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Summary

Allowing for the Bauschinger effect, a second plastic penetration can occur with the release

of the moment required for elastic-plastic bending of a beam. The theory is given for both

linear and parabolic hardening material models.  Within the hardening law the elastic and

plastic strains are developed from the beam curvature of the unstressed neutral axis.  

Conditions are expressed in terms of a rectangular beam section and a normalised stress-

strain response for which the release remains purely elastic and elastic-plastic.  Under that

latter the depth to which a second zone of plasticity penetrates is given.  The two stress

distributions: one for applying the moment and the other for its release, are sufficient to

derive the residual stress.  Residuals found for parabolic hardening are believed to be more

realistic than those from simpler linear or perfectly plastic models particularly where a second

penetration is evident. 

1. Introduction

It is well known that the elastic-plastic bending of a beams results in a residual stress

distribution when the moment is released.  The idela elastic-perfectly plastic theory arrives at

a solution to the residuals from assuming that plastic penetration into the depth occurs with no

hardening as the moment is applied.  Moreover, with its constant elastic range being twice the

yield stress, the ideal material ensures that the moment release always remains elastic. 

However, in practice, plastic flow hardens real materials which, in reversed flow, reveal a

reduced elastic range with an accompanying Bauschinger effect.  The latter effect can reduce

the elastic range to such an extent that a moment release can result in the penetration of a

further zone of plasticity into the beam by reversed yielding.  Though many studies have

appeared on the subject of reversed yielding and the Bauschinger effect [1-4] this present

application to beam bending has not been investigated before.  This paper examines the
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reversed yielding phenomenon in the case of two further material models with linear and

parabolic hardening.  The accounts given show that the final residual stress distributions

depend upon both forward and reversed flow curves and may attain maximum values up to

50% of the initial yield stress.  It will be shown that the residuals under linear hardening with

a second penetration do not differ appreciably from those of the ideal material.  In contrast,

the non-linear hardening model reflects more realistically the influence of Bauschinger effect

upon the residual stresses.   

2. Stress and Strain Relationships

Consider the three initially, elastically strained fibres AB, CD and EF in a beam under

bending (Fig. 1a).  Let the moment be increased to the extent where the yield stress of the

beam material Yo is reached in tension and compression at the outer fibre CD.  The inner

fibres AB and EF remain elastic.  As the moment is increased further a plastic zone

penetrates inwards to depth ho, with or without hardening, as shown in Fig. 2b.  Fibre AB is

deformed elastically to its yield strain A!B! and fibres CD and EF are deformed plastically to

C!D! and E!F!, Bending theory provides the total strain in fibre EF, distance y from the neutral

axis as:

(1)

As the neutral axis does not change its length then O!O!=Ro2o is the initial unstrained length

of EF.  Moreover, since OO=O!O!

(2)

The radii of curvature Ro and R appear within the further strain expressions.  In fibre CD the

strain at yield is:

(3)

Similarly, as the fibre A!B! is strained to the yield point, we find R from the inner elastic core:

(4)

Dividing eqs(3) and (4) gives the radius ratio:



(5)

Substituting eqs(2) and (5) into eq (1) gives the total strain in fibre E!F! as:

(6)

In the case of a non-hardening material (Fig. 2a) we find the plastic component of strain

simply by subtracting g Y = Yo/E from eq(6).  This gives:

(7)

In the case of a linear forward hardening material (Fig. 2b), the result in eq(7) allows the

strain origin to be located at g Y = Yo/E, so enabling the flow stress to be written in terms of

total strain as:

Ff = Yo + Cf
 T (g T ! g Y ) (8)

Substituting from eq(6) into eq(8):

(9)

 

A similar flow stress is found using the plastic strain component as an abscissa:

(10)

Comparing eq(9) with eq(10) we see that the forward plastic strain is correspondingly:

(11)

In the case of a Ludwick description of a non-linear forward hardening material:

(12)



Equations (6) and (12) are combined to give:

(13)

from which g P must be solved at the chosen position y.

3. Model Materials

Firstly, we shall compare a non-hardening with a bi-linearly hardening material in Figs 2a,b. 

The beam cross-section is rectangular of breadth b and depth d so that the neutral axis (n.a.)

passes through the centre (see Fig. 1b).  Let a pure elastic-plastic moment Mep be applied to

produce tension above and compression below this axis with a depth of plastic penetration ho

from the top and bottom edges Fig. 2c.

3.1 Elastic-Perfect Plasticity

In the case of an elastic-perfectly plastic material (Fig.2a) the plastic penetration to depth ho

occurs under a constant yield stress Yo. The normalised residual stresses are given as [5]:

(14a)

(14b)

where y is the distance from the central neutral axis.  The two terms in each equation

correspond to subtracting the elastic stress recovered by moment release from the stress

within the section under that moment.  Figure 2c shows the two stress distributions

graphically for ho/d = 0.4 and, from their difference, the residuals, projected as continuous

lines in Fig. 2d.  Equations (14a,b) describe the two linear branches in the residual stress plot

for which the greatest value, FR/Yo = 0.7, lies at their intersection where y = d/2 ! ho.  Note

that the maximum elastic stress released Fe occurs at the outer edges in Fig. 2c, this being less

that the available elastic range 2Yo in (a).  Consequently, the loading-unloading process

follows the path OABC in Fig. 2a.



3.2 Linear Hardening

Next consider, the case of bi-linear hardening (Fig. 2b) in which allowances are made for a

Bauschinger effect, with a variable elastic range and different hardening rates under forward

and reversed deformation.  Loading-unloading follows the path OABCD where, to achieve a

similar degree of stress release Fe shown, an elastic recovery from B to C is followed by a

reversed flow from C to D.  Consequently, two plastic penetrations occur in the section: ho in

forward flow and h1 in reversed flow (Fig. 2e).  To solve for h1 the plastic tangent moduli are

taken to be Cf
P and Cr

P, these derive from Cf
T and Cr

T in Fig. 2b as:

(15a,b)

where E is the elastic modulus.

3.2.1 Elastic-Plastic Moments

Firstly, an expression for Mep is required in forward loading along OAB.  For this, the

branched, stress distribution diagram above the neutral axis (continuous lines in Fig. 2e) is

divided into three areas consisting of a rectangle and two triangles with key dimensions are

ho, Yo and Ff.  Given the beam width b, the force exerted at the centroid of each area can be

found.  These are mirrored in the areas below the neutral axis so that Mep becomes the sum of

three couples:

where Do = ho/d and MYo = Yobd 2/6 is the moment required to initiate yield Yo at the outer

fibres .  When Mep is released the path BCD is followed and the stress distribution diagram

becomes the chain dotted line in Fig. 2e.  Again, we take this to be composed of two limbs

containing three areas with key dimensions h1, Y1 and Fe as shown.  It follows Mep is also



supplied by this diagram as:

(17)

in which D1=h1/d and MY1 = Y1bd 2/6.  Equating (16) and (17) gives:

(18)

in which Y1 Ff and Fe are now to be found from the plastic surface strain.

3.2.2 Elastic Ranges

With the penetration to depth ho the path OAB is followed (Fig. 2b) and on release of Mep an

immediate elastic recovery along BC will precede any reversed plastic penetration.  The

elastic range BC, is bounded by the forward and reversed flow curves, these defining the

reversed yield stress Y1 as:

(19)

in which g P is the forward strain.  Substituting eq(11) into eq(19):

(20)

in which Cr
 P > Cf

 P.  The question as to whether reversed plasticity occurs depends upon the

magnitude of the elastic stress Fe that is driven by Mep’s release.  Taking point B as the origin

for the reversed flow curve allows the available elastic stress to be found from Mep:

(21)

where MYo is the moment required to initiate yielding at the outer fibres.



3.2.3 Reversed Yielding

A condition for reversed yielding (path CD) is therefore:

(22)

and then we may combine eqs(18) and (21) to find D1:

(23)

Equation (23) may be solved for D1 by setting:

(24a)

leading to a quadratic:

(24b)

to which the root is:

(24c)

 

in which the two ratios Y1/Yo and Fe/Yo are given by eqs (20) and (21) respectively.

3.2.4 Elastic Release

On the other hand, the release will be purely elastic (between B and C in Fig. 2b) if 

(25)

Within eq(25) the equality will supply a critical ho value when the release coincides with C:

where Mep and Y1 are calculated from the outer fibre flow stresses Ff and Fr.  Substituting

from eqs(20) and (21) with Do = ho/d and y = d/2



(26a)

Substituting Ff /Yo from eq(9) into eq(26a) leads to a cubic equation in Do:

(26b)

A solution to Do gives the critical value of initial penetration ho, at or  below which a reversed

plasticity will not occur (i.e. h1 = 0).  When ho exceeds this critical value reversed plasticity

occurs to a depth h1, which may be found from eq(24c), as the following example shows.

Example 1

Let linear forward hardening (AB in Fig. 2b) be expressed in the gradient Cf
 T/E = 1/10 so that

the plastic modulus becomes Cf
 P = 1/9, from eq(15a).  Also, assume that the plastic moduli

are in the ratio Cr
P/Cf

 P  =3.  Substituting into eq(26b) leads to a cubic equation in Do

from which Do=0.333.  With initial penetrations beyond this critical value, the moment

release will result in reversed yielding.  Take, for example, Do = 0.4.  The outer fibre (y = d/2)

flow stress attained is, from eq(9):

and this corresponds to a normalised, forward plastic strain from eq(11) as:

The elastic range is, from eq(20):



The reversed flow stress is found from the elastic-plastic moment eq(21) to be:

and this corresponds to a second penetration D1 from eq(24c)

Each normalised quantity, when drawn to scale, reveals the two stress distributions

superimposed in Fig. 2e: one corresponding to the moment application (continuous line) and

the other to moment release (chain line).  While the former shows two limbs, the latter

appears to be linear (a consequence of linearity in CD).  Taking the difference between their

horizontal stress ordinates, i.e. the latter is subtracted from the former, provides the residual

stress distribution given as the broken line in Fig. 2d. It is seen here that this does not differ

appreciably from the residuals supplied by the non-hardening material model, corresponding

to Fig.1a and eqs (14a,b), where

3.2.5 Special Case

Many materials show little or no forward hardening.  However, with a stress reversal the

Bauschinger effect promotes a low yield stress and a sudden rapid rate of hardening.  When

such behaviour can be modelled by setting Cf
 P = 0 and Cr

 P = constant, the condition (26b)

above becomes:

leading to the cubic equation in the critical value of ho/d:

(27)

The elastic range (eq 20) for unloading in the surface layers becomes



(28)

and since Ff = Yo the elastic driving stress, eq(21), becomes

(29)

which penetrates a second plastic zone to depth h1 given by eq(24c) as:

(30)

Example 2

Taking Cr
T/E = 1/10 gives Cr

P/E = 1/9, this reducing eq(27) to give a critical initial

penetration:

the solution being ho/d = 0.411.  Thus, if a deeper initial penetration is reached, say ho/d =

0.45 under a corresponding normalised plastic strain

,

we find a second penetration to a depth h1/d = 0.166, given directly by eq(30).  Alternatively,

we find from eqs (28) and (29):

so that, from eq(24c):



These “non-dimensions” are returned to their absolutes quantities within Fig.3a-d.  The

residuals appear as the shaded regions in Fig. 3c which are re-based in Fig. 3d.  Again, a

linear stress distribution applies to the release, this being a consistent feature of a linear

hardening material in one or both directions.  With Cf
 P = Cr

 P = 0 for an elastic perfectly-

plastic material, this stress release distribution is not altered.  However, having Y1/Yo = 2,

there is no second penetration for the perfect material, but the residual stress distribution also

remains unaltered.

4. Hardening Material

A similar reasoning is followed when extending the analyses given above to include parabolic

hardening in both forward and reversed directions (Fig. 4a).  The Ludwik law (12) is used to

describe the “plastic” flow curve (Fig. 4b).  Following Nadai [ ], the initial penetration

appears with stress ordinates Yo and Ff in a mirror of the forward hardening (Fig. 4b).  The

elastic-plastic moment Mep, is again found from three couples within the divided areas of this

diagram.  Noting that the area of a parabola is b(Ff ! Yo)ho and the position of the centroid is

¼ho from the top surface, Mep is found as

(31)

We have seen previously how, when written in this normalised form, equation (31) becomes

the normalised elastic range (i.e. Fe/Yo) promoted by the moment release.  The elastic range Y1

(Fig. 4b) following a forward plastic strain is bounded by the forward and reversed flow

curves as:

(32)

where f and r refer the hardening constants n and go to its respective direction.  The

coefficients g Y /gof and g Y /gor are assumed to be known (see example 3).  The variable, the

normalised plastic strain g P/g Y in this equation is forward only, this being given from eq(13)

as the solution to:



(33)

The critical Do value is found from equating (31) and (32).  When Do exceeds this critical

value the moment release results in a second plastic penetration to a normalised depth D1. 

When Mep is derived from the corresponding stress distribution we have

(34)

Equating Mep between eqs(31) and (34) and noting that  and

gives:

(35)

Employing K from eq(24a), eq(35) leads to the following quadratic equation in D1:

(36)

Figure 4c shows the two stress distributions with their absolute dimensions bounding the

shaded residuals.  When the latter are re-based in Fig. 4d a non-linearity appears within the

outer branches.  This feature is responsible for the greatest deviation from the ideal material

solution as the following example shows.

 

Example 3

Consider a rectangular beam in steel with Yo = 250 , E = 212.5 , nf = 0.2 and nr = 2

that hardens to the extent that Ff /Yo = 1.5 for a forward plastic strain of 1%.  Using a yield

strain g Y  = Yo/E = 1.177×10!3 this plastic strain is normalised to g P/g Y = 8.5 for the flow

curve OAB in Fig. 5a.  A pronounced Bauschinger effect reveals Fr /Yo = 0.5, as shown in

point C.  This information allows our normalised Ludwik descriptions of the flow curves to be

expressed as:



(37a,b)

 When a 1%

plastic strain is reached at B on the beam surface, the depth of penetration Do = ho/d is found

from eq(33):

which gives Do = 0.45.  A a second penetration will occur from releasing the applied moment

if Do = 0.45 exceeds a critical value. The critical Do is found equating (31) and (32) whilst

ensuring that eq(33) holds.  Thus, we assume a value for Do and substitute this into eq(33) to

find g P/g Y and then check for the required equality between eqs (31) and (32).  The value Do

• 0.41 is found to satisfy both conditions.  It is located at point A on the flow curve in Fig. 5a,

where:

These dimensions re-appear in Fig. 5b within the two, tensile-side, stress distributions: (i)

under the applied moment (continuous line) and (ii) the critical elastic release (chain line). 

The residual stress (Fig. 5c) is then derived from the difference between their stress levels. 

Once again, despite the allowance made for hardening the residuals differ only marginally

from the non hardening solution (broken line).

Returning to point B, where Do = 0.45 exceeds our critical value, the depth of a second

penetration D1 is found from eq(35) where:



from which the quadratic eq(36) becomes

1.58D1
2 ! 2.16D1 + 0.58=0

for which the roots are D1 = 0.367 and 1.  The second root of unity rests solely upon this

choice of nr and should be disregarded, with it being greater than 0.5. The two D’s are shown

in their stress distribution diagrams in Fig. 5d: Do under the applied moment and D1 following

its release.  Here, in contrast to the linear hardening model, the influence of non linear

hardening appears within both stress distributions. For a given Do, eq(13) is applied as follows

to solve the plastic strain g P/g Y in any intermediate fibre with position y/d.

from which eqs(37a,b) supply the stress in that fibre.  Each distribution in Fig. 5d replicates

its respective hardening curve which, through their subtraction, influence the residual stress

distribution as shown in Fig. 5e. Here, in the comparison made with the ideal material (broken

line) the influence of reverse yielding upon residual stress is seen to have its greatest effect.

5. Discussion

The previous example reveals that residual stresses are influenced by non-linear hardening,

with an allowance made for a Bauschinger effect that permits a second penetration.  There

are however, still further refinements that could be made to this model.  For example, a

reversed flow curve will depend upon the degree of forward plastic strain.   There are any

number of reversed flow curves CD corresponding to the single forward flow curve AB

though the former do converge into a single curve as the reversed strain accumulates.  In an

extension to the present report we shall account for this behaviour by locating a new origin

for reversed flow at point B so allowing curve CD to be derived from curve AB by a suitable

scheme.  This becomes an important consideration, when in practice one would not have

available the reversed flow curve corresponding to the forward strain imparted by a plastic

penetration.



6. Conclusions

The ideal elastic-perfectly plastic material model provides only a first approximation to

elastic-plastic bending of beams.  The zone of plasticity penetrates under a constant yield

stress, recovery from moment release is purely elastic and the residuals are composed of

linear branches.  A linear hardening model allows the zone to penetrate with an increasing

flow stress. Moment release will reveal a second penetration though the residual stress

distribution is little altered from that of the ideal material.  A more realistic theoretical

account lies within the application of equilibrium and compatibility principles to a non-linear

hardening material model.  The stress distributions reflect forward hardening and a

Bauschinger effect where it accompanies the second penetration with reversed plasticity from

the moment release.  Consequently, the residuals that account for non-linear hardening

behaviour differ from simpler material models and are believed to be nearer to the true

distribution.
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List of Figures

Fig. 1 Beam curvatures (a) when the yield stress Yo is reached at the outer fibres and (b) for

a plastic penetration to depth ho from top and bottom surfaces.

Fig. 2 Moment application and release.  Diagrams (a) and (c) refer to an elastic-perfectly

plastic material, (b) and (e) to a linearly hardening material with reversed yielding to

D.  Geometrical interpretations of each material’s  residual stress distributions is

shown in (d) where (- - - - -) is for material (a) and (______) for material (b).

Fig. 3 Mixed mode material in which no forward hardening occurs for an abscissa of (a)

total strain and (b) plastic strain.  Shaded region in (c) defines horizontal ordinates of

residual stress that have been re-based in (d).  Despite reversed yielding solution in (d)

is identical to that found from elastic-perfectly plastic material.

Fig. 4 (a) Non-linear hardening, defined by Ludwik’s law for an abscissa of plastic strain in

(b).  Shaded region in (c) defines residual stress (re-based in d) when reversed yielding

occurs with moment release to depth h1.

Fig. 5 (a) A Ludwik non-linear hardening beam material showing two levels of plasticity for

initial penetrations ho.  Point A corresponds to a critical penetration in which moment

release is elastic.  Residuals in (c) are derived from (b) as shown. Moment release

from point B is elastic-plastic resulting in a second penetration h1.  Residuals in (e), as

derived from (d), show their greatest departure from those of an ideal non-hardening

material (- - - - -).
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