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Chapter - 4 

Phosphorus Mobilizers from Mangrove Ecosystem and 

Their Role in Desalination of Agricultural Lands  

Ramya Abhijith, A Vennila, CS Purushothaman, Shilta MT and Lekshmi RG Kumar 

 

 

Abstract 

Globally the agricultural activities are having shrinkage in terms of area 

and salinization of agricultural lands is one of the most serious 

environmental problems. Nationally our land is affected by salinity and 

alkalinity, and thus results in decreased production. Phosphorus being one of 

the essential mineral nutrients limits the plant growth and is unavailable to 

plants due to its low solubility and high fixation in the soil. Hence, this is 

rectified with additional supply of as phosphatic fertilizers. However, major 

portion of soluble inorganic phosphate in form of chemical fertilizer applied 

to soil is immobilized rapidly and occurs in oxidised form as phosphates 

bounded to aluminium, calcium or iron and becomes unavailable to plants. 

Hence, the use of phosphorus-mobilizing bacteria can provide a solution to 

the problem of limited phosphorus availability in salt-affected soils. The 

application of phosphorus-mobilizing bacteria as biofertilizer can not only 

improves the growth and quality of produce, but also drastically reduces the 

usage of chemical fertilizers. Hence, phosphorus-mobilizing bacteria can be 

used as environment friendly bio-fertilizers help to reduce the requirement of 

phosphatic fertilizers 

Keywords: phosphorus, rhizosphere, phosphate-solubilizing bacteria, 

phosphatase producing bacteria, acid and alkaline phosphatase activity, 

1. Introduction 

Phosphorus (P) is a major growth-limiting nutrient second to nitrogen. It 

is one of major constituents of nucleic acids, ATPs and phospholipids. It has 

both merits and demerits in terms of productivity as low quantity limits the 

productivity and excess leads to eutrophication. P is having sedimentary 

cycle and simpler compared to other nutrient cycles, and inorganic P 

especially orthophosphates is the main source of P for primary producers. 

Mangroves such as Avicennia spp. in general are tolerant to high organic 
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load. Organically rich mangrove ecosystem, by and large are nutrient-

deficient. Feller et al. (2002) found that N and P are not uniformly 

distributed within the mangrove ecosystems. Romine and Metzger (1939) 

suggested that the total N and P content in soil is very low as strong 

weathering occurs. P is the essential mineral nutrient limits the plant growth 

and not readily available to plants due to its low solubility and high fixation 

in the soil (McVicker et al., 1963). Hence, this nutrient is supplied as 

phosphatic fertilizers. However, a large portion of soluble inorganic 

phosphate applied to the soil as chemical fertilizer is immobilized rapidly 

(Goldstein, 1995), and occurs in oxidised form as phosphates bound to 

aluminium, calcium or iron and becomes unavailable to plants. 

Being one of the major essential macronutrients for plants and is applied 

to soil in the form of phosphatic fertilizers. A large portion of soluble 

inorganic phosphate applied to the soil as chemical fertilizer is immobilized 

rapidly and becomes unavailable to plants (Goldstein, 1995) and the quantity 

available to plants is usually a small proportion (Stevenson and Cole, 1999) 

in two soluble forms, the monobasic (H2PO4
−) and the diabasic (HPO4

2−) 

ions. In marine sediments, abundance of cation in the interstitial water makes 

phosphorus gets precipitated and largely unavailable to plants and the 

mobilization is a slow process. Microorganisms are good mobilizers 

especially bacteria and fungi. They help in releasing phosphorus from 

organic and inorganic matters through the process of mineralization and 

solubilization. This is mainly done by the phosphate-solubilizing bacteria 

and phosphatase-producing bacteria altogether constituting the plant growth 

promoting rhizobacteria in and around the rhizosphere by secretion of 

organic acids and production of phosphatase enzyme facilitating the 

conversion of insoluble forms of P to plant-available forms (Kim et al., 

1998). 

Sediment acts as a source and sink for P. During heavy loading periods, 

P gets deposited in sediment and slowly releases to overlying water (Sundby 

et al., 1992). Froelich (1988) suggested that P can be deposited and buried in 

sediment either from adjacent land by overlying water or as a result of 

organic decomposition. Adsorption on metal oxides in the sediment has been 

considered as one of the principle reactions involving phosphate. Fabre et al. 

(1999) suggested that the wave action seems to control the re-suspension of 

the sediments and subsequently exchange of phosphate between the 

suspended matter and the water column. The degree of water logging, 

stagnancy, inundation frequency, flushing by the tidal waters is the 

interrelated factors that can deeply influence or control the availability 

http://treephys.oxfordjournals.org/content/30/9/1148.full#ref-144
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because it strongly influences salinity and anoxia (Boto and Wellington, 

1983). 

1.1 Phosphorus in coastal zone 

Sundby et al. (1992) studied the distribution of P in coastal marine 

sediments and the influences of P cycle – adsorption and desorption near the 

sediment-water interface on the flux of phosphate to the overlying water and 

reported that half of the particulate phosphate of sedimentation flux from 

Gulf of St. Lawrence is mobilized within the sediment. The pore-water 

profile of phosphate and the flux across the sediment-water interface depend 

on the mineralization rate of phosphate, the buffering capacity of sediment, 

and the thickness of the diffusive sub-layer at the sediment-water interface. 

de Lacerda et al. (1993) found that the total P concentration varying between 

100 and 1600 µg g-1, as a function of sediment source (continental or marine 

origin). P concentration is comparatively lower in the sandy coastal zone 

than the clay or silty deep water zone (Lukawska- Matuszewska and Bolaek, 

2008). 

1.2 Phosphorus in mangroves sediments 

Feller et al. (2002) found that essential nutrients like N and P are not 

uniformly distributed in mangrove ecosystems. The soil fertility can switch 

over from conditions of N to P limitation across narrow ecotonal gradients. It 

is reported that few tropical and subtropical mangrove wetlands appeared to 

be the P limited (Boto and Wellington, 1983). Total P concentration varies 

between 800 and 1600 µg g-1 (Hesse 1961; 1963) in mangrove sediments of 

Sierra Leone. Alongi et al. (1992) reported lower P (100-670 µg g-1) in 

mangrove sediments of Gautami-Godavari estuary. Silva and Mozeto (1997) 

reported that total P varies from 170 to 270 µg g-1 in mangrove sediments of 

Sepetiba Bay, Brazil. Fabre et al. (1999) found a quite higher range of total P 

in Guianese mangrove varying between 600-800 µg g-1. Kathiresan et al. 

(1996) reported seasonal variation in the total sediment P in Pichavaram 

mangrove, which ranges from 0.42 to 1.52 g m-2 and the spatial variation of 

total sediment P higher in the lower inter-tidal (0.84 g m-2) than in upper 

inter tidal zone (0.65 g m-2). 

Silva et al. (2007) has reported that sediment as a major reservoir for P 

in mangrove ecosystem. Walsh (1967) reported that soil releases phosphates 

and nitrates during freshwater condition and absorbs them from overlying 

water when the water becomes salty again. According to Boto and 

Wellington (1988), in mangrove sediments the major fraction in the P pools 

is organic P and this is mostly unavailable to plants. Alongi et al. (1992) 
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proposed that dissolved and particulate P concentrations in mangrove 

sediment are generally low and the major proportion of the inorganic P is 

bound as salts or oxides. In contrast, Fabre et al. (1999) reported that 

inorganic P is higher than the organic P. The extractable P concentrations 

across a mangrove forest gradient decrease with tidal height, it can become 

limiting in elevated areas (Boto and Wellington, 1983; Silva and Sampaio, 

1998; Feller et al., 2002) suggesting a tidal influence in the deposition of P 

(Mackey et al., 1992). 

1.3 Phosphorus in rhizosphere 

The rhizosphere concept was introduced by Hiltner L (1904) and 

defined the word rhizosphere as the narrow zone of soil surrounding the 

roots where the microbial populations are getting stimulated by the root 

activities of the plant. These fine roots act as binders (Hesse, 1961). The 

rhizosphere (true roots) and pneumatophore (respiratory root) zones may 

harbour unique bacterial community than that of bulk sediments. The 

physicochemical and biological characteristics of rhizospheric sediment are 

significantly differing from bulk sediment (Hinsinger, 2001). Ryan et al. 

(2001) had proposed that organic anions secreted from plant roots increase 

the P availability by desorbing inorganic P from a mineral surface and 

chelating or complexing cations such as Al, Fe and Ca which gets bound to 

P. Hinsinger (2001) and Trolove et al. (2003) suggested that biochemical 

changes occur in the rhizosphere during P uptake. Gahoonia and Nielsen 

(1992) and Hinsinger (2001) suggested that pH of the rhizosphere soil may 

be changed by imbalance in the uptake of cations and anions by plants, 

which can affect the P availability in the soil. The plant-microbial 

interactions in rhizosphere will lead to increase in the plant health and also 

will lead to the soil fertility (Khan et al., 2009). The bacteria inhabiting in 

the rhizospheric region and which are beneficial to plants are termed plant 

growth promoting rhizobacteria (Khaled et al., 2010). The solubilization and 

mineralization of P in the rhizosphere is the most common mode of action 

implicated in plant growth promoting rhizobacteria that increase nutrient 

availability to host plants (Richard, 1996). Plant roots also secrete enzymes 

known as phosphatases which can catalyze organic P hydrolysis. It is 

reported that higher phosphatase activity in rhizospheric sediment compared 

to bulk or non rhizospheric sediment. This can lead to reduction of organic P 

forms in the rhizosphere (Radersma and Grierson, 2004). In contrast to this, 

no depletion of organic P forms occurred in the rhizosphere in spite of higher 

phosphatase activity in the rhizosphere (Hedley et al., 1982). Additionally, 

organic compounds secreted by plant roots will stimulate microbial activity 
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in the rhizosphere, which may also influence the P availability (Bowen and 

Rovira, 1999). 

1.4 Phosphorus Immobilization 

The phosphate form of P is one of the least soluble mineral nutrients in 

soil. The P content of soils may range up to 19 g kg-1 but usually less than 

5% of this is available to the plants and microorganisms in soluble form and 

the rest 95% is unavailable being in the form of insoluble inorganic 

phosphate and organic P complexes. These forms of P being held in the 

sediments for a long time remains excluded from cycling (Paul et al., 1988). 

The primary source of P for plants is inorganic P, depending on the 

analytical methodology also termed extractable, exchangeable, labile, and 

available or bioavailable P (Salcedo and Medeiros, 1995). Experimental 

additions of P have yielded increase in growth of mangroves. It has long 

been recognized that it is possible that some of the beneficial effect of 

applied phosphate in acid soils is due to fixation of aluminium and not just 

due to phosphate uptake by the plant (Pierre and Stuart, 1933). Hesse (1963) 

suggested that aluminium will be precipitated by phosphate and prevents its 

uptake. Aluminium can be relatively abundant in mangrove soils (Naidoo, 

2006) and the acidic conditions of mangrove soils may result in aluminium 

being mobilized to toxic levels. Rout et al., 2001 has studied the relation and 

proposed that mangroves are having a large storage capacity for aluminium 

in their canopy. 

1.5 Phosphorus Mobilization 

The P immobilization occurs rapidly whereas the mobilization is a slow 

process and microbial activity is responsible for major nutrient 

transformations within a mangrove ecosystem (Alongi, 1993; Holguin, 

1999). Microorganisms are involved in a range of processes that affect the 

transformation of soil P and are thus an integral part of the soil P cycle. 

Mangrove growth is very much limited primarily by phosphate availability 

because phosphorus will get adsorbed or co-precipitated with carbonate 

compounds (Koch and Snedaker, 1997). 

Bio-geographical, anthropological and ecological properties including 

food web in the ecosystem, nutrient cycling and the presence of organic and 

inorganic matters strongly influences the microbial load in mangrove forest 

sediments. Major nutrient transformators within a mangrove ecosystem are 

bacteria and fungi constituting major portion of total microbial biomass 

(Alongi et al. 1993; Holguin et al. 1999; 2001) and are thus an integral part 

of the soil P cycle. 

http://treephys.oxfordjournals.org/content/30/9/1148.full#ref-136
http://treephys.oxfordjournals.org/content/30/9/1148.full#ref-63
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Rhizobiales, Campylobacterales, Methylococcales and Vibrionales 

tended to be more abundant in the rhizosphere samples than in the bulk 

sediment (Gomes et al., 2010). Soil in the mangrove region has salinity of 

6.3 g l-1 and it is very rich in microbial (Halophilic aerobic bacterial) load as 

it gives too numerous to count (TNTC) colonies even at 10-8 dilution 

(Kathiresan, 2001). 

Khan et al.(2009) proposed that top most soil of mangrove ecosystem (0 

to 5 cm) shows higher aerobic bacterial load and the load is decreasing with 

depth due to increasing trend of anaerobic conditions and the exchange of 

seawater and fresh water i.e. the circa-tidal rhythm, which shows wide 

fluctuation of salinity. The study reveals that a perfect stratification exists 

between the depths of soil in the mangrove ecosystem and salt tolerance 

nature of the bacteria. This stratification may be responsible for a perfect 

nutritive management of the mangrove forests. Thus, they provide unique 

ecological niche to variety of microorganisms (Khan et al., 2009). 

In particular, soil microorganisms are effective in releasing P from 

inorganic and organic pools of total soil P through solubilization and 

mineralization (Hilda and Fraga, 1999). This is mainly done by the 

phosphate-solubilizing bacteria and phosphatase-producing bacteria in and 

around the rhizosphere by secretion of organic acids and phosphatase 

enzyme production facilitating the conversion of insoluble forms of P to 

plant-available forms (Kim et al., 1998). There exist two forms of 

phosphorus-mobilizing bacteria in the rhizosphere namely phosphate-

solubilising bacteria (PSB) and phosphatase-producing bacteria (PPB). 

2. Phosphatase-producing bacteria 

The word ‘Phosphatase’ was coined by Plimmer (1913). Suzuki et al. 

(1907) suggested that a group of enzymes were responsible for microbial 

mineralization of organic phosphate compounds and the role of bacteria in 

mineralization of organic P compounds was first suggested by Waksman 

(1934). These bacteria were named as phosphatase- producing bacteria 

(PPB) produce extracellular enzymes such as phosphatase and are able to 

mineralize organic phosphates into inorganic form, that eventually become 

available to the plants (George et al., 2002). 

In bacteria, alkaline phosphatase is usually located in the periplasmic 

space to generate free phosphate groups for uptake and use. This is in 

accordance with the fact that alkaline phosphatase is usually secreted by 

bacteria during the phosphate starvation only (Garen and Levinthal, 1960). 

Alkaline phosphatase catalyzes the phosphate-derived molecules to produce 

inorganic phosphate and a hydrolyzed molecule. Aaronson and Patni (1976) 
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proposed that decomposition and mineralization of organic P compounds by 

many enzymatic complexes are especially by heterotrophic bacteria. The 

release of extracellular phosphatase from actively growing marine bacteria, 

Pseudomonas sp. isolated from the North Pacific Ocean was first reported by 

Kobori and Taga (1980). Ammerman and Azam (1985) suggested that 

phosphatase enzyme catalyse the hydrolysis of phosphate esters and 

promotes the degradation of complex organic P compounds into an organic 

moiety and ortho-phosphates which is the bioavailable form for primary 

producers. 

Phosphatases have been typically classified into alkaline and acid 

phosphatases according to their maximum hydrolysing capacity at different 

pH values (Jansson, 1988). Mangrove ecosystem constituted more 

populations of PPB than backwaters, estuaries and marine biotopes and 

phosphatase activity was higher in clayey sediments irrespective of other 

environment factors (Venkateswaran, 1981). 

Pseudomonas sp., Vibrio sp., Bacillus sp., Corynebacterium sp., 

Micrococcus sp., and Flavobacterium cytophaga are found to be alkaline 

phosphatase-producers in the sea and brackish water areas of Porto Novo 

(Venkateswaran and Natarajan 1983). Tarafdar and Junk (1988) reported that 

almost half of the microorganisms in soil and on plant roots were able to 

mineralize the organic P through the production of phosphatase. 

In a marine environment, organic P will be available in macromolecular 

form and will not be readily available to the organisms. Soil phosphatases 

play a major role in the mineralization processes (dephosphorylation) of 

organic P substrates. The organic P compounds are to be preconditioned by 

extra-cellular bacterial enzymes called “phosphatases” for making them 

available to the nutrient cycles. Three groups of bacteria viz., Pseudomonas, 

Vibrio and Bacillus were identified from mangrove sediments (Ravikumar et 

al., 2007).The enzymes in soils originate from animal, plant and microbial 

sources and the resulting soil biological activity includes the metabolic 

processes of all organisms (Cookson, 2002). 

2.1 Distribution of phosphatase-producing bacteria 

de Freitas et al. (1997) reported that several bacterial strains exhibit both 

P solubilizing and mineralizing activity. Guang-cam et al. (2008) studied the 

P- solubilizing activity and P- mineralizing activity of the bacterial strains 

isolated from the soil. Kim et al. (1997; 1998) reported that Enterobacter 

agglomerans isolated from wheat rhizosphere solubilised hydroxyapatite and 

also the Organic P. 
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2.2 Phosphatase activity of phosphatase-producing bacteria 

Bacillus cereus was the dominant species and the phosphatase activity 

was also higher (Ravikumar et al., 2007). Ramkumar and kannapiran (2011) 

reported phosphatase activity of the PSB isolates, and showed that the strain 

KPB6 had higher activity (28.78±1.18 μmoles g-1 hr-1) followed by the strain 

KPB5 (26.13±1.10 μmoles g-1 hr-1). Phosphatase activity was low in KPB11 

(10.61±0.18 μmoles g-1 hr-1), KPB2 (10.82±0.23 μmoles g-1 hr-1) and KPB12 

(10.84±0.23 μmoles g-1 hr-1). 

Ponmurugan and Gopi (2006) stated that there is a positive correlation 

between the phosphate solubilization with phosphatase activity of bacteria. 

Sakurai et al. (2008) also found similar correlation between phosphatase 

activities with phosphate solubilization. Fitriatin et al. (2011) used the 

cluster analysis to obtain the most excellent bacterial isolates for producing 

phosphatase and solubilizing phosphate, and also capabilities of pre-eminent 

isolates to hydrolyze synthetic and natural organic phosphate. The results of 

the cluster analysis of 57 isolates based on phosphatase activity and 

dissolved P showed ten isolates of PPB with highest phosphatase activity 

and dissolved P. The phosphatase activity and dissolved P ranged from 44.71 

to 74.76 μg p-NP ml-1 hr-1 and 16.69 to 32.94 mg l-1. Phosphatase activity of 

ten selected isolates ranged from 0.35 to 4.96 μg p-NP ml-1 hr-1 on MS 

medium with phytic acid as organic P substrate. Meanwhile, in medium 

containing extract of cow-dung manure, phosphatase activity ranged from 

0.20 to 4.26 μg p-NP ml-1 hr-1. It can be seen that the higher phosphatase 

activity on MS medium containing phytic acid than extract of cow-dung 

manure. The results of this experiment showed that organic P substrate is 

affecting phosphatase activity and were consistent with the research of 

Moura et al. (2001) who explained that the different organic P substrates 

affect bacterial phosphatase activity. 

3. Phosphate-solubilising Bacteria 

Phosphate- solubilizing bacteria (PSB), as potential suppliers of soluble 

forms of phosphorus, would provide a great advantage to mangrove plants. 

PSB act on insoluble inorganic form of phosphorus and are being used as 

bio-fertilizer in agriculture sector since 1950’s. They are capable of secreting 

different types of organic acids e.g. carboxylic acid (Deubel and merbach, 

2005). Many rhizobacteria are able to solubilise sparingly soluble 

phosphates, usually by releasing chelating organic acids (Vessey et al., 

2004). 

It is generally accepted that the mechanism of mineral phosphate 

solubilization by PSB strains is associated with the release of low molecular 
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weight organic acids (Goldstein, 1995; Kim et al., 1997), which through 

their hydroxyl and carboxyl groups chelate the cations bound to phosphate, 

thereby converting it into soluble forms (Kpomblekou and Tabatabai, 1994). 

The acid production will lower the pH in rhizosphere and the acids are acting 

as metal chelators displacing metals from phosphate complexes and hence 

there occurs the dissociation of phosphate. The low pH cause release of 

phosphate from Ca3 (PO4)2 in calcareous soils (He and Zhu, 1998). However, 

phosphate-solubilization is a complex phenomenon, which depends on many 

factors such as nutritional, physiological and growth conditions of the 

culture (Reyes et al., 1999). 

Phosphate-solubilizing microorganisms including bacteria and fungi can 

grow in media where Ca3 (PO4)2, Fe3 (PO4)2, Al3 (PO4)2, apatite, bone meal, 

rock phosphate or similar insoluble phosphate compounds are the sole source 

of phosphate. These organisms assimilate P and also release a large portion 

of excess soluble phosphates. The solubilization of P by phosphate-

solubilizing microorganisms is attributed to the excretion of organic acids 

like citric, glutamic, succinic, lactic, oxalic, malic, fumaric and tartaric acid 

(Rao, 1982; Gaur, 1990). The other mechanism is the alteration of solubility 

of product by acids, producing chelates with Ca2+ (Vazquez et al., 2000). 

In the aquatic environment, due to the action of organic and mineral 

acid, the precipitated inorganic phosphates are brought into media (Fleischer 

et al., 1988). In mangrove sediments, phosphates usually precipitate because 

of the abundance of cations in the interstitial water, making P largely 

unavailable to organisms. PSB as potential suppliers of soluble forms of P 

would provide a great advantage to mangrove plants. 

The mechanisms involved in phosphate-solubilisation by phosphate-

solubilizing microorganisms have been attributed to protonation (Illmer and 

Schinner, 1995) or their potential to produce various organic acids 

(Rodriguez and Fraga, 1999). The PSB are also found to produce 

extracellular acid and alkaline phosphatases (Rodriguez and Fraga, 1999). 

Dissolution of phosphates can result from anion exchange or chelation of Ca, 

Fe or Al cations associated with insoluble phosphates by organic acids 

(Gyaneshwar et al., 2002) and PSB have been shown to enhance the 

solubilization of insoluble P compounds through the release of low 

molecular weight organic acids (Sahu and Jana, 2000).  

3.1 Distribution of Phosphate-solubilizing Bacteria 

Vazquez et al. (2000) isolated and characterized phosphate-solubilizing 

microorganisms from the rhizosphere of mangroves and reported that 
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organic acids produced in rhizosphere lead to complete solubilization of 

insoluble calcium phosphate in the media. Main acids found are seen to be 

lactic acid, acetic acid, isovaleric and isobutyric acid. Of the 13 isolates, 12 

are bacteria belonging to Bacillus, Paenibacillus, Enterobacter, 

Pseudomonas, Vibrio and Xanthobacter and one is fungus i.e. Aspergillus 

niger. Most of the bacterial isolates produce more than one acid. The 

Aspergillus niger produces only succinic acid. 

Keneni et al. (2010) obtained fifteen isolates of PSB from faba bean 

rhizosphere and studied their effect on releases of soluble P from insoluble P 

sources with different sources of P in the media. Pseudomonas was found to 

be the main strain. Highest solubilization was observed with tricalcium 

phosphate followed by Egyptian rock phosphate. 

Ravikumar et al. (2007) studied the effect of heavy metals on growth 

and phosphate solubilization ability of halophilic phosphobacteria from 

Manakudi mangrove habitat and reported that as the concentrations of heavy 

metal increases, the contents of sugars (carbohydrate) and the proteins also 

increase in the cell supernatant. They proposed that the halophilic 

phosphobacteria survive better in the heavy metal stressed condition. Eight 

species of saline tolerant inorganic PSB such as Bacillus subtilis, B. cereus, 

B. megaterium, Arthrobacter illicis, Escherichia coli, Pseudomonas 

aeruginosa, Enterobacter aerogenes and Micrococcus luteus were identified. 

Of them, Bacillus subtilis was predominantly found in mangrove sediments 

(Ravikumar, 2008). 

Endophytic bacteria from the surface sterilized pneumatophores of A. 

marina are found to be Bacillus sp., Enterobacter sp. and Sporosarcina 

aquimarina. The colonization of pneumatophores by endophytic bacteria 

enhances growth of the entire plant, increasing productivity and the yield of 

reproductive organs (Janarthine et al., 2011). 

3.2 Phosphate-solubilizing activity of bacteria 

Bacillus strains isolated from wheat rhizosphere solubilized 112-157 mg 

l-1 of phosphate after 14 days (Sundara-Rao and Sinha, 1963). Vibrio sp. and 

Pseudomonas sp. solubilized 0.5-0.55 mg l-1 (Promod and Dhevendaran, 

1987), where maximum growth coincided with the maximum quantity of 

solubilised phosphate. The highest reported phosphate solubilization was by 

an unidentified marine bacterium, 300 mg l-1, isolated from the rhizosphere 

of the sea grass Zostera marina (Craven and Hayasaka, 1982). de Freitas et 

al. (1997) reported the phosphate solubilizing rhizobacteria majority belong 

to the genus Bacillus from field crops and their solubilization activity ranged 

from 7.5 to 22 µg P ml–1 from rock phosphate in liquid culture. 



 

Page | 73 

Phosphate-solubilizing activity of one strain, Bacillus 

amyloliquefaciens, had an average solubilization capacity of 400 mg of 

phosphate per litre of bacterial suspension (108cfu ml-1). This quantity could 

theoretically sufficient to a small terrestrial plant with its daily requirement 

of phosphate. The mechanism involved in phosphate solubilization was 

probably the production of organic acids (Vazquez et al., 2000). 

4. Conclusion 

At present salinization of agricultural lands is one of the most serious 

environmental problems influencing crop growth around the world. In India, 

7 million hectare land area is affected by salinity and alkalinity, and decrease 

in productivity is expected from these lands (Ravikumar, 2008). Hence, the 

use of phosphorus-mobilizing bacteria can provide a solution to the problem 

of limited P availability in salt-affected soils. Aquaculture in salt-affected 

inland and coastal areas is also gaining importance. Large quantity of 

organic material is settled in the aquaculture ponds. The phosphatase-

producing bacteria (PPB) can be used to mobilize P from un-utilized feed 

and other organic wastes. The application of phosphorus-mobilizing bacteria 

as biofertilizer can not only improves the growth and quality of produce, but 

also drastically reduces the usage of chemical fertilizers. The importance of 

mangroves in protecting coastal communities in India is clearly evident after 

the Tsunami in 2004 (WWF, 2005). It has been reported that mangrove 

growth is very much limited primarily by phosphate availability because 

phosphorus will get adsorbed or co-precipitated with carbonate compounds 

(Koch and Snedaker, 1997). Hence, phosphorus-mobilizing bacteria can be 

used as environment friendly bio-fertilizers help to reduce the requirement of 

phosphatic fertilizers in mangrove afforestation programmes too, and also to 

aid in easy establishment of planted saplings. These organisms can also be 

used as biosensors, molecular biology and bioremediators. 
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