = {E < E0}, there exists
δ > 0 such that K ⊂ {E < E0−δ}. Therefore, by the continuity of χ, there exist
constants c0, C0 > 0 such that c0 ≤ |χ(E)| ≤ C0 for any U0(0) ≤ E ≤ E0 − δ.
From the latter we obtain

c0 ≤ |χ(E(x, v))| ≤ C0 for (x, v) ∈ K.

Note that the constants c0, C0 only depend on f0, χ and K as required. We now
conclude

a) ‖f‖2
|χ| =

ˆ
K

|χ(E(x, v))| · |f(x, v)|2 d(x, v) ≤ C0‖f‖2
2 .

b) ‖f‖2
2 =

ˆ
K

|χ(E(x, v))|
|χ(E(x, v))|

· |f(x, v)|2 d(x, v) ≤ 1

c0

‖f‖2
|χ|.

As mostly when working with weakly defined differential operators, it will turn
out to be very useful to approximate elements from these weighted L2-spaces by
smooth functions with compact support in Ω0. We therefore need the following
density results:
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3 The transport operator

Lemma 3.7: Let χ ∈ C(]−∞, E0[) be such that χ(E) 6= 0 for E < E0. Then

a) C∞c (Ω0) is dense in L2
|χ|(Ω0) (with respect to ‖ · ‖|χ|).

b) C∞c,r(Ω0) is dense in L2
|χ|,r(Ω0) (with respect to ‖ · ‖|χ|).

Proof: Let f ∈ L2
|χ|(Ω0). Our aim is to approximate f by its standard mollific-

ation. To apply Lemma 3.6 and conclude the convergence of the mollifyers, we
first have to restrict ourselves to a compact support.
For this sake note that Ω0 = {E < E0} =

⋃∞
k=1{E < E0 − 1

k
} as an ascending

union. Therefore, by Lebesgue’s dominated convergence theorem, we have

f · 1{E<E0− 1
k
} → f in L2

|χ|(Ω0) as k →∞.

Thus, we may assume that f has compact support in Ω0, in particular f ∈ L2(Ω0)
due to Lemma 3.6.
Now let J ∈ C∞c (R3 × R3) be a spherically symmetric mollifyer, i.e., J ≥ 0 and´
R3

´
R3 J = 1. As usual, define Jk := k6J(k·) for k ∈ N.

Due to the compact support of f in Ω0, we have fk := Jk ∗ f ∈ C∞c (Ω0) for k ∈ N
sufficiently large. In particular, there exists K ⊂⊂ Ω0 such that supp(fk) ⊂ K
for every large k ∈ N. Since fk → f in L2(Ω0) by basic convolution theory, we
can obtain the desired convergence fk → f in L2

|χ|(Ω0) with the aid of Lemma 3.6.

This finishes the proof of a).
For part b), note that both the multiplication with the cut-off function 1{E<E0− 1

k
}

and the convolution with the spherically symmetric mollifyer Jk preserve the
spherical symmetry of f .

Finally, we will define D weakly on a suitable and dense subset of the weighted,
radial L2-space

L2
1

|ϕ′| ,r
(Ω0) := L2∣∣∣ 1

ϕ′

∣∣∣,r(Ω0),

where ϕ is the function from our fixed isotropic ansatz.

Definition 3.8: Let f ∈ L1
loc,r(Ω0), i.e., f is spherically symmetric a.e. on Ω0,

which is defined similarly to Lemma & Definition 2.10. We say that Df exists
weakly, if there exists µ ∈ L1

loc,r(Ω0) such that
ˆ

Ω0

1

|ϕ′ ◦ E|
f · Dξ = −

ˆ
Ω0

1

|ϕ′ ◦ E|
µ · ξ

for every test function ξ ∈ C1
c,r(Ω0). In this case Df := µ (weakly).

Furthermore, let

D(D) := {f ∈ L2
1
|ϕ′| ,r

(Ω0) | Df exists weakly and Df ∈ L2
1
|ϕ′| ,r

(Ω0)}

denote the domain of the operator D.
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3 The transport operator

Remarks: Let f ∈ L1
loc,r(Ω0).

a) If Df exists weakly, then it is uniquely determined almost everywhere on
Ω0 by a change of variables and the Du Bois-Reymond theorem, see [21].

b) If additionally f ∈ C1
c,r(Ω0), then the weak and “classical” definition of Df

coincide due to Lemmata 3.2 and 3.3.

c) D(D) is a linear subspace of L2
1
|ϕ′| ,r

(Ω0) and D is linear, i.e., if f, g ∈ D(D)

and α ∈ R, then αf + g ∈ D(D) with D(αf + g) = αDf +Dg.

d) Usually in weak definitions like the one above, one would choose C∞c (Ω0) as
the class of test functions. However, we will need that functions depending
only on the particle energy E can be considered as test functions. Since E
is not necessarily in C∞, we extend the class of test functions to C1

c (Ω0).
Nonetheless, the approximation result Theorem 3.15 implies that choosing
C∞c,r(Ω0) as the class of test functions would lead to the exact same operator.
Furthermore, since we always work in spherically symmetric spaces, it suf-
fices to consider radial test functions only. Indeed, for the skew-adjointness
it is crucial that the space of test functions is contained in D(D) itself,
which means that allowing non-radial test functions as well would cause
some difficulties later on.

Since C1
c,r(Ω0) ⊂ D(D) by Lemmata 3.2 and 3.3, we directly obtain the following

due to Lemma 3.7:

Corollary 3.9: The unbounded linear operator D : D(D)→ L2
1
|ϕ′| ,r

(Ω0), f 7→ Df
is densely defined.

Also, there is a quite different approach to define D weakly, which was suggested
in [9]. It requires some definitions and tools from functional analysis, which can
all be found in [12, 14, 25].

Remark 3.10: For s ∈ R and f ∈ L2
1
|ϕ′| ,r

(Ω0) let U(s)f : Ω0 → R be defined by

(U(s)f)(x, v) := f(X(s, x, v), V (s, x, v)), (x, v) ∈ Ω0,

where (X, V ) : R×R3×R3 → R3×R3 is the solution of the characteristic system
associated with the steady state f0

Ẋ = V, V̇ = −∂xU0(X),

satisfying the initial condition (X, V )(0, x, v) = (x, v) for x, v ∈ R3. By using the
properties of (X, V ) from [27], one can easily verify that (U(s))s∈R is a unitary
C0-group on L2

1
|ϕ′| ,r

(Ω0), i.e.,
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3 The transport operator

(i) U(s) : L2
1
|ϕ′| ,r

(Ω0)→ L2
1
|ϕ′| ,r

(Ω0) is a linear operator such that ‖U(s)f‖ 1
|ϕ′|

=

‖f‖ 1
|ϕ′|

for all f ∈ L2
1
|ϕ′| ,r

(Ω0) and s ∈ R.

(ii) U(0) = id and U(s) ◦ U(t) = U(s+ t) for t, s ∈ R.

(iii) lim
s→0

(U(s)f) = f for f ∈ L2
1
|ϕ′| ,r

(Ω0).

By Stone’s theorem, such a unitary C0-group has a unique skew-adjoint infinites-
imal generator D̃ defined on the dense subset

D(D̃) := {f ∈ L2
1
|ϕ′| ,r

(Ω0) | lim
s→0

U(s)f − f
s

exists in L2
1
|ϕ′| ,r

(Ω0)}

by

D̃f := lim
s→0

U(s)f − f
s

, f ∈ D(D̃).

Since D is skew-adjoint on a dense subset of L2
1
|ϕ′| ,r

(Ω0) as well (which will be

shown in the following section, see Theorem 3.18) and D and D̃ coincide on the
dense subset C1

c,r(Ω0), we can actually show D = D̃, in particular D(D) = D(D̃).
In the latter argument we used that each essentially skew-adjoint operator has a
unique skew-adjoint extension (cf. [25]).

Since we do not need this alternate representation of D, we omit a detailed proof.

3.2 Skew-adjointness
The aim of this section is to show that the operator D : D(D) → L2

1
|ϕ′| ,r

(Ω0) is

skew-adjoint, which means that D∗ = −D.
Since D is skew-symmetric on smooth functions by Lemma 3.2, the main tool for
this result is to approximate a function from D(D) in a way such that the images
under D converge as well.
For this, we first need the following properties of our domain of definition D(D)
and D:

Lemma 3.11:

a) Let f ∈ D(D) and χ ∈ C1([0,∞[) be such that f · (χ ◦ L),Df · (χ ◦ L) ∈
L2

1
|ϕ′| ,r

(Ω0), where L(x, v) := |x× v|2 for x, v ∈ R3. Then f · (χ ◦L) ∈ D(D)

with D (f · (χ ◦ L)) = (Df) · (χ ◦ L) weakly.

b) Let f ∈ D(D) and χ ∈ C(]−∞, E0[) be such that f · (χ ◦E),Df · (χ ◦E) ∈
L2

1
|ϕ′| ,r

(Ω0). Then f · (χ ◦ E) ∈ D(D) with D (f · (χ ◦ E)) = (Df) · (χ ◦ E)

weakly.
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3 The transport operator

Proof:

a) Let ξ ∈ C1
c,r(Ω0) be an arbitrary test function. Since χ ◦ L ∈ C1

r (Ω0), we
know ξ · χ ◦ L ∈ C1

c,r(Ω0) as well. Also, due to L being constant along
characteristics, we have DL = 0 and therefore D(ξ · χ ◦ L) = (Dξ) · χ ◦ L
classically. Thus, Definition 3.8 yields

ˆ
Ω0

1

|ϕ′ ◦ E|
f · χ ◦ L · (Dξ) =

ˆ
Ω0

1

|ϕ′ ◦ E|
f · D(χ ◦ L · ξ) =

= −
ˆ

Ω0

1

|ϕ′ ◦ E|
(Df) · χ ◦ L · ξ.

b) This part can not be done like the first one, since χ (and therefore χ ◦ E)
does not need to be differentiable here. We still have to showˆ

Ω0

1

|ϕ′ ◦ E|
f · χ ◦ E · (Dξ) = −

ˆ
Ω0

1

|ϕ′ ◦ E|
(Df) · χ ◦ E · ξ

for a fixed but arbitrary test function ξ ∈ C1
c,r(Ω0). To apply similar tech-

niques like in part a), we mollify χ:
Let J ∈ C∞c (] − 1, 1[) be a one-dimensional mollifyer, i.e.,

´
R J = 1 and

J ≥ 0. As usual, set Jk := kJ(k·) ∈ C∞c (]− 1
k
, 1
k
[) and χk := Jk ∗χ ∈ C∞(R)

for k ∈ N (where we extend χ by 0 if necessary).
Let δ̃ > 0 be such that supp(ξ) ⊂ {E < E0 − δ̃}. Since χ is uniformly

continuous on [U0(0) − 1, E0 − δ̃
2
], we obtain that for an arbitrary ε > 0

there exists δ ∈]0, δ̃
2
[ such that for all E, Ẽ ∈ [U0(0)− 1, E0 − δ̃

2
] satisfying

|E − Ẽ| < δ we have |χ(E)− χ(Ẽ)| < ε.
If we now choose k ∈ N with 1

k
< δ, this yields

|χk(E)− χ(E)| = |
ˆ
R
J(E ′)χ(E − 1

k
E ′) dE ′ − χ(E)| =

= |
ˆ
R
J(E ′)

(
χ(E − 1

k
E ′)− χ(E)

)
dE ′| ≤

≤
ˆ 1

−1

J(E ′)|χ(E − 1

k
E ′)− χ(E)| dE ′ < ε

ˆ
R
J = ε

for every E ∈ [U0(0), E0 − δ̃]. Thus, we have shown that χk → χ in
L∞([U0(0), E0 − δ̃]) as k →∞.
Since ξ · χk ◦E ∈ C1

c,r(Ω0), D(ξ · χk ◦E) = (Dξ) · χk ◦E for k ∈ N just like
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3 The transport operator

in part a) and supp(Dξ) ⊂ {E < E0 − δ̃} as well, we obtain

ˆ
Ω0

1

|ϕ′ ◦ E|
f · χ ◦ E · (Dξ) =

ˆ
{E<E0−δ̃}

1

|ϕ′ ◦ E|
f · χ ◦ E · (Dξ) =

= lim
k→∞

ˆ
{E<E0−δ̃}

1

|ϕ′ ◦ E|
f · χk ◦ E · (Dξ) =

= lim
k→∞

ˆ
{E<E0−δ̃}

1

|ϕ′ ◦ E|
f · D(χk ◦ E · ξ) =

= − lim
k→∞

ˆ
{E<E0−δ̃}

1

|ϕ′ ◦ E|
(Df) · χk ◦ E · ξ =

= −
ˆ
{E<E0−δ̃}

1

|ϕ′ ◦ E|
(Df) · χ ◦ E · ξ.

Note that we integrate over bounded sets only, which allows us to evaluate
the limits with Lebesgue’s dominated convergence theorem.

The latter result yields the following important connection between our weak
definition of D and the non-weighted L2-scalar product:

Corollary 3.12: Let f ∈ D(D). Then

ˆ
Ω0

f · Dξ = −
ˆ

Ω0

Df · ξ

for any test function ξ ∈ C1
c,r(Ω0).

Proof: Apply Lemma 3.11 b) to χ = |ϕ′|, which potentially has to be cut to
ensure integrability. In a similar fashion like done in the previous proof, we may
restrict ourselves to a compact subset of Ω0 due to the compact support of test
functions.

If we want to approximate functions in D(D), it is convenient to mollify them in
(r, w, L)-coordinates instead of (x, v)-coordinates to ensure spherical symmetry.
Therefore, we need to define the weighted L2-spaces in (r, w, L)-coordinates and
investigate how the weak version of D works in the transformed setting.

Definition & Remark 3.13: For χ ∈ C(]−∞, E0[) let

L2
|χ|(Ω

r
0) := {f : Ωr

0 → R measurable | ‖f‖|χ| <∞},

where

‖f‖2
|χ| := 4π2

ˆ
Ωr

0

|χ(E(r, w, L))| · |f(r, w, L)|2 d(r, w, L).
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3 The transport operator

This norm is based on the (real) scalar product

〈f, g〉|χ| := 4π2

ˆ
Ωr

0

|χ(E(r, w, L))| · f(r, w, L) · g(r, w, L) d(r, w, L)

as usual. Note that L2
|χ|,r(Ω0) ∼= L2

|χ|(Ω
r
0), since by changing variables

L2
|χ|,r(Ω0) 3 f 7→ f r ∈ L2

|χ|(Ω
r
0)

is an isometric isomorphism. Here, we made the factor 4π2 from the change of
variables directly a part of the norm.

Lemma 3.14: Let f ∈ D(D). Then

〈(Df)r , ζ〉 1
|ϕ′|

= −〈f r,Drζ〉 1
|ϕ′|

and

ˆ
Ωr

0

(Df)r · ζ = −
ˆ

Ωr
0

f r · Drζ

for every ζ ∈ C1
c (Ωr

0).

Proof: For ζ ∈ C1
c (Ωr

0) let

ξ(x, v) := ζ(|x|, x · v
|x|

, |x× v|2) for (x, v) ∈ Ω0 s.t. x× v 6= 0

and extend ξ by 0 on Ω0. Since the support of ζ is bounded away from the sets
{L = 0} and {r = 0}, we have ξ ∈ C1

c,r(Ω0). Furthermore, ξr = ζ by definition.
Thus, a change of variables yields

〈(Df)r , ζ〉 1
|ϕ′|

= 〈Df, ξ〉 1
|ϕ′|

= −〈f,Dξ〉 1
|ϕ′|

= −〈f r, (Dξ)r〉 1
|ϕ′|

= −〈f r,Drζ〉 1
|ϕ′|
.

The equality in the non-weighted scalar product follows by the same change of
variables combined with Corollary 3.12.

We can now prove the desired approximation result:

Theorem 3.15: Let f ∈ D(D). Then there exists a sequence (Fk)k∈N ⊂ C∞c,r(Ω0)
such that F r

k ∈ C∞c (Ωr
0) for k ∈ N and

Fk → f and DFk → Df in L2
1
|ϕ′|

(Ω0) as k →∞.

Proof: We split the proof of this theorem into several steps:

1) Reduction to a compact support:
For each k ∈ N let χk ∈ C∞(R) be an increasing cut-off function such that

χk(x) = 0 for x ≤ 1

2k
, χk(x) = 1 for x ≥ 1

k
.
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3 The transport operator

Now let

fk(x, v) := χk(L(x, v)) · χk(E0 − E(x, v)) · f(x, v)

for (x, v) ∈ Ω0 and k ∈ N. Since the boundedness of χk together with the
spherical symmetry of E and L ensure fk ∈ L2

1
|ϕ′| ,r

(Ω0), Lemma 3.11 yields

fk ∈ D(D) with Dfk = (χk ◦L) · (χk ◦ (E0−E)) · (Df). Thus, by Lebesgue’s
dominated convergence theorem, we obtain

fk → f and Dfk → Df in L2
1
|ϕ′|

(Ω0) as k →∞ respectively.

Therefore, by applying all the following arguments to fk for k ∈ N large
enough, we may assume that f r has compact support in Ωr

0, i.e., there exists
m ∈ N such that for a.e. (r, w, L) ∈ Ωr

0 with f r(r, w, L) 6= 0 we can deduce

E(r, w, L) < E0 −
1

m
< 0, B̄ 1

m
(r, w, L) ⊂ Ωr

0

To see the latter, let k ∈ N be large enough such that U0(0) < E0 − 1
2k

.
Then, for each (r, w, L) ∈ Ωr

0 satisfying L ≥ 1
2k

and E0 − E(r, w, L) ≥ 1
2k

,
we obtain

L

2r2
≤ E(r, w, L)− U0(0) ≤ E0 −

1

2k
− U0(0)

and therefore

r ≥ 1

2

(
kE0 − kU0(0)− 1

2

)− 1
2

> 0.

Since E is uniformly continuous on compact sets bounded away from {r =
0}, we may conclude B̄ 1

m
(r, w, L) ⊂ Ωr

0 if m ∈ N is large enough.

Note that the above also implies Df = 0 a.e. on {(x, v) ∈ Ω0 | |x| ≤
1
m
∨L(x, v) ≤ 1

m
∨E(x, v) ≥ E0− 1

m
} due to the Du Bois-Reymond theorem.

Furthermore, (Df)r has compact support in Ωr
0.

2) The approximation sequence:
We want to mollify f r to get the approximation sequence. Therefore
let J ∈ C∞c (B3

1(0)) be a three-dimensional mollifyer, i.e.,
´
R3 J = 1 and

0 ≤ J ≤ 1. As usual, define Jk := k3J(k·) for k ∈ N.
Then, due to the compact supports of f r and (Df)r in Ωr

0, standard molli-
fying arguments, a change of variables and Lemma 3.6 imply

f r ∈ L2(Ωr
0) and Jk ∗ f r → f r in L2(Ωr

0) & L2
1
|ϕ′|

(Ωr
0) as k →∞

as well as

(Df)r ∈ L2(Ωr
0) and Jk ∗ (Df)r → (Df)r in L2(Ωr

0) & L2
1
|ϕ′|

(Ωr
0) as k →∞.
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3 The transport operator

3) Boundedness:
We now want to show that Dr(Jk ∗ f r) ⇀ (Df)r in L2(Ω0), at least after
extracting a subsequence.
For this sake, we first prove that (D(Jk ∗ f r))k∈N ⊂ L2(Ωr

0) is bounded,
from which we can obtain the weak convergence of a subsequence by the
Banach-Alaoglu theorem (cf. [21]).
First, by the properties of the support of f r and the boundedness of Ωr

0,
the mean value theorem yields the existence of some constant Cr

E ≥ 1 such
that

|E(z)− E(z′)| ≤ Cr
E|z − z′| for z, z′ ∈ B̄ 1

m
(supp(f r)) ⊂ Ωr

0.

Now, choose k ∈ N such that k > 2Cr
Em. Then, for every z = (r, w, L) ∈ Ωr

0

with (Jk ∗ f r)(z) 6= 0, we have B̄ 1
2m

(z) ⊂ Ωr
0 and E(z) < E0 − 1

2m
. To see

the latter, first note that (Jk ∗ f r)(z) 6= 0 yields the existence of some
z′ ∈ B 1

k
(z) ∩ supp(f r). Thus, since B̄ 1

m
(z′) ⊂ Ωr

0 and E(z′) < E0 − 1
m

, we

obtain B̄ 1
2m

(z) ⊂ Ωr
0 and E(z) < E0 − 1

2m
.

In particular, Jk ∗ f r ∈ C∞c (Ωr
0) for k > 2Cr

Em. For these k and z =
(r, w, L) ∈ supp(Jk ∗ f r) ⊂ Ωr

0 we then obtain

[Dr(Jk ∗ f r)] (z) = w · [(∂rJk) ∗ f r] (z)− ψ′L(r) · [(∂wJk) ∗ f r] (z) =

=

ˆ
Ωr

0

[w · ∂rJk(z − z′)− ψ′L(r) · ∂wJk(z − z′)] f r(z′) dz′ =

=

ˆ
B 1

k
(z)

[(w − w′) · ∂rJk(z − z′)− (ψ′L(r)− ψ′L(r′)) · ∂wJk(z − z′)] f r(z′) dz′+

+

ˆ
Ωr

0

[w′ · ∂rJk(z − z′)− ψ′L(r′) · ∂wJk(z − z′)] f r(z′) dz′,

where we used the notation z′ = (r′, w′, L′). Since ψ′′L(r) = U ′′0 (r) + 3L
r4

is
uniformly bounded on B̄ 1

k
(supp(Jk ∗ f r)) ⊂ B̄ 1

m
(supp(f r)) ⊂ Ωr

0, the mean
value theorem yields

|
ˆ
B 1

k
(z)

[(w − w′) · ∂rJk(z − z′)− (ψ′L(r)− ψ′L(r′)) · ∂wJk(z − z′)] f r(z′) dz′| ≤

≤ C

k

ˆ
B 1

k
(z)

|DJk(z − z′)| · |f r(z′)| dz′ =

=
C

k

ˆ
B 1

k
(0)

|DJk(z̃)| · |f r(z − z̃)| dz̃ =

= Ck3

ˆ
B 1

k
(0)

|(DJ)(kz̃)| · |f r(z − z̃)| dz̃ = Ck3 (|(DJ)(k·)| ∗ |f r|) (z),
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3 The transport operator

where C > 0 depends on the support of f and the fixed steady state f0.
As for the second summand, note that Jk(z − ·) ∈ C1

c (Ωr
0) for k > 2Cr

Em,
since supp(Jk(z − ·)) ⊂ B̄ 1

2m
(z) ⊂ Ωr

0. Thus, by Lemma 3.14 we conclude
ˆ

Ωr
0

[w′ · ∂rJk(z − z′)− ψ′L(r′) · ∂wJk(z − z′)] f r(z′) dz′ =

= −〈Dr [Jk(z − ·)] , f r〉2 = 〈Jk(z − ·), (Df)r〉2 = [Jk ∗ (Df)r] (z).

Altogether we get

‖D(Jk ∗ f r)‖2 ≤ ‖Jk ∗ (Df)r‖2 + Ck3‖|(DJ)(k·)| ∗ |f r|‖2 ≤
≤ ‖Jk ∗ (Df)r‖2 + Ck3‖f r‖2 · ‖(DJ)(k·)‖1,

where we used Young’s inequality (see [21]). Since Jk ∗ (Df)r → (Df)r in
L2(Ωr

0) as k →∞, the first term is bounded. As to the second, note that

‖DJ(k·)‖1 =

ˆ
R3

|DJ(kz)| dz =
1

k3

ˆ
R3

|DJ(z′)| dz′ = ‖DJ‖1

k3
.

Overall, we obtain the desired boundedness.

4) Weak convergence:
Due to the previous step, there exists a subsequence (Jkj ∗ f r)j∈N ⊂ (Jk ∗
f r)k∈N and a limit gr ∈ L2(Ωr

0) such that

Dr(Jkj ∗ f r) ⇀ gr in L2(Ωr
0) as j →∞.

What remains to show is g = Df , where

g(x, v) := gr(|x|, x · v
|v|

, |x× v|2), (x, v) ∈ Ω0 s.t. x× v 6= 0.

Let ξ ∈ C1
c,r(Ω0) be an arbitrary test function. We have to ensure ξr ∈

C1
c (Ωr

0), which can be achieved due to the compact support of f r in Ωr
0:

From the properties of the support of (Jkj ∗ f r) shown in the third step of
this proof, we obtain

(χ2m ◦ L) · (χ2m ◦ (E0 − E)) · Dr(Jkj ∗ f r) = Dr(Jkj ∗ f r)

if kj > 2Cr
Em, where χ2m is known from the first step. Now let ξ̃ :=

(χ2m ◦ L) · (χ2m ◦ (E0 − E)) · ξ and note that ξ̃r ∈ C1
c (Ωr

0). In addition,
we have f · Dξ̃ = f · Dξ and gξ̃ = gξ a.e. on Ω0, where the latter follows
from the properties of the supports of (Jkj ∗ f r) used above and the Du
Bois-Reymond theorem. Thus, changing variables yields

〈g, ξ〉 1
|ϕ′|

= 〈g, ξ̃〉 1
|ϕ′|

= 〈gr, ξ̃r〉 1
|ϕ′|

= lim
j→∞
〈Dr(Jkj ∗ f r), ξ̃r〉 1

|ϕ′|
=

= − lim
j→∞
〈(Jkj ∗ f r),Drξ̃r〉 1

|ϕ′|
= −〈f r, (Dξ̃)r〉 1

|ϕ′|
=

= −〈f,Dξ̃〉 1
|ϕ′|

= −〈f,Dξ〉 1
|ϕ′|
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3 The transport operator

where we used the transformed version of Lemma 3.2 from Definition &
Remark 3.4 as well as the fact that 〈·, ξ̃r〉 1

|ϕ′|
= 〈·, ξ̃r

|ϕ′◦E|〉2 ∈ [L2(Ωr
0)]
′

due

to the compact support of ξ̃r.

5) Strong convergence:
A standard way to convert weak convergence into strong one is by applying
Mazur’s lemma (see [21]). This theorem passes to convex combinations
of the original sequence to strengthen the convergence. Fortunately, these
convex combinations behave very well with linear operators like D and also
inherit regularity and properties of the support.
For brevity, we will call the weakly convergent subsequence (f rk )k∈N := (Jkj ∗
f r)j∈N, i.e., Drf rk ⇀ (Df)r in L2(Ωr

0) as k →∞. Mazur’s lemma now states
that for every k ∈ N there exists Nk ≥ k and weights ckk, . . . , c

k
Nk
∈ [0, 1]

with
∑Nk

j=k c
k
j = 1 such that

Dr
(

Nk∑
j=k

ckjf
r
j

)
=

Nk∑
j=k

ckjDrf rj → (Df)r in L2(Ωr
0) as k →∞.

Let F r
k :=

∑Nk

j=k c
k
jf

r
j for k ∈ N. Since

‖f r − F r
k‖γ ≤

Nk∑
j=k

ckj‖f r − f rj ‖γ for γ ∈ {2, 1

|ϕ′|
} and k ∈ N,

we still have F r
k → f r in L2(Ωr

0) and L2
1
|ϕ′|

(Ωr
0) as k →∞.

Also recall that F r
k ∈ C∞c (Ωr

0) for k > 2Cr
Em. Finally, set

Fk(x, v) := F r
k (|x|, x · v

|x|
, |x× v|2) for (x, v) ∈ Ω0 s.t. x× v 6= 0

and extend Fk by 0 on Ω0 for k ∈ N. Then Fk ∈ C∞c,r(Ω0) for k sufficiently
large due to the compact support of F r

k and changing variables yields

Fk → f in L2
1
|ϕ′|

(Ω0) and DFk → Df in L2(Ω0) as k →∞.

Lemma 3.6 allows us to conclude DFk → Df in L2
1
|ϕ′|

(Ω0) as well, which

finishes the proof of this theorem.

Recall that Theorem 3.15 clearly implies that choosing C∞c,r(Ω0) as the class of
test functions would lead to the exact same operator D.
Another application of the result above is that can expand the properties of D
from Lemmata 3.2 and 3.3 to the whole space D(D):
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3 The transport operator

Corollary 3.16: D is skew-symmetric on D(D), i.e., for all f, g ∈ D(D) we have

〈f,Dg〉 1
|ϕ′|

= −〈Df, g〉 1
|ϕ′|
.

Proof: Approximate one function like in Theorem 3.15 and use Definition 3.8.

Corollary 3.17:

a) Let f ∈ D(D) be even in v a.e. on Ω0, i.e., for a.e. (x, v) ∈ Ω0 we have
f(x,−v) = f(x, v). Then Df is odd in v a.e. on Ω0, i.e., Df(x,−v) =
−Df(x, v) for a.e. (x, v) ∈ Ω0.

b) Let f ∈ D(D) be odd in v a.e. on Ω0. Then Df is even in v a.e. on Ω0.

Proof: What remains to show is that the sequence (Fk)k∈N preserves the respect-
ive property of f . Then, since the even and odd subspaces are closed in L2

1
|ϕ′| ,r

(Ω0)

due to the Fischer-Riesz theorem, we may conclude the claimed results by ap-
plying Lemma 3.3 to the approximation sequence from Theorem 3.15. We will
restrict ourselves to the case where f is even in v, since the other case works
completely analogously.
First note that the cut-off functions from the first step of the proof of The-
orem 3.15 are even in v, since they depend only on the particle energy and the
modulus of the angular momentum squared. Therefore, if f is even in v, this
property is preserved by the multiplication with these cut-off functions.
For the mollification to preserve this property, we have to choose the mollifyer
J to be even in w, i.e., J(r,−w,L) = J(r, w, L) for all (r, w, L) ∈ R3 (in the
case where f is odd in v, we have to choose J to be even in w as well). Then,
one can easily verify that Jk ∗ f r is even in w as well, since f being even in v
is equivalent to f r being even in w. This property is clearly also preserved by
convex combinations.

From the skew-symmetry we can now finally obtain the desired skew-adjointness
quite easily. Before that, we recall the definition of the adjoint operator of D, see
[14] for details.
Let D∗ : D(D∗) → L2

1
|ϕ′| ,r

(Ω0) denote the adjoint of D : D(D) → L2
1
|ϕ′| ,r

(Ω0), note

that D is a densely defined operator on the Hilbert space L2
1
|ϕ′| ,r

(Ω0). The domain

of definition of D∗ is

D(D∗) :={f ∈ L2
1
|ϕ′| ,r

(Ω0) | ∃Cf > 0 ∀g ∈ D(D) : |〈Dg, f〉 1
|ϕ′|
| ≤ Cf‖g‖ 1

|ϕ′|
} =

={f ∈ L2
1
|ϕ′| ,r

(Ω0) | ∃1h ∈ L2
1
|ϕ′| ,r

(Ω0) ∀g ∈ D(D) : 〈Dg, f〉 1
|ϕ′|

= 〈g, h〉 1
|ϕ′|
}.

In case of the second definition, D∗ is defined by D∗f := h for f ∈ D(D∗).
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3 The transport operator

Theorem 3.18: D : D(D)→ L2
1
|ϕ′| ,r

(Ω0) is skew-adjoint, i.e., D∗ = −D.

Proof: We show D∗ = −D in two steps:

⊂: Let f ∈ D(D∗) and h ∈ L2
1
|ϕ′| ,r

(Ω0) such that 〈Dg, f〉 1
|ϕ′|

= 〈g, h〉 1
|ϕ′|

for all

g ∈ D(D). In particular, since C1
c,r(Ω0) ⊂ D(D), we have

〈f,Dξ〉 1
|ϕ′|

= 〈h, ξ〉 1
|ϕ′|

for all test functions ξ ∈ C1
c,r(Ω0). However, this means f ∈ D(D) with

Df = −h by Definition 3.8.

⊃: Let f ∈ D(D). Corollary 3.16 immediately yields

〈Dg, f〉 1
|ϕ′|

= −〈g,Df〉 1
|ϕ′|

= 〈g,−Df〉 1
|ϕ′|

for all g ∈ D(D), i.e., f ∈ D(D∗) and D∗f = −Df .

3.3 Jeans’ theorem
In this section, we want to characterise the kernel of the operator D : D(D) →
L2

1
|ϕ′| ,r

(Ω0). For smooth functions, it is well known that each element of this

kernel depends only on the particle energy of f0 and the modulus of the angular
momentum squared, i.e., for all f ∈ C1

c,r(Ω0) with Df = 0 on Ω0 there exists
g : R2 → R such that

f(x, v) = g(E(x, v), L(x, v)) = g(
1

2
|v|2 + U0(x), |x× v|2) for (x, v) ∈ Ω0.

This has first been rigorously shown in [3] and is well known as “Jeans’ theorem”.
Indeed, this result is closely related to the fact that spherically symmetric steady
states of the Vlasov-Poisson system depend only on their particle energy and the
angular momentum, which was first suggested by J. Jeans [15, 16] at the begin-
ning of the last century.
Therefore, it seems convincing that every element in the kernel of the unbounded
operator D from the previous sections depends only on E and L as well. How-
ever, this is not as easy to show as one might think. In the Section 3.2, we could
reduce some properties of D to the respective properties on smooth function by
the approximation of Theorem 3.15, for example Corollaries 3.16 and 3.17. How-
ever, the key for those results was that the properties had been preserved by the
mollification used in the proof of Theorem 3.15. Unfortunately, the mollification
of a function in the kernel of D does not have to belong to the kernel anymore.
Nevertheless, approximating an element from the kernel similar to Theorem 3.15
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3 The transport operator

will turn out to be very helpful. Indeed, we will show that the distance between
elements of this approximation sequence and their projection onto the space of
functions depending only on (E,L) tends to zero.
To define the projection mentioned above, we first have to analyse the solutions of
the characteristic system in (r, w, L)-coordinates associated with the fixed steady
state f0. We refer to [4, 9, 10] for a much more detailed discussion. The charac-
teristic system of Dr takes the form

ṙ = w, ẇ = −ψ′L(r), L̇ = 0.

Let R 3 t 7→ (r(t), w(t), L) be an arbitrary global solution of this system. Since
the particle energy is conserved along these characteristics, there exists E ∈ R
such that E = E(r(t), w(t), L) for all t ∈ R. We assume that the solution satisfies
L > 0 and E < 0, otherwise it is not of interest. For any t ∈ R we have

ψL(rL) ≤ ψL(r(t)) ≤ 1

2
w2(t) + ψL(r(t)) = E

and thus r−(E,L) ≤ r(t) ≤ r+(E,L) by Theorem 2.4. Furthermore, solving for
w yields

ṙ(t) = w(t) = ±
√

2E − 2ψL(r(t))

for t ∈ R. Therefore, r oscillates between r−(E,L) and r+(E,L), where ṙ = 0 is
equivalent to r = r±(E,L) and ṙ always switches its sign when reaching r±(E,L).
By applying the inverse function theorem and integrating, we also obtain the
following explicit formula for the period of the r-motion, i.e., the time needed for
r to travel from r−(E,L) to r+(E,L) and back to r−(E,L):

Definition & Remark 3.19: For L > 0 and ψL(rL) ≤ E < E0 let

T (E,L) := 2

ˆ r+(E,L)

r−(E,L)

dr√
2E − 2ψL(r)

,

the period of the characteristic fixed by (E,L). Since E − ψL(r) > 0 for
r−(E,L) < r < r+(E,L), the expression above is well defined. The finiteness of
the integral T (E,L) can be verified using Theorem 2.4:

T (E,L) =
√

2

ˆ r+(E,L)

r−(E,L)

dr√
E − ψL(r)

≤

≤ 2

ˆ r+(E,L)

r−(E,L)

r
√
r−(E,L)r+(E,L)√

L
√

(r+(E,L)− r) · (r − r−(E,L))
dr ≤

≤ 2
r2

+(E,L)√
L

ˆ 1

0

ds√
s(1− s)

= 2π
r2

+(E,L)√
L

≤ 2π
M2

0

E2
√
L
,

where we used the substitution r = s(r+(E,L)− r−(E,L)) + r−(E,L).
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3 The transport operator

The projection onto the space of functions depending only on E and L can now
be obtained by integrating over the trajectories fixed by (E,L). Thus, for fixed
(r, w, L) ∈]0,∞[×R×]0,∞[ let R 3 t 7→ (R,W )(t, r, w, L) be the unique global
solution of the characteristic system

Ṙ = W, Ẇ = −ψ′L(R)

satisfying the initial condition (R,W )(0, r, w, L) = (r, w). For the global existence
of the characteristic flow (R,W ) see [27].

Definition & Remark 3.20: For f ∈ L2
1
|ϕ′| ,r

(Ω0) (extended by 0 on R3 × R3)

and L > 0, ψL(rL) < E < E0 let

Pf(E,L) :=

ˆ 1

0

f r((R,W )(t · T (E,L), r−(E,L), 0, L), L) dt =

=
1

T (E,L)

ˆ r+(E,L)

r−(E,L)

f r(r,
√

2E − 2ψL(r), L) + f r(r,−
√

2E − 2ψL(r), L)√
2E − 2ψL(r)

dr,

the average of f over the trajectory fixed by (E,L). Then Pf(E,L) is
uniquely determined for a.e. (E,L) ∈ R2 satisfying L > 0 and ψL(rL) < E < E0,
since changing to (r, w, L) and from there to (t, E, L)-coordinates yields

ˆ
Ω0

f(x, v) d(x, v) = 4π2

ˆ
Ωr

0

f r(r, w, L) d(r, w, L) =

= 4π2

ˆ ∞
0

ˆ E0

ψL(rL)

T (E,L) · Pf(E,L) dE dL.

Further, a similar change of variables yields
ˆ

Ω0

1

|ϕ′(E(x, v))|
· Pf(E(x, v), L(x, v)) · g(x, v) d(x, v) =

= 4π2

ˆ ∞
0

ˆ E0

ψL(rL)

T (E,L)

|ϕ′(E)|
· Pf(E,L) · Pg(E,L) dE dL =

=

ˆ
Ω0

1

|ϕ′(E(x, v))|
· f(x, v) · Pg(E(x, v), L(x, v)) d(x, v)

for all f, g ∈ L2
1
|ϕ′| ,r

(Ω0). In particular, 〈Pf, f〉 1
|ϕ′|

= ‖Pf‖2
1
|ϕ′|

and therefore

‖Pf‖2
1
|ϕ′|
≤ ‖f‖2

1
|ϕ′|

, where we identified Pf as Ω0 3 (x, v) 7→ Pf(E(x, v), L(x, v))

by a slight abuse of notation.
Since in addition P [Ω0 3 (x, v) 7→ Pf(E(x, v), L(x, v)) ∈ R] = Pf , the mapping

L2
1
|ϕ′| ,r

(Ω0) 3 f 7→ [Ω0 3 (x, v) 7→ Pf(E(x, v), L(x, v)) ∈ R] ∈ L2
1
|ϕ′| ,r

(Ω0)
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3 The transport operator

is indeed the unique orthogonal projection onto the closed subspace

KD :={f ∈ L2
1
|ϕ′| ,r

(Ω0) | ∃g : R2 → R s.t. f(x, v) = g(E(x, v), L(x, v))

for a.e. (x, v) ∈ Ω0} =

={f ∈ L2
1
|ϕ′| ,r

(Ω0) | f(x, v) = Pf(E(x, v), L(x, v)) for a.e. (x, v) ∈ Ω0}

of L2
1
|ϕ′| ,r

(Ω0), see [14] for details on the definition and uniqueness of orthogonal

projections. Recall that L(x, v) > 0 and ψL(rL) < E(x, v) < E0 for almost every
(x, v) ∈ Ω0, i.e., the mappings used above are a.e. defined on Ω0.
That KD is a closed linear subspace of L2

1
|ϕ′| ,r

(Ω0) can be verified by changing

variables and using the completeness of weighted, two dimensional L2-spaces or
alternatively by applying the Fischer-Riesz theorem.

As motivated above, we now want to show the following generalisation of Jeans’
theorem:

Theorem 3.21: ker(D) = KD.

Proof: To get started, we first show the easy inclusion. Let f ∈ KD, i.e., there
exists g : R2 → R such that f(x, v) = g(E(x, v), L(x, v)) for a.e. (x, v) ∈ Ω0.
We will show f ∈ ker(D) with similar techniques like the ones we used to prove
Lemma 3.2. Let (X, V ) : R × R3 × R3 → R3 × R3 be the characteristic flow
associated with the steady state f0, see Lemma 3.2 for a detailed definition.
Since E and L are conserved along characteristics, i.e.,

E(X(t, x, v), V (t, x, v)) = E(x, v), L(X(t, x, v), V (t, x, v)) = L(x, v)

for x, v ∈ R3 & t ∈ R, we obtain
ˆ

Ω0

1

|ϕ′(E(x, v))|
· f(x, v) · ξ((X, V )(t, x, v)) d(x, v) =

=

ˆ
Ω0

1

|ϕ′(E(x, v))|
· f(x, v) · ξ(x, v) d(x, v)

for every ξ ∈ C1
c,r(Ω0) and t ∈ R by changing variables. Note that we used

f ∈ KD here to deduce that f is constant along characteristics. Thus

0 = ∂t
∣∣
t=0

[ˆ
Ω0

1

|ϕ′(E(x, v))|
· f(x, v) · ξ((X, V )(t, x, v)) d(x, v)

]
=

=

ˆ
Ω0

1

|ϕ′(E(x, v))|
· f(x, v) · ∂t

∣∣
t=0

[ξ((X, V )(t, x, v))] d(x, v) =

=

ˆ
Ω0

1

|ϕ′(E(x, v))|
· f(x, v) · Dξ(x, v) d(x, v),
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where the compact support of the test function ξ ∈ C1
c,r(Ω0) allowed us to switch

the order of differentiation and integration. By Definition 3.8, the latter means
that f ∈ D(D) with Df = 0, i.e., f ∈ ker(D).
As for the other inclusion, let f ∈ ker(D), i.e., f ∈ D(D) with Df = 0. As stated
above, we show f ∈ KD by approximation. We split this argument into several
steps:

1) Reduction to a compact support:
Just like in Theorem 3.15, let χk ∈ C∞(R) be a smooth, increasing cut-off
function satisfying

χk(x) = 0 for x ≤ 1

2k
, χk(x) = 1 for x ≥ 1

k

for each k ∈ N. Now set

fk(x, v) := χk(L(x, v)) · χk(E0 − E(x, v)) · f(x, v)

for (x, v) ∈ Ω0 and k ∈ N. Since fk → f in L2
1
|ϕ′|

(Ω0) as k →∞ and KD is

closed, it suffices to show fk ∈ KD for every k ∈ N to conclude f ∈ KD.
Thus, we assume that there exists m ∈ N such that for a.e. (x, v) ∈ Ω0 with
f(x, v) 6= 0 we have L(x, v) ≥ 1

m
and E(x, v) ≤ E0 − 1

m
< 0.

2) Approximation like in Theorem 3.15:
Just like in the proof of Theorem 3.15 we can construct an approximation
sequence (Fk)k∈N ⊂ C∞c,r(Ω0) such that

Fk → f and DFk → Df = 0 in L2
1
|ϕ′|

(Ω0) respectively as k →∞,

where the supports satisfy

supp(Fk) ⊂ {(x, v) ∈ Ω0 | L(x, v) ≥ 1

2m
}, k ∈ N.

Furthermore, we have F r
k ∈ C∞c (Ωr

0) for every k ∈ N.

3) An auxiliary estimate – the heart of the proof:
As motivated at the beginning of this section, we want to show that the
distance between Fk and the projection PFk tends to zero as k → ∞. To
prove this, we first estimate the distance between a smooth function and
its projection onto the space of functions depending only on E and L in
general:
Let ξ ∈ C1

c,r(Ω0) with ξr ∈ C1
c (Ωr

0) be arbitrary, but fixed. We will use the
abbreviation

ζ(t, E, L) := ξr((R,W )(t · T (E,L), r−(E,L), 0, L), L)
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for t ∈ R, L > 0 and ψL(rL) < E < E0, where (R,W ) is the characteristic
flow in (r, w, L)-coordinates as used in Definition & Remark 3.19. For these
(E,L) we may therefore write

Pξ(E,L) =

ˆ 1

0

ζ(t, E, L) dt.

By a slight abuse of notation, we will call the mapping

(x, v) 7→ Pξ(E(x, v), L(x, v)),

which is defined a.e. on Ω0, also Pξ. Then, changing to (t, E, L)-coordinates
yields

‖ξ − Pξ‖2
1
|ϕ′|

=

= 4π2

ˆ ∞
0

ˆ E0

ψL(rL)

T (E,L)

|ϕ′(E)|

ˆ 1

0

|ζ(t, E, L)− Pξ(E,L)|2 dt dE dL =

= 4π2

ˆ ∞
0

ˆ E0

ψL(rL)

T (E,L)

|ϕ′(E)|

ˆ 1

0

∣∣∣∣ζ(t, E, L)−
ˆ 1

0

ζ(s, E, L) ds

∣∣∣∣2 dt dE dL ≤

≤ 4π2

ˆ ∞
0

ˆ E0

ψL(rL)

T (E,L)

|ϕ′(E)|

ˆ 1

0

ˆ 1

0

|ζ(t, E, L)− ζ(s, E, L)|2 ds dt dE dL,

where we used the Cauchy-Schwarz inequality in the last step. To estimate
the inner two integrals, we first consider the case where s ≤ t. With aid of
the main theorem of calculus we arrive atˆ 1

0

ˆ t

0

|ζ(t, E, L)− ζ(s, E, L)|2 ds dt =

ˆ 1

0

ˆ t

0

∣∣∣∣ˆ t

s

∂τζ(τ, E, L) dτ

∣∣∣∣2 ds dt ≤

≤
ˆ 1

0

ˆ t

0

(t− s)
ˆ t

s

|∂τζ(τ, E, L)|2 dτ ds dt ≤
ˆ 1

0

|∂τζ(τ, E, L)|2 dτ,

where we used the Cauchy-Schwarz inequality once again. By estimating
the part where s > t in a similar way, we obtain

‖ξ − Pξ‖2
1
|ϕ′|
≤ 8π2

ˆ ∞
0

ˆ E0

ψL(rL)

T (E,L)

|ϕ′(E)|

ˆ 1

0

|∂τζ(τ, E, L)|2 dτ dE dL.

Recall

∂τζ(τ, E, L) = T (E,L) · (Drξr)((R,W )(τ · T (E,L), r−(E,L), 0, L), L)

for τ ∈ R, L > 0 and ψL(rL) < E < E0 by definition. Therefore, by using
the estimate of T (E,L) from Definition & Remark 3.19, we get

‖ξ−Pξ‖2
1
|ϕ′|
≤

≤ 32π4M4
0

ˆ ∞
0

ˆ E0

ψL(rL)

T (E,L)

|ϕ′(E)|
· 1

E4L

ˆ 1

0

|(Dξ)r(. . .)|2 dτ dE dL,

where the omitted argument of (Dξ)r is (R,W )(τT (E,L), r−(E,L), 0, L), L.
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4) Conclusion:
We now want to apply the estimate from the previous step to the elements
of the approximation sequence. Due to the properties of the support of Fk
for k ∈ N, we obtain the bound

1

E4L
≤ 2m

E4
0

for all L > 0 and ψL(rL) ≤ E < E0 for which there exists τ ∈ R and k ∈ N
such that 0 6= (DFk)r((R,W )(τ · T (E,L), r−(E,L), 0, L), L), recall again
that E and L are conserved along characteristics. Using this inequality and
changing back into (x, v)-coordinates, we finally arrive at

‖Fk−PFk‖2
1
|ϕ′|
≤

≤ 64π4M4
0

m

E4
0

ˆ ∞
0

ˆ E0

ψL(rL)

T (E,L)

|ϕ′(E)|

ˆ 1

0

|(DFk)r(. . .)|2 dτ dE dL =

= 16π2M4
0

m

E4
0

‖DFk‖2
1
|ϕ′|
→ 0 as k →∞.

Hence, since Fk → f , we obtain PFk → f in L2
1
|ϕ′|

(Ω0) for k → ∞ as

well. Since KD is a closed subspace of L2
1
|ϕ′| ,r

(Ω0) and (PFk)k∈N ⊂ KD, we

conclude f ∈ KD.

Remarks:

a) To prove Theorem 3.21 we did not use the already known Jeans’ theorem
for smooth functions. Instead, we provide a “new” proof, which also works
for the weak version of D. Note however that our proof relies on the form of
the characteristics in (r, w, L)-coordinates in a crucial way (since we used
them do define the projection P). In [3], these properties of (R,W,L) were
the key ingredient for the proof of Jeans’ theorem as well.

b) Another possible approach to the kernel of D is by interpreting D as the
infinitesimal generator of the unitary C0-group (U(s))s∈R on L2

1
|ϕ′| ,r

(Ω0),

see Remark 3.10 for details. Then, Df = 0 for a function f ∈ D(D) can be
interpreted as ∂s

∣∣
s=0

[U(s)f ] = 0 in the Bochner-sense. This instantly leads
to

ker(D) = {f ∈ D(D) | U(s)f = f for every s ∈ R}.

However, showing that the set on the right hand side equals KD does not
seem to be easier than what we did to prove Theorem 3.21. The latter is
the main reason we did not pursue this alternate definition of D.
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c) In a similar way as done in this chapter, one could also define the transport
operator in a weak sense on non-radial functions by dropping the assumption
of spherical symmetry from all function spaces involved.
More precisely, for f ∈ L1

loc(Ω0), D̃f exists weakly, if there exists µ ∈
L1
loc(Ω0) such that for every test function ξ ∈ C1

c (Ω0),

ˆ
Ω0

1

|ϕ′ ◦ E|
f · Dξ = −

ˆ
Ω0

1

|ϕ′ ◦ E|
µ · ξ.

In this case D̃f := µ weakly. The domain of D̃ is defined as

D(D̃) := {f ∈ L2
1
|ϕ′|

(Ω0) | D̃f exists weakly and D̃f ∈ L2
1
|ϕ′|

(Ω0)}.

Then the resulting operator D̃ : D(D̃) → L2
1
|ϕ′|

(Ω0) is linear and densely

defined on L2
1
|ϕ′|

(Ω0).

Furthermore, there holds an approximation result similar to Theorem 3.15
for D̃ as well, from which the skew-symmetry and skew-adjointness of D̃
follow just like for D.
However, due to the differing classes of test functions, it is not clear whether
or not D is indeed the restriction of D̃ on spherically symmetric functions,
i.e., if

D and D̃
∣∣
L2

1
|ϕ′| ,r

(Ω0)

equal.
Nevertheless, for the application in the following chapters as well as in [9,
19], this uncertainty is insignificant, since the transport operator is only
needed on spherically symmetric functions there.
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4 The Guo-Lin operator

In this whole chapter, let f0 = ϕ ◦ E be a fixed isotropic state in the sense of
Definition 2.2. In addition, we assume that ϕ is decreasing and that the derivative
is bounded near the cut-off energy E0, i.e., ϕ′ < 0 on ]−∞, E0[ and ϕ′ is bounded
on [η, E0[ for all η < E0, note that ϕ′ is continuous by definition.
This turns out to be a real restriction on the class of steady states which we can
handle with our approach. For example, isotropic polytropes (E0 − E)k+ with
0 ≤ k < 1 do not satisfy the boundedness condition. Nevertheless, isotropic
polytropes with k ≥ 1 and the equally important King model

(
eE0−E − 1

)
+

can
still be considered.
Just like in the previous chapter, let Ω0 denote the set where f0 does not vanish,
that is to say

Ω0 := {(x, v) ∈ R3 × R3 | f0(x, v) 6= 0} = {(x, v) ∈ R3 × R3 | E(x, v) < E0}.

Note that Ω0 ⊂ R3 × R3 is a bounded domain. Let R0, P0 > 0 be some fixed
radii such that Ω0 ⊂ BR0(0)×BP0(0).
The aim of this chapter is to define a certain operator, the “Guo-Lin operator”,
and prove a coercivity estimate for the operator and a finite dimensional approx-
imation. The latter will turn out to be a key tool for proving the non-linear
stability of the King model in Chapter 5. Related techniques have also been used
in [19] to show the non-linear stability of steady states also depending on the
modulus of the angular momentum squared.

4.1 Definition
Before getting to the desired coercivity estimate, we have to define the operator
in question and prove first properties of the appearing quantities. We start by
defining radial Sobolev spaces, on which the operator will be defined:

Definition 4.1: For k ∈ N0 and 0 < R ≤ ∞ let

Hk
r (BR(0)) := {ψ ∈ Hk(BR(0)) | ψ is spherically symmetric a.e. on BR(0)},

where B∞(0) := R3 and Hk(BR(0)) is the usual Sobolev space of order k over the
set BR(0), see [7, 21]. Here, a function is called spherically symmetric a.e. on
BR(0), if its extension by 0 is spherically symmetric a.e. on R3 in the sense of
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4 The Guo-Lin operator

Lemma & Definition 2.9. As usual, we denote L2
r

:= H0
r .

Analogously, set

Ḣ1
r (R3) := {ψ ∈ Ḣ1(R3) | ψ is spherically symmetric a.e. on R3},

see Section 2.3 for a detailed definition of the homogeneous Sobolev space Ḣ1(R3)
and its properties.

Next, we want to define a similar projection like the one from Definition & Re-
mark 3.20 of these radial L2-functions.

Definition 4.2: For ψ ∈ L2
r(BR0(0)) and L > 0, ψL(rL) < E < E0 let

Pψ(E,L) :=
2

T (E,L)

ˆ r+(E,L)

r−(E,L)

ψr(r)√
2E − 2ψL(r)

dr,

where T is known from Definition & Remark 3.19. Also, r+(E,L) < R0 since
E(r+(E,L), 0, L) = E < E0.
Note the similarity to the projection defined in Definition & Remark 3.20. In
particular, Pψ(E,L) can be interpreted as the average of ψ over the trajectory
fixed by (E,L). With slight abuse of notation, we call the mapping

(x, v) 7→ Pψ(E(x, v), L(x, v))

Pψ again. In the same way as in Definition & Remark 3.20, the latter is well
defined a.e. on Ω0. We will extend this function by 0 on the whole space R3×R3.

Lemma 4.3: The mapping P from above has the following properties:

a) For any ψ ∈ L2
r(BR0(0)) we have Pψ ∈ L2

|ϕ′|,r(Ω0) with

‖Pψ‖|ϕ′| ≤ ‖ψ‖|ϕ′| ≤ C‖ψ‖L2(BR0
(0)),

where C > 0 depends only on the steady state. This means that the linear
operator P : L2

r(BR0(0)) → L2
|ϕ′|,r(Ω0) is continuous. We refer to Defini-

tion 3.5 for the definition of weighted L2-spaces over Ω0 and their norm.
Here, ψ ∈ L2

r(BR0(0)) becomes a function on Ω0 by simply dropping the v-
dependency and restricting the arguments to Ω0, i.e., we take Ω0 3 (x, v) 7→
ψ(x) ∈ R.

b) For any ψ ∈ L2
r(BR0(0)) we have

(ϕ′ ◦ E) · Pψ ∈ ker(D) and (ϕ′ ◦ E) · (ψ − Pψ) ⊥ 1
|ϕ′|

ker(D),

where the latter means 〈ψ−Pψ, f〉 1
|ϕ′|

= 0 for every f ∈ ker(D). Note that

(ϕ′ ◦ E) = −|ϕ′ ◦ E| and (ϕ′ ◦ E) · g ∈ L2
1
|ϕ′| ,r

(Ω0) iff g ∈ L2
|ϕ′|,r(Ω0).
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4 The Guo-Lin operator

Proof:

a) The second inequality is a direct consequence of the boundedness of ϕ′ on
[U0(0), E0[ and the one of Ω0 in v.
For the first estimate, we change from (x, v) to (r, E, L)-coordinates to get

〈Pψ, ψ〉|ϕ′| =
ˆ

Ω0

|ϕ′(E(x, v))| · Pψ(x, v) · ψ(x) d(x, v) =

= 8π2

ˆ ∞
0

ˆ E0

ψL(rL)

|ϕ′(E)| · Pψ(E,L)

ˆ r+(E,L)

r−(E,L)

ψr(r)√
2E − 2ψL(r)

dr dE dL =

= 8π2

ˆ ∞
0

ˆ E0

ψL(rL)

|ϕ′(E)| · (Pψ)2(E,L) · T (E,L)

2
dE dL =

=

ˆ
Ω0

|ϕ′(E(x, v))| · (Pψ)2(x, v) d(x, v) = ‖Pψ‖2
|ϕ′|.

Thus,

0 ≤ ‖Pψ − ψ‖2
|ϕ′| = ‖Pψ‖2

|ϕ′| − 2〈Pψ, ψ〉|ϕ′| + ‖ψ‖2
|ϕ′| = ‖ψ‖2

|ϕ′| − ‖Pψ‖2
|ϕ′|,

which implies the desired inequality.

b) From the first part it follows that Pψ ∈ L2
|ϕ′|,r(Ω0), from which we imme-

diately conclude (ϕ′ ◦ E) · Pψ ∈ ker(D) by the explicit characterisation of
ker(D) from Theorem 3.21.
As for the second claim, let f = g(E,L) ∈ ker(D) be arbitrary. Then a
similar change of variables like the one above yields

〈(ϕ′ ◦ E) · Pψ, f〉 1
|ϕ′|

= −
ˆ

Ω0

Pψ(x, v) · f(x, v) d(x, v) =

= −8π2

ˆ ∞
0

ˆ E0

ψL(rL)

Pψ(E,L) · g(E,L) · T (E,L)

2
dE dL =

= −8π2

ˆ ∞
0

ˆ E0

ψL(rL)

g(E,L)

ˆ r+(E,L)

r−(E,L)

ψr(r)√
2E − 2ψL(r)

dr dE dL =

= −
ˆ

Ω0

ψ(x) · f(x, v) d(x, v) = 〈(ϕ′ ◦ E) · ψ, f〉 1
|ϕ′|
,

note that all integrals are finite.

We are now able to define the operator with its quadratic form.
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4 The Guo-Lin operator

Definition 4.4:

a) Let

K0 : L2
r(R3)→ L2

r(R3),

ψ 7→ 4π

ˆ
R3

|ϕ′(E(·, v))| · Pψ(·, v) dv − 4π

ˆ
R3

|ϕ′(E(·, v))| dv · ψ.

Here, we extend ϕ′ by 0 on R, i.e., ϕ′(E(x, v)) = 0 if (x, v) 6∈ Ω0. Note that
K0h ∈ L2

r(R3) for h ∈ L2
r(R3) follows by the boundedness of ϕ′ ◦ E and its

support together with Lemma 4.3. Now let

A0 : H2
r (R3)→ L2

r(R3), A0 := −∆ +K0.

We will call A0 the Guo-Lin operator because of its appearance in [9].
Clearly A0 preserves spherical symmetry, i.e., A0h ∈ L2

r(R3) for h ∈
H2
r (R3).

b) The quadratic form associated with A0 can be written as

〈A0ψ, ψ〉2 = ‖∇ψ‖2
2 + 4π

(
‖Pψ‖2

|ϕ′| − ‖ψ‖2
|ϕ′|
)

for ψ ∈ H2
r (R3), where we integrated by parts and used 〈Pψ, ψ〉|ϕ′| =

‖Pψ‖2
|ϕ′| from the proof of Lemma 4.3. Note that the latter expression is

even defined on Ḣ1
r (R3), since Ḣ1

r (R3) ⊂ L2
r(BR0(0)) by Definition 2.5. We

therefore set

〈A0ψ, ψ〉2 := ‖∇ψ‖2
2 + 4π

(
‖Pψ‖2

|ϕ′| − ‖ψ‖2
|ϕ′|
)

for each ψ ∈ Ḣ1
r (R3).

Just like the semi-norm ‖∇ · ‖2 on Ḣ1(R3) itself, it turns out that the quad-
ratic form associated with the Guo-Lin operator is invariant under addition of a
constant, more precisely:

Lemma 4.5: For any ψ ∈ Ḣ1
r (R3) and C ∈ R we have

〈A0(ψ + C), ψ + C〉2 = 〈A0ψ, ψ〉2.

Proof: Clearly, ∇(ψ + C) = ∇ψ in the weak sense. Moreover, PC = C and
〈Pψ,C〉|ϕ′| = 〈ψ,C〉|ϕ′| by similar computations like the ones we used to prove
Lemma 4.3. Therefore, expanding the norm yields

〈K0(ψ + C), ψ + C〉2 = 4π
(
‖P(ψ + C)‖2

|ϕ′| − ‖ψ + C‖2
|ϕ′|
)

=

= 4π
(
‖Pψ‖2

|ϕ′| − ‖ψ‖2
|ϕ′|
)

= 〈K0ψ, ψ〉2.
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4 The Guo-Lin operator

4.2 Coercivity
The aim of this whole chapter is to prove a coercivity estimate of the following
kind:

inf
ψ∈Ḣ1

r (R3),‖ψ‖6=0

〈A0ψ, ψ〉2
‖ψ‖2

> 0,

for some reasonable norm ‖ · ‖. This turns out to be the most important tool to
show the non-linear stability of the King model in Chapter 5.
Y. Guo & Z. Lin presented an estimate like this in [9] using the H1(R3)-norm
and restricting themselves to the space H2

r (R3). Unfortunately, it turns out that
this result does not hold true:

Theorem 4.6: inf
ψ∈H2

r (R3),‖ψ‖2 6=0

〈A0ψ, ψ〉2
‖ψ‖2

2

≤ 0.

Proof: Consider a sequence of smooth and spherically symmetric cut-off functions
(χk)k∈N ⊂ C∞c,r(R3) with the following properties: 0 ≤ χk ≤ 1 on R3, χk = 1 on
Bk(0), supp(χk) ⊂ Bk+1(0) for all k ∈ N and (||∇χk||∞)k∈N, (||D2χk||∞)k∈N are
bounded.
Now, for every k ∈ N let

ψk :=
χk
||χk||2

.

Our aim is to show that 〈A0ψk, ψk〉2 → 0 as k → ∞, since ||ψk||2 = 1 for all
k ∈ N by definition and clearly (ψk)k∈N ⊂ H2

r (R3).
Indeed, since 0 ≤ χk ≤ 1 on R3, χk = 1 on Bk(0) and vol(Bk(0)) = 4π

3
k3, the

denominators above satisfy

||χk||22 ≥
4π

3
k3

and thus

||ψk||∞ ≤
(

3

4πk3

) 1
2

→ 0 as k →∞.

To show the desired convergence, we now estimate each of the three terms occur-
ring in the sum 〈A0ψ, ψ〉2 separately:

1) From the boundedness of (||∇χk||∞)k∈N and∇χk vanishing outside of Bk+1\
Bk(0) with vol(Bk+1 \ Bk(0)) ≤ Ck2 for some constant C > 0 independent
of k, we easily obtain

||∇ψk||22 =

ˆ
R3

|∇χk(x)|2

||χk||22
dx ≤ C

k
→ 0 as k →∞.
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4 The Guo-Lin operator

2)
´
|ϕ′(E(·, v))| dv ∈ L1 ∩ L∞(R3) yields

‖ψk‖2
|ϕ′| ≤ ||

ˆ
R3

|ϕ′(E(·, v))| dv||1 · ||ψk||2∞ → 0 as k →∞.

3) The convergence ‖Pψk‖|ϕ′| → 0 for k → ∞ follows directly from the con-
vergence of the second term together with Lemma 4.3.

Remarks:

a) One can even show that K0 is relatively (−∆)-compact, where ∆ is inter-
preted as the Laplacian on the space of spherically symmetric functions,
i.e., ∆: H2

r (R3)→ L2
r(R3). By Weyl’s theorem, we have

σess(A0) = σess(−∆) = [0,∞[.

The idea behind the sequence (ψk)k∈N from the proof above is that it is a
Weyl sequence for −∆ and 0. Therefore, by the relative compactness, it is
also a Weyl sequence for A0 and 0. We refer to [14] for all these rather
abstract results from spectral theory.

b) In our decreasing case, i.e., ϕ′ < 0 on ]−∞, E0[, we know a priori that
infψ∈H2

r (R3)\{0}〈A0ψ, ψ〉2 ≥ 0 by the instability criterion from the first part of
[9] and the well known non-existence of exponentially growing radial modes
for decreasing models like f0, see [5, 17]. Hence, we even obtain

inf
ψ∈H2

r (R3),‖ψ‖2 6=0

〈A0ψ, ψ〉2
||ψ||22

= 0.

c) The error in the proof in [9] is that the embedding Hk
r (R3) ⊂ L2

r(R3) is not
compact for any k ∈ N, see [6] for a counterexample. Also note that we can
not restrict ourselves to a bounded set, since the desired estimate will be
used on gravitational potentials in Chapter 5, which do not have a compact
support in general.

Theorem 4.6 illustrates that every norm containing the L2-norm, like ‖ · ‖H1(R3),
can not be considered to show the desired coercivity estimate. However, it turns
out that Ḣ1

r (R3) with its semi-norm ‖∇ · ‖2 is the right space for this result.
A first evidence for this is that the quadratic form associated with the Guo-Lin
operator is invariant under addition of a constant just like the semi-norm ‖∇ · ‖2

itself by Lemma 4.5.
Also note that Ḣ1

r (R3) is a very natural space for gravitational potentials of
smooth & spherically symmetric solutions of the Vlasov-Poisson system to be
part of, since their derivative is in L2(R3), but the function itself may not be
quadratically integrable over the whole space R3.
We therefore want to show the following:

46



4 The Guo-Lin operator

Theorem 4.7: Let

λ0 := inf
ψ∈Ḣ1

r (R3),‖∇ψ‖2 6=0

〈A0ψ, ψ〉2
‖∇ψ‖2

2

∈ R ∪ {−∞}.

Then λ0 > 0. In particular, for every ψ ∈ Ḣ1
r (R3) we have

〈A0ψ, ψ〉2 ≥ λ0‖∇ψ‖2
2.

We split the proof of this very important theorem into several parts. First, we
show that the infimum is obtained by a non-constant function. After that, we
will prove that the quadratic form of this minimizer does not vanish. It turns out
that the latter result relies on the Antonov coercivity bound [2] in an essential
way.

Proposition 4.8: At least one of the following statements is true:

(i) The infimum λ0 from Theorem 4.7 is obtained by a non-constant function,
i.e., there exists ψ0 ∈ Ḣ1

r (R3) such that ‖∇ψ0‖2 6= 0 and

〈A0ψ0, ψ0〉2
‖∇ψ0‖2

2

= λ0.

(ii) λ0 = 1.

Proof: We split the proof of this result into several steps:

1) An improved minimizing sequence:
Let (χk)k∈N ⊂ Ḣ1

r (R3) be a minimizing sequence for the infimum in The-
orem 4.7, i.e., ‖∇χk‖2 6= 0 for k ∈ N and

〈A0χk, χk〉2
‖∇χk‖2

2

→ λ0 as k →∞.

We will modify this minimizing sequence such that its integral over BR0(0)
vanishes and that it takes a constant value in the Ḣ1(R3) semi-norm, i.e.,
we consider the sequence (ψk)k∈N ⊂ Ḣ1

r (R3) given by

ψk :=
1

‖∇χk‖2

(
χk −

 
BR0

(0)

χk(x) dx

)
for k ∈ N, where

ffl
Ω

:= vol−1(Ω) ·
´

for suitable Ω ⊂ R3. As motivated

above, we clearly have ψk ∈ Ḣ1
r (R3),

´
BR0

(0)
ψk = 0 and ‖∇ψk‖2 = 1 for all

k ∈ N. Additionally, Lemma 4.5 implies

λ0 ←
〈A0χk, χk〉2
‖∇χk‖2

2

= 〈A0ψk, ψk〉2 = 1 + 4π
(
‖Pψk‖2

|ϕ′| − ‖ψk‖2
|ϕ′|
)
,

which means that (ψk)k∈N is still a minimizing sequence.
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2) Convergence of the sequence:
Since (‖∇ψk‖2)k∈N is bounded, we know that after extracting a subsequence,
again denoted by (ψk)k∈N, (∇ψk)k∈N is weakly convergent in L2(R3;R3) due
to the Banach-Alaoglu theorem, see [21]. Thanks to the compact embed-
ding from Lemma 2.8, this causes (ψk)k∈N to have a (strongly) convergent
subsequence in L2(BR0(0)).
However, to obtain the limit on the whole space R3 and show its spherical
symmetry, we have to iterate Lemma 2.8:

3) Coincidence of the limits and spherical symmetry:
Let χ ∈ L2(R3;R3) be such that ∇ψk ⇀ χ in L2(R3;R3) as k → ∞. Fur-
thermore, as stated above, there exists ψ1

0 ∈ L2(BR0(0)) and a subsequence
(ψ1

k)k∈N ⊂ (ψk)k∈N such that

ψ1
k → ψ1

0 in L2(BR0(0)) as k →∞.

For this limit we obtain ∇ψ1
0 = χ in D′(BR0(0)), i.e., as a weak derivative

with test functions in C∞c (BR0(0)). The latter is a direct consequence of the
two convergences. In addition, since the spherically symmetric subspace of
L2(BR0(0)) is closed due to the Fischer-Riesz theorem, we also obtain the
spherical symmetry of the limit, i.e., ψ1

0 ∈ L2
r(BR0(0)).

By applying Lemma 2.8 to B2R0(0) and a similar argumentation, we also
get the existence of ψ2

0 ∈ L2
r(B2R0(0)) and a subsequence (ψ2

k)k∈N ⊂ (ψ1
k)k∈N

such that

ψ2
k − C2

k → ψ2
0 in L2(B2R0(0)) as k →∞,

where C2
k :=

ffl
B2R0

(0)
ψ2
k(x) dx is needed for the sequence to satisfy the

conditions of Lemma 2.8. Note that the subtraction of C2
k does not affect

the ‖∇ · ‖2 semi-norm and therefore also not the ‖∇ · ‖2-boundedness of
the sequence. In the same way as above this yields ψ2

0 ∈ L2
r(B2R0(0)) and

∇ψ2
0 = χ in D′(B2R0(0)). In particular, ∇ψ1

0 = ∇ψ2
0 in D′(BR0(0)), which

implies that there exists a constant C2 ∈ R such that ψ1
0 = ψ2

0 +C2 a.e. on
BR0(0).
We can now define the desired (global) function as

ψ0 := ψ2
0 + C2 on B2R0(0).

Iterating this argument, we get a function ψ0 defined on the whole space R3

such that ψ0 = ψ1
0 a.e. on BR0(0), ψ0 ∈ L2

loc,r(R3) and ∇ψ0 = χ in D′(R3).

Altogether, ψ0 ∈ Ḣ1
r (R3) and, after extracting a subsequence of (ψk)k∈N

which shares its name with the original sequence,

ψk → ψ0 in L2(BR0(0)) and ∇ψk ⇀ ∇ψ0 in L2(R3;R3) as k →∞.
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4) The limit is non-constant:
Lemma 4.3 yields ψk → ψ0 and Pψk → Pψ0 in L2

|ϕ′|(Ω0), from which we
obtain

‖Pψk‖2
|ϕ′| − ‖ψk‖2

|ϕ′| → ‖Pψ0‖2
|ϕ′| − ‖ψ0‖2

|ϕ′| as k →∞

and subsequently

λ0 = 1 + 4π
(
‖Pψ0‖2

|ϕ′| − ‖ψ0‖2
|ϕ′|
)
.

Now there are two possible cases: If ‖Pψ0‖2
|ϕ′| = ‖ψ0‖2

|ϕ′|, we instantly get
λ0 = 1.
Otherwise we have ‖Pψ0‖2

|ϕ′| < ‖ψ0‖2
|ϕ′| by Lemma 4.3, which also leads to

‖∇ψ0‖2 > 0. To see the latter, let ψ̃0 := ψ0−
ffl
BR0

(0)
ψ0(x) dx, which clearly

satisfies
´
BR0

(0)
ψ̃0(x) dx = 0. Moreover, Lemma 4.5 yields

‖Pψ̃0‖2
|ϕ′| − ‖ψ̃0‖2

|ϕ′| = ‖Pψ0‖2
|ϕ′| − ‖ψ0‖2

|ϕ′| < 0,

and consequently

0 ≤ ‖Pψ̃0‖|ϕ′| < ‖ψ̃0‖|ϕ′| ≤ C‖ψ̃0‖L2(BR0
(0)) ≤ C‖∇ψ̃0‖2 = C‖∇ψ0‖2,

where we used Lemmata 2.6 and 4.3. Here, C may change with each in-
equality, but still depends only on the fixed steady state f0.

5) The infimum is obtained by the limit:
We even get ‖∇ψ0‖2 = 1 in the latter case. Indeed, ψ0 ∈ Ḣ1(R3) and
‖∇ψ0‖2 6= 0 lead to

1+4π
(
‖Pψ0‖2

|ϕ′| − ‖ψ0‖2
|ϕ′|
)

= λ0 ≤
〈A0ψ0, ψ0〉2
‖∇ψ0‖2

2

=

= 1 +
4π

‖∇ψ0‖2
2

(
‖Pψ0‖2

|ϕ′| − ‖ψ0‖2
|ϕ′|
)

by definition of the infimum λ0. This shows ‖∇ψ0‖2 ≥ 1. On the other
hand, the weak lower semicontinuity of ‖ · ‖2 (cf. [21]) yields

‖∇ψ0‖2 ≤ lim inf
k→∞

‖∇ψk‖2 = 1.

Thus, we finally obtain

λ0 = 1 + 4π
(
‖Pψ0‖2

|ϕ′| − ‖ψ0‖2
|ϕ′|
)

= 〈A0ψ0, ψ0〉2 =
〈A0ψ0, ψ0〉2
‖∇ψ0‖2

2

.
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Usually in proofs like the one above, one of the hardest steps is to show that the
limit of the minimizing sequence has non-vanishing norm, i.e., ‖∇ψ0‖2 6= 0 in
our situation. However, this has been done rather quickly, since ‖∇ · ‖2

2 is one
summand of the quadratic form and therefore a vanishing norm of the minimizer
would instantly imply λ0 > 0. Abstractly speaking, this can be interpreted as
the relative (−∆)-compactness of A0 discussed in the remark above, cf. [14].
Since the second statement from the proposition above would instantly prove
Theorem 4.7, we only have to consider the case where the first one is true. It
therefore remains to show that the operator (i.e., its quadratic form) is positive,
which means that for any ψ ∈ Ḣ1

r (R3) with ‖∇ψ‖2 6= 0 we have

〈A0ψ, ψ〉2 > 0.

This has been done in [19] in a quite similar situation. Nevertheless, we present
the required tools here as well.
Just like in [9], the positivity of the quadric form crucially relies on the coercivity
of the Antonov functional, which has first been shown by V. Antonov in [2]. We
therefore introduce this result:

Definition & Lemma 4.9: The Antonov functional (on smooth functions)
is given by

A : C1
c (Ω0)→ R, A(f) :=

1

2
‖f‖2

1
|ϕ′|
− 1

8π
‖∂xUf‖2

2,

where Uf := − 1
|·| ∗

´
R3 f(·, v) dv is the gravitational potential generated by f . Since

the gradient of potentials induced by smooth and compactly supported functions
is square integrable (see [21]), the expression above is well defined. Furthermore,
the following coercivity estimate holds true:
For all f ∈ C∞c,r(Ω0) odd in v, i.e., f(x, v) = −f(x,−v) for (x, v) ∈ Ω0, we have

A(Df) ≥ 1

2

ˆ
Ω0

1

|ϕ′(E(x, v))|
· ∂rU0(|x|)
|x|

· |f(x, v)|2 d(x, v),

where D is the transport operator from Definition 3.1 and ∂rU0 denotes the radial
derivative of the steady state potential.

We will not prove the “Antonov coercivity bound” here, but refer to [10] for a
detailed proof, where an even sharper estimate has been shown. A similar result
in the case where the steady state also depends on L can be found in [19].
We have now finally collected all the tools to prove Theorem 4.7:

Proof of Theorem 4.7: Suppose that the first statement from Proposition 4.8
holds true, otherwise we could immediately conclude Theorem 4.7. Thus, let
ψ0 ∈ Ḣ1

r (R3) be such that ‖∇ψ0‖2 = 1 and

λ0 = 〈A0ψ0, ψ0〉2 = 1 + 4π
(
‖Pψ0‖2

|ϕ′| − ‖ψ0‖2
|ϕ′|
)
.

It remains to show that 〈A0ψ0, ψ0〉2 > 0, which we do in several steps:
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1) Approximation:
By Lemma 4.3 we know that

(ϕ′ ◦ E) · (ψ0 − Pψ0) ∈ ker(D)⊥,

where ⊥ works with respect to 〈·, ·〉 1
|ϕ′|

.

As a densely defined linear operator on the Hilbert space L2
1
|ϕ′| ,r

(Ω0), D
satisfies

ker(D∗)⊥ = im(D),

cf. [14]. Using the skew-adjointness of D from Theorem 3.18, we therefore
obtain

(ϕ′ ◦ E) · (ψ0 − Pψ0) ∈ ker(D)⊥ = im(D).

We can not stress the importance of the latter statement enough. Note that
we used the explicit characterisation of ker(D) from Theorem 3.21 to show
(ϕ′ ◦ E) · (ψ0 − Pψ0) ∈ ker(D)⊥ and Theorem 3.18 to conclude D∗ = −D.
In fact, this result is the main reason why we went on the effortful journey
of defining D in a weak sense and investigating its properties in Chapter 3.
Clearly, since (ψ0 − Pψ0) depends only on r, E and L, we also know that
(ϕ′◦E)·(ψ0−Pψ0) is even in v a.e. on Ω0, i.e., (ϕ′◦E)·(ψ0−Pψ0)(x,−v) =
(ϕ′ ◦ E) · (ψ0 − Pψ0)(x, v) for a.e. (x, v) ∈ Ω0.

2) Improving the approximation sequence:
From the first step of this proof we obtain the existence of a sequence
(hk)k∈N ⊂ D(D) such that Dhk → (ϕ′ ◦ E) · (ψ0 − Pψ0) in L2

1
|ϕ′|

(Ω0) as

k → ∞. By applying Theorem 3.15, we even get a sequence of smooth
functions (fk)k∈N ⊂ C∞c,r(Ω0) such that Dfk → (ϕ′ ◦ E) · (ψ0 − Pψ0) in
L2

1
|ϕ′|

(Ω0) as k →∞.

Corollary 3.17 shows that D reverses v-parity. We therefore want to use
the fact that (ϕ′ ◦E) · (ψ0−Pψ0) is even in v to improve the approximation
sequence even more:
For k ∈ N and (x, v) ∈ Ω0 we set

Fk(x, v) :=
1

2
(fk(x, v)− fk(x,−v)) .

Obviously, Fk ∈ C∞c,r(Ω0) is odd in v for each k ∈ N. An easy computation
yields D [fk(·,−·)] (x, v) = −Dfk(x,−v) for (x, v) ∈ Ω0 and k ∈ N, where
fk(·,−·) := [Ω0 3 (x, v) 7→ fk(x,−v)]. Since the limit (ϕ′ ◦ E) · (ψ0 − Pψ0)
is even in v a.e. on Ω0, we also obtain

DFk → (ϕ′ ◦ E) · (ψ0 − Pψ0) in L2
1
|ϕ′|

(Ω0) as k →∞.

51



4 The Guo-Lin operator

3) The connection between λ0 and the Antonov functional:
Using the approximation sequence from the second step, we arrive at

λ0 = 〈A0ψ0, ψ0〉2 = 1 + 4π
(
‖Pψ0‖2

|ϕ′| − ‖ψ0‖2
|ϕ′|
)

=

= 1 + 4π‖ψ0 − Pψ0‖2
|ϕ′| − 8π〈ψ0 − Pψ0, ψ0〉|ϕ′| =

= 1 + 4π‖(ϕ′ ◦ E) · (ψ0 − Pψ0)‖2
1
|ϕ′|

+

− 8π〈(ϕ′ ◦ E) · (ψ0 − Pψ0), (ϕ′ ◦ E) · ψ0〉 1
|ϕ′|

=

= lim
k→∞

(
1 + 4π‖DFk‖2

1
|ϕ′|
− 8π〈DFk, (ϕ′ ◦ E) · ψ0〉 1

|ϕ′|

)
.

For k ∈ N let UDFk
:= − 1

|·| ∗
´
R3 DFk(·, v) dv denote the gravitational po-

tential induced by DFk. Since DFk ∈ C1
c (Ω0), it follows from basic poten-

tial theory that UDFk
∈ C2(R3) with ∇UDFk

∈ L2(R3;R3) and ∆UDFk
=

4π
´
R3 DFk(·, v) dv, cf. [21]. Thus

−8π〈DFk, (ϕ′ ◦ E) · ψ0〉 1
|ϕ′|

= 8π〈DFk, ψ0〉2 =

= 8π

ˆ
R3

ψ0(x)

ˆ
R3

DFk(x, v) dv dx = 2

ˆ
R3

ψ0(x) ·∆UDFk
(x) dx =

= −2

ˆ
R3

∇ψ0(x) · ∇UDFk
(x) dx ≥ −2‖∇ψ0‖2 · ‖∇UDFk

‖2 ≥

≥ −
(
‖∇ψ0‖2

2 + ‖∇UDFk
‖2

2

)
= −

(
1 + ‖∇UDFk

‖2
2

)
for every k ∈ N, where we used the inequalities of Cauchy-Schwarz and
Cauchy.
Admittedly, one step in the computation above has not been justified yet,
namely the integration by parts

ˆ
R3

ψ0(x) ·∆UDFk
(x) dx = −

ˆ
R3

∇ψ0(x) · ∇UDFk
(x) dx.

Indeed, ψ0 ∈ L2
loc(R3), ∆UDFk

∈ Cc(R3) and ∇ψ0,∇UDFk
∈ L2(R3;R3),

which means that both integrals exist. Since ψ0 ∈ Ḣ1(R3), it seems very
convincing that this formula holds true. However, potentials of general com-
pactly supported smooth functions do not need to have a compact support,
i.e., they are not in the class of test functions used for weak derivatives.
Moreover, any attempt of cutting off the functions involved fails due to the
fact that ψ0 itself does not have to be square integrable over the whole space
R3. In fact, we need an additional property of potentials induced by the
images of the transport operator D. To give this property its well deserved
appreciation, we will justify the integration by parts formula at the very
end of this proof.
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4 The Guo-Lin operator

Inserting the estimate from above into the equation for λ0, we now obtain

λ0 = lim
k→∞

(
1 + 4π‖DFk‖2

1
|ϕ′|
− 8π〈DFk, (ϕ′ ◦ E) · ψ0〉 1

|ϕ′|

)
≥

≥ lim sup
k→∞

(
4π‖DFk‖2

1
|ϕ′|
− ‖∇UDFk

‖2
2

)
= 8π lim sup

k→∞
A(DFk),

where A is the Antonov functional known from Definition & Lemma 4.9.

4) Conclusion by Antonov’s coercivity bound:
The Antonov coercivity bound from Definition & Lemma 4.9 yields

λ0 ≥ 4π lim sup
k→∞

ˆ
Ω0

1

|ϕ′(E(x, v))|
· ∂rU0(|x|)
|x|

· |Fk(x, v)|2 d(x, v).

In particular λ0 ≥ 0, since ∂rU0 ≥ 0 on [0,∞[ by Remark 2.3.
Now suppose λ0 = 0. Once again using the coercivity bound, this would
lead to

lim
k→∞

ˆ
Ω0

1

|ϕ′(E(x, v))|
· ∂rU0(|x|)
|x|

· |Fk(x, v)|2 d(x, v) = 0.

Let ξ ∈ C1
c,r(Ω0) be a test function whose support is bounded away from

{x = 0}, i.e., supp(ξ) ⊂ Ω0 \ ({0} × R3). Then

〈ξ, (ϕ′ ◦ E) · (ψ0 − Pψ0)〉 1
|ϕ′|

= lim
k→∞
〈ξ,DFk〉 1

|ϕ′|
= − lim

k→∞
〈Dξ, Fk〉 1

|ϕ′|

by Lemma 3.2. Indeed, by applying the Cauchy-Schwarz inequality we even
obtain

0 ≤ |〈ξ, (ϕ′ ◦ E) · (ψ0 − Pψ0)〉 1
|ϕ′|
| = lim

k→∞
|〈Dξ, Fk〉 1

|ϕ′|
| ≤

≤ ‖Dξ‖ 1
|ϕ′|

lim
k→∞

(ˆ
supp(ξ)

1

|ϕ′(E(x, v))|
|Fk(x, v)|2 d(x, v)

) 1
2

.

Since ∂rU0(r) = m0(r)
r2

> 0 for r > 0 in our case of an isotropic model, there
exists a constant c > 0 depending on the test function ξ such that

∂rU0(|x|)
|x|

≥ c for (x, v) ∈ supp(ξ).

Using the Antonov coercivity inequality, we therefore conclude

〈ξ, (ϕ′ ◦ E) · (ψ0 − Pψ0)〉 1
|ϕ′|

= 0 for all ξ ∈ C1
c,r(Ω0 \ ({0} × R3)).

Since ψ0 − Pψ0 is spherically symmetric on Ω0 just like the test function,
changing to (r, w, L)-coordinates and the Du Bois-Reymond theorem yield
ψ0 − Pψ0 = 0 a.e. on Ω0. However, similar to Proposition 4.8, this imme-
diately leads to λ0 = 1, which is the desired contradiction.
We have therefore shown λ0 > 0.
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4 The Guo-Lin operator

5) Justification of the integration by parts:
Let k ∈ N be fixed and ρDFk

:=
´
R3 DFk(·, v) dv ∈ C1

c (R3) be the spatial
density induced by DFk. Then ρDFk

has vanishing mass, i.e.,

ˆ
R3

ρDFk
(x) dx =

ˆ
R3

ˆ
R3

[v · ∂xFk(x, v)− ∂xU0(x) · ∂vFk(x, v)] dv dx = 0,

where we integrated by parts to get

ˆ
R3

v · ∂xFk(x, v) dx = v ·
ˆ
BR0

(0)

∂xFk(x, v) dx = 0 for v ∈ R3,

ˆ
R3

∂xU0(x) · ∂vFk(x, v) dv = ∂xU0(x) ·
ˆ
BP0

(0)

∂vFk(x, v) dv = 0 for x ∈ R3.

In addition, DFk inherits the spherical symmetry of Fk by Lemma 3.3.
Consequently, ρDFk

and the potential UDFk
are spherically symmetric on R3

as well. By using the radial Poisson equation for UDFk
similar to Remark 2.3,

we therefore obtain

∇UDFk
(x) =

x

|x|3
·
ˆ
B|x|(0)

ρDFk
(y) dy for x ∈ R3 \ {0},

in particular ∇UDFk
(x) = 0 if |x| ≥ R0. Thus, ∇UDFk

∈ C1
c (R3;R3), which

means that in both sides of the integration by parts formula in question we
can restrict ourselves to an open & bounded set Ω ⊂ R3, where we know
that ψ0 ∈ H1(Ω). This verifies the integration by parts and concludes the
proof of Theorem 4.7.

4.3 Finite dimensional approximation
It turns out that we do not need the coercivity of the whole Guo-Lin operator for
the stability result in Chapter 5, but the one of a finite dimensional approximation
of the operator. In this section we therefore want to approximate the Guo-Lin
operatorA0 by replacing the projection P with a finite sum. We prove a coercivity
result similar to Theorem 4.7 for this approximation as well.
To approximate the projection P finite dimensionally, we need an orthonormal
basis of the projection space of P , i.e., the space of functions depending only on
the particle energy and the modulus of the angular momentum squared:

Definition & Lemma 4.10: There exists an orthonormal basis (bk)k∈N ⊂ C1
r (Ω0)

of

κD := {f ∈ L2
|ϕ′|,r(Ω0) | |ϕ′ ◦ E| · f ∈ ker(D)}
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4 The Guo-Lin operator

with respect to the scalar product 〈·, ·〉|ϕ′|, i.e., bk ∈ κD, 〈bk, bl〉|ϕ′| = δlk for k, l ∈ N
and for all f ∈ κD we have

n∑
k=1

〈f, bk〉|ϕ′|bk → f in L2
|ϕ′|(Ω0) as n→∞.

In addition, we may choose b1 to be constant on Ω0.
Note that as a closed linear subspace of L2

|ϕ′|,r(Ω0), κD is a Hilbert space with

the same scalar product as well. Furthermore, C1
r (Ω0) ⊂ L2

|ϕ′|,r(Ω0) due to the
boundedness of ϕ′ and Ω0.

Proof: As a separable Hilbert space, κD has an orthonormal basis, see [13]. It
remains to show that this orthonormal basis can be chosen to contain only smooth
functions as claimed:
For this sake, we have to work in the transformed (E,L)-space. Let

ΩEL
0 :={(E(x, v), L(x, v)) | (x, v) ∈ Ω0, x× v 6= 0} =

={(E(r, w, L), L) | r, L > 0, w ∈ R with E(r, w, L) < E0}

denote the image of Ω0 under the mapping (E,L). To investigate the shape of
ΩEL

0 , note that E(r, w, L) = 1
2
w2 +ψL(r) ≥ ψL(rL) = E(rL, 0, L) for r > 0, w ∈ R

and L > 0 by Theorem 2.4. Thus,

ΩEL
0 =

⋃
L>0

[ψL(rL), E0[×{L},

where [ψL(rL), E0[:= ∅ if ψL(rL) ≥ E0 for some L > 0. Since ]0,∞[3 L 7→
ψL(rL) ∈ R is continuously differentiable by Theorem 2.4, we therefore obtain
the measurability of ΩEL

0 ⊂ R2 and that the boundary of ΩEL
0 is a set of measure

zero in R2.
Now, consider the weighted two-dimensional L2 space

L2
|ϕ′|T (ΩEL

0 ) := {g : ΩEL
0 → R measurable | ‖g‖|ϕ′|T <∞},

where

‖g‖2
|ϕ′|T := 4π2

ˆ
ΩEL

0

|ϕ′(E)| · T (E,L) · g(E,L) d(E,L)

and T is known from Definition & Remark 3.19 and is well defined on ΩEL
0 . Then

L2
|ϕ′|T (ΩEL

0 ) = L2
|ϕ′|T (int(ΩEL

0 )) has a dense and countable subset containing only

smooth & compactly supported functions, i.e., there exists a sequence (χk)k∈N ⊂
C∞c (int(ΩEL

0 )) such that {χk | k ∈ N} ⊂ L2
|ϕ′|T (ΩEL

0 ) is dense with respect to

‖ · ‖|ϕ′|T , where int(ΩEL
0 ) denotes the interior of ΩEL

0 . Since κD ∼= L2
|ϕ′|T (ΩEL

0 ) by

changing variables, we obtain the density of {ξk | k ∈ N} in κD with respect to
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4 The Guo-Lin operator

‖ · ‖|ϕ′| if we set ξk(x, v) := χk(E(x, v), L(x, v)) for (x, v) ∈ Ω0 and k ∈ N.
Moreover, ξk ∈ C1

c (Ω0) for k ∈ N due to the smoothness and support prop-
erties of χk. From this countable dense subset we can explicitly construct an
orthonormal basis of κD using the Gram-Schmidt orthonormalisation process,
see [13]. The resulting basis functions are linear combinations of elements of the
sequence (ξk)k∈N, which means they inherit the smoothness of (ξk)k∈N. Starting
the orthonormalisation process with a constant function completes the proof.

In the following, we will work with one fixed orthonormal basis (bk)k∈N satisfying
the properties from above. Since such a basis is far from unique, all the following
definitions depend on this choice. However, the results we will prove hold true
for every basis.
Also note that, different to Guo & Lin in [9], our orthonormal basis is not sep-
arated in (E,L). Indeed, even finding a separated orthonormal sequence is not
as straight forward as one might think, due to the non-separated weight T (E,L)
appearing in the transformed integrals. However, for the application in Chapter 5
it is not needed for the orthonormal basis to have this property.
We will now define the approximated version of P and prove that it really ap-
proximates P :

Definition & Lemma 4.11: For n ∈ N let

Pn : L2
|ϕ′|,r(Ω0)→ L2

|ϕ′|,r(Ω0), Pnf :=
n∑
k=1

〈f, bk〉|ϕ′|bk.

Obviously, Pn is a well defined, linear & continuous operator on L2
|ϕ′|,r(Ω0). Fur-

thermore, for each ψ ∈ Ḣ1
r (R3) we have

Pnψ → Pψ in L2
|ϕ′|(Ω0) as n→∞,

where P is known from Definition 4.2.

Proof: To show the claimed convergence, we first extend P on the whole space
L2
|ϕ′|,r(Ω0) similar to Definition & Remark 3.20, i.e., let P1 : L2

|ϕ′|,r(Ω0)→ L2
|ϕ′|,r(Ω0)

be defined by

P1f(x, v) :=

ˆ 1

0

f r((R,W )(t · T (E,L), r−(E,L), 0, L), L) dt =

=
1

T (E,L)

ˆ r+(E,L)

r−(E,L)

f r(r,
√

2E − 2ψL(r), L) + f r(r,−
√

2E − 2ψL(r), L)√
2E − 2ψL(r)

dr

for a.e. (x, v) ∈ Ω0, where we used the abbreviations E = E(x, v) and L = L(x, v).
In addition, let

P2 : L2
|ϕ′|,r(Ω0)→ L2

|ϕ′|,r(Ω0), P2f := lim
n→∞

Pnf =
∞∑
k=1

〈f, bk〉|ϕ′|bk,
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4 The Guo-Lin operator

where the limit is taken with respect to ‖ · ‖|ϕ′|. Since (bk)k∈N is an orthonormal
sequence, P2 is well defined by Bessel’s inequality (cf. [13]).
It now remains to verify that P1 and P2 are both orthogonal projections onto
the closed subspace κD of L2

|ϕ′|,r(Ω0), i.e.,

P iP i = P i = (P i)∗ and im(P i) = κD

for i = 1, 2, since these orthogonal projections are unique, see [14].
That P1 is an orthogonal projection can be shown completely analogously to
Definition & Remark 3.20. The respective statement for P2 follows quite easily
by the properties of the orthonormal basis (bk)k∈N, see [13].

We now also define an approximation of the Guo-Lin operator as well by replacing
the projection P with its approximated form Pn:

Definition 4.12: For fixed n ∈ N let

Kn : L2
r(R3)→ L2

r(R3),

ψ 7→ 4π

ˆ
R3

|ϕ′(E(·, v))| · Pnψ(·, v) dv − 4π

ˆ
R3

|ϕ′(E(·, v))| dv · ψ

and

An : H2
r (R3)→ L2

r(R3), An := −∆ +Kn.

Similar to Definition 4.4, Kn and An are well defined and we set

〈Anψ, ψ〉2 :=‖∇ψ‖2
2 + 4π

(
‖Pnψ‖2

|ϕ′| − ‖ψ‖2
|ϕ′|
)

=

=‖∇ψ‖2
2 − 4π‖ψ − Pnψ‖2

|ϕ′|

for each ψ ∈ Ḣ1
r (R3). For the latter equality we used the projection properties of

Pn.

We now present the reason why we want b1 from Definition & Lemma 4.10 to be
constant on Ω0. In fact, this property provides a similar result to Lemma 4.5 for
the approximation as well:

Lemma 4.13: For any n ∈ N, ψ ∈ Ḣ1
r (R3) and C ∈ R we have

〈An(ψ + C), ψ + C〉2 = 〈Anψ, ψ〉2.

Proof: Clearly, ∇(ψ + C) = ∇ψ. Moreover, bk ⊥|ϕ′| b1 for k ≥ 2 by definition,
and since b1 was chosen to be constant on Ω0, we have

PnC =
n∑
k=1

〈C, bk〉|ϕ′|bk = 〈C, b1〉|ϕ′|b1 = C on Ω0.

Thus, 〈Pnψ,C〉|ϕ′| = 〈ψ,PnC〉|ϕ′| = 〈ψ,C〉|ϕ′| by the symmetry of Pn and

〈Kn(ψ + C), (ψ + C)〉2 = 4π
(
‖Pn(ψ + C)‖2

|ϕ′| − ‖ψ + C‖2
|ϕ′|
)

=

= 4π
(
‖Pnψ‖2

|ϕ′| − ‖ψ‖2
|ϕ′|
)

= 〈Knψ, ψ〉2.
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4 The Guo-Lin operator

Then, for n ∈ N large enough, we can obtain a similar coercivity result like the
one from Section 4.2. We prove this by reducing it to Theorem 4.7 using related
techniques like for the proof of Proposition 4.8.

Theorem 4.14: For n ∈ N let

λn := inf
ψ∈Ḣ1

r (R3),‖∇ψ‖2 6=0

〈Anψ, ψ〉2
‖∇ψ‖2

2

∈ R ∪ {−∞}.

Then λn → λ0 as n → ∞. In particular, since λ0 > 0 by Theorem 4.7, there
exists n0 ∈ N such that λn ≥ λ0

2
for n ≥ n0, i.e.,

〈Anψ, ψ〉2 ≥
λ0

2
‖∇ψ‖2

2

for all ψ ∈ Ḣ1
r (R3) and n ≥ n0.

Proof: First note that for each n ∈ N and ψ ∈ Ḣ1
r (R3) we have

‖Pnψ‖2
|ϕ′| =

n∑
k=1

|〈ψ, bk〉|ϕ′||2 ≤
∞∑
k=1

|〈ψ, bk〉|ϕ′||2 = ‖Pψ‖2
|ϕ′|

by the Pythagorean theorem and Definition & Lemma 4.11. Thus

〈Anψ, ψ〉2 = ‖∇ψ‖2
2 + 4π‖Pnψ‖2

|ϕ′| − 4π‖ψ‖2
|ϕ′| ≤

≤ ‖∇ψ‖2
2 + 4π‖Pψ‖2

|ϕ′| − 4π‖ψ‖2
|ϕ′| = 〈A0ψ, ψ〉2.

In particular, this means λn ≤ λ0 for all n ∈ N.
Now suppose that λn 6→ λ0 as n→∞, i.e., there exists 0 < ε < λ0, an increasing
sequence (nk)k∈N ⊂ N as well as (χk)k∈N ⊂ Ḣ1

r (R3) such that ‖∇χk‖2 6= 0 and

〈Ank
χk, χk〉2

‖∇χk‖2
2

≤ λ0 − ε for k ∈ N.

Just like in the first step of the proof of Proposition 4.8, we “improve” this
sequence by setting

ψk :=
1

‖∇χk‖2

(
χk −

 
BR0

(0)

χk(x) dx

)

for k ∈ N. Then ψk ∈ Ḣ1
r (R3),

´
BR0

(0)
ψk(x) dx = 0 and ‖∇ψk‖2 = 1 for any

k ∈ N. In addition, Lemma 4.13 implies

λ0 − ε ≥
〈Ank

χk, χk〉2
‖∇χk‖2

2

= 〈Ank
ψk, ψk〉2 = 1 + 4π

(
‖Pnk

ψk‖2
|ϕ′| − ‖ψk‖2

|ϕ′|
)
.
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Similar to Proposition 4.8, we now obtain the existence of ψ0 ∈ Ḣ1
r (R3) such that

ψk → ψ0 in L2(BR0(0)) and ∇ψk ⇀ ∇ψ0 in L2(R3;R3) as k →∞

by the Banach-Alaoglu theorem and the compact embedding from Lemma 2.8,
where we passed to a subsequence. Due to Lemma 4.3 and the minimizing prop-
erty of λ0, we therefore obtain

λ0 ≤ lim
k→∞

〈A0ψk, ψk〉2
‖∇ψk‖2

2

= lim
k→∞

(
1 + 4π‖Pψk‖2

|ϕ′| − 4π‖ψk‖2
|ϕ′|
)

=

=
(
1 + 4π‖Pψ0‖2

|ϕ′| − 4π‖ψ0‖2
|ϕ′|
)

= 1 + 〈K0ψ0, ψ0〉2.

In addition, we have 〈Knk
ψk, ψk〉2 → 〈K0ψ0, ψ0〉2 as k → ∞. To see the latter,

we split into several terms to arrive at

|〈Knk
ψk,ψk〉2 − 〈K0ψ0, ψ0〉2| ≤ |〈Knk

(ψk − ψ0), ψk − ψ0〉2|+
+ |〈Knk

ψ0, ψk − ψ0〉2|+ |〈Knk
(ψk − ψ0), ψ0〉2|+ |〈Knk

ψ0 −K0ψ0, ψ0〉2|.

We now estimate each addend after the other to show the desired convergence:

1) Since ‖Pnk
(ψk − ψ0)‖2

|ϕ′| ≤ ‖P(ψk − ψ0)‖2
|ϕ′| ≤ ‖ψk − ψ0‖2

|ϕ′| by Lemma 4.3
and the Pythagorean theorem, we obtain

|〈Knk
(ψk − ψ0),ψk − ψ0〉2| ≤ 4π‖Pnk

(ψk − ψ0)‖2
|ϕ′| + 4π‖ψk − ψ0‖2

|ϕ′| ≤
≤ 8π‖ψk − ψ0‖2

|ϕ′| → 0 as k →∞.

2) Definition & Lemma 4.11 yields Pnk
ψ0 → Pψ0 in L2

|ϕ′|(Ω0) and thus

|〈Knk
ψ0, ψk − ψ0〉2| ≤ 4π|〈Pnk

ψ0, ψk − ψ0〉|ϕ′||+ 4π|〈ψ0, ψk − ψ0〉|ϕ′|| → 0.

3) Since Pnk
is symmetric on L2

|ϕ′|,r(Ω0), Knk
is symmetric as well. Therefore,

|〈Knk
(ψk − ψ0), ψ0〉2| = |〈ψk − ψ0,Knk

ψ0〉2| → 0 as k →∞

just like the second term.

4) Knk
ψ0 → K0ψ0 in L2

|ϕ′|(Ω0) as k →∞ by Definition & Lemma 4.11.

Overall we conclude

λ0 ≤ 1 + 〈K0ψ0, ψ0〉2 = 1 + lim
k→∞
〈Knk

ψk, ψk〉2 = lim
k→∞

〈Ank
ψk, ψk〉2
‖∇ψk‖2

2

≤ λ0 − ε,

which is the desired contradiction and therefore completes the proof of The-
orem 4.14.
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5 Stability of the King model
In this chapter we use the tools collected in the Chapters 3 and 4 to prove a
non-linear stability result for the King model. This approach, in particular all
the estimates in Sections 5.2 and 5.3, are extracted from the second part of [9],
where a coercivity estimate similar to Theorem 4.14 is used to establish non-
linear stability as well. We also want to refer to [19], where the stability of a
non-isotropic model has been shown by related techniques.
Therefore, let f0 = ϕ ◦ E be a fixed isotropic state of the Vlasov-Poisson system
in the sense of Definition 2.2 throughout this whole chapter. In addition, we
require ϕ to be of the form

ϕ(E) =
(
eE0−E − 1

)
+
, E ∈ R

for some fixed negative cut-off energy E0 < 0, i.e., f0 is a King model. Again, we
refer to [23, 28] for the existence theory of these models.
Note that ϕ′(E) = −eE0−E for E < E0, in particular, ϕ′ < 0 on ] −∞, E0[ and
ϕ′ is bounded on intervals of the form [η, E0[ for η < E0. This means that the
fixed steady state f0 satisfies all the general conditions from Chapters 3 and 4.
Similar to the previous chapters, let

Ω0 := {(x, v) ∈ R3 × R3 | f0(x, v) 6= 0} = {(x, v) ∈ R3 × R3 | E(x, v) < E0}

denote the set where f0 does not vanish. Moreover, we need the Casimir function
corresponding to the King model, which is given by

Φ(f) := (1 + f) ln(1 + f)− f, f > −1.

We refer to [10, 27] for a detailed motivation as well as the properties and im-
portance of this Casimir function. However, we immediately want to note that
Φ′(f) = ln(1 + f) for f > −1, which leads to

Φ′(f0(x, v)) = E0 − E(x, v) for (x, v) ∈ Ω0.

Furthermore, Φ is a non-negative & convex function on [0,∞[.

5.1 Statement of the stability result
In this section we want to present the desired stability result and introduce all
the required quantities and notations.
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5 Stability of the King model

Theorem 5.1 (Non-linear stability of the King model):
Let f0 =

(
eE0−E − 1

)
+

be a steady state as specified above.
Then, for every S > 0 there exists C > 0 such that for every spherically symmet-
ric, non-negative initial data f̊ ∈ C1

c (R3 × R3) with

‖f̊‖∞ ≤ S and d(f̊ , f0) <
1

C
,

the unique global & classical solution f : [0,∞[×R3 ×R3 → [0,∞[ of the Vlasov-
Poisson system launched by f̊ = f(0) satisfies

d(f(t), f0) ≤ C · d(f̊ , f0)

for all t ≥ 0.
Here, d is a distance measure adapted to the problem and is defined in Defini-
tion 5.3.

The aim of this whole chapter is to prove Theorem 5.1. Therefore, if not stated
explicitly otherwise, let f̊ ∈ C1

c (R3 × R3) be some fixed spherically symmetric,
non-negative initial data. Let S > 0 be a bound for the L∞-norm of f̊ just like
in Theorem 5.1, i.e., S ≥ ‖f̊‖∞.
In addition, let f : [0,∞[×R3 × R3 → [0,∞[ be the unique global & classical
solution of the Vlasov-Poisson system satisfying the initial condition f(0) = f̊ .
Then f(t) ∈ C1

c (R3×R3) is spherically symmetric and non-negative for all t ≥ 0
as well, see [27].
Before getting to the proof of Theorem 5.1 in the next sections, we first have to
introduce some notations.

Definition 5.2: Let F ∈ Cc(R3 × R3) be a non-negative function. As usual, let

Ekin(F ) :=
1

2

ˆ
R3

ˆ
R3

|v|2F (x, v) dx dv

be the kinetic energy,

Epot(F ) := − 1

8π

ˆ
R3

|∂xUF (x)|2 dx

the potential energy and

H(F ) := Ekin(F ) + Epot(F ) =
1

2

ˆ
R3

ˆ
R3

|v|2F (x, v) dx dv − 1

8π

ˆ
R3

|∂xUF (x)|2 dx

the total energy. Here, UF := − 1
|·| ∗

´
R3 F (·, v) dv denotes the gravitational

potential induced by F . By basic potential theory (cf. [21]), we know that UF ∈
C1(R3) and ∂xUF ∈ L2(R3;R3), i.e., Epot is well defined. In addition, let

C(F ) :=

ˆ
R3

ˆ
R3

Φ(F (x, v)) dx dv =

=

ˆ
R3

ˆ
R3

(1 + F (x, v)) · ln(1 + F (x, v))− F (x, v) dx dv

61



5 Stability of the King model

be the Casimir functional induced by the King model. Also, let

M(F ) :=

ˆ
R3

ˆ
R3

F (x, v) dx dv

denote the total mass of F . Then the sum

HC,M (F ) := H(F ) + C(F )− E0 ·M(F )

is called the energy-Casimir-mass-functional. Note that all these quantities
could be defined on a much large class of functions, which we do not need here.

Since the fixed steady state f0 is not infinitely smooth at the boundary {E = E0}
of its support, it turns out to be very useful to treat f−f0 on Ω0 and R3×R3\Ω0

separately. We will therefore use the following abbreviations:

g : [0,∞[×R3 × R3 → R, g(t, x, v) := f(t, x, v)− f0(x, v),

gin := g · 1Ω0 = (f − f0) · 1Ω0 , gout := g · 1R3×R3\Ω0
= f · 1R3×R3\Ω0

and

ψ : [0,∞[×R3 → R, ψ(t, x) := Ug(t, x) := Ug(t)(x) = Uf(t)(x)− U0(x),

ψin := Ugin , ψout := Ugout .

Obviously, we have g = gin + gout and ψ = ψin + ψout. Note that the potential is
linear in its generating function.
As motivated above, we now want to measure the distance between the steady
state f0 and f(t) for a fixed time t ≥ 0. For this sake, we first use a Taylor
expansion of the energy-Casimir-mass functional at f0 similar to [27] to obtain

HC,M(f(t))−HC,M(f0) =

ˆ
R3

ˆ
R3

Φ(f(t, x, v))− Φ(f0(x, v)) dx dv+

+

ˆ
R3

ˆ
R3

(E(x, v)− E0) · (f(t, x, v)− f0(x, v)) dx dv+

− 1

8π

ˆ
R3

|∂xUf (t, x)− ∂xU0(x)|2 dx

for all t ≥ 0. Here, we integrated by parts and used the Poisson equation to get

ˆ
R3

(
∂xUf (t, x)− ∂xU0(x)

)
· ∂xU0(x) dx = −4π

ˆ
R3

ˆ
R3

g(t, x, v) · U0(x) dx dv,

note that Uf (t), U0 ∈ C2(R3) and that all boundary terms vanish due to the linear
decay of U0 and the quadratic decay of ∂xUg(t) at spatial infinity.
This leads to the following:
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5 Stability of the King model

Definition 5.3: For fixed t ≥ 0 we define the distance between the steady state
f0 and f(t) as follows:

d(t) := d(f(t), f0) :=

ˆ
R3

ˆ
R3

Φ(f(t, x, v))− Φ(f0(x, v)) dx dv+

+

ˆ
R3

ˆ
R3

(E(x, v)− E0) · g(t, x, v) dx dv+

+
1

8π

ˆ
R3

|∂xψin(t, x)|2 dx.

In addition, it is useful to split these integrals into their parts over Ω0 and its
complement. Therefore, let

din(t) := din(f(t), f0) :=

ˆ
Ω0

Φ(f0(x, v) + gin(t, x, v))− Φ(f0(x, v)) d(x, v)+

+

ˆ
Ω0

(E(x, v)− E0) · gin(t, x, v) d(x, v),

dout(t) := dout(f(t), f0) :=

ˆ
R3×R3\Ω0

Φ(gout(t, x, v)) d(x, v)+

+

ˆ
R3×R3\Ω0

(E(x, v)− E0) · gout(t, x, v) d(x, v).

Since f0 + gin(t) = f(t) on Ω0, we have

d(t) = din(t) +
1

8π

ˆ
R3

|∂xψin(t, x)|2 dx+ dout(t).

Admittedly, d does not look like a distance measure at first glance. In fact, it
is even unclear if d is non-negative. We will therefore justify the role of d as a
distance measure in the following remark similar to [27].

Remark 5.4: Let t ≥ 0 be a fixed time. Since Φ is convex on [0,∞[, we obtain

din(t) ≥
ˆ

Ω0

(Φ′(f0(x, v)) + E(x, v)− E0) · gin(t, x, v) d(x, v) = 0,

where we used Φ′(f0) = E0−E on Ω0 for the last equation. Moreover, since Φ is
actually strictly convex on [0,∞[, we also obtain that din(t) = 0 is only possible
if gin(t) = 0 on Ω0, i.e., f(t) = f0 on Ω0.
A similar computation yields

dout(t) ≥
ˆ
R3×R3\Ω0

(Φ′(0) + E(x, v)− E0) · gout(t, x, v) d(x, v) ≥ 0,

since Φ′(0) = 0, E − E0 ≥ 0 on R3 × R3 \ Ω0 and gout(t) ≥ 0. Analogously,
dout(t) = 0 is equivalent to gout(t) = f(t) = 0 = f0 on R3 × R3 \ Ω0.
Overall, we conclude d(t) ≥ 0 and that d(t) = 0 is equivalent to f(t) = f0 on the
whole space R3 × R3.
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5 Stability of the King model

We also want to note straight away that one could define the distance measure
differently, in particular when it comes to the question which part of the potential
to include into d. In fact, the analogous distance used for the stability results
in [10, 27] slightly differs from d. However, it turns out that a similar stability
result to the one from Theorem 5.1 holds true for this alternate distance. We
refer to Section 5.4, where we will discuss this matter in more detail.
We now introduce two last abbreviations:

Definition 5.5: For fixed t ≥ 0 let

Iin(t) := din(t)− 1

8π

ˆ
R3

|∂xψin(t, x)|2 dx,

Iout(t) := dout(t)−
1

8π

ˆ
R3

|∂xψout(t, x)|2 dx− 1

4π

ˆ
R3

∂xψin(t, x) · ∂xψout(t, x) dx.

Using the Taylor expansion of the energy-Casimir-mass functional from above,
we can now expressHC,M(f(t))−HC,M(f0) in terms of Iin(t) and Iout(t) as follows:

Remark 5.6: For every t ≥ 0 we have

HC,M(f(t))−HC,M(f0) = din(t)− 1

8π
‖∂xψ(t)‖2

2 + dout(t) =

= din(t)− 1

8π

(
‖∂xψin(t)‖2

2 + 2〈∂xψin(t), ∂xψout(t)〉2 + ‖∂xψout(t)‖2
2

)
+ dout(t) =

= Iin(t) + Iout(t).

In the following sections we will therefore separately estimate Iin(t) and Iout(t)
in terms of d(t) .

5.2 Estimating Iout

The target of this section is to estimate

Iout(t) = dout(t)−
1

8π

ˆ
R3

|∂xψout(t, x)|2 dx− 1

4π

ˆ
R3

∂xψin(t, x) · ∂xψout(t, x) dx

in terms of d(t) for t ≥ 0. We start with ‖∂xψout(t)‖2
2:

Lemma 5.7: There exists a constant C > 0, only depending on the steady state
f0 and S, such that for all t ≥ 0 and 0 < γ < min {−E0

2
, 1} we have

‖∂xψout(t)‖2
2 ≤ C ·

(
γ · dout(t) + γ−

5
3 · d

5
3
out(t)

)
.
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5 Stability of the King model

Proof: Let t ≥ 0 and 0 < γ < min {−E0

2
, 1} be arbitrary. First, a basic corollary

of the Hardy-Littlewood-Sobolev inequality (cf. [21]) yields

‖∂xψout(t)‖2
2 ≤ C · ‖

ˆ
R3

gout(t, ·, v) dv‖2
6
5
≤

≤ C ·
(
‖
ˆ
R3

gout(t, ·, v) · 1{E0≤E(·,v)≤E0+γ} dv‖2
6
5
+

+ ‖
ˆ
R3

gout(t, ·, v) · 1{E0+γ<E(·,v)} dv‖2
6
5

)
,

where we used gout(t) = gout(t)·(1{E0≤E≤E0+γ}+1{E0+γ<E}), the triangle inequality
and Cauchy’s inequality. Also note that for the sake of abbreviation, we allow
our constants C > 0 to change from line to line.
We now estimate both of these summands separately:

1) By applying Hölder’s inequality twice, we obtain

‖
ˆ
R3

gout(t, ·, v) · 1{E0≤E(·,v)≤E0+γ} dv‖2
6
5

=

=

(ˆ
R3

(ˆ
R3

gout(t, x, v) · 1{E0≤E(x,v)≤E0+γ} dv

) 6
5

dx

) 5
3

≤

≤
(ˆ

R3

‖gout(t, x, ·)‖
6
5
2 · ‖1{E0≤E(x,·)≤E0+γ}‖

6
5
2 dx

) 5
3

≤

≤
ˆ
R3

g2
out(t, x, v) dx dv ·

(ˆ
R3

vol
3
2 ({E0 ≤ E(x, ·) ≤ E0 + γ}) dx

) 2
3

.

In addition, for every a ∈ [0, S] the Taylor theorem yields the existence of
some α ∈ [0, a] such that

Φ(a) =
a2

2
Φ′′(α) =

a2

2

1

1 + α
≥ a2

2

1

1 + S
,

note Φ(0) = 0 = Φ′(0). Therefore, since 0 ≤ gout(t) ≤ ‖f(t)‖∞ = ‖f̊‖∞ ≤ S
by the Lp-norm preservation of the Vlasov-Poisson system (cf. [27]), we
arrive atˆ

R3

ˆ
R3

g2
out(t, x, v) dx dv ≤ C(S)

ˆ
R3

ˆ
R3

Φ(gout(t, x, v)) dx dv ≤

≤ C(S) · dout(t).

Next we have to identify the volume of the set

{E0 ≤ E(x, ·) ≤ E0 + γ} := {v ∈ R3 | E0 ≤ E(x, v) ≤ E0 + γ} ⊂ R3
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5 Stability of the King model

for fixed x ∈ R3, recall E(x, v) = 1
2
|v|2 + U0(x).

We only have to consider the case where vol({E0 ≤ E(x, ·) ≤ E0 + γ}) 6= 0,
which particularly implies U0(x) < E0

2
, since γ < −E0

2
. Also, due to the

boundary condition lim|y|→∞ U0(y) = 0, the set {U0 <
E0

2
} ⊂ R3 is bounded.

Furthermore, by applying the mean value theorem on a 7→ a
3
2 , we obtain

vol({E0 ≤ E(x, ·) ≤ E0 + γ}) =

= vol
(
{v ∈ R3 | 2(E0 − U0(x)) ≤ |v|2 ≤ 2(E0 + γ − U0(x))}

)
≤

≤ vol
(
{v ∈ R3 |

√
2(E0 − U0(x))+ ≤ |v| ≤

√
2(E0 − U0(x))+ + 2γ}

)
=

=
4π

3

(
(2(E0 − U0(x))+ + 2γ)

3
2 − (2(E0 − U0(x)))

3
2
+

)
≤

≤ 2π · 2γ ·
√

2(E0 − U0(x))+ + 2γ ≤ C(f0) · γ,

note that U0(0) ≤ U0 ≤ 0. We therefore conclude

(ˆ
R3

vol
3
2 ({E0 ≤ E(x, ·) ≤ E0 + γ}) dx

) 2
3

≤

(ˆ
{U0<

E0
2
}
C(f0) · γ

3
2 dx

) 2
3

≤

≤ C(f0) · γ.

2) First, interpolating L
6
5 by L1 and L

5
3 (cf. [7]) yields

‖
ˆ
R3

gout(t, ·, v) · 1{E0+γ<E(·,v)} dv‖2
6
5
≤

≤ ‖
ˆ
R3

gout(t, ·, v) · 1{E0+γ<E(·,v)} dv‖
7
6
1 ·

· ‖
ˆ
R3

gout(t, ·, v) · 1{E0+γ<E(·,v)} dv‖
5
6
5
3

.

Then, using the standard estimate

ˆ
R3

gout(t, x, v) · 1{E0+γ<E(x,v)} dv ≤

≤ C(S) ·
(ˆ

R3

|v|2 · gout(t, x, v) · 1{E0+γ<E(x,v)} dv

) 3
5

for x ∈ R3 (cf. [27]) and observing that

|v|2 = 2(E(x, v)− U0(x)) ≤ 2(E(x, v)− E0)− 2U0(0)
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5 Stability of the King model

for x, v ∈ R3, we obtain

‖
ˆ
R3

gout(t,·, v) · 1{E0+γ<E(·,v)} dv‖2
6
5
≤

≤ C(S) ·
(ˆ

R3

ˆ
R3

gout(t, x, v) · 1{E0+γ<E(x,v)} dx dv

) 7
6

·

·

(ˆ
R3

ˆ
R3

(E(x, v)− E0) · gout(t, x, v) · 1{E0+γ<E(x,v)} dx dv+

− U0(0)

ˆ
R3

ˆ
R3

gout(t, x, v) · 1{E0+γ<E(x,v)} dx dv

) 1
2

.

Since E−E0

γ
> 1 on {E0 + γ < E} and Φ ≥ 0 on [0,∞[, we conclude

‖
ˆ
R3

gout(t,·, v) · 1{E0+γ<E(·,v)} dv‖2
6
5
≤

≤ C(S) ·
(

1

γ
dout(t)

) 7
6

·
(
dout(t)−

1

γ
U0(0) · dout(t)

) 1
2

=

= C(S) · d
5
3
out(t) · γ−

7
6 ·
(

1− U0(0)

γ

) 1
2

≤

≤ C(S, f0) ·
(
γ−1 · dout(t)

) 5
3 .

Combining the inequalities for the two summands from above finishes the proof
of Lemma 5.7.

Lemma 5.7 together with the Cauchy-Schwarz inequality also yields the following
estimate for the mixed term 〈∂xψin(t), ∂xψout(t)〉2 of Iout(t):

Corollary 5.8: There exists a constant C > 0, only depending on the steady
state f0 and S, such that for all t ≥ 0 and 0 < γ < min {−E0

2
, 1} we have∣∣∣∣ˆ

R3

∂xψin(t, x) · ∂xψout(t, x) dx

∣∣∣∣ ≤ C ·
(
γ

1
2 · d(t) + γ−

5
6 · d

4
3 (t)
)
.

Proof: For arbitrary t ≥ 0 and 0 < γ < min {−E0

2
, 1} Lemma 5.7 yields∣∣∣ ˆ

R3

∂xψin(t, x) · ∂xψout(t, x) dx
∣∣∣ ≤ ‖∂xψin(t)‖2 · ‖∂xψout(t)‖2 ≤

≤
√

8π · d
1
2 (t) · C(f0, S) ·

√
γ · d(t) + γ−

5
3 · d 5

3 (t) ≤

≤ C(f0, S) ·
(
γ

1
2 · d(t) + γ−

5
6 · d

4
3 (t)
)
,

where we used the non-negativity of din and dout from Remark 5.4.
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Overall, by combining Lemma 5.7 and Corollary 5.8, we obtain the following
estimate for Iout(t):

Corollary 5.9: There exists a constant C > 0, only depending on the steady
state f0 and S, such that

Iout(t) ≥ dout(t)− C ·
(
γ

1
2 · d(t) + γ−

5
3 · d

5
3 (t) + γ−

5
6 · d

4
3 (t)
)
.

for all t ≥ 0 and 0 < γ < min {−E0

2
, 1}.

5.3 Estimating Iin

The target of this section is to estimate

Iin(t) = din(t)− 1

8π

ˆ
R3

|∂xψin(t, x)|2 dx

in terms of d(t) for t ≥ 0. To this end we split Iin(t) into three parts:

Definition 5.10: For fixed 0 < τ < 1 and t ≥ 0 let

Iτin,1(t) :=
τ

8π
‖∂xψin(t)‖2

2+

+ τ

ˆ
R3

ˆ
R3

(
Φ(f0(x, v) + gin(t, x, v))− Φ(f0(x, v))+

+ (E(x, v)− E0) · gin(t, x, v) + ψin(t, x) · gin(t, x, v)
)

dx dv,

Iτin,2(t) :=
1− τ

8π
‖∂xψin(t)‖2

2+

+ (1− τ)

ˆ
R3

ˆ
R3

(
Φ(f0(x, v) + gin(t, x, v))− Φ(f0(x, v))+

+ (E(x, v)− E0) · gin(t, x, v)+

+
(
ψin(t, x)− PN(ψin(t))(x, v)

)
· gin(t, x, v)

)
dx dv,

Iτin,3(t) := (1− τ)

ˆ
R3

ˆ
R3

PN(ψin(t))(x, v) · gin(t, x, v) dx dv.

Here, PN is the finite dimensional approximation from Definition & Lemma 4.11,
where N := n0 is chosen like in Theorem 4.14. Note that ψin(t) is continuous &
spherically symmetric on R3 and ∂xψin(t) ∈ L2(R3;R3) by basic potential theory
(cf. [21]), i.e., ψin(t) ∈ Ḣ1

r (R3).

The following result shows that Iin is indeed the sum of the three parts defined
above.
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5 Stability of the King model

Lemma 5.11: For all t ≥ 0 and 0 < τ < 1 we have

Iin(t) = Iτin,1(t) + Iτin,2(t) + Iτin,3(t).

Proof: It remains to show that

ˆ
R3

ˆ
R3

ψin(t, x) · gin(t, x, v) dx dv = − 1

4π

ˆ
R3

|∂xψin(t, x)|2 dx

for fixed t ≥ 0. Just like in the proof of Theorem 4.7, it may seem very convin-
cing that this integrating by parts formula holds true, since both integrals exist.
However, a detailed proof is far from trivial. In particular, we do not know if
ψin(t) is twice continuously differentiable, since

´
R3 gin(t, ·, v) dv does not need to

be continuous.
To actually justify the integration by parts, we denote

ρin(t, x) :=

ˆ
R3

gin(t, x, v) dv for x ∈ R3.

Obviously, ρin(t) ∈ L1 ∩ L∞(R3). Let (hk)k∈N ⊂ C∞c (R3) be an approximation
sequence such that

hk → ρin(t) in L1(R3) and L
6
5 (R3) as k →∞.

By potential theory (cf. [21]), we also obtain ∂xUhk → ∂xψin(t) in L2(R3;R3) as
k →∞, where Uhk := − 1

|·| ∗ hk is the potential induced by hk. Therefore,

ˆ
R3

ˆ
R3

ψin(t, x) · gin(t, x, v) dx dv = lim
k→∞

ˆ
R3

ψin(t, x) · hk(x) dx,
ˆ
R3

|∂xψin(t, x)|2 dx = lim
k→∞

ˆ
R3

∂xψin(t, x) · ∂xUhk(x) dx,

which means that it suffices to showˆ
R3

ψin(t, x) · hk(x) dx = − 1

4π

ˆ
R3

∂xψin(t, x) · ∂xUhk(x) dx

for fixed k ∈ N. To this end, note that ψin(t) ∈ C1(R3) with lim|x|→∞ ψin(t, x) = 0
and ∂xψin(t) ∈ L2(R3;R3), since ρin(t) ∈ L1 ∩ L∞(R3). Analogous statements
hold true for Uhk as well. Fortunately, since hk is smooth & compactly supported,
we also get Uhk ∈ C2(R3) with ∆Uhk = 4πhk and the quadratic decay of ∂xUhk ,
i.e., the existence of some constant Ck > 0 such that

|∂xUhk(x)| ≤ Ck
1 + |x|2

for x ∈ R3.
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To show the approximated integration by parts formula we have to approximate
once again. Let χ ∈ C∞c (R3) be such that χ = 1 on B1(0), 0 ≤ χ ≤ 1 on R3 and
supp(χ) ⊂ B2(0). For n ∈ N set χn := χ( ·

n
). Thenˆ

R3

ψin(t, x) · hk(x) dx =
1

4π
lim
n→∞

ˆ
R3

ψin(t, x) · χn(x) ·∆Uhk(x) dx =

= − 1

4π
lim
n→∞

ˆ
R3

∂x(ψin(t) · χn)(x) · ∂xUhk(x) dx =

= − 1

4π
lim
n→∞

ˆ
R3

χn(x) · ∂xψin(t, x) · ∂xUhk(x) dx+

− 1

4π
lim
n→∞

ˆ
R3

ψin(t, x) · ∂xχn(x) · ∂xUhk(x) dx.

Note that ψin(t)·χn ∈ H1(R3) for n ∈ N, which justifies the performed integration
by parts. Since ∂xψin(t), ∂xUhk ∈ L2(R3;R3), Lebesgue’s dominated convergence
theorem together with the Cauchy-Schwarz inequality yields

lim
n→∞

ˆ
R3

χn(x) · ∂xψin(t, x) · ∂xUhk(x) dx =

ˆ
R3

∂xψin(t, x) · ∂xUhk(x) dx.

As to the other term, we use the quadratic decay of ∂xUhk to obtain∣∣∣∣ˆ
R3

ψin(t, x) · ∂xχn(x) · ∂xUhk(x) dx

∣∣∣∣ ≤
≤
ˆ
R3\Bn(0)

|ψin(t, x)| · |∂xχn(x)| · |∂xUhk(x)| dx ≤

≤ Ck
1 + n2

· ‖ψin(t)‖L∞(R3\Bn(0)) ·
ˆ
R3

|∂xχn(x)| dx

for n ∈ N. Sinceˆ
R3

|∂xχn(x)| dx =
1

n

ˆ
R3

|(∂xχ)(
x

n
)| dx = n2

ˆ
R3

|∂xχ(y)| dy = n2 · ‖∂xχ‖1

and ‖ψin(t)‖L∞(R3\Bn(0)) → 0 as n→∞ by the boundary condition of ψin(t), we
may conclude

lim
n→∞

ˆ
R3

ψin(t, x) · ∂xχn(x) · ∂xUhk(x) dx = 0,

which finishes the proof of Lemma 5.11.

Note that the approach to prove the integration by parts in Theorem 4.7 differs
highly from the proof above. In the latter, the key is that the potential ψin(t)
vanishes at infinity. In the proof of Theorem 4.7 however, we used that the
potential involved is generated by a spatial density with vanishing mass, which
causes the gradient of the potential to be compactly supported.
Lemma 5.11 now allows to estimate Iτin,1, Iτin,2 and Iτin,3 separately in order to
establish an estimate for Iin.
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5 Stability of the King model

Lemma 5.12: There exists a constant C > 0, only depending on the steady state
f0 and S, such that for all t ≥ 0 and 0 < τ < 1 we have

Iτin,1(t) ≥ τ · din(t)− C · τ · ‖∂xψin(t)‖2
2.

Proof: Let t ≥ 0 and 0 < τ < 1 be fixed. First, using the integration by parts
formula from the proof of Lemma 5.11, we obtain

Iτin,1(t) = τ · din(t) +
τ

2

ˆ
R3

ˆ
R3

ψin(t, x) · gin(t, x, v) dx dv

by Definitions 5.3 and 5.10. Moreover,∣∣∣∣ ˆ
R3

ˆ
R3

ψin(t, x) · gin(t, x, v) dx dv

∣∣∣∣ ≤
≤ ‖ψin(t)‖L2(BR0

(0)) · ‖
ˆ
BP0

(0)

gin(t, ·, v) dv‖L2(BR0
(0)) ≤

≤ C(f0, S) · ‖ψin(t)‖L2(BR0
(0)),

where R0, P0 > 0 are chosen like in Chapter 4, i.e., Ω0 ⊂ BR0(0) × BP0(0), and
where we used the Cauchy-Schwarz inequality as well as the estimate |gin(t)| ≤
‖f(t)‖∞ + ‖f0‖∞ = ‖f̊‖∞ + ‖f0‖∞ ≤ S + ‖f0‖∞.
From the spherical symmetry of ψin(t) ∈ C1(R3) and limr→∞ ψ

r
in(t, r) = 0 we

now conclude the radial Sobolev inequality

|ψrin(t, r)| =
∣∣ˆ ∞

r

s

s
· ∂rψrin(t, s) ds

∣∣ ≤
≤
(ˆ ∞

r

ds

s2

) 1
2

·
(ˆ ∞

0

s2|∂rψrin(t, s)|2 ds

) 1
2

≤ ‖∂xψin(t)‖2√
4πr

for r > 0 by a change of variables and ∂xψin(t, x) = x
|x| · ∂rψ

r
in(t, |x|) for x 6= 0. A

similar estimate has been used in [19] as well. This yields

‖ψin(t)‖2
L2(BR0

(0)) = 4π

ˆ R0

0

s2|ψrin(t, s)|2 ds ≤ 1

2
R2

0 · ‖∂xψin(t)‖2
2

and therefore completes the proof of Lemma 5.12.

To estimate Iτin,2, we first establish some basic inequalities.

Lemma 5.13: Let c ∈ R and F0 ≥ 0 be real numbers. Then

Φ(F0 + h)− Φ(F0)− Φ′(F0) · h− c · h ≥ (1 + F0) · (1 + c− ec)

for all h > −(1 +F0), where Φ is the Casimir function of the King model defined
at the start of Chapter 5.
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5 Stability of the King model

Proof: For fixed c ∈ R and F0 ≥ 0 we will investigate the extrema of the left
hand side, i.e., let

ξ : ]− (1 + F0),∞[→ R, ξ(h) := Φ(F0 + h)− Φ(F0)− Φ′(F0) · h− c · h.

For h > −(1 + F0) we have

ξ′(h) = ln(1 + F0 + h)− ln(1 + F0)− c,

recall Φ(F ) = (1 + F ) · ln(1 + F )− F for F > −1. This implies that ξ′(h) = 0 is
equivalent to h = (ec − 1) · (1 + F0). We therefore set h− := (ec − 1) · (1 + F0),
note that h− > −(1 + F0). In addition, by taking account of the sign of ξ, we
know that ξ obtains its global minimum in h−. Thus

min(ξ) = ξ(h−) =

= (1 + F0 + h−) [ln(1 + F0 + h−)− ln(1 + F0)− c] + c · (1 + F0)− h− =

= c · (1 + F0)− h− = (1 + F0) · (1 + c− ec).

By using the series representation of the exponential function we can estimate
the right hand side of the inequality from Lemma 5.13 even further:

Remark 5.14: For every c ∈ R we have

1 + c− ec = −
∞∑
k=2

ck

k!
= −c

2

2
− c3

∞∑
k=0

ck

(k + 3)!
≥ −c

2

2
− |c|3e|c|

as well as

1 + c− ec = −
∞∑
k=2

ck

k!
= −c2

∞∑
k=0

ck

(k + 2)!
≥ −c2e|c|.

We now apply Lemma 5.13 to conclude the following auxiliary inequality:

Lemma 5.15: There exists a constant C > 0, only depending on the steady state
f0 and S, such that

‖gin(t)‖2
2 ≤ C · din(t)

for all t ≥ 0.

Proof: Let 0 < λ ≤ 1 be arbitrary for the time being. Then

din(t) =

ˆ
Ω0

(
Φ(f0(x, v) + gin(t, x, v))− Φ(f0(x, v)) + (E(x, v)− E0)gin(t, x, v)+

− λ · g2
in(t, x, v)

)
d(x, v) + λ · ‖gin(t)‖2

2.
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5 Stability of the King model

Now, applying Lemma 5.13 combined with the second estimate from Remark 5.14
pointwise to the integrand, note that −(E − E0) = Φ′(f0) on Ω0, yields

din(t) ≥ λ · ‖gin(t)‖2
2 +

ˆ
Ω0

(1 + f0(x, v)) ·
(
−λ2g2

in(t, x, v)e|λgin(t,x,v)|) d(x, v) ≥

≥ λ · ‖gin(t)‖2
2 − λ2eS

ˆ
Ω0

(1 + f0(x, v)) · g2
in(t, x, v) d(x, v),

where we used |gin(t)| ≤ S + ‖f0‖∞ once again. Also, since f0 is bounded, we
conclude

din(t) ≥ λ · ‖gin(t)‖2
2 − C(f0, S)λ2‖gin(t)‖2

2 =

= λ ·
(
1− λ · C(f0, S)

)
· ‖gin(t)‖2

2

for some constant C(f0, S) ≥ 1 depending on f0 and S. Thus, setting λ = 1
2C(f0,S)

completes the proof of Lemma 5.15.

We have now collected all the required tools to estimate Iτin,2.

Lemma 5.16: There exists a constant C > 0, only depending on the steady state
f0 and S, such that for all t ≥ 0 and 0 < τ < 1 we have

Iτin,2(t) ≥ 1− τ
16π

· λ0 · ‖∂xψin(t)‖2
2 − C · eC·d

1
2
in(t) · d

3
2
in(t),

where λ0 > 0 is the infimum from Theorem 4.7.

Proof: Let t ≥ 0 and 0 < τ < 1 be fixed. Recalling Definition 5.10, we have

Iτin,2(t) = (1− τ)

ˆ
Ω0

(
Φ(f0(x, v) + gin(t, x, v))− Φ(f0(x, v))+

+ (E(x, v)− E0) · gin(t, x, v)+

+
(
ψin(t, x)− PN(ψin(t))(x, v)

)
· gin(t, x, v)

)
d(x, v)+

+
1− τ

8π
· ‖∂xψin(t)‖2

2.

We now combine Lemma 5.13 with the first estimate from Remark 5.14 and apply
them pointwise to the integrand. Note that Φ′(f0) = E0−E and 1+f0 = |ϕ′ ◦E|
on Ω0 in the case of the King model. This leads to

Iτin,2(t) ≥ (1− τ)

ˆ
Ω0

|ϕ′(E(x, v))| ·
(
− 1

2

(
ψin(t, x)− PN(ψin(t))(x, v)

)2
+

−
∣∣ψin(t, x)− PN(ψin(t))(x, v)

∣∣3e|ψin(t,x)−PN (ψin(t))(x,v)|
)

d(x, v)+

+
1− τ

8π
· ‖∂xψin(t)‖2

2.
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5 Stability of the King model

Next, observe that

1− τ
8π
〈ANψin(t), ψin(t)〉2 =

1− τ
8π
· ‖∂xψin(t)‖2

2+

− 1− τ
2

ˆ
Ω0

|ϕ′(E(x, v))| ·
(
ψin(t, x)− PN(ψin(t))(x, v)

)2
d(x, v),

where 〈AN ·, ·〉2 is the extended quadratic form associated with the finite dimen-
sional approximation of the Guo-Lin operator from Definition 4.12. This is why
we can now solemnly apply the finite dimensional coercivity result from The-
orem 4.14. Recall that we have chosen N = n0 in Definition 5.10. Also, ψin(t)
is continuous, spherically symmetric and ∂xψin(t) ∈ L2(R3;R3), in particular
ψin(t) ∈ Ḣ1

r (R3).
As for the remaining terms, note that Ω0 and ϕ′ ◦ E are bounded. Thus,

Iτin,2(t) ≥1− τ
16π

· λ0 · ‖∂xψin(t)‖2
2+

− C(f0) · e‖ψin(t)−PN (ψin(t))‖∞ · ‖ψin(t)− PN(ψin(t))‖3
∞.

It therefore remains to estimate ‖ψin(t) − PN(ψin(t))‖∞. First, by Definition &
Lemma 4.11, we have

‖PN(ψin(t))‖∞ = ‖
N∑
k=1

〈ψin(t), bk〉|ϕ′|bk‖∞ ≤ max
1≤k≤N

‖bk‖∞ ·
N∑
k=1

|〈ψin(t), bk〉|ϕ′||.

In addition, the boundedness of ϕ′ ◦ E and Ω0 yields

|〈ψin(t), bk〉|ϕ′|| ≤
ˆ

Ω0

|ϕ′(E(x, v))| · |ψin(t, x)| · |bk(x, v)| d(x, v) ≤

≤ C(f0) · ‖bk‖∞ · ‖ψin(t)‖∞

for k ∈ N. Since n0 = N from Theorem 4.14 depends only on the steady state,
we conclude that there exists some constant C(f0) > 0 depending only on f0 –
in particular not on t – such that

‖PN(ψin(t))‖∞ ≤ C(f0) · ‖ψin(t)‖∞.

Lastly, we need to establish an estimate for ‖ψin(t)‖∞. We will do this by ex-
ploiting the spherical symmetry of ψin(t). In fact, similar to the steady state in
Remark 2.3, we obtain the following explicit formula for the potential:

ψrin(t, r) = −4π

r

ˆ r

0

s2ρrin(t, s) ds− 4π

ˆ ∞
r

sρrin(t, s) ds for r > 0,
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5 Stability of the King model

where ρin(t, x) :=
´
R3 gin(t, x, v) dv for x ∈ R3. Now, let R0, P0 > 0 be such that

Ω0 ⊂ BR0(0)×BP0(0), in particular supp(ρin(t)) ⊂ B̄R0(0). Since

‖ρin(t)‖2
2 =

ˆ
R3

ρin(t, x)2 dx = 4π

ˆ R0

0

s2ρrin(t, s)2 ds

by a standard change of variables, the Cauchy-Schwarz inequality yields

|ψrin(t, r)| ≤ 8π

ˆ R0

0

s · |ρrin(t, s)| ds ≤

≤
(ˆ R0

0

ds

) 1
2

·
(ˆ R0

0

s2ρrin(t, s)2 ds

) 1
2

=

= 4
√
πR0 · ‖ρin(t)‖2

for every r > 0. Since Ω0 is bounded, we also have ‖ρin(t)‖2 ≤ C(f0) · ‖gin(t)‖2.
Combining this inequality with Lemma 5.15 yields

‖ψin(t)‖∞ ≤ C(f0, S) · d
1
2
in(t),

from which we conclude

|〈ψin(t), bk〉|ϕ′|| ≤ C(f0, S) · d
1
2
in(t).

To establish an estimate for Iτin,3, we need the following invariants of the Vlasov-
Poisson system.

Definition & Lemma 5.17: Let (bk)k∈N ⊂ C1(Ω0) be the orthonormal basis
from Definition & Lemma 4.10. Since bk ∈ κD for every k ∈ N, there exists
bELk : R2 → R such that

bk(x, v) = bELk (E(x, v), L(x, v)) for (x, v) ∈ Ω0.

Due to the explicit construction of (bk)k∈N in Definition & Lemma 4.10, we can
even choose the elements of (bELk )k∈N such that bELk ∈ C1(R2) for all k ∈ N.
Then, for all real numbers F,L ≥ 0 and k ∈ N define

Qk(F, L) :=

ˆ F

0

bELk (E0 − ln(1 + s), L) ds.

Moreover, for k ∈ N and every suitable non-negative function F : R3 × R3 →
[0,∞[ let

Jk(F ) :=

ˆ
R3

ˆ
R3

Qk(F (x, v), L(x, v)) dx dv =

=

ˆ
R3

ˆ
R3

ˆ F (x,v)

0

bELk (E0 − ln(1 + s), L(x, v)) ds dx dv.

Then the functional Jk has the following properties:
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5 Stability of the King model

a) For k ∈ N and t ≥ 0 we have

Jk(f(t)) = Jk(f0 + gin(t)) + Jk(gout(t)).

b) Jk is constant along classical solutions of the Vlasov-Poisson system, i.e.,

Jk(f(t)) = Jk(f̊)

for k ∈ N and t ≥ 0.

Proof: Part a) follows directly by splitting the phase space integral in Jk into Ω0

and its complement.
As to the second statement, note that

f(t, x, v) = f̊(X(t, x, v), V (t, x, v))

for t ≥ 0, x, v ∈ R3, where (X, V ) is the characteristic flow associated with f0,
see Lemma 3.2 for a detailed definition. Since L is constant along characteristics
and (X, V )(t, ·) is measure preserving, part b) can be obtained by a change of
variables. We refer to [27] for details.

Note that our definition of Jk slightly differs from the one in [9], since the or-
thonormal basis from Definition & Lemma 4.10 is not separated in E and L.
However, it turns that this discrepancy is insignificant for the proof of the fol-
lowing result.

Lemma 5.18: There exists a constant C > 0, only depending on the steady state
f0 and S, such that for all t ≥ 0, 0 < τ < 1 and 0 < γ < min{−E0

2
, 1} we have

|Iτin,3(t)| ≤ C ·
(
d

1
2 (0) + d(0) + γ

1
2 · d

1
2 (t) + γ−1 · d(t)

)
· d

1
2 (t).

Proof: Let t ≥ 0 and 0 < τ < 1 be fixed. First, by recalling Definition 5.10 and
Definition & Lemma 4.11, we get

|Iτin,3(t)| = (1− τ) ·
∣∣ˆ

R3

ˆ
R3

PN(ψin(t))(x, v) · gin(t, x, v) d(x, v)
∣∣ ≤

≤
∣∣ ˆ

R3

ˆ
R3

N∑
k=1

〈ψin(t), bk〉|ϕ′|bk(x, v) · gin(t, x, v) d(x, v)
∣∣ ≤

≤
N∑
k=1

|〈ψin(t), bk〉|ϕ′|| · |〈bk, gin(t)〉2|.

Just like in the proof of Lemma 5.16, we have

max
1≤k≤N

|〈ψin(t), bk〉|ϕ′|| ≤ C(f0, S) · d
1
2 (t).
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5 Stability of the King model

Thus, we arrive at

|Iτin,3(t)| ≤ C(f0, S) · d
1
2 (t) ·

N∑
k=1

|〈bk, gin(t)〉2|.

We will now estimate |〈bk, gin(t)〉2| for fixed 1 ≤ k ≤ N with the aid of the
invariants from Definition & Lemma 5.17. Indeed,

Jk(f(t))− Jk(f0) = Jk(f0 + gin(t)) + Jk(gout(t))− Jk(f0)

by the first part of the lemma above. Furthermore,

Jk(f0 + gin(t))− Jk(f0) =

=

ˆ
R3

ˆ
R3

( f0(x,v)+gin(t,x,v)ˆ

0

−
f0(x,v)ˆ

0

)
bELk (E0 − ln(1 + s), L(x, v)) ds dx dv.

For fixed x, v ∈ R3 we therefore consider the mapping

[0,∞[3 h 7→
ˆ h

0

bELk (E0 − ln(1 + s), L(x, v)) ds.

Since bELk ∈ C1(R2), this mapping is twice continuously differentiable. Second
order Taylor expansion at f0(x, v) ≥ 0 then yields that for every h ∈ R with h+
f0(x, v) ≥ 0 there exists σ ∈ [min{f0(x, v), f0(x, v) + h},max{f0(x, v), f0(x, v) +
h}] such that

( f0(x,v)+hˆ

0

−
f0(x,v)ˆ

0

)
bELk (E0 − ln(1 + s), L(x, v)) ds =

= h · bELk (E0 − ln(1 + f0(x, v)), L(x, v))+

+
h2

2
· ∂EbELk (E0 − ln(1 + σ), L(x, v)) · −1

1 + σ
.

Let F (t, x, v) ∈ R denote the σ-value we obtain in the case of h = gin(t, x, v).
Accordingly, since E0 − ln(1 + f0) = E on Ω0 for the King model,

Jk(f0 + gin(t))− Jk(f0) =

=

ˆ
R3

ˆ
R3

gin(t, x, v) · bELk (E0 − ln(1 + f0(x, v)), L(x, v)) dx dv + αk(t) =

= 〈bk, gin(t)〉2 + αk(t),

where we used the abbreviation

αk(t) := −1

2

ˆ
Ω0

g2
in(t, x, v)

1 + F (t, x, v)
· ∂EbELk (E0 − ln(1 + F (t, x, v)), L(x, v)) d(x, v)

77



5 Stability of the King model

for the remainder term. Thus,

Jk(f(t))− Jk(f0) = 〈bk, gin(t)〉2 + αk(t) + Jk(gout(t)),

which yields the inequality

|〈bk, gin(t)〉2| ≤ |Jk(f(t))− Jk(f0)|+ |αk(t)|+ |Jk(gout(t))|.

Now, since 0 ≤ F (t) ≤ ‖f(t)‖∞ + ‖f0‖∞ ≤ S + ‖f0‖∞ and ∂Eb
EL
k is bounded on

compact sets, we obtain

|αk(t)| ≤ C(f0, S) · ‖gin(t)‖2
2 ≤ C(f0, S) · d(t)

by applying Lemma 5.15. Again, the boundedness of f(t) and bELk on compact
sets as well as the support of gout(t) imply

|Jk(gout(t))| ≤ C(f0, S) · ‖gout(t)‖1 =

= C(f0, S) ·
(
‖gout(t)‖L1({E0≤E≤E0+γ}) + ‖gout(t)‖L1({E0+γ<E})

)
for every γ ∈]0,min{−E0

2
, 1}[. As to the first summand, observe that the domain

of x-values satisfying {E0 ≤ E(x, ·) ≤ E0+γ} 6= ∅ is bounded due to U0 vanishing
at spatial infinity. Thus,

vol({E0 ≤ E ≤ E0 + γ}) ≤ C(f0) · sup
x∈R3

(
vol({E0 ≤ E(x, ·) ≤ E0 + γ})

)
.

Then, similar to the proof of Lemma 5.7, we get vol({E0 ≤ E(x, ·) ≤ E0 + γ}) ≤
C(f0) · γ for x ∈ R3 as well as ‖gout(t)‖2

2 ≤ C(S) · dout(t), from which we conclude

‖gout(t)‖L1({E0≤E≤E0+γ}) ≤ ‖gout(t)‖2 · vol
1
2 ({E0 ≤ E ≤ E0 + γ}) ≤

≤ C(f0, S) · d
1
2
out(t) · γ

1
2 ,

‖gout(t)‖L1({E0+γ<E}) ≤ γ−1 · ‖gout(t) · (E − E0)‖1 ≤ γ−1 · dout(t).

Lastly, the invariance property of Jk from Definition & Lemma 5.17 yields

|Jk(f(t))− Jk(f0)| = |Jk(f̊)− Jk(f0)| ≤

≤
ˆ
R3

ˆ
R3

∣∣ˆ f̊(x,v)

f0(x,v)

|bELk (E0 − ln(1 + s), L(x, v))| ds
∣∣ dx dv ≤

≤ C(f0, S) · ‖f̊ − f0‖1 = C(f0, S) · ‖g(0)‖1 ≤
≤ C(f0, S) · (‖gin(0)‖1 + ‖gout(0)‖1) .

Then, by the boundedness of Ω0 and Lemma 5.15, we obtain

‖gin(0)‖1 ≤ C(f0) · ‖gin(0)‖2 ≤ C(f0, S) · d
1
2
in(0).
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On the other hand, by splitting the integral similarly to the |Jk(gout(t))|-estimate
from above for fixed γ, we see that

‖gout(0)‖1 ≤ C(f0, S) ·
(
d

1
2
out(0) + dout(0)

)
.

Combining all these inequalities yields

|〈bk, gin(t)〉2| ≤ C(f0, S) ·
(
d

1
2 (0) + d(0) + γ

1
2 · d

1
2 (t) + γ−1d(t)

)
and therefore completes the proof of Lemma 5.18.

5.4 Proof of Theorem 5.1 and Remarks
The main target of this section is to prove Theorem 5.1 by combining the numer-
ous estimates from Section 5.2 and Section 5.3.

Proof of Theorem 5.1: Remarks 5.4 and 5.6, Corollary 5.9 and the Lemmata 5.11,
5.12, 5.16 and 5.18 yield

HC,M(f(t))−HC,M(f0) = Iin(t) + Iout(t) = Iout(t) + Iτin,1(t) + Iτin,2(t) + Iτin,3(t) ≥

≥ dout(t)− C ·
(
γ

1
2 · d(t) + γ−

5
3 · d

5
3 (t) + γ−

5
6 · d

4
3 (t)
)

+

+ τ · din(t)− C · τ · ‖∂xψin(t)‖2
2+

+
1− τ
16π

· λ0 · ‖∂xψin(t)‖2
2 − C · eC·d

1
2 (t) · d

3
2 (t)+

− C ·
(
d

1
2 (0) + γ

1
2 · d

1
2 (t) + γ−1 · d(t)

)
· d

1
2 (t) ≥

≥ min{1, τ, 1− τ
16π

· λ0 − C · τ} · d(t)− C · d
1
2 (0) · d

1
2 (t)+

− C ·
(

2γ
1
2 · d(t) + γ−

5
6 · d

4
3 (t) +

(
γ−1 + eC·d

1
2 (t)
)
· d

3
2 (t) + γ−

5
3 · d

5
3 (t)
)

for all t ≥ 0 and arbitrary 0 < τ < 1, 0 < γ < min{−E0

2
, 1}, where C > 0

always denotes a constant depending only on the fixed steady state f0 and the
‖f̊‖∞-bound S. We assumed d(0) ≤ 1 while applying Lemma 5.18. In the second
inequality, we grouped the terms by their sign and d(t)-exponent.
Now, let 0 < τ < 1 be small enough such that min{1, τ, 1−τ

16π
·λ0−C · τ} = τ > 0,

which can be achieved since λ0 > 0 by Theorem 4.7. After fixing τ , choose γ
such that it satisfies 2γ

1
2 < C · τ

2
. Then

HC,M(f(t))−HC,M(f0) ≥ 1

C
· d(t)− C · d

1
2 (0) · d

1
2 (t)+

− C ·
(
d

4
3 (t) +

(
1 + eC·d

1
2 (t)
)
· d

3
2 (t) + d

5
3 (t)
)
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after increasing C, note that the fixed values of τ and γ only depend on f0, S.
On the other hand, since the energy-Casimir-mass functionalHC,M is an invariant
of the Vlasov-Poisson system (see [27]), we have

HC,M(f(t))−HC,M(f0) = HC,M(f̊)−HC,M(f0) = d(0)− 1

4π
‖∂xψin(0)‖2

2 ≤ d(0).

Altogether, we therefore arrive at

d(0) + C · d
1
2 (0) · d

1
2 (t) ≥ 1

C
· d(t)− C ·

(
d

4
3 (t) +

(
1 + eC·d

1
2 (t)
)
· d

3
2 (t) + d

5
3 (t)
)

for t ≥ 0. We now interpret both sides of this inequality as a function in
√
d(t),

i.e., let

y1(s) := d(0) + C · d
1
2 (0) · s,

y2(s) :=
1

C
· s2 − C ·

(
s

8
3 +

(
1 + eC·s

)
· s3 + s

10
3

)
,

for s ≥ 0 respectively. We can then rewrite the estimate from above as

y1(
√
d(t)) ≥ y2(

√
d(t)) for t ≥ 0.

Since s 7→ s2 is the lowest power occurring in y2, there exists δ > 0 such that
y2(s) ≥ 1

2C
· s2 for all s ∈ [0, δ].

Therefore, if y1(s) ≥ y2(s) for some s ∈ [0, δ], we also have

0 ≤ − 1

2C
s2 + C · d

1
2 (0) · s+ d(0) =

= − 1

2C
·
(
s− C2d

1
2 (0)

)2
+

(
1 +

C3

2

)
· d(0),

from which we obtain

s ≤
(
C2 +

√
2C + C4

)
· d

1
2 (0) ≤ C̃ · d

1
2 (0)

by rearranging, where C̃ := C2 +
√

2C + C4 + 1 > 1.
Lastly, note that the mapping [0,∞[3 t 7→ d(t) ∈ [0,∞[ is continuous, which can
be verified using f ∈ C1([0,∞[×R3 × R3), see [27] for details. If we now assume
C̃2 · d(0) < δ2, this continuity and y1(

√
d(t)) ≥ y2(

√
d(t)) yield

d
1
2 (t) ≤ C̃ · d

1
2 (0)

for t ≥ 0, which completes the proof of Theorem 5.1.
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Before getting to the concluding remarks, we want to discuss our distance measure
d from Definition 5.3. In fact, for the stability results in [10, 27], a slightly different
distance function has been used. Expressed in our notation, it is of the form

d̃(t) := d̃(f(t), f0) :=din(t) +
1

8π
‖∂xψ(t)‖2

2 + dout(t) =

=d(t)− 1

8π
‖∂xψin(t)‖2

2 +
1

8π
‖∂xψ(t)‖2

2 =

=d(t) +
1

4π
〈∂xψin(t), ∂xψout(t)〉2 +

1

8π
‖∂xψout(t)‖2

2.

Note that in [10, 27] it is required for the disturbed solution f(t) to have the same
mass as f0 for every time t ≥ 0, which is why there are additional mass-terms in
our definition compared to [10, 27].
However, it turns out that a similar stability result for this alternate distance
measure d̃ holds true:

Corollary 5.19: Let f0 be a steady state as specified at the start of Chapter 5.
Then, for every S > 0 there exists C > 0 such that for every spherically symmet-
ric, non-negative initial data f̊ ∈ C1

c (R3 × R3) with

‖f̊‖∞ ≤ S and d̃(f̊ , f0) <
1

C
,

the unique global & classical solution f : [0,∞[×R3 ×R3 → [0,∞[ of the Vlasov-
Poisson system launched by f̊ = f(0) satisfies

d̃(f(t), f0) ≤ C · d̃(f̊ , f0)

for all t ≥ 0.

This result can be immediately derived from Theorem 5.1 and the following non-
linear distance equivalence of d and d̃:

Lemma 5.20: There exists a constant C(f0, S) > 0 such that

d(t) ≤ C(f0, S) ·
(
d̃(t) + d̃

5
3 (t)
)
,

d̃(t) ≤ C(f0, S) ·
(
d(t) + d

4
3 (t) + d

5
3 (t)
)

for all t ≥ 0.

Proof: By Lemma 5.7 and the non-negativity of din and dout from Remark 5.4,
we obtain

‖∂xψin(t)‖2
2 = ‖∂xψ(t)− ∂xψout(t)‖2

2 ≤
≤ 2‖∂xψ(t)‖2

2 + 2‖∂xψout(t)‖2
2 ≤

≤ 2d̃(t) + 2C(f0, S) · (d̃(t) + d̃
5
3 (t))
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for t ≥ 0, which yields the first inequality.
On the other hand, Lemma 5.7 and Corollary 5.8 yield

d̃(t) = d(t) +
1

4π
〈∂xψin(t), ∂xψout(t)〉2 +

1

8π
‖∂xψout(t)‖2

2 ≤

≤ C(f0, S) ·
(
d(t) + d

4
3 (t) + d

5
3 (t)
)

for every t ≥ 0.

We want to end this thesis on some concluding remarks.

Remarks:

a) Unfortunately, the proof of Theorem 5.1 is not constructive, i.e., we do
not know how large the constant C > 0 has to be chosen. In fact, C
depends on λ0 > 0 from Theorem 4.7, which explicit value is unknown,
since the existence of the minimizer in Proposition 4.8 has not been shown
constructively. However, if one could provide a positive lower bound for λ0

– for example by numerical calculations – we could derive an explicit upper
bound for the constant from Theorem 5.1.

b) A nice feature of the stability results from Theorem 5.1 and Corollary 5.19 is
that we have to bound the very quantity at t = 0 for which we gain control
at later times. Nevertheless, despite of the properties from Remark 5.4,
it is still desirable to replace d with some norm. In [27], this has been
easily derived from a stability result similar to Corollary 5.19, at least after
restricting the class of perturbations. However, since the general approach
in [27] highly differs from ours, an analogous conclusion does not seem to
work here.

c) The stability results presented here are slightly improved compared to [9],
since we bound d(f(t), f̊) for all t ≥ 0 linearly in terms of the initial de-
viation d(f(0), f̊). This has been achieved by modifying the proof of The-
orem 5.1; the auxiliary estimates from Sections 5.2 and 5.3 still equal the
ones from [9].

d) Another way of improving Theorem 5.1 is to expand the class of admissible
steady states. In particular, since the results from Chapters 3 and 4 also
hold true for isotropic polytropes of the form (E0 − E)k+ for 1 ≤ k < 7

2
, it

is desirable to establish the stability of these equilibria as well.
However, some of our results rely on the explicit form of the King model
in a crucial way. First, we used the properties of the Casimir function Φ
corresponding to the King model to obtain the estimate in Lemma 5.13.
Later, we needed the equality 1 + f0 = |ϕ′ ◦E| to prove Lemma 5.16, which
happens to be a particular property of the King model.
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Therefore, generalising the stability results can not be done in passing, but
still seems possible by establishing analogous estimates in another way.

e) Compared to the stability result in [10], our class of perturbations is quite
large. In fact, in the latter source only physical relevant perturbations, also
known as “dynamically accessible”, are admissible. Therefore, even though
this being a nice analytical improvement, it is barely significant from a phys-
ics point of view.

f) The stability proven above shows that the classical solution of the Vlasov-
Poisson system launched by a radially, weakly perturbed King model al-
ways stays close to the original equilibria. Unfortunately, nothing further
is known about the explicit behaviour of such solutions.
The results in [24] are numerical evidence that for a large class of steady
states, a radial and sufficiently weak perturbation of an equilibria leads to
a “pulsating” or “oscillating” behaviour, where the period of the oscilla-
tion is given by the Eddington-Ritter relation. Hopefully, the techniques
used in this thesis, in particular the coercivity of the Guo-Lin operator from
Chapter 4, can be applied to prove the existence of these pulsating solutions
by rigorous analysis.
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