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Abstract 
In this paper, different univariate GARCH option pricing models are applied to the 

FTSE/JSE Top 40 index to determine the best performing model when modelling the 
implied South African Volatility Index (SAVI). Three different GARCH models (one 
symmetric and two asymmetric) are considered and three different log-likelihood 
functions are used in the model parameter estimation. Furthermore, the accuracy of 
each model is tested by comparing the GARCH implied SAVI to the historical SAVI. In 
addition, the pricing performance of each model is tested by comparing the GARCH 
implied price to market option prices. The empirical results indicate that the models 
incorporating asymmetric effects outperform competing models in terms of pricing 
performance. 
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1 Introduction 
In modern finance, asset volatility is synonymous with an asset’s risk. Financial modelling 
researchers and practitioners therefore face the issue of finding a reliable estimate of 
volatility. Soczo (2003) explains that historical data can be used to estimate current and 
future levels of volatility. However, this assumes that the future will be like the past, which 
is not necessarily a reasonable assumption. 

Financial researchers (see, e.g., McNeil et al., 2015) have demonstrated that volatility is not 
constant, i.e., it changes substantially over time. Furthermore, financial time series 
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exhibit periods of high or low volatility; this phenomenon is known as clustering. There also 
appears to be mean reversion in volatility, i.e., periods of unusually high or low volatility tend 
to be followed by reversion to more normal behaviour (see, e.g., Cont, 2001). In equity 
markets, volatility typically increases when stock prices decrease; this is often referred to as 
the leverage effect. 

When it comes to the topic of time-varying volatility in discrete time, most financial modelling 
researchers will agree that the GARCH (generalised autoregressive conditional 
heteroskedasticity) model is the most widely used. A wide range of different GARCH 
processes have been introduced in the literature (see, e.g., Francq & Zakoian, 2019). An 
important factor to consider when modelling conditional volatility is the effect of asymmetry. 
According to Asteriou and Hall (2012), symmetric volatility models assume that positive and 
negative shocks have the same effect on volatility, which is also not necessarily a reasonable 
assumption. Therefore, the performance of both symmetric and asymmetric GARCH models is 
tested when modelling the conditional variance. 

GARCH model parameters are usually estimated using historical returns of an asset price, by 
making use of the maximum likelihood method. The fitted GARCH model can then be used to 
obtain a forward looking estimate of volatility. A different approach is to make use of a 
volatility index. In this study, the so-called South African Volatility Index (SAVI) is used. As 
explained by Kotz´e et al. (2009), the SAVI was introduced in 2007 for the purpose of 
measuring the expected three-month volatility based on the FTSE/JSE Top 40 (Top40) index. 
During times of higher uncertainty (e.g., financial crises), the SAVI index increases 
substantially (in direct analogy with the Chicago Board Options Exchange VIX, which 
measures investors’ expectations of volatility of the S&P500 index). Equity volatility indices 
serve as important financial indicators, measuring the level of risk in markets, while also 
exhibiting predictive power for index returns (see, e.g., Huskaj & Larsson, 2016). 

In this paper, three different univariate GARCH processes are used to model the implied SAVI 
index. By making use of an approach similar to Hao and Zhang (2013), three different log-
likelihood functions are considered for the estimation of the GARCH option pricing model 
parameters to determine the best performing GARCH model when compared to the historical 
SAVI. Furthermore, the accuracy of estimated GARCH option pricing models is tested by 
comparing the model option prices to market prices (consistent with Hunzinger, 
Labuschagne, and Von Boetticher, 2014). The rest of this paper is structured as follows: 
Section 2 focuses on the methodology, thereafter the empirical results are presented in 
Section 3, and finally the concluding remarks are discussed in Section 4. 

2 Methodology 

This section is divided into four subsections. The first focuses on GARCH models in finance. 
The second subsection considers the application of GARCH models to option pricing. 
Thereafter, the theoretical framework of the GARCH implied SAVI is considered. Finally, the 
data and estimation methods used in this study are discussed. 
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2.1 GARCH models in finance 
A large proportion of models used in finance assume constant volatility. A good example of 
this is the classical Black-Scholes (see e.g., Wilmott, 2007) model used for option pricing. 
When it comes to the topic of modelling volatility in discrete time, most financial modelling 
researchers and practitioners will agree that the GARCH model is the most widely used. 
According to Alexander et al. (2015), GARCH models capture two important stylised facts of 
financial time series, namely leptokurtosis and volatility clustering. 

The application of GARCH models to solve financial problems is well documented in the 
literature. According to Duncan & Liu (2009), the mean model of a typical GARCH(1,1) model 
takes the following form: 

 , (1) 

where St is the price of the underlying asset at time t, µ remains constant over time, and the 
error term, t, is assumed to be normally distributed with mean zero and conditional variance 
σt2. Where σt2 is some GARCH process. The conditional variance when modelled using a 
GARCH(1,1) process is given by, 

(2) 

, 

where the parameters α0, α1, and β1 are estimated using the maximum likelihood method (to 
be discussed in Section 2.4). 

When the variance equation is modelled using the symmetric GARCH(1,1) process, the 
assumption is that volatility will have the same reaction to positive and negative shocks. 
However, this is not necessarily a reasonable assumption. Glosten et al. (1993) therefore 
include an indicator function to capture the asymmetric nature of positive and negative 
shocks. The GJR- GARCH(1,1) model 
takes the following form: 

(3) 

, 

where the indicator function,  takes a value of one when shocks are negative, and 
zero otherwise. 

The third model considered in this study is the asymmetric GARCH (AGARCH) model that has 
the following form (see Alexander, 2008): 
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(4) 

, 

where the parameter γ captures asymmetric effects. If γ > 0, then (  will result in 
larger negative shocks. Furthermore, when modelling volatility on equity returns, γ is usually 
positive, while γ is usually negative for commodities. 

An important factor to consider when modelling volatility using different GARCH type 
models, is the goodness of fit. Ahmad & Ping (2014) explained that the goodness of fit of 
symmetric and asymmetric GARCH models can be compared using the Akiake Information 
Criterion (AIC) and Schwarz Information Criterion (SIC). The AIC and SIC are given by, 

AIC = −2lnL + 2k 

SIC = −2lnL + k lnN, 

where L is the maximised value of the likelihood function, k is the number of estimated 
parameters, and N is the sample size. Oberholzer & Venter (2015) applied symmetric and 
asymmetric GARCH models to a range of different JSE indices to determine the most reliable 
model. Their empirical results based on the AIC and SIC indicated that the GJR-GARCH(1,1) 
model is the most reliable model when modelling Top40 volatility. 

Conventional wisdom amongst finance researchers and practitioners is that there is a 
positive relationship between risk and return. However, the mean model specified in 
Equation 1 does not reflect this. Asteriou & Hall (2015) explain that this can be captured by 
making use of the GARCH-in-mean model, where the conditional mean is a function of the 
conditional variance (or standard deviation). An example of a GARCH-in-mean specification is 
given by, 

, 

where σt2 is some GARCH process. 

Hansen & Lunde (2005) compared the predictive ability of 330 GARCH type models, with the 
GARCH(1,1) model as the benchmark model. Their findings indicated that the GARCH(1,1) is 
highly robust, and that it is difficult to find an alternative model that shows consistent 
outperformance. Hence, the GARCH(1,1) model is used as a benchmark model in this paper. 
Furthermore, Oberholzer & Venter (2015) showed that the GJRGARCH(1,1) model is superior 
when modelling Top40 returns, which is consistent with the results found in Flint et al. 
(2013). However, this was based on historical data only. Therefore the performance of the 
GJR-GARCH(1,1) applied to Top40 option pricing is considered in this study. Finally, 
according to Hseih & Ritchken (2005), the application of the AGARCH(1,1) model to option 
pricing is superior at removing pricing biases from pricing residuals and should be 
considered by traders and risk managers. Therefore the AGARCH(1,1) model is included in 
this study. GARCH models applied to financial option pricing is considered in the next 
subsection. 
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2.2 GARCH models applied to option pricing 

Traditionally, financial options are priced using the classical Black-Scholes model. As 
mentioned previously, this model assumes that volatility is constant. Wilmott (2007) explains 
that the price of an option is equal to the expectation of the discounted payoff under the risk-
neutral measure. In order to incorporate a GARCH process for volatility in an option pricing 
framework, Duan (1995) makes the following assumption regarding the logarithmic returns 
of the underlying asset (the Top40 in this case) under 
the physical measure P: 

 , (5) 

where r is the constant risk-free rate, λ is the unit risk premium, σt is the conditional standard 
deviation, and the error term, t, is normally distributed with mean zero and variance σt2. It is 
important to note that the conditional variance is incorporated in the mean model (Equation 
5), this is done to capture the positive relationship between risk and return (as mentioned 
previously, the GARCH-in-mean model). 

The dynamics of the GARCH(1,1), GJR-GARCH(1,1) and AGARCH(1,1) under the physical 
measure are given by Equations 2, 3, and 4 respectively. Although the GARCH models are 
calibrated under the physical measure, the dynamics of the underlying asset under the risk-
neutral measure are required. Duan (1995) proposed the following dynamics under the risk-
neutral valuation measure P˜: 

 , (6) 

where ξt ∼ N(0,σt2). The GARCH(1,1), GJR-GARCH(1,1), and AGARCH(1,1) processes under the 

risk neutral measure P˜ are given by: 

 and 

respectively. Furthermore, the stationarity constraints of the GARCH(1,1), GJRGARCH(1,1), 
and AGARCH(1,1) processes are given by, 

α1(1 + λ2) + β1 < 1, 

, 

respectively, where Φ(·) denotes the cumulative normal distribution function. 

In this study, Monte Carlo simulation is used to price European options. Given the estimated 
parameters (α0, α1, β1, and λ), the current value of the underlying asset (S0), and the unique 
risk-free rate (r), options can be priced using the GARCH(1,1) model by using the following 
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algorithm at the current time t = 0 (the initial risk neutral variance σ0 and the initial value of 
ξ0 are assumed to be the unconditional variance and zero respectively): 

For a European call option that expires after T days, with strike K, the Monte Carlo price is 
given by 

. 

 
Algorithm 1: GARCH(1,1) Monte Carlo option pricing. 

 

1 Generate (Z1,1,...,ZM,T ) ∼ N(0,1) where M is the number of simulations and T is the number 
of days in the simulation period. 

2 Compute σj,t2 = α0 + α1(ξj,t−1 − λσj,t−1)2 + βσj,t2 , where ξj,t = σj,t × Zj,t for t = 1,...,T. 

3 Compute  , for t = 1,...,T. 
4 Repeat steps 2 and 3 M times. 
5 The option price is equal to the discounted payoff function (f) applied to the underlying: 

. 
 

The conditional variance process in the algorithm changes when using the GJRGARCH(1,1) or 
AGARCH(1,1) model. The GARCH implied SAVI is considered in the next subsection. 

2.3 GARCH implied SAVI 
As mentioned, the SAVI reflects investors’ expectations of volatility of the Top40 in the 
following three calendar months, which is given by, 

, 

where τ0 is equal to three calendar months (assumed to be 63 trading days), ˜σs2 is the 

instantaneous annualised variance of the Top40 returns, and ] denotes the conditional 
expectation at time t, under the risk-neutral measure. In this paper, the SAVI is calculated as 
the expected average of the variance in the n subperiods of the following three calendar 
months, 

 . 
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Daily data is used to estimate the implied SAVI, hence n = τ0, as explained by Hao & Zhang 
(2013). Furthermore, when estimating the implied SAVI using daily data, a proxy for SAV It in 
terms of daily variance is required. This is given by, 

, 

where  . 

In order to derive the GARCH implied SAVI, ξt in Equation 6 is assumed to be a squareroot 
stochastic autoregessive volatility (SR-SARV) process of order one. SR-SARV models are 
characterised by the autoregressive nature of the stochastic variance, hence the variance 
depends on the previous values (lags) of itself. The general form of the conditional variance 
(given the information set Jt, available at time t) of a SR-SARV process is given by, 

Ft = Ω + ΓFt−1 + Vt, 

where Ω is a constant, |Γ| < 1, and E[Vt|Jt] = 0. For more information on SR-SARV processes, 
the interested reader is referred to Meddahi & Renault (2004). Hao & Zhang (2013) showed 
that if ξt follows an SR-SARV process, the implied volatility index (in terms of daily variance) 
implied by the GARCH(1,1), GJR-GARCH(1,1), and AGARCH(1,1) models have an analytical 
formula, which takes the following form: 

ϑt = ζ + ψσt2, 

where 

, 

The estimated SAVI of the GARCH(1,1), GJR-GARCH(1,1) and AGARCH(1,1) models are 
obtained using the general form above. 

2.4 Data and estimation methods 
In this study, daily data from 1 January 2010 to 19 April 2019 are used, the dataset was 
obtained from the Thomson Reuters Datastream databank. As mentioned previously, GARCH 
model parameters are usually estimated using maximum likelihood. According to 
Christoffersen et al. (2012), GARCH models used for option pricing can be estimated using the 
maximum likelihood method (based on historical returns), by making use of loss functions 
(errors between the GARCH implied option prices and market option prices are minimised) 
or models can be calibrated to both historical returns and market option prices. 

Hao & Zhang (2013) estimate GARCH models using three different likelihood functions to 
estimate the GARCH models, ultimately to estimate the GARCH implied VIX. The first 
likelihood function is based on historical returns only, the second is based on the historical 
VIX only, and the final function is a joint likelihood function based on historical returns and 
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the historical VIX. Christoffersen et al. (2012) explain that estimation methods based on both 
historical returns and option prices, or in this case implied volatility, are better than methods 
based on option prices only, because they ensure that the model is consistent with historical 
returns and the market’s expectations of the future. 

In this study, by making use of a similar approach to Hao & Zhang (2013), three different 
likelihood functions are used to estimate GARCH model parameters, ultimately to estimate 
the GARCH implied SAVI. The best performing GARCH model is determined by comparing the 
GARCH implied SAVI to the historical SAVI, and by comparing GARCH implied option prices to 
market option prices. 

The GARCH parameters based on returns only are estimated by maximising the following log-
likelihood function (Hao & Zhang 2013), 

 , 

or equivalently, by minimising 

 , 

where N is the number of historical returns in the estimation period. For the log-likelihood 
function based on the historical SAVI, the following is assumed regarding the relationship 
between the market and GARCH implied SAVI, 

. 

The log-likelihood function based on the historical SAVI is given by (Hao & Zhang 2013), 

 , 

where ν2 is estimated with sample variances ˆν2. In this case, the following function is 
minimised, 

 . 

Finally, the joint log-likelihood function based on returns and the SAVI is given by: 

lnLRV = lnLR + lnLV . 

For the non-linear constrained optimisation required to estimate the GARCH model 
parameters, the fmincon function in Matlab is used, this is based on the interior-point 
algorithm. The empirical results are discussed in the next section. 
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3 Empirical results 

In this section, the performance of the GARCH(1,1), GJR-GARCH(1,1), and AGARCH(1,1) 
option pricing models in a South African equity context are considered. The goodness of fit of 
the different likelihood functions for each GARCH model is compared based on the AIC and 
SIC, and the performance of the models (the GARCH implied SAVI compared to the historical 
SAVI) is compared based on the the mean absolute error (MAE), and root mean squared error 
(RMSE). The information criterion and performance metrics are reported in the tables below: 

Log-likelihood GARCH(1,1) GJR-GARCH(1,1) AGARCH(1,1) 
function AIC SIC AIC SIC  AIC SIC 
lnLR -6.4264 -6.4168 -6.4628 -6.4508 -6.4776 -6.4656 
lnLV 6.5748 6.5844 7.4713 7.4833 5.4206 5.4326 
lnLRV -0.8559 -0.8463 -0.9288 -0.9168 -0.6642 -0.6522 

Table 1: GARCH model information criterion. 
Log-likelihood GARCH(1,1) GJR-GARCH(1,1) AGARCH(1,1) 
function MAE RMSE MAE RMSE MAE RMSE 
lnLR 3.4729 4.4200 3.7126 4.6570 3.0943 3.9850 
lnLV 3.6869 4.6287 3.2764 4.0218 1.9028 2.5157 
lnLRV 2.0112 1.986 1.9860 2.6060 2.5785 3.3930 

Table 2: GARCH implied SAVI performance metrics. 

In Table 1, the values in bold indicate the best fitting model for the respective log-likelihood 
function. The bold values in Table 2 indicate the log-likelihood function that produces the 
best performing GARCH model in estimating the SAVI. 

The AIC and SIC clearly show that the asymmetric models produce a better fit when 
modelling Top40 returns; this is consistent with the findings of Oberholzer & Venter (2015). 
The performance metrics indicate that the joint log-likelihood function (historical returns 
and SAVI) produces the best performing model for the GARCH(1,1), and the GJRGARCH(1,1) 
model. The log-likelihood function based on the historical SAVI (lnLV ) produces the best 
performing AGARCH(1,1) model. 

When the performance of the three GARCH option pricing models is considered, the 
AGARCH(1,1) model is the best performing model when modelling the implied SAVI. This 
implies that incorporating asymmetric effects improves performance when modelling 
implied volatility in the South African equity market, which is consistent with the information 
criterion. The coefficients of the best performing GARCH(1,1), GJR-GARCH(1,1) and 
AGARCH(1,1) model are reported in table 3: 

Coefficient GARCH(1,1) GJR-GARCH(1,1) AGARCH(1,1) 
α0 3.79E-07 3.58E-07 4.08E-07 
α1 0.0171 0.0029 0.015 
β1 0.9825 0.9841 0.9775 
γ - 0.0233 4.2273 
λ 0.1539 0.0695 -3.5230 

Table 3: GARCH model coefficients. 
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The asymmetry coefficient of the GJR-GARCH(1,1) and AGARCH(1,1) indicates that volatility 
of the Top40 returns reacts differently to positive and negative shocks, this is also consistent 
with previous findings in the literature. Furthermore, the γ coefficient of the AGARCH(1,1) 
model is positive; this is consistent with expectations (positive for equity returns, Alexander 
2008). The coefficients in Table 3 were used to produce the line graphs below. Figure 1 
illustrates the GARCH implied SAVI (of the best performing models) and historical SAVI over 
time. 

 
Figure 1: GARCH implied SAVI. 
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Figure 1 indicates that the GARCH implied SAVI is similar for each model and that the models 
perform fairly well when compared to the historical SAVI. 

The best performing GARCH(1,1), GJR-GARCH(1,1), and AGARCH(1,1) are used to price 
European options on the Top40; the model prices are compared to the JSE prices to test the 
pricing performance of each model. Monte Carlo simulation is used to obtain risk-neutral 
sample paths. Sample paths of each model are plotted in Figure 2 below: 

 
Figure 2: Risk-Neutral sample paths. 
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The sample paths in Figure 2 indicate how the simulated spot price varies over time. The 
green line in each subplot represents the expected value under the risk-neutral measure (S0 

exp(rτ), where τ is the amount of time that has passed). This illustrates the concept of risk-
neutrality. To show how the distribution changes over time, a three-dimensional histogram of 
25 000 AGARCH(1,1) sample paths is plotted in Figure 3. 

Figure 3: Histogram: AGARCH(1,1) sample paths. 

The histogram indicates that as the simulation period increases (number of days), the 
dispersion of the simulated spot increases. This is intuitive because there is more uncertainty 
over a longer period of time and therefore options with longer dated expiries are more 
expensive. To show the convergence of the Monte Carlo prices, the JSE price as well as three 
standard deviation error bounds of each relevant model is shown, plotted across the number 
of simulations in Figure 4 below. The prices are for a 72-day European call option with strike 
K = 41251.27 (moneyness=0.8). Furthermore, the interest rate used to simulate the spot price 
is consistent with the JSE forward curve (published by the JSE), the expected payoff is 
discounted using the 91-day treasury bill rate. 

To test the pricing performance of each model, the model prices of nine 72-day European call 
options are compared to market prices published by the JSE (on 9 April 2019). The 
moneyness levels are equally spaced between 0.6 and 1.4. The GARCH option prices were 
calculated using 1 000 000 sample paths. The implied model prices and JSE prices are plotted 
below: 
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Figure 4: GARCH Monte Carlo option prices. 

Figure 5 indicates that the GARCH option pricing models perform well when compared to 
market option prices. The pricing performance metrics and computation time (to price nine 
72-day European call options) of each model are reported in the table 4. 
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Figure 5: Implied call option prices. 

Model RMSE MAE Computation Time (seconds) 
GARCH(1,1) 191.4070 104.5114 225.4897 
GJR-GARCH(1,1) 184.0239 99.6803 281.261 
AGARCH(1,1) 180.2461 97.5269 275.9655 

Table 4: Pricing performance metrics and computation time. 

The RMSE and and MAE are calculated based on the Rand values of the option prices. The 
pricing performance metrics indicate that the AGARCH(1,1) model is the most accurate, 
followed by the GJR-GARCH(1,1) model, and finally the GARCH(1,1) model. The results are 
consistent with the implied SAVI performance metrics. However, the difference between the 
pricing performance of the symmetric GARCH(1,1) model and the asymmetric models is 
marginal. Furthermore, the computation time indicates that the time required to price 
options using the GARCH(1,1) is slightly less than the other models; this is due to the fact that 
the latter model does not include a term modelling asymmetry. 
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4 Conclusion 

The use of volatility indices has grown in recent times. These indices are used to aid in the 
prediction and measurement of financial conditions as well as stress situations in the markets 
(Huskaj & Larsson 2016). In recent work, Bollerslev, Marrone, Xu, and Zhou (2014) 
highlighted the use of volatility indices and the variance risk premium to predict aggregate 
stock market returns. While many studies have been performed using the CBOE VIX index, 
the SAVI index is considered. 

In this paper, three different GARCH models were used to model the GARCH implied SAVI. 
The symmetric GARCH(1,1), the asymmetric GJR-GARCH, and AGARCH(1,1) models. 
Furthermore, three different log-likelihood functions were considered in the model 
parameter estimation. The first based on historical returns data only, the second based on the 
historical SAVI, and finally a joint likelihood function based on the historical returns and 
SAVI. This is based on the work by Hao & Zhang (2013). 

The goodness of fit of each model was compared based on the AIC and SIC. The information 
criteria indicated that the asymmetric models provide a better fit when compared to the 
symmetric GARCH(1,1) model, this is consistent with previous findings in the literature 
(Oberholzer & Venter, 2015; Flint et al., 2013). The accuracy of each model was tested by 
comparing the GARCH implied SAVI to the historical SAVI. 

Regarding the log-likelihood functions, for the GARCH(1,1) and GJR-GARCH(1,1) the joint 
likelihood function based on historical returns and the historical SAVI produces the best 
performing model. The log-likelihood function based on the historical SAVI produces the best 
performing AGARCH(1,1) model. Finally, when the performance of all models are considered, 
the empirical results showed that the asymmetric AGARCH(1,1) is the best performing model 
when modelling the GARCH implied SAVI. 

The pricing performance of the GARCH option pricing models was compared based on the 
GARCH implied prices when compared to (72-day) market traded European option prices. 
The results were consistent with the GARCH implied SAVI results; this indicates that the use 
of asymmetric GARCH option pricing models improves the model performance in the South 
African equity market. However, the improvement is marginal. The use of asymmetric models 
is more computationally intensive.Therefore the results obtained are in line with Hansen & 
Lunde (2005), the GARCH(1,1) model is highly robust and that it is difficult to find an 
alternative model that shows consistent outperformance. 

Areas for future research include the use of different GARCH processes and error 
distributions (which take skewness and kurtosis into account) when modelling the implied 
SAVI. Furthermore, the GARCH option pricing performance should also be tested when 
applied to single stock options in the South African market. In addition, the Greeks and 
hedging performance (applied to the South African market) of the different models 
considered should also be compared. 
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