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On the Efficiency of German Growth Forecasts: An Empirical Analysis

Using Quantile Random Forests
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Abstract

We use quantile random forests (QRF) to study the efficiency of the growth forecasts pub-

lished by three leading German economic research institutes for the sample period from 1970

to 2017. To this end, we use a large array of predictors, including topics extracted by means

of computational-linguistics tools from the business-cycle reports of the institutes, to model

the information set of the institutes. We use this array of predictors to estimate the quantiles

of the conditional distribution of the forecast errors made by the institutes, and then fit a

skewed t-distribution to the estimated quantiles. We use the resulting density forecasts to

compute the log probability score of the predicted forecast errors. Based on an extensive in-

sample and out-of-sample analysis, we find evidence, particularly in the case of longer-term

forecasts, against the null hypothesis of strongly efficient forecasts. We cannot reject weak

efficiency of forecasts.
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1 Introduction

The efficiency of macroeconomic forecasts requires that information available to a forecaster

when a forecast is being made do not help to explain the subsequently realized forecast error.

The classic approach to test forecast efficiency is to set up a regression equation that features

as dependent variable the forecast error and predictor variables that represent a forecaster’s in-

formation set. Such a regression equation can then be estimated by the ordinary-least-squares

technique, and standard methods can be used to test whether the estimated coefficients of the

equation are not significantly different from zero (see Mincer and Zarnowitz, 1969; Holden and

Peel, 1990).

We go beyond the classic approach in that we use quantile-random forests Meinshausen (2006)

to re-examine the efficiency of the growth forecasts published by three leading German economic

research institutes during the sample period from 1970 to 2017. For the purpose of our research,

quantile-random forests have the advantage that they are a flexible data-driven modeling frame-

work that makes it possible to proxy the research institutes information set by means of a large

array of predictors. As predictors, we consider numerous macroeconomic variables often stud-

ied in earlier forecasting literature and, in addition, topics extracted by means of computational-

linguistics tools from the business-cycle reports of the research institutes (Foltas, 2020). The

business-cycle reports of the research institutes are likely to reflect, on the one hand, the evo-

lution of other macroeconomic predictors. However, the business-cycle reports, on the other

hand, also embed the research institutes’ perception of current and future macroeconomic de-

velopments and, thereby, potentially draw a more complete picture of the research institutes’

information set than standard macroeconomic predictors alone can do.

Our research contributes to recent research that uses tree-based methods to study macroeconomic

forecasts for Germany. Behrens, Pierdzioch, and Risse (2018a) analyze the joint efficiency of

macroeconomic forecasts by means of multivariate random forests. Behrens, Pierdzioch, and

Risse (2018b) estimate random classification forests to test optimality of macroeconomic fore-

casts under flexible loss, and Behrens, Pierdzioch, and Risse (2019) use Bayesian trees to study
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the efficiency of forecasts. They reject, using Bayesian trees, strong efficiency of forecasts and

weak efficiency of longer-term forecasts. Weak forecast efficiency requires that forecast errors

cannot be predicted by means of their own lagged values, while strong efficiency requires that

forecast errors cannot be predicted by means of any other predictors potentially in a forecasters

information set.1

Unlike tree-based methods considered in earlier literature on forecast efficiency, quantile-random

forests have the advantage that they resemble a standard quantile-regression model (see, e.g.,

Koenker, 2005) insofar as the informational content of the predictors can be traced out along

the quantiles of the conditional distribution of forecast errors. Like Adrian, Boyarchenko, and

Giannone (2019), we use the quantiles to estimate the parameters of a skewed t-distribution. The

fitted skewed t-distribution, in turn, renders it possible to produce density forecasts that we use,

in an in-sample and out-of-sample analysis, to compute a sequence of the log probability scores

of the predicted forecast errors. We define the research institutes forecasts to be efficient if the

sequence of log probability scores is on average not different from that generated by a naive

quantile-regression model that uses only quantile-specific constants to model the conditional

density of the forecast errors. We use the test proposed by Amisano and Giacomini (2007) to

test formally whether the difference between the sequences of probability scores is significant in

a statistical sense.

We organize the remainder of this research as follows. In Section 2, we describe the quantitative

methods that we use in our empirical research. In Section 3, we briefly describe our data. In

Section 4, we summarize our empirical results. Based on in-sample results, we reject the null

hypothesis of strongly efficient short-term and long-term forecasts. Results of an extensive out-

of-sample analysis, in turn, lead us to reject strong efficiency of long-term forecasts, but not of

short-term forecasts. Evidence based on both our in-sample and out-of-sample analysis against

1Other aspects of macroeconomic forecasts for Germany have been studied in recent research by, for example,

Heilemann and Stekler (2013), who focus on the time-varying accuracy of forecasts, Kirchgässner and Müller

(2006), who analyze costly forecast revisions, and Döpke and Fritsche (2006), who use panel-data methods to show

that macroeconomics forecasts are unbiased and weakly efficient.
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the null hypothesis of weak efficiency of forecasts is weak and mostly insignificant. In Sample

5, we offer some concluding remarks.

2 Modeling Framework

Regression trees are nonparametric models that subdivide the predictor space into nonoverlap-

ping regions that represent a relatively homogenous outcome of the dependent variable (for a

textbook introduction, see Hastie, Tibshirani, and Friedman, 2009). A regression tree consists of

three main elements: an initial node (that is, a root), interior nodes, and terminal nodes (leaves).2

The nodes partition the predictor space, Xt , t = 1, ...,N, into rectangular regions in a binary top-

down way, with leaves representing a subspace of a forecast error, et+h, where h denotes the

forecast horizon. The formation of the subspaces starts at the root by choosing a partitioning

predictor, s, and a partitioning point, z, to form the two regions R1(s,z) = {Xt,s|Xt,s ≤ z} and

R2(s,z) = {Xt,s|Xt,s > z}. The split is identified by solving mins,z{RSS1 +RSS2}, where RSSk =

∑Xt,s∈Rk(s,z)(et+h − ēt+h,k)
2, with ēt+h,k = mean{et+h|Xt,s ∈ Rk(s,z)},k = 1,2, Xt,s ∈ Rk denotes

that the period-t realization of predictor s belongs to region Rk. The regression tree is formed by

recursively applying this search-and-split approach in a hierarchical manner until some maximal

node size is reached or the leaves contain a minimum number of observations, both being defined

as hyperparameters by a researcher in advance.

A single regression tree has a poor forecasting performance because its hierarchical structure

gives rise to a high data sensitivity. A random forest model improves forecast performance by

growing a large number of independent random regression trees, whose predictions are then av-

eraged. Each random tree that is part of the random forest is estimated on a bootstrapped sample

of the data and only a random subset of the predictors is used for splitting (Breiman, 2001).

2Our description of regression trees is relatively compact. For a more detailed description and numerical exam-

ples, see Behrens, Pierdzioch, and Risse (2018a).
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Random forests, thereby, decorrelate the predictions from individual trees, curb the influence of

influential individual predictors, and thus lower the prediction variance.

As shown by Meinshausen (2006), random forests can be extended to compute the conditional

distribution function of the predicted variable. Starting point is the insight that every observation

receives a weight wt = 1{Xt,s∈Rk(s,z)}/(#{ j : X j,s ∈ Rk(s,z)}) at the leaves of a regression tree,

where 1 is the indicator function. The prediction of the forecast error is then êt+h = ∑
N
t=1 wtet+h.

For a random forest, the weights are given by wB
t = B−1 ∑

B
i=1 wt , such that êt+h = ∑

N
t=1 wB

t et+h,

and B as the number of bootstrapped simulations. Using these weights, a quantile random forest

stores all information instead of only providing the mean forecast error, such that the condi-

tional distribution function of the forecast error can be estimated as P̂(et+h ≤ e|Xt) = F̂(e|Xt) =

∑
N
t=1 wB

t 1et+h≤e. The α-quantile of the conditional distribution is given by the point where the

probability that the forecast error is smaller than Qα , given Xt , equals α , which is estimated as

Q̂α(Xt) = inf{e : F̂(e|Xt)≥ α}.

Building on recent research by Adrian, Boyarchenko, and Giannone (2019), we use the estimated

quantiles for α = {0.05,0.25,0.75,0.95} to estimate the parameters of a skewed t-distribution

(Azzalini and Capitanio, 2003). Upon letting t̃ and T̃ denote the probability density and the cu-

mulative distribution function of the Student t-distribution, the skewed t-distribution is given by

f (e,µ,σ ,v,α) = 2
σ

t̃
(

e−µ

σ
,v
)

T̃

(

α
e−µ

σ

√

v+1

v+( e−µ

σ )
2 ,v+1

)

, where µ ∈ R is a location parame-

ter, σ ∈ R
+ is a scale parameter, v ∈ Z

+ is a fatness parameter, α ∈ R is a shape parameter,

and where we have dropped the time subscript for notational convenience. We estimate, by

means of an exactly identified system, the four parameters by minimizing the sum of squared

differences between the four estimated quantiles and the corresponding quantiles of the skewed

t-distribution.

Having estimated the parameters of the skewed t-distribution, we combine the resulting density

forecast with the ex-post realized value of the forecast error to compute a sequence of log prob-

ability scores. In the context of our analysis, forecast efficiency requires that this sequence of

log probability scores is not significantly different from the sequence of log probability scores
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generated by means of a benchmark model. Our benchmark model is a naive quantile-regression

model (Koenker, 2005). This model only uses quantile-specific constants to model the condi-

tional density of the forecast errors.

Finally, we use the test proposed by Amisano and Giacomini (2007) (henceforth AG test; no

weighting), which closely resembles the familiar Diebold and Mariano (1995) test, to compare

formally the difference between the sequence of log probability scores implied by quantile ran-

dom forests with the sequence of log probability scores implied by the benchmark model.

3 The Data

We study the annual growth forecasts of three major German economic research institutes for

the sample period 1970−2017.3 The forecast publication frequency varies across the research

institutes and also over time. Most commonly available are one-year-ahead annual forecasts ( q4-

forecasts) published at the turn of the year, and six-month-ahead annual forecasts (q2-forecasts)

published mid-year. We pool all forecasts into one sample and subtract the realized growth rate

(measured using first-release data retrieved from the German statistical office) from the forecasts

in order to compute the forecast errors. We adjust our data on realized growth for each institute

for German reunification (for further details, see Behrens, Pierdzioch, and Risse, 2018a).

Table 1 summarizes descriptive statistics of the forecast errors. The number of forecast errors

ranges between 117 and 135, depending on the forecast horizon. The q4-forecasts errors are

negative on average, while the q2-forecasts have a positive mean. As one would have expected,

the standard deviation (SD) and the root mean square error (RMSE) are larger for q4-forecasts

than for q2-forecasts. The set of macroeconomic predictors that we use to proxy the information

set of the research institutes has been studied extensively in recent research of macroeconomic

3The research institutes are: Deutsches Institut für Wirtschaftsforschung, Ifo Institut, and Institut für

Weltwirtschaft.

5



Table 1: Descriptive statistics of forecast errors.

Forecasts Mean N SD RMSE

q2 -0.12 117 0.82 0.83

q4 0.05 135 1.27 1.27

N: Number of observations. SD: Standard deviation. RMSE: Root-mean-squared error.

forecasts for Germany (see, e.g., Behrens, Pierdzioch, and Risse, 2018a, 2019). The macroe-

conomic predictors are available at a monthly frequency, where we take into account a forecast

formation lag (that is, the the research institutes use macroeconomic data for the month preced-

ing the month in which a forecast is formed) and publication lags. The array of macroeconomic

predictors includes the following variables: a short term interest rate, the term spread, the returns

on the OECD share-price index for Germany, the U.S. federal funds rate, the inflow of industrial

orders, the growth rate of German industrial production, the growth rate of U.S. industrial pro-

duction, business tendency surveys for manufacturing (tendency and future tendency), the CPI

inflation rate, the growth rate of money supply (M1), the exchange rate of the US dollar vis-à-vis

the euro (before 1999, vis-à-vis the Deutsche Mark), the returns of the oil price (West Texas In-

termediate), the returns of the real effective exchange rate, and the normalized OECD composite

leading indicator for Germany.4

We supplement our macroeconomic predictors with textual predictors computed using the fore-

cast reports of the research institutes. We use machine-learning techniques to discover semantic

patterns that reflect underlying topics that got combined to form the document. The most ba-

sic topic model is the latent Dirichlet allocation (LDA) (Blei, Ng, and Jordan, 2003). The idea

of LDA is that each document contains a distribution over latent topics, which contain a distri-

bution over words. The respective topic proportions provide a low-dimensional representation

of the content of each document. We combine LDA with word embedding, a method of map-

ping words in vector space and thus representing their meaning (Panigrahi, Simhadri, and Bhat-

4In order to account for data revisions, we use a backward-looking moving-average of order 12 to smooth out

the effects of retrospective data revisions (CPI, M1, real effective exchange rate, industrial production, and orders).
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tacharyya, 2019). The topic proportions of 24 topics are used as predictors. See Foltas (2020)

for an extensive description of this combined approach and an analysis of the different topics.

4 Empirical Analysis

4.1 Methodological Issues

We use 1500, 2000, and 2500 random trees to grow random forests. As our benchmark cali-

bration, we set the minimum node size to five, and the number of predictors randomly chosen

for splitting to round(number of predictors/3), which are both default values widely used in the

machine-learning literature. We use the R Core Team (2020) programming environment for sta-

tistical computing to undertake our empirical analysis, where we use the add-on package “grf”

(Tibshirani, Wager, and Athey, 2020) to estimate the quantile random forests and the BFGS al-

gorithm implemented in the “optimx” package (Nash, Varadhan, and Grothendieck, 2020) to

estimate the parameters of the skewd t-distribution. For estimation of the benchmark quantile-

regression model, we use the “quantreg” package (Koenker, 2020, we use the “fn” algorithm).

We assess the efficiency of forecasts in the context of an in-sample and an out-of-sample analysis.

For the in-sample analysis, we use the full sample of data available for our empirical analysis.

We use out-of-bag data to compute forecasts, that is, the bootstrapped data not used for grow-

ing a random tree. For the out-of-sample analysis, we use a recursive and a rolling estimation

approach. This approach requires that, after having started the estimations using data for some

initial period, we reestimate the quantile-random forest whenever a new forecast error becomes

available, where the length of the estimation window either expands (recursive) or is held fixed

(rolling). For the out-of-sample analysis, we compute forecasts by plugging into an estimated

random forest the new realizations of the predictors that become available when the research

institutes publish a new growth forecast.
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Table 2: In-sample results

Forecasts q2 q2 q4 q4 q2 q2 q4 q4

Trees AG-weak pval AG-weak pval AG-strong pval AG-strong pval

1500 -1.596 0.945 -1.065 0.857 2.888 0.002 4.797 0.000

2000 -1.926 0.973 -0.610 0.720 2.466 0.007 4.844 0.000

2500 -1.961 0.975 -0.854 0.803 2.587 0.005 4.702 0.000

AG test: Amisano-Giacomini test. A positive test statistic indicates that quantile-random forests perform better than

the benchmark model. pval: one-sided p-value.

4.2 In-Sample Results

Table 2 summarizes our in-sample results, where we report for the q2-forecasts and the q4-

forecasts both the value of the AG test statistic and a one-sided p-value. A positive value of

the test statistic indicates that random forests perform better in terms of their implied density

forecasts than the benchmark model. We compare the benchmark model, which implies that

neither the lagged forecast error nor conventional macroeconomic predictors nor the LDA-based

topics have predictive value for the conditional density of the forecast errors, with two versions

of quantile-random forests. The first version is a very simple and stylized quantile-random forest

estimated using only the lagged forecast error. We use this version to assess whether the research

institutes publish weakly efficient growth forecasts. The second version features the lagged fore-

cast error and the entire array of macroeconomic predictors and topics. It is this second version

that is a natural candidate for estimation of a quantile-random forest, given the large number of

predictors and the he limited number of forecasts we can use for our empirical analysis. We

use this version to study whether the growth forecasts published by the research institutes are

strongly efficient.

The null hypothesis is that forecasts are (weakly or strongly) efficient, while the alternative hy-

pothesis is that forecasts are not (weakly or strongly) efficient. The main message to take home

from Table 2 is that the null hypothesis of strongly efficient forecasts can be rejected at conven-

tional levels of significance at both forecast horizon. The results of the tests for weak forecast

8



Table 3: In-sample results (without financial crisis)

Forecasts q2 q2 q4 q4 q2 q2 q4 q4

Trees AG-weak pval AG-weak pval AG-strong pval AG-strong pval

1500 -1.465 0.929 -1.518 0.936 2.200 0.014 4.290 0.000

2000 -1.827 0.966 -0.944 0.827 1.847 0.032 4.310 0.000

2500 -1.854 0.968 -1.194 0.884 2.106 0.018 4.247 0.000

AG test: Amisano-Giacomini test. A positive test statistic indicates that quantile-random forests perform better than

the benchmark model. pval: one-sided p-value.

Table 4: In-sample results (bagging)

Forecasts q2 q2 q4 q4

Trees AG-strong pval AG-strong pval

1500 2.217 0.027 4.232 0.000

2000 2.896 0.004 3.910 0.000

2500 2.631 0.009 4.561 0.000

AG test: Amisano-Giacomini test. A positive test statistic indicates that quantile-random forests perform better than

the benchmark model. pval: one-sided p-value.

efficiency, in contrast, are all insignificant and, in fact, the negative values of the AG test statistic

indicate that the naive quantile-regression model yields the superior log probability scores.5

As a robustness check, we report in Table 3 the results we obtain when deleting the probability

scores for the years 2008/2009, the years of the Great financial crisis, from our analysis.6 This

robustness check is motivated by the observation that the research institutes made relatively large

forecast errors during the financial crisis. The results of this robustness check corroborate the

baseline results we report in Table 2, that is, we (do not) reject (weak) strong forecast efficiency.

As another robustness check, we consider a version of random forests that uses all predictors to

5We also tested the weak efficiency of the forecasts by comparing the log probability score of a quantile-

regression model that features only a constant with the log probability score of a quantile-regression model that

features the lagged forecast error as a predictor. The findings from this comparison (not reported, but available upon

request) corroborate the results reported in Table 2

6Recent empirical findings reported by (Döpke, Fritsche, and Müller, 2019) indicate that forecaster’s behavior

has changed following the financial crisis.
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Table 5: Out-of-sample results

Panel A: Recursive estimation window

Forecasts q2 q2 q4 q4 q2 q2 q4 q4

Trees AG-weak pval AG-weak pval AG-strong pval AG-strong pval

1500 -1.681 0.954 0.892 0.186 0.304 0.381 3.619 0.000

2000 -1.732 0.958 1.090 0.138 0.261 0.397 3.412 0.000

2500 -1.678 0.953 1.002 0.158 0.424 0.336 2.877 0.002

Panel B: Rolling estimation window

Forecasts q2 q2 q4 q4 q2 q2 q4 q4

Trees AG-weak pval AG-weak pval AG-strong pval AG-strong pval

1500 -0.344 0.635 0.988 0.161 0.411 0.340 2.817 0.002

2000 0.473 0.318 1.121 0.131 1.290 0.099 2.863 0.002

2500 0.365 0.357 1.156 0.124 0.321 0.374 3.012 0.001

AG test: Amisano-Giacomini test. A positive test statistic indicates that quantile-random forests perform better than

the benchmark model. pval: one-sided p-value.

grow trees. This version is also known in the machine-learning literature as “bagging” (Breiman,

1996). Table 4 summarizes the results. Bagging makes sense only when we study the version of

quantile-random forests that use the full array of predictors as candidates for splitting. In other

words, we focus on the case of strong forecast efficiency. We summarize the results in Table 4.

The results lend further support to the view that the growth forecasts of the research institutes do

not pass the test of strong efficiency.

4.3 Out-of-Sample Results

Table 5 summarizes the results of the out-of-sample analysis for both the recursive and the rolling

estimation window.7 We use a rolling estimation window of length 70 forecasts, which equals

roughly half the sample size. Correspondingly, we use 70 forecasts to initialize the recursive

7Deleting the years of the Great financial crisis from the analysis leaves the results of the AG tests qualitatively

unaffected. Results are not reported, but are available upon request.
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estimations. Two results stand out. First, we cannot reject weak forecast efficiency, which is in

line with the in-sample results. Second, we reject strong forecast efficiency for the q4-forecasts

but, in contrast to the in-sample analysis, not for the q2-forecasts. Figure 1 plots the relative

Figure 1: Variable importance

Panel A: Recursive estimation window
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Panel B: Rolling estimation window
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Relative importance is reported for q4-forecasts. Panel A: Black line − stock market returns. Red line − Business-

climate expectations. Green line − returns of the real effective exchange rate. Panel B: Black line − stock market

returns. Red line − growth rate of M1. Green line − returns of the real effective exchange rate. Number of trees:

2000.

importance (in percent) of the top three predictors over time for both the recursive and the rolling

estimation window. Relative importance measures how often a predictor is used for splitting. We
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focus on the q4-forecasts because we reject strong efficiency in case of these forecasts. The first

result is that stock-market returns are a top predictor. The relative importance of stock-market

returns increased until the financial crisis. In other words, the research institutes did not fully

account for stock-market developments when forming their longer-term growth forecasts. This

changed after the financial crisis, as witnessed by the decreasing relative importance of stock-

market returns. The returns of the real effective exchange rate are another top predictor. The

relative importance of this predictor shows a trend decline from around 8-10% to around only

4-5%, possibly reflecting that the research institutes learned over time how movements of the

real effective exchange rate affected the highly export-oriented German economy. Two other

noticeable predictors are business-climate expectations (recursive) and the growth rate of M1

(rolling). The relative importance of the former increased after thew Great financial crisis in

case of the recursive estimation window. The relative importance of the growth rate of M1, in

contrast, hovers around only 5% in case of the rolling estimation window.

Figure 2: Relative importance of the topics
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Relative importance is aggregated across topics for the case of a recursive estimation window. Results are for

q4-forecasts. Number of trees: 2000.

It is worth noting that the LDA-topics not among the top three predictors plotted in Figure 1. A

natural question, therefore, is whether our results imply that reading the business-cycle reports of

the research institutes is a waste of time. In order to answer this question, we plot in Figure 2, for
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the case of a recursive estimation window, the relative importance aggregated across all topics

(q4-forecasts; results for the q2-forecasts are similar and are not reported). It is evident from the

figure that the topics, when taken together, are relatively often used as splitting variables. Their

aggregate relative importance varies between roughly 30-50% and shows a tendency to decrease

over time. Notwithstanding, it is fair to conclude that, while individual topics are not among

the top predictors in terms of their relative importance, aggregating the relative importance of

the diverse topics indicates that the business-cycle reports published by the research institutes do

contain information useful for modeling the forecast errors.

4.4 Some Model Diagnostics

We use the probability integral transform (PIT; that is, the cumulative density function as eval-

uated at the actual forecast error) to assess the density forecasts. Diebold, Gunther, and Tay

(1998) show that correctly specified density forecasts imply that the PIT is identically uniformly

distributed on the unit interval.8 We use the histogram of the PIT (upper row of Figure 3), the

test for a correct specification of conditional predictive density by Rossi and Sekhposyan (2019)

(lower row of Figure 3), and the Anderson–Darling test (Anderson and Darling, 1954) to test for

uniformity of the PIT, and the stability test proposed by Andrews (1993) to test the identical-

distribution property (Table 6).9

We focus on the q4-forecasts because we find strong evidence against strong efficiency of these

forecasts, where we report results for the in-sample (that is, out-of-bag) and out-of-sample den-

sity forecasts. The histograms of the PITs indicate that the deviations from a uniform distribution

are hardly significant. Similarly, the test for a correct specification of the conditional predictive

8The overlapping nature of the research institutes growth forecasts implies that, in our empirical analysis, the

PIT is not independently distributed. As a result, application of the Ljung-Box test statistic yields significant results

(results are not reported but available upon request).

9Rossi and Sekhposyan (2014) describe in detail tests useful for evaluating predictive densities.
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Figure 3: Properties of the PIT
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Upper row: Histograms of the PIT for q4-forecasts along with critical values (thin red dashed lined). Dashed red

lines are the 2.5th and 97.5th percentiles bands. Lower row: Empirical cumulative distribution functions (ECDF)

of the PIT (thick solid line) along with the ECDF of a uniform distribution (45-degree; thin black dashed line) line,

and the 5% critical lines (red dashed lines) computed using the critical values tabulated by Rossi and Sekhposyan

(2019). Number of trees: 2000.

Table 6: Model diagnostics

Test statistic In sample Recursive Rolling

Anderson-Darling test 0.213 0.721 0.047

Andrews test 0.398 0.160 0.114

Model diagnostics (p-values) are reported for q4-forecasts. Number of trees: 2000. Anderson-Darling test: Unifor-

mity. Andrews test: Stability.
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densities yields insignificant results. The Anderson-Darling test yields insignificant results ex-

cept in the case of the rolling estimation window. Similarly, the Andrews test for stability is not

significant.

5 Concluding Remarks

We have used a large array of macroeconomic and textual predictors to test the weak-form and

strong-form efficiency of the growth forecasts of three leading German research institutes. To this

end, we have used quantile-random forests to compute density forecasts of the forecast errors.

Our in-sample results show that we can reject the null hypothesis of strongly efficient short-

term and longer-term growth forecasts. As for the out-of-sample results, we can reject strong

efficiency of longer-term growth forecasts. We cannot reject the hypothesis of weak efficiency

of growth forecasts.

On the methodological front, we have shown that quantile random forests are a useful technique

for modeling a forecaster’s information set with a large array of predictors even when the number

of forecasts available for an in-depth empirical analysis is limited. Moreover, we have shown

how the estimated quantile random forests can be used to produce density forecasts that, in turn,

render it possible to analyze the efficiency of macroeconomic forecasts from a new perspective.

To the best of our knowledge, this perspective has not been considered in earlier research on the

efficiency of macroeconomic forecasts.

In future research, it is interesting to examine whether the efficiency of macroeconomics fore-

casts is related to macroeconomic risks. In this regard, one could build on recent research by

Adams, Adrian, Boyarchenko, and Giannone (2020) who use quantile regressions and the skewed

t-distribution to model the conditional distribution of forecast errors as implied by the median

forecast of the Survey of Professional Forecasters as a function of a small number of conditioning

variables (notably an index of financial conditions). They then derive from the estimated distri-

butions metrics of downside and upside risks of key macroeconomic variables. It is interesting
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to explore whether such downside and upside risks have explanatory value for the potentially

time-varying efficiency of macroeconomic forecasts.
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