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Radial anisotropy in small objects has been linked to exotic optical properties. It can be imple-
mented with a spherical inclusion that manifests self-similarity. We show that, when a self-similar,
onion-like structure with alternating layers is homogenized using an effective material approxima-
tion, the homogenized material becomes uniaxially anisotropic with the axis of anisotropy pointed
radially outward from the center of the inclusion. This radial anisotropy becomes exact in the limit
of a dense set of layers. The exact equivalence of the layered self-similar inclusion and the radially
anisotropic inclusion manifests itself both in the effective permittivities of the two inclusions—when
homogenized over the entire volumes—and in the internal potentials.

Because the layered sphere and the radially anisotropic sphere are analogous, it is possible to study
some of the interesting scattering features of radially anisotropic spheres in a realistic configuration.
In particular, we show that the outcome of homogenizing the self-similar inclusion, and consequently
the electric response, depends on what the core material at the center of the inclusion is and that a
continuous transition between the two homogenization models is possible. The new findings suggest
intriguing applications in nanophotonics.

I. INTRODUCTION

Spherical inclusions that manifest radial anisotropy
(RA) have been a focus of recent research because they
support exotic interactions with light, including the pos-
sibility of cloaking an object or magnifying it [1–4], and
because practical implementations of the inclusion exist
[5, 6]. In the electrostatic limit—i.e., when the object is
much smaller than the wavelength—the material of the
radially anisotropic sphere is sufficiently defined by its
two permittivity components—the radial permittivity ε‖
and the tangential permittivity ε⊥—which are both con-
stant throughout the volume of the inclusion (Fig. 1).
The two components, ε‖ and ε⊥, define the uniaxial per-
mittivity

¯̄ε = ε‖urur + ε⊥( ¯̄I − urur) (1)

where ur is the radial unit vector of the spherical coor-
dinate system (r, θ, ϕ) that has its origin at the center of
the inclusion. The anisotropy axis of the material varies
between points, so that the preferred direction is always
pointed in the direction of the local normal vector except
in the singular point at the center of the inclusion where
the axis of anisotropy is indeterminate.

The radially anisotropic sphere was first studied in its
punctured form, where a spherical radially anisotropic
coating is taken to envelop a homogeneous spherical core.
The punctured radially anisotropic sphere was studied by
Roth and Dignam [7] (1973), who based their approach
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FIG. 1. (a) RA sphere and (b) its approximate implementa-
tion with a self-similar sphere. An RA sphere results when a
sufficiently dense layered structure is locally homogenized.
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on Güttler’s derivation for the locally homogeneous core–
shell structure [8]. Schulgasser [9] (1983) discussed the
intact radially anisotropic sphere, in which the homoge-
neous core is absent. This seminal work has been fol-
lowed by research on the exotic scattering response of
these structures [10–14]. In subsequent work, the spher-
ical geometry has been generalized into a spheroidal one
[15, 16] and the uniaxial material has been generalized
into biaxial [17, 18]. Another flavor of radial anisotropy is
the cylindrical anisotropy. Infinitely long cylinders with
cylindrical anisotropy have been studied [19–21].

This article studies a way to implement the radially
anisotropic sphere using a set of layers that are both
homogeneous and isotropic (Fig. 1). In this implemen-
tation, a uniaxial medium results when the layers are
locally homogenized using an effective medium approx-
imation at some small neighborhood around each given
point inside the inclusion. If the chosen neighborhoods
are taken to be sufficiently small the layers may be re-
garded as being planar within the given neighborhood.
Furthermore, if the set of layers is sufficiently dense and
sufficiently regular, the volume fractions of each specific
type of layer or the total volume of the neighborhood are
predictable.

The main novelty of this article consists in analytically
solving the electrostatic problem that involves an onion-
like, self-similar structure, consisting of an indefinitely
dense set of infinitesimally thin layers (Fig. 1). The ma-
terial parameter of the layers alternates between ε1 and
ε2. In the given idealistic model, this alternating pattern
is imagined to continue indefinitely toward the center of
the inclusion. The fraction an+1/an between the outer
radii of any subsequent spherical layers is taken to have
a fixed value within the whole set of layers. When the
limit an+1/an → 1− of vanishingly thin layers is taken,
all finite domains inside the sphere contain material with
ε1 and material with ε2 in equal proportions.

A homogenization may be performed locally, at each
given small subdomain of the inclusion, to establish an
analogy between the radially anisotropic sphere in the
upper panel of Fig. 1 and the self-similar sphere in the
lower panel. The material of the inclusion may be locally
modeled as consisting of a set of planar layers, alternating
between the material parameters ε1 and ε2 so that the
thickness of each layer remains constant throughout the
entire volume. This local homogenization gives the values
[22, Eq. 8.8–8.9]

ε‖ =
2ε1ε2
ε1 + ε2

, ε⊥ =
ε1 + ε2

2
(2)

to the parallel permittivity component ε‖ and the perpen-
dicular permittivity component ε⊥ of the anisotropic per-
mittivity ¯̄ε in (1). It seems clear that, when the two kinds
of components of the material parameters are related by
(2), the local homogenization establishes an analogy be-
tween a given radially anisotropic sphere and the corre-
sponding self-similar sphere. Our goal is to rigorously
prove this analogy.

We establish the analogy in two parts. First, we
show that the radially anisotropic sphere and the self-
similar sphere have the same electrostatic response out-
side the sphere. The electrostatic response of the radi-
ally anisotropic sphere is characterized by its effective
permittivity, which is the effective permittivity of the in-
clusion when a homogenization is performed over the en-
tire inclusion—i.e. not merely over a small local subdo-
main, like above. The effective permittivity of a radially
anisotropic sphere is known in the literature [4] and it is

εeff =
ε‖
2

(
±
√

1 + 8
ε⊥
ε‖
− 1

)
(3)

Despite the local anisotropy of the material, the inclusion
as a whole is isotropic because of its spherical symmetry.
Therefore a simple scalar quantity suffices to represent
the effective permittivity. When we, in Sec. III A, derive
the effective permittivity of the self-similar sphere, we
again arrive at (3), proving that the effective permittiv-
ities are the same. Second, in Sec. III C, we show that
the internal potentials of the self-similar sphere and the
radially anisotropic sphere coincide.

A few approaches on the implementation of radial
anisotropy have been discussed in the literature [5, 9, 19].
In particular, Mangini et al. [6] discussed an imple-
mentation that uses a set of equidistant layers—keeping
the layer thickness an − an+1 rather than the fraction
an+1/an fixed between the layers. The advantage of
the presently introduced method, which keeps the radius
fraction fixed, is that the chosen implementation allows
one to explicitly use the self-similarity of the onion-like
structure as a tool for analysis. Also, the chosen imple-
mentation does not approximate radial anisotropy less
accurately near the center of the inclusion than near the
surface, as is the case with a structure of uniformly thick
layers.

The method presented in this article is conceptually
similar to the way in which an infinite geometric series
may be evaluated by employing its self-similarity. For a
geometric series s = Σqn, there exists a nontrivial func-
tion f(s) = 1 + qs that leaves the series unchanged. We
then refer to the value of the sum as the fixed point of
the function. The fixed point condition f(s) = s, when
solved for s, gives the value of the series, s = 1/(1− q).

In the same way, it follows from the self-similarity of
the onion-like inclusion that, if εeff is the effective per-
mittivity of the inclusion as a whole, εeff is also the ef-
fective permittivity of the inclusion from which the two
outer layers have been removed (Fig. 3). Section. II B
introduces the coating function c(ε2, ε1), which gives the
effective permittivity of a spherical inclusion whose core
has the permittivity ε2 and that is coated by a spheri-
cal layer with the permittivity ε1. Because adding two
extra coatings on the self-similar sphere does not affect
the effective permittivity, the effective permittivity sat-
isfies a fixed point condition εeff = c(c(εeff , ε2), ε1). In
Sec. III A, the equation that results from the fixed point
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condition provides an analytic expression for the effective
permittivity εeff .

The coating function c(ε2, ε1) concisely encapsulates
results that are provided by the theory of core–shell struc-
tures, which has been richly studied [8, 23, 24]. Sec-
tion II A revisits the theory of core–shells to derive the
coating function by using a homogenization principle.
Section II B uses the coating function in an inside-out ap-
proach that derives an expression for the effective permit-
tivity of a multilayered sphere. This incremental method
of internal homogenization[23–25] has been found to have
great parsimony because it avoids explicitly using a cas-
cade of propagation matrices. Compared to the homog-
enization approach, the method of propagation matrices
is arguably less intuitive, but it relies less on physical
insight and therefore generalizes more readily [26, 27].

This article chooses to treat the two branches of (3)
without dismissing one of the branches a priori . When
two separate branches εα and εβ exist and have different
absolute values, we refer to εα as the primary branch and
εβ as the secondary branch when |εα| < |εβ |. Although
Sec. IV A presents an argument against εβ in an intact
inclusion, the same section shows that εβ has relevance
when the inclusion is punctured.

Regardless of the physical relevance of the secondary
branch εβ , we gain mathematical insight by formally
treating εβ as if it had an equal standing with εα. Sec-
tion. III D establishes a duality between the effective per-
mittivities εα and εβ and the ordinary layer permittivities
ε1 and ε2. Dualities that transpose two intrinsic permit-
tivities are known in the literature [28–30]. However, a
duality that interchanges a pair of intrinsic permittivities
with a pair of effective permittivities is novel, so far as
we know.

This article discusses both the intact self-similar in-
clusion and the punctured inclusion. Although self-
similarity is broken in a punctured inclusion, the devi-
ation from self-similarity diminishes when the core that
intervenes the self-similar pattern of alternating layers is
made smaller. In Sec. III B, the branches εα and εβ of
the intact inclusion allow us to write the effective per-
mittivity εeff of a punctured inclusion in a concise form
that generalizes an existing result.

The final part of the article discusses the implications
of the layer implementation on the theory of radially
anisotropic spheres. Sections IV A–IV B show that the ef-
fective permittivity εeff of a punctured inclusion smoothly
transitions between εα and εβ when the core permittiv-
ity εc is adjusted gradually. The sections conceptually
discuss possible applications of the phenomenon.

A particularly paradoxical implication of the two-
branched indeterminacy of the radially anisotropic sphere
and the contrasting determinacy of the punctured sphere
is that there are small inclusions that can resist cloaking
and remain visible even when a radially anisotropic cloak
is applied. Section IV B discusses the paradox and its ex-
planation.

II. PRELIMINARIES

A. Core–shell

ε1

ε2

〈E1〉

〈E2〉 = 3
ε2
ε1

+2
〈E1〉

εeff

a1

a2

FIG. 2. Core–shell. To homogenize the inclusion, it suffices
to find the volume-averaged fields.

Let us first consider a core–shell inclusion that consists
of a spherical, homogeneous core with a permittivity ε2
and a radius a2 coated with a spherical, homogeneous
shell with a permittivity ε1 and an outer radius a1.

Because the impinging excitation field Ep is assumed
static and uniform, it follows from the orthogonality of
the spherical harmonics, that the full solution of the
Laplace equation ∇2φ = 0 in the coating reduces to just
two terms—the dipole term and the term that gives a
uniform field—of which the dipole term vanishes in the
core region. When we take the origin of the spherical
coordinates at the center of the inclusion, the potentials
are

φ1 = −C1E
p · r + a3

1D1
Ep · r
r3

φ2 = −C2E
p · r

(4)

We apply at the interface the continuity of the potential
and the continuity of the normal component of the elec-
tric flux density. In terms of potentials, these conditions
are given for the spherical surface at r = a2 as

φ1 = φ2

ε1
∂φ1

∂r
= ε2

∂φ2

∂r

(5)

When we substitute (4) and eliminate D1, we get

C2

C1
=

3
ε2
ε1

+ 2
(6)

The equation is just the text book formula [31, Sec. 3.24.]
for a homogeneous sphere in a homogeneous background
because the essentials of the two problems are the same.

To get the effective permittivity, we need to know the
fraction A = Ē2/Ē1 between the volume averaged fields
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〈E1〉 = Ē1uz and 〈E2〉 = Ē2uz. The fraction A is a
simple scalar because the field averages turn out to be
parallel. We may parameterize the geometry of the self-
similar inclusion by the volume fraction d of the coating,
so that

d = 1−
(
a2

a1

)3

As for the fields, the dipole field may be disregarded
in the volume average because the volume integral of a
dipole field vanishes over a volume that is bound by two
concentric spheres [25, Eq. 20]. That leaves

A =
C2

C1
=

3
ε2
ε1

+ 2
(7)

The effective permittivity is defined by 〈D〉 =
εvacεeff 〈E〉, where εvac is the vacuum permittivity and
the volume average extends over the entire inclusion, in-
cluding both the core and the coating. For the chosen pa-
rameterization of the core–shell, the definition becomes

dε1Ē1 + (1− d) ε2Ē2 = εeff

(
dĒ1 + (1− d) Ē2

)
which yields a scalar effective permittivity

εeff = ε2 + d
ε1 − ε2

A+ d (1−A)

= ε2 + d
ε2 + 2ε1

(3− d)ε1 + dε2
(ε1 − ε2)

(8)

We may check that εeff = ε2 when d = 0. This corre-
sponds to the special case where the coating does not
contribute because its thickness vanishes. Also, we may
check that εeff = ε2 when ε1 = ε2. This corresponds to
the special case where the coating does not contribute
because its material matches that of the core. We may
also check that if ε1 6= ε2 the contribution of the coat-
ing increases together with the volume fraction d of the
coating. This too coincides with the expectation.

A different parameterization has also been used in the
literature [24, 32]. When the volume fraction of the core
g = 1− d is used in (8) instead of the volume fraction d
of the coating, the equation takes the form

εeff = ε1 + 3gε1
ε2 − ε1

(ε2 + 2ε1)− g(ε2 − ε1)
(9)

which is exactly the form of the Maxwell–Garnett equa-
tion in the theory of electromagnetic mixing formulas.
The Maxwell–Garnett equation is a mean field approxi-
mation for the effective permittivity of a random dielec-
tric mixture [22, Sec. 3.1]. However, in the particular
case of a core–shell, the mean field approach does not
involve an approximation and the result applies exactly.

B. Multilayered sphere

To accommodate multiple layers of coating in the
theory, we may repeat the homogenization process of

Sec. II A multiple times, starting from the coating that is
directly on the core and proceeding outward. For a con-
venience of notation, we introduce the coating function,
defined by

cd(ε2, ε1) = ε2 + d
ε2 + 2ε1

(3− d)ε1 + dε2
(ε1 − ε2) (10)

so that for a core–shell of a core ε2 and a coating ε1,
the effective permittivity is εeff = cd(ε2, ε1), by (8). Let
us consider a spherical, multilayered inclusion that has
the permittivities ε1, ε2, . . . , εN proceeding from the out-
most layer toward the core. Homogenizing from the core
outward, we find that the effective permittivity is

εeff = cd1(cd2(. . . (cdN−1
(εN , εn−1), . . . ), ε2), ε1) (11)

where the self-similarity is not yet assumed, so that the
volume fractions

dn = 1−
(
an+1

an

)3

may take separate values.

III. SELF-SIMILARITY

A. Intact inclusion

ε1
ε2

εeff

εeff

a1

a2

a3

FIG. 3. Analysis of intact self-similar inclusion. If we have
guessed the effective permittivity εeff right, coating a homo-
geneous inclusion of ε = εeff with a layer doublet of ε1 and
ε2 leaves the effective permittivity of the coated inclusion un-
changed. This gives a condition from which εeff can be calcu-
lated.

The multilayered sphere can have any positive values
of the parameters dn and any complex permittivities εn.
However, the self-similar sphere is a special case where
the parameters dn = d are kept fixed between layers and
where the permittivities εn follow a repeating pattern.



5

For simplicity, we take this pattern to be the pattern of
Fig. 1, so that the permittivity alternates between ε1 and
ε2. By self-similarity

εeff = cd(cd(εeff , ε2), ε1) (12)

so that εeff is the fixed point of the function
cd(cd(·, ε2), ε1).

We now proceed to find the fixed point. It is possi-
ble to directly solve the equation that results when (10)
and (12) are combined. However, it is easier to proceed
by first effecting a suitable limit. Because the goal is to
implement the radially anisotropic sphere and because
the self-similar sphere becomes the analogue of the radi-
ally anisotropic sphere in the limit d → 0+, we assume
d to be sufficiently small so that higher order terms of d
may be omitted. When the assumption of a thin layer
is made, we denote the volume fraction d of the coating
by the Greek letter δ. The approximation δ2 = 0 is as-
sumed implicitly throughout the article. Likewise, γ is
introduced in place of the volume fraction g of the core
when the fraction is close to unity.

When we linearize (10), the result is

cδ(ε2, ε1) = ε2 + δ
ε2 + 2ε1

3ε1
(ε1 − ε2) (13)

Therefore

cδ(cδ(εeff , ε2), ε1) = εeff+δ
εeff + 2ε2

3ε2
(ε2 − εeff)

+δ
εeff + 2ε1

3ε1
(ε1 − εeff)

(14)

Now (12) reduces to the quadratic equation

ε2eff +
2ε1ε2
ε1 + ε2

εeff − 2ε1ε2 = 0 (15)

the solution

εeff =
ε1ε2
ε1 + ε2

±√1 + 2
(ε1 + ε2)2

ε1ε2
− 1

 (16)

of which gives the effective permittivity of the self-similar
sphere. The expression is, in general, two-valued because
of the two branches of the square root. The present
derivation therefore allows two solutions for the effective
permittivity and does not fix the electric potential inside
the inclusion uniquely.

We may test (16) by comparing it to the expres-
sions that the literature gives for the radially anisotropic
sphere. The capacitor equations (2) transform (16) into
(3), which is the expression that is already known in the
literature [4, Eq. 15].

B. Punctured inclusion

The result (16) in Sec. III A manifests indeterminacy
because the quadratic equation from which the result was

derived has two solutions. However, because the coating
function has a unique value for a given triplet δ, ε1, ε2 of
arguments, we can use the function to construct a unique
solution. In this approach, we first choose an arbitrary
value εc for a finite size core and add an even number
N layers of coating, so that the permittivity again alter-
nates between ε1 and ε2, starting with ε1 at the outmost
layer (Fig. 4). A finite inclusion is not strictly self-similar,
but if δ is fixed between layers, the finite inclusion ap-
proaches the self-similar inclusion when the number N of
the coatings increases.

ε1
ε2
ε1

εc

εeff

a b

FIG. 4. Punctured inclusion. The self-similarity of the punc-
tured inclusion is only approximate because the pattern of
alternating layers is interrupted near the center. Unlike the
intact inclusion, the punctured inclusion has a unique effective
permittivity εeff , without indeterminacy.

The effective permittivity of the finite inclusion is

εeff,n =

n︷ ︸︸ ︷
cδ(cδ(. . . (cδ(εc, ε2), . . . ), ε2), ε1) (17)

If the sequence εeff,n converges to a value, it follows that
the limit

εeff = lim
n→∞

εeff,n

must be a fixed point of cδ(cδ(·, ε2), ε1) and that it must
thus satisfy (12). Therefore, if the sequence converges,
it converges to (16). Also, because the solution is given
by a cascade of single-valued functions cδ and because
the only parameter that is chosen arbitrarily is the core
permittivity εc, the sequence must converge in such a
manner that the relevant branch of the square root in
(16) is uniquely determined by the choice of the core
permittivity εc.

To see when the sequence (17) converges and to find
the limit of the sequence, we assume that the layers are
sufficiently thin and numerous to be treated as if they
constituted a continuum. When we use this assumption
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to justify the substitution

cδ (cδ (ε, ε2) , ε1)− ε =
∆ε

1
2∆n

→ dε

d
(

1
2n
)

The difference equation (14) then transforms into the dif-
ferential equation

dε

d( 1
2n)

= δ
ε+ 2ε2

3ε2
(ε2 − ε) + δ

ε+ 2ε1
3ε1

(ε1 − ε) (18)

Here ε stands for the effective permittivity that is accu-
mulated when n layers are added on the core. We denote
by εα and εβ the two solutions of (15), and only permit
εα = εβ in the degenerate case where (15) has a double
root. Then (18) becomes

dε

dn
= −δ 1

3ε‖
(ε− εα)(ε− εβ) (19)

where ε‖ is defined by the capacitor equation (2). The
solution for the first order differential equation is

ε(n) = εβ +
εα − εβ

1− εc−εα
εc−εβ exp

(
− (εα−εβ)nδ

3ε‖

) (20)

where the factor (εc − εα)/(εc − εβ) in the denominator
ensures that ε = εc when n = 0. If we let b stand for
the radius of the core, the number n of the accumulated
layers is related to the distance r from the center of the
inclusion by

n =
3

δ
ln
(r
b

)
(21)

This result, together with the difference

εα − εβ = ε‖
(α)

√
1 + 2

(ε1 + ε2)2

ε1ε2
≡ ε‖ (α)

√
·

between the two solutions to (16), simplifies the expo-
nential in (20) to

exp

(
− (εα − εβ)nδ

3ε‖

)
=

(
b

r

) (α)
√·

where the notation (α)
√· refers to the branch of the square

root in (16) that gives εα as the effective permittivity.
Finally, we can set r equal to the outer radius a of the
entire inclusion to get

εeff = εβ +
εα − εβ

1− εc−εα
εc−εβ

(
b
a

) (α)
√· (22)

or the alternative form

εeff =
ε‖
2

 (α)
√
·

1 + εc−εα
εc−εβ

(
b
a

) (α)
√·

1− εc−εα
εc−εβ

(
b
a

) (α)
√·

− 1



which generalizes an earlier result [4, Eq. 23] that as-
sumes a PEC core. As one might expect, εeff is deter-
mined by the intrinsic material parameters and the core–
shell ratio b/a.

The sequence (17) converges to the value given by (22)
in the limit b/a→ 0 when the limit exists. It follows from
the properties of the exponent function that the limit
exists whenever the square root (α)

√· has a nonvanishing
real part. If the square root

√· has a nonvanishing real
part, we can choose the labels α and β so that the real
part of (α)

√· is positive. This is because the order of
labels for the permittivities εα and εβ have so far been
arbitrary. With this convention (α)

√· is just the canonical
square root. It can be seen from (22), that εα now refers
to the stable fixed point and εβ to the unstable one and
that both of these cannot be stable at the same time. We
will hereafter adopt the convention that εα always stands
for the stable fixed point when one exists.

The solution (22) oscillates indefinitely when the dis-
criminant under the square root (α)

√· is real and negative.
The condition ={·} = 0 is met when ε1/|ε1| = ±ε2/|ε2| or
|ε1| = |ε2|. The last alternative is only compatible with
<{·} > 0 and therefore only yields convergent solutions.
Indefinite oscillations then require that the complex per-
mittivities ε1 and ε2 have parallel or opposite direction
factors. The necessary and sufficient condition turns out
to be that ε2/ε1 ∈ R \ {0} and

ε2
ε1
< −2, or

ε1
ε2
< −2 (23)

It may be noted that this condition does not preclude
indefinite oscillations of the solution (22) when one of the
layer materials is lossy and the other material is active.

Condition (23) may also be stated in terms of the pa-
rameters of a radially anisotropic coating. It follows from
the capacitor equations (2) that when the layer permit-
tivities are multiplied by some scalar factor k, so that
ε1 → kε1 and ε2 → kε2, the components of the radi-
ally anisotropic permittivity get multiplied by the same
scalar, i.e ε‖ → kε‖ and ε⊥ → kε⊥. It follows from this
that ε⊥/ε‖ is real at the same time with ε2/ε1—barring
singularities. It then follows from (23) that a necessary
condition for the indefinite oscillations is ε⊥/ε‖ < −1/8,
where the fraction must be real. The sufficiency of the
condition can be seen by replacing the square root (α)

√·
with the one in (3). In conclusion, condition (23) accords
with the literature[4, Sec. 2.4.].

C. Internal field

Let us resume the discussion of the intact inclusion, so
that the self-similarity is again exact. The introduction
stated that the analogy between the self-similar sphere
and the radially anisotropic sphere requires both the ex-
ternal and the internal potentials to coincide. The exter-
nal potentials coincide because these potentials are de-
termined by the effective permittivities in (3) and (16)
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and because Sec. III A found these to be equivalent. We
may now consider the internal potentials, starting with
the corresponding fields.

Ē3

Ē2

Ē1

< En >= Ēnuz

uz

ε′eff

εeff

FIG. 5. Average fields of outer layers. The average fields are
all oriented along the z-axis. The effective permittivity may
change infinitesimally from εeff to ε′eff when the outmost layer
is peeled from the inclusion.

Two different effective permittivities εeff and ε′eff are
relevant. Of these two, εeff refers to the effective permit-
tivity of the entire inclusions and is, by self-similarity,
also to the effective permittivity of every inner sphere
that starts with an outer layer of permittivity ε1. Like-
wise, ε′eff refers to the effective permittivity of each inner
sphere that starts with an outer layer of permittivity ε2.
Although the difference ε′eff−εeff is by (13) of order δ and
cannot therefore be neglected in general, the derivation
(24)–(26) below only features ε′eff in the product δε′eff ,
in which context the two effective permittivities can be
regarded equal.

Let 〈E〉 = Ēuz be the average field of the entire inclu-
sion, apart from the three outmost layers. The field aver-
ages Ē1, Ē2, and Ē3 of the three outmost layers (Fig. 5)
are then

Ē3 =
εeff + 2ε1

3ε1
Ē (24)

Ē2 =
ε′eff + 2ε2

3ε2
(δĒ3 + γĒ) (25)

Ē1 =
εeff + 2ε1

3ε1
(δĒ2 + δγĒ3 + γ2Ē) (26)

where again γ = 1−δ. When we substitute (24) and (25)
to (26), we get

Ē1

Ē3
= 1 + δ

(
εeff + 2ε1

3ε1
+
εeff + 2ε2

3ε2
− 2

)
where again the terms with δ2 have been omitted. It
follows that

Ē3

Ē1
= 1− δ

(
εeff + 2ε1

3ε1
+
εeff + 2ε2

3ε2
− 2

)
= 1− 2

3
δ

(
εeff

ε‖
− 1

)

Then, because by self-similarity all such fractions be-
tween proximate odd layers are the same, for an odd
layer n

Ēn
Ē1

=

(
1− 2

3
δ

(
εeff

ε‖
− 1

))n/2
= exp

(
−1

3
δ

(
εeff

ε‖
− 1

)
n

) (27)

For the punctured inclusion, the respective n is given
by (21). However, the indexing, in the present context,
starts from the outmost layer and not from a core, as
was the case with the punctured inclusion. Therefore,
(21) gets modified into

n =
3

δ
ln
(a
r

)
(28)

which with (27) and with an analogous derivation for the
even layers gives

Ēodd(r) = Ē1

( r
a

) εeff
ε‖
−1

, Ēeven(r) = Ē2

( r
a

) εeff
ε‖
−1

(29)

εeff

ε2

ε1

∂B(r)

r

a

FIG. 6. Partly homogenized self-similar sphere. The potential
is affected by the homogenization only outside the homoge-
nized region.

Let us now consider a spherical volume B(r) that is
concentric with the inclusion and has its radius r inside
the radius a of the inclusion (Fig. 6). When the material
is homogenized over B(r) the potential φ(r, θ) inside the
inclusion remains unaffected at the surface ∂B(r) of the
homogenized region and outside it. However, inside B(r)
the potential is that of a uniform electric field. If the
homogenized region B(r) were chosen to cover the entire
inclusion, so that r = a, the homogenized potential would
be

φ(r)|r=a = − 3

εeff + 2
Ep · r

at the surface [31, Sec. 3.24.]. It follows from the pro-
portionalities (29) that for a smaller homogenized region
B(r), with r < a, a scaling must be introduced. The
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potential at the surface ∂B(r) of the homogenized region
in this case is then

φ(r) = − 3

εeff + 2

( r
a

) εeff
ε‖
−1

Ep · r (30)

But this is also the potential inside the original self-
similar inclusion, without the homogenization, because
the potential at the surface ∂B(r) remains unchanged
by the homogenization. The result in (30) gives the
same potential that the literature gives for the radially
anisotropic sphere [4, Eqs. 9,12].

D. Duality

εα εβ

ε1ε2ε1

→

,

−2ε1 −2ε2

εαεβεα

→

,

⇐⇒

FIG. 7. Duality. The layer permittivities ε1 and ε2 are inter-
changeable with the effective permittivities εα and εβ , apart
from an extra factor −2.

The two pairs of material parameters, ε1, ε2 and εα, εβ
stand in an almost symmetric relation with one another.
An inexact duality exists between the two pairs (Fig. 7).
The approximate duality can be shown by a direct sub-
stitution. Let εα and εβ again be the two branches of
the effective permittivity and assume that εα 6= εβ if two
distinct branches exist. By (16), the condition

εα = cδ (cδ (εα, ε2) , ε1)

εβ = cδ (cδ (εβ , ε2) , ε1)
(31)

is fulfilled if and only if

εα, εβ =
ε1ε2
ε1 + ε2

 (α,β)

√
1 + 2

(ε1 + ε2)2

ε1ε2
− 1

 (32)

By direct substitution, it can be checked that with εα
and εβ given by (32), the equations

−2ε1 = cδ (cδ (−2ε1, εβ) , εα)

−2ε2 = cδ (cδ (−2ε2, εβ) , εα)
(33)

are satisfied. One may repeat the process, starting from
(33) and arriving at (31). The two pairs of equations,
(31) and (33), are therefore equivalent. The result says
that the roles of the layer permittivities ε1, ε2 and the
effective permittivities εα, εβ can be interchanged, apart
from a factor −2 which multiplies the novel effective per-
mittivities (Fig. 7).

The duality property becomes useful when we want to
find layer permittivities ε1 and ε2 that fix the effective
permittivities εα and εβ at specified values. By (33), it
suffices to find the two fixed points of cδ (cδ (·, εβ) , εα)
and divide by −2. Therefore,

ε1,2 = −1

2

εαεβ
εα + εβ

(
(1,2)

√
1 + 2

(εα + εβ)2

εαεβ
− 1

)
(34)

gives the desired layer permittivities.

IV. IMPLICATIONS

A. Branch-hopping

−0.1 −0.05 0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

={εc}

<{
ε e

ff
}

b/a = 0.1

b/a = 0.01

FIG. 8. Branch-hop from scattering to transparency. The
stable and unstable fixed points are εα = 0.1 and εβ = 1. The
core permittivity is εc = 1 + ={εc}j. Transparency results
for a narrow range of the core permittivity. The transition
between the fixed points becomes sharper when the core–shell
ratio diminishes.

Section III B demonstrated—in agreement with forego-
ing research of radial anisotropy [4, Sec. 2.4.]—that the
ambiguity in the equation (16) for the effective permittiv-
ity of the intact self-similar inclusion may be removed by
puncturing the inclusion with a spherical homogeneous
core. The effective permittivity εeff of the punctured
inclusion is unique. It also converges to a limit when
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b/a → 0, unless condition (23) for the indefinite oscil-
lations is fulfilled. If the effective permittivity does ap-
proach a limit, the limit is εeff → εα apart from the un-
usual situation where the core permittivity is given by
εc = εβ . When the core permittivity εc takes this spe-
cial value, (19) implies that the effective permittivity is
unaffected by the layers that are added on the core and
is therefore independent of the core–shell ratio b/a. In
this case, εeff = εβ holds even when the core is arbitrarily
small compared to the entire inclusion.

It follows that the intact inclusion can be implemented
with a punctured inclusion in two essentially different
ways, εc 6= εβ or εc = εβ , when the core of the punctured
inclusion is infinitesimally small, and that the electric re-
sponse of the inclusion depends on the chosen implemen-
tation. What makes this conclusion surprising is that the
more special implementation, εc = εβ , corresponds to an
intact inclusion that withholds an infinite energy in its in-
ternal field. To show that the energy of the internal field
really does become infinite when the secondary branch εβ
of the effective permittivity εeff is chosen, we can find the
energy inside a given infinitesimal layer of the inclusion
and then aggregate the energy over the layers.

Some preliminary results are needed. Let us denote
f(r, θ) ∼ g(r, θ) when a nonnegative real number A(θ)
exist for each θ so that f(r, θ) = A(θ)g(r, θ). The co-
efficient of proportionality, A(θ), can vanish for a given
θ but it must be finite. Because the proportionality is
defined more loosely than what is customary, the rela-
tion f(r, θ) ∼ g(r, θ) is reflexive and transitive but not
symmetric.

The dipole field Ed(r) observed at r and generated by
the part of the self-similar inclusion that falls inside the
radius r has the proportionality

‖Ed(r)‖ ∼
∥∥∥∥3(p(r) · ur)ur − p(r)

r3

∥∥∥∥ ∼ |p(r)|r3
∼ |Ē(r)|

(35)
where p(r) is the dipole moment inside the radius r. The
last proportionality follows from self-similarity because,
by self-similarity, the polarizability of any subset of the
inclusion that is spherically symmetric about the origin
must be the same, when scaled by the volume inside its
radius r.

The field in each layer is a combination of a uniform
field and a dipole field, so that in a given layer at distance
r from the center the field is E(r) = Ē(r)uz+Ed(r). The
square of the field is

‖E(r)‖2 = |Ē(r)|2 + ‖Ed(r)‖2

+ 2|Ē(r)|‖Ed(r)‖ cos(∠(Ed,uz))

which with (35) gives ‖E(r)‖ ∼ |Ē(r)|
Next, we may calculate the energy. The energy density

in a homogeneous medium is [31, Sec. 2.8.]

u =
1

2
εvacε‖E‖2

The absolute value of the energy is given by∣∣∣∣∫
V
udV

∣∣∣∣ =

∣∣∣∣∫
V

εvacε1
2

E2
odd

dV

2
+

∫
V

εvacε2
2

E2
even

dV

2

∣∣∣∣
∼
∫
V
|Ē(r)|2 dV ∼

∫
V
|
( r
a

) εeff
ε‖
−1

|2 dV

∼
∫ a

0

|
( r
a

) εeff
ε‖ |2 dr =

∫ a

0

( r
a

)2<{ εeffε‖ } dr

The proportionality, as it is defined in this section, does
not preclude a situation where the two energy integrals
over the two types of layers diverge while their integrands
cancel out one another so that sum of the integrals van-
ishes. However, let us assume that the energy does not
vanish in this way. In that case, it follows that the energy
remains finite if and only if <{εeff/ε‖} > −1/2, i.e. if and
only if the primary branch εα of the effective permittivity
εeff exists and is chosen.

The energy condition is commonly used to remove in-
determinacy, following Meixner’s (1972) treatment of sin-
gular fields at edges [33]. Even when the energy con-
dition precludes intact inclusions that manifest the sec-
ondary branch εβ of the effective permittivity, the sec-
ondary branch can be implemented with a punctured in-
clusion. This conclusion shows that even the solutions
that the energy condition would exclude can have phys-
ical significance. The punctured inclusion with εc = εβ ,
however, does not violate the energy condition in general
because the punctured inclusion is obtained from the in-
tact inclusion by homogenizing a small spherical region
around the center and this process does not generally
preserve energy.

To establish the physical significance of the secondary
branch εβ more firmly, we show that the effective per-
mittivity εeff of a punctured inclusion continuously tran-
sitions from εα to εβ when the core permittivity εc varies
around εβ (Fig. 8). Let us employ (34) to find the layer
permittivities ε1 and ε2 that place the stable and unstable
fixed points at suited locations in the complex plane. We
place the unstable fixed point εβ = 1 at unity, so that the
inclusion becomes transparent under favorable circum-
stances. Also, we place the other fixed point εα = 0.1
inside the unit circle to make it stable. The real part
of the core permittivity εc is taken to coincide with εβ ,
so that only the imaginary part ={εc} varies. In this
numerical example, the effective permittivity εeff of the
punctured inclusion is calculated using (22). The transi-
tion of εeff between the branches εα and εβ is smooth, in
the mathematical sense, but becomes increasingly abrupt
when the core–shell ratio b/a diminishes. We refer to the
transition between the branches as branch-hopping.

Because the inclusion tends to normally scatter an in-
cident electric field and because the inclusion abruptly
becomes transparent when ={εc} = 0, the inclusion can
theoretically serve as an optical bandpass filter of a Q-
factor that can be made as high as needed by diminish-
ing the core–shell ratio b/a sufficiently. If we assume the
idealization that the layer permittivities ε1 and ε2 are
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non-dispersive so that the angular frequency ω affects
only the core permittivity εc of the inclusion and if we
further assume that the ω-dependence is linear and pure
imaginary, so that εc = εβ + jω∆εc, the dispersion curve
εeff(ω) of the effective permittivity of the punctured in-
clusion follows the trajectory shown in Fig. 8, apart from
the scaling of the x-axis.

B. Emergent scattering

−0.1 −0.05 0 0.05 0.1
−1.5

−1

−0.5

0

0.5

1

1.5

={εc}

<{
ε e

ff
}

b/a = 0.8

b/a = 0.7

FIG. 9. Emergent scattering from a transparent, cloaking
inclusion. The stable and unstable fixed points are εα = 1 and
εβ = −1.1. The core permittivity is εc = −1.1 +={εc}j. The
transition between the fixed points is abrupt even when the
core constitutes a substantial part of the inclusion’s volume.

A special case of branch-hopping is a response from
an inclusion that would normally cloak its core but fails
to achieve the cloaking effect because the carefully tai-
lored core activates the secondary branch of the inclu-
sion’s effective permittivity, making the inclusion visible.
It might be somewhat unexpected that the core, regard-
less of its possibly infinitesimal size, should be able to
enact this transformation because the cloaking effect of
the inclusion tends to strongly deviate electric field lines
from its center so that only very small electric field is
incident on the core initially [4, Fig. 4]. However, the lit-
erature knows cases where it is precisely the small scale
of a geometric feature that enhances scattering or ab-
sorption by more strongly localizing electric interactions.
In particular, enhanced scattering and absorption have
been associated with a high curvature in the corner of a
slightly blunted wedge [34]. Analogously, here the high
curvature of the surface of a small core of a punctured
self-similar inclusion has a localizing effect that enhances

scattering to an extent that overwhelms the cloaking ef-
fect.

To demonstrate emergent scattering from a cloaked
core, we would like to interchange the roles of the sta-
ble and unstable fixed points εα and εβ in Sec. IV A so
that εα = 1 is the primary branch and the inclusion tran-
sitions from transparency to scattering. However, there
is no way to interchange the roles of εα and εβ with-
out moving one or both of them because the priority of a
given branch is determined by its location in the complex
plane in relation to the other branch.

More specifically, we will now show that |εα| <
|εβ | when a stable fixed point exists. Let us denote
(α)
√· = a+ bi and (β)

√· = −a− bi, where (α)
√· is the

canonical square root, so that a ≥ 0. Stability requires
that more strictly a > 0. By (16), we now have

|εα| = C|(a− 1) + bi| = C
√

(a− 1)2 + b2

|εβ | = C|(a+ 1) + bi| = C
√

(a+ 1)2 + b2

where C = |ε1ε2/(ε1 + ε2)|. The conclusion follows from
(a− 1)2 < (a+ 1)2.

The requirement that the inclusion must be transpar-
ent in the steady state fixes the location εα = 1 of the
primary branch. It follows, that the other branch εβ must
be placed outside the complex unit circle. We place it at
εβ = −1.1, in conformity with [4, Fig. 4]. For a numeri-
cal example, we calculate the layer permittivities by (34)
and then the effective permittivity of the punctured in-
clusion by (22). As in Sec. IV A, we allow the imaginary
part ={εc} of the core permittivity vary while keeping all
other parameters fixed. What results is a smooth transi-
tion from transparency to scattering, with a more abrupt
transition when the core–shell ratio is smaller (Fig. 9).

Because the inclusion does not normally create a per-
turbation field and because it creates one in the special
circumstance that has the imaginary part of the core
permittivity vanish, ={εc} = 0, the inclusion can the-
oretically serve as an optical bandstop filter. Also, the
Q-factor of the bandstop filter can theoretically made as
high as needed by sufficiently diminishing the core–shell
ratio b/a. With the chosen material parameters, the Q-
factor will increase steeply when the core diminishes.

V. CONCLUSION

In this article, we derived the electrostatic response of a
spherical self-similar inclusion and showed that the inclu-
sion precisely implements a radially anisotropic sphere.
In particular, we showed that both the perturbation field
and the internal field of the self-similar sphere match the
corresponding fields of a radially anisotropic sphere.

In Sec. III A, we used homogenization as the pri-
mary tool to show that the perturbation fields of the
self-similar sphere and the radially anisotropic sphere
match. We adopted a perturbation approach and re-
quired that an infinitesimal double-layer coating should
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not affect the effective permittivity of a self-similar inclu-
sion even infinitesimally. From this condition, we derived
the effective permittivity of the self-similar inclusion. In
Sec. III B, we continued to use homogenization to show
that the internal field of the self-similar sphere matches
the internal field of the radially anisotropic sphere.

Sec. III D showed that the effective permittivities of a
self-similar inclusion are interchangeable with the layer
permittivities of the inclusion. Whether the duality be-
tween the two pairs of permittivities is accidental or re-
flects a deeper underlying principle, remains an open
question. In any case, we found the duality useful when
we tuned the material parameters of the inclusion to meet
given specifications in Sec. IV A and Sec. IV B.

Both the radially anisotropic sphere and the self-
similar sphere have an indeterminacy of material param-
eters in the center but the character of the indeterminacy
varies between the inclusions. The self-similar inclusion
has the indeterminacy because the alternating pattern of
its layers continues indefinitely toward the center. In con-
trast, the radially anisotropic inclusion has the indetermi-
nacy because the radial unit vector has no unique orienta-
tion in the center. Regardless, the analogy between the
self-similar inclusion and the radially anisotropic inclu-
sion holds even in the way that their respective indeter-
minacies manifest themselves. In fact, Sec. III A showed
that the self-similar sphere can generally be homogenized
into two distinct homogeneous spheres, with different ma-
terial parameters. The conclusion coincides with the two-
valuedness of the homogenized permittivity for the radi-
ally anisotropic sphere. Furthermore, Sec. III B showed
that the indeterminacy of the self-similar inclusion can
be removed by puncturing, i.e. replacing the material in-
side a small spherical region around the center by homo-
geneous material. The conclusion generalizes what has
been known about the puncturing of radially anisotropic
spheres.

This article has attempted to find the physical signif-
icance for both of the two branches of the two-valued
homogenized permittivity of the self-similar inclusion.
Even when Sec. IV A showed that the secondary branch
violates the condition that the energy will have to re-
main finite inside the inclusion, the energy condition is no
longer necessarily violated after puncturing. Therefore,
the secondary branch can be implemented with a punc-
tured inclusion. Sec. IV A further showed by a numerical
example that the transition between the two branches is
continuous and that the continuous transition between
the branches can theoretically be used to implement a
bandpass filter.

Because the two branches result from the indetermi-
nacy at the center of the inclusion, one could expect that
the significance of the indeterminacy diminishes when the
layered coating only permits a small part of the excita-
tion field to impinge the center region, as would be the
case when the inclusion is designed to operate as a cloak.

However, it turns out that the difference between the
two branches can be significant and cloaking merely af-
fects the precision to which the core must be tuned when
puncturing the inclusion. Sec. IV B showed that espe-
cially a very small core must be tuned with a pinpoint
precision to make the core overcome the cloaking effect.

To keep the analysis simple, we assumed that the self-
similar inclusion only has two types of layers and that
the two types of layers are equally thick. However, the
assumption does not make the conclusions much less gen-
eral because an inclusion with more than two types of lay-
ers can be reduced into an analogue that has two types.
Also, layers that are not equally thick can be treated as
if they were when the difference in the relative thick-
nesses is compensated by adjusting the permittivities.
The more varied set of layers can be useful when one
wants to practically implement a special dispersion pro-
file. But the goal of the article was to establish concepts.

Because the presently introduced method only applies
to perfectly spherical geometry, it cannot show whether
the branch-hopping effect of Sec. IV A and Sec. IV B is
sensitive to small perturbations in the spherical geome-
try. The question of small perturbations is critical when
one considers the practical applications of the layered
sphere. However, the question can only be answered by
separate analysis.

The method of using self-similarity as a tool for solving
an electrostatic scattering problem is novel, so far as the
authors know. It could be possible to employ the same
method to other problems in electrostatics. Hypothet-
ically, one could use the method to derive approximate
solutions for radially anisotropic spheroids and ellipsoids.
Exact solutions could be available for further two im-
portant special cases of spheroids: the flat circular disk
and the infinite circular cylinder. For radially anisotropic
spheres, the solution could be made more general by al-
lowing the material to be nonlinear. The more general
material could then enable new applications besides the
bandpass and bandstop filters that were demonstrated.
In specific, branch-hopping can be used to amplify the
nonlinearity of a weakly nonlinear core material so that
the effective permittivity of the self-similar inclusion can
be controlled by the field intensity and the self-similar
inclusion functions as an all-optical switch. Because the
method that the article presented is different from the
customary, the method can suggest concepts that would
otherwise remain elusive. Self-similarity offers a novel
treatment for a familiar scattering problem in electro-
statics.
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[16] T. Rimpiläinen, H. Wallén, and A. Sihvola, Radial
anisotropy in spheroidal scatterers, IEEE Trans. Anten-
nas Propag. 63, 3127 (2015).
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