

FACULTAD DE INGENIERÍA

Carrera de Ingeniería Civil

INFLUENCIA DEL PET RECICLADO EN LA RESISTENCIA A LA COMPRESIÓN DE ADOQUINES CONVENCIONALES EN LA CIUDAD DE TRUJILLO, 2020

Tesis para optar el título profesional de:

INGENIERO CIVIL

Autor:

Harold Brando Cabanillas Hernández

Asesor:

Mg.Ing. Wiston Henry Azañedo Medina

Trujillo - Perú

2020

DEDICATORIA

Mamá y Papá ustedes son el reflejo de su esfuerzo y empeño puesto en mí, desde pequeño cumpliendo logros y satisfacciones para sentirme vivo viéndolos sonreír, marcar una huella en esta vida; gracias padres por inculcarme valores, principios, responsabilidad, respeto, honestidad que han sido fundamental en estos 5 años de estudios donde he dado lo mejor de mí y este resultado es para ustedes donde he puesto las mismas ganas que le pusieron ustedes. Gracias Mamá y Papá.

AGRADECIMIENTO

- Quiero agradecer en primer lugar a mis padres por toda la confianza depositada en mí, LOS AMO.
- En segundo Lugar, a mi hermano por guiarme por el buen camino y enseñarme aspirar a mucho más en esta vida, HERMANOS POR SIEMPRE.
- En tercer lugar, al resto de mi familia que siempre está unida y velan por el bienestar mío, somos una gran familia.
- En cuarto lugar, a todos mis compañeros y personas que he conocido durante estos 5
 años que hicieron que las clases, exámenes, trasnochadas, proyectos fueran fáciles
 por estar unidos siempre con responsabilidad y respeto.

Tabla de contenidos

DEDICATORIA	2
AGRADECIMIENTO	3
ÍNDICE DE TABLAS	5
ÍNDICE DE FIGURAS	7
ÍNDICE DE ECUACIONES	8
CAPÍTULO I. INTRODUCCIÓN	10
CAPÍTULO II. METODOLOGÍA	22
CAPÍTULO III. RESULTADOS	45
CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES	47
REFERENCIAS	61
ANEXOS	63

ÍNDICE DE TABLAS

Tabla 1: Hipótesis General
Tabla 2: Hipótesis especifica
Tabla 3: Tamaño de la muestra
Tabla 4: Ensayos realizados en laboratorio
Tabla 5: Tipos de adoquines y resistencias mínimas aceptadas
Tabla 6: Identificación de materiales plásticos y sus usos
Tabla 7: Influencia en las propiedades del plástico posterior al reciclaje
Tabla 8:Resultado de resistencia a la compresión de adoquines
Tabla 9: Análisis de costos por metro cubico de concreto
Tabla 10: Distribución normal de la resistencia a la compresión de adoquines a los 7 días
51
Tabla 11: Distribución normal de la resistencia a la compresión de adoquines a los 14 días
Tabla 12: Distribución normal de la resistencia a la compresión de adoquines a los 28 días
Tabla 13: Confiabilidad de la resistencia a la compresión de adoquines (0% y 10%) a 7 días
53
Tabla 14: Confiabilidad de la resistencia a la compresión de adoquines (0% y 20%) a edad
de 7 días
Tabla 15: Confiabilidad de la resistencia a la compresión de adoquines (0% y 30%) a edad
de 7 días

Tabla 16: confiabilidad de la resistencia a la compresión de adoquines (0% y 10%) a edad
de 14 días
Tabla 17: Confiabilidad de la resistencia a la compresión de adoquines (0% y 20%) a edad
de 14 días
Tabla 18: Confiabilidad de la resistencia a la compresión de adoquines (0% y 30%) a edad
de 14 días
Tabla 19: Confiabilidad de la resistencia a la compresión de adoquines (0% y 10%) a edad
de 28 días
Tabla 20: Confiabilidad de la resistencia a la compresión de adoquines (0% y 20%) a edad
de 28 días
Tabla 21: confiabilidad de la resistencia a la compresión de adoquines(0% y 30%) a edad
de 28 días
Tabla 22: Análisis de la varianza de la resistencia a la compresión de adoquine a 7 días 57
Tabla 23: Analisis de la varianza de la resistencia a la compresion de adoquines a 14 días
58
Tabla 24: Análisis de la varianza de la resistencia a la compresión de adoquine a 28 días 58

ÍNDICE DE FIGURAS

Figura 1: Modelo de adoquín	23
Figura 2: Gráfica de la resistencia promedio por % reemplazo	46
Figura 3: Gráfica del costo por metro cúbico de concreto convencional y co	on % de
reemplazo	47
Figura 4: Gráfica de resistencia promedio a 7 días y el límite mínimo que debe cur	nplir . 48
Figura 5: Cantera de extracción del material	82
Figura 6: Saturación del Agregado- Peso Especifico	82
Figura 7: Análisis Granulométrico	82
Figura 8: Plástico triturado PET	832
Figura 9: Adoquines en encofrado	832
Figura 10: Ensayo de adoquines	843
Figura 11: Ensayo de resistencia a la compresión de los adoquines	84
Figura 12: Valor de la resistencia a la compresión en kilogramos	854

ÍNDICE DE ECUACIONES

Ecuación 1: Cálculo de la muestra	. 24
Ecuación 2: Densidad relativa de masa	. 35
Ecuación 3 Densidad relativa saturada superficialmente seca	. 35
Ecuación 4: Densidad Relativa Aparente	35

RESUMEN

En la presente investigación se logró determinar la influencia al reutilizar los residuos de plástico PET, PET como materia prima en la elaboración de concreto ecológico para la construcción de adoquines. Se utilizó como materia prima proveniente de la Cantera San Martin para el diseño de mezclas, el cemento Portland Tipo I, gravilla de 3/4", arena fina y lo residuos de plástico PET proveniente de la Fábrica Recicladora de PET, estos residuos sustituyeron a la arena fina en los porcentajes en peso de 10%, 20% y 30% respectivamente. Se elaboraron probetas de concreto simple f°c 250 Kg y concreto conteniendo los residuos antes mencionados según la Norma Técnica Peruana 399.611, luego, se realizó el ensayo de compresión a las probetas, después, de 28 días de curado, según la Norma ASTM C39, con lo cual se pudo determinar que el concreto conteniendo 10% de plástico PET presento la mejor resistencia a la compresión. También se determinó que conforme se aumenta el contenido de los residuos en el concreto su resistencia a la compresión disminuye. Finalmente, se comparó el costo unitario del concreto simple y el concreto conteniendo plástico PET, concluyéndose que mientras haya fábricas de trituración privadas el costo será mucho mayor con la incorporación de plástico PET en el concreto.

Palabras Clave: PET (Tereftalato de polietileno); resistencia a la compresión; NTP (Norma técnica peruana)

CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad problemática

La resistencia a la Compresión en la ingeniería civil, el conocimiento de esta, permite ejecutar las obras de manera efectiva y mantener el control de los parámetros de carga admisible, siendo un componente básico de las obras cotidianas; usándose en casi todos los tipos de estructuras construidas en la actualidad. La resistencia a la compresión es uno de los requisitos de construcción más comunes conocidos por el ingeniero, desde las carreteras hasta las casas.

La resistencia a la compresión del adoquín es un parámetro fundamental en el diseño de pavimentos. En los últimos años, las especificaciones de construcción han requerido incluso que se cumpla una resistencia a la compresión del adoquín, principalmente para limitar los agrietamientos y deformación excesiva de los pavimentos. (Salazar, Seminario, Tineo & Zapata, 2015),

En Uruguay la normativa UNIT 787 (1989) "Adoquines de hormigón de cemento portland" proporciona los requisitos necesarios para el control de calidad de los mismos, incluyendo: características de los materiales utilizados para su fabricación, características geométricas y de aspecto, resistencia a la compresión, resistencia al desgaste y absorción. (Vila & Pereyra, 2017)

En Ecuador, los resultados determinan que los adoquines de hormigón elaborados, para las resistencias cilíndricas de 32MPa, 35MPa y 40MPa, difiere de los propuestos por las fábricas comercializadoras, los cuales aprueban las normas ecuatorianas vigentes, y presentándose un deterioro temprano del producto, lo cual urge la actualización de muchos aspectos correspondientes a las normas INEN en lo referente al control de calidad. (Chaluiza, 2012)

En Colombia, para obtener adoquines de óptima calidad se deben diseñar con una resistencia cilíndrica del hormigón f´c de 40MPa, y en resultados de la resistencia a la compresión en las muestras de adoquines se obtendrá de 55MPa, en países como México e Inglaterra ya han sido establecidos. Para obtener adoquines óptimos se necesita un aumento de la cantidad de cementos y una excelente selección de agregados que cumplan con las normas especificadas. (Arango, 2006)

En el Perú los prefabricados están viviendo una época de esplendor en el mundo de la construcción ya que, gracias a su fácil aplicación, fiabilidad y la gran variedad de soluciones que ofrece es la mejor opción para aplicar sobre cualquier tipo de superficie. La construcción de pavimentos de concreto (veredas, adoquines); que se han creado porque representan una vía de comunicación, es parte del tránsito de personas y de un parque automotor liviano, se han visto afectados porque su diseño y realización se ha visto con deficiencias en cuanto a su resistencia a la compresión debido a que estas obras han sido manejadas por person as empíricas realizando un inadecuado diseño de mezcla (arena, piedra, cemento y agua). (Salazar, Seminario, Tineo & Zapata, 2015). En Trujillo algunos adoquines localizados en el centro nos permiten identificar un producto con baja resistencia a la compresión y alto porcentaje de absorción ocasionados por factores climáticos sobre todo en épocas de lluvia, es por ello que se intenta identificar el problema y a la vez buscar las alternativas de mejorar estas propiedades mecánicas, físicas, que también se minimicen costos de fabricación, daño al medio ambiente y sobre todo que tengan una durabilidad en el servicio. Con la presente investigación se pretende saber que la resistencia a la compresión se realiza bajo la Norma Técnica Peruana 399.611, la Norma ACI 318-11 y el Reglamento Nacional De Edificaciones, Concreto Armado, E-060. (Salazar, Seminario, Tineo & Zapata, 2015).

1.2. Antecedentes

Título: "Relaciones de compresión y tensión en adoquines fabricados con materiales procedentes de la cantera de pesillo, ubicada en el cantón cayambe, provincia de pichinga"

Afirmó lo siguiente para la fabricación de adoquines resistentes es necesario del consumo de una mayor cantidad de cemento (una mejoría en la relación a/c) además de la selección de agregados que cumplan las especificaciones correspondientes a calidad y resistencia de los mismos. (Chaluiza, 2012).

Título: "Mejoramiento de las características físico mecánicas de adoquines de cemento para pavimentación, adicionando escoria de horno eléctrico en su proceso de fabricación – nuevo chimbote – 2015"

Afirmó que para obtener adoquines resistentes al tránsito pesado consistió en mejorar las características físicas mecánicas de los adoquines de pavimentos, realizando ensayos de los agregados además de utilizar una Mesa Vibradora Portátil para la escoria de horno eléctrico con la finalidad de tener una mejor compacidad y así incrementar la resistencia en consecuencia los adoquines de cemento con escoria de horno eléctrico obtuvieron los resultados positivos esperados. (Larrea, Jairo, Bustamante & Antonio, 2015).

Título: "Diseño y elaboración de adoquines de pet reciclado"

En este trabajo se describieron los pasos que se llevaron a cabo para la elaboración de un adoquín hecho con pet reciclado, sujeto a cargas de compresión, por lo que fue necesario determinar cuál es su resistencia. Los resultados obtenidos al realizar pruebas mecánicas demuestran que el adoquín de pet soporta cargas de 50,000 N, su resistencia a temperaturas en intervalos comunes en el área geográfica de México permite establecer su factibilidad y viabilidad de uso en casas habitación, patios, sitios públicos, entre otros; además de ser ligero y de fácil instalación. (Cuellar, Santos, García & Alcántara, 2015).

Título: "Diseño de planta productora de adoquines a base de cemento y plástico reciclado"

Según las pruebas de laboratorio realizadas a los prototipos de adoquines que se elaboraron, se pudo determinan que estos cumplen con los requerimientos exigidos por la norma peruana 399.611 en cuanto a resistencia y absorción se refiere, para que sean apropiados para su uso en la construcción de vías públicas. (Salazar, Seminario, Tineo & Zapata, 2015).

En el Perú como alrededor del mundo, el adoquín es uno de los materiales más utilizado por el hombre en la industria de la construcción, ya que representan la mayor parte de caminos rurales como urbanos. Esto se debe a su gran facilidad de instalación, trabajabilidad. La utilización del adoquín se da en un variado campo de aplicación, entre los cuales están edificios, carreteras, losas industriales, presas, puentes, etc. Asimismo, la dosificación empírica de estos adoquines convencionales

está pasando por roturas y fallas en caminos y pasacalles; tal vez sea por la mala dosificación hecha por ingenieros o por otros factores ambientales.

Ingenieros están buscando nuevas alternativas de agregado para la correcta resistencia a la compresión, asimismo conservar nuestros recursos naturales.

Los grandes volúmenes de adoquín que se producen actualmente en la industria de la construcción hacen que se realicen mejoras u optimizaciones en la resistencia a la compresión. Dentro de los parámetros que se usan para cumplir con los requisitos especificados en el control de calidad del adoquín tenemos: en estado endurecido principalmente la resistencia a la compresión, siendo éste un indicador de la capacidad de resistencia· que tiene el adoquín.

La resistencia a la compresión es un parámetro mecánico de suma importancia reflejando la habilidad del adoquín para soportar grandes cargas con las características del cemento y los agregados, proporcionando funcionabilidad satisfactoria, y logrando la mayor parte de diseños eficientes.

A través del tiempo, el adoquín ha reemplazado a otros materiales ya que el transporte evolucionó, necesitaban uniformidad y mayor resistencia, por lo que su aparición supuso una revolución en el mundo del transporte, pero también una excelente noticia para la industria de la construcción. Hay que tener en cuenta que con ello se ha elaborado el adoquín de diferentes modos y en este proyecto de investigación, lo que se quiere alcanzar es una buena optimización del PET reciclado como agregado, con distintas relaciones agua-cemento para que estas alcancen altas resistencias a la compresión y puedan brindar una mayor durabilidad, sostenibilidad a las edificaciones, se disminuyan los costos y lo más importante que cumplan con los estándares requeridos.

La realización de este estudio tiene una gran importancia, ya que tanto en el ámbito nacional como internacional se busca que diferentes construcciones, independientemente de su importancia, cuenten con materiales de alta calidad que cumplan los estándares establecidos por la ASTM, así como con las propiedades referentes a dureza, resistencia, tiempo de fraguado, etc. requeridas por las diferentes construcciones. Es por esto que, al ser el adoquín un material muy utilizado en el área de la construcción, se debe tener un claro entendimiento de él y de sus propiedades.

También se desea dar a conocer que para una previa dosificación se necesita saber las propiedades físicas, químicas y mecánicas del plástico como agregado, siendo estas las principales fuentes de diseño.

Las consecuencias de no hacer un proyecto de esta magnitud, es que la gente siga construyendo como lo viene haciendo, sin lograr la ejecución de diseños estructurales eficientes, además de no lograr reducir los costos, generando así mayores gastos a largo plazo y causando un daño ambiental por tanto relleno sanitario.

EMPRESAS PRIVADAS:

Calstar Products: Empresa estadounidense dedicada a la fabricación de productos sostenibles para la fabricación. Utiliza reciclado de materiales post-industriales. Su sede principal es en Silicon Valley y tiene una planta de producción en Wisconsin. Su adoquín está elaborado con aproximadamente un 40% de materiales reciclados, esto favorece a ahorrar energía debido a que no es necesario un elevado poder calorífico para el aglutinante. La energía que utilizan esta entre un 50% a 70% inferior al de los adoquines elaborados con arcilla. Se utiliza principalmente en

aparcamientos, plazas y calles debido a que tiene características permeables. Las dimensiones de estos bloques son 12.7cm x 25.4cm x 8cm. (Calstar Products, 2018) Entre las ventajas de sus procesos y el producto tienen:

- Utilización de materiales reciclados
- Reduce las emisiones de CO2.
- Reduce la cantidad de energía gastada.

Tubos Colmenar: Empresa española ubicada en Madrid dedicada a la fabricación de tubos y pozos de hormigón en masa, armados y con fibra. Las mayores variedades de sus productos van orientados a canalizaciones. Además, dispone de una línea de pavimentos ecológicos que eliminan las sustancias tóxicas del ambiente. Sus adoquines ecológicos están prefabricados de hormigón, su elaboración cumple con las normas europeas EN 1338:2004 y el complemento español 127338:2007. Son de doble capa, macizos con un núcleo de hormigón, y mortero de cemento en su capa vista.

Lo innovador de su línea de producción en pavimentación es el uso de la fotocatálisis, el cual por medio de los rayos ultravioleta sobre un semiconductor (componente del bloque) degrada la materia orgánica en contacto con él. Según esta reacción, se logra mitigar la contaminación producida por los automóviles tales como: NOx, SOx, etc; y volverlos no perjudiciales para la salud como, por ejemplo: CaCO3 y CaNO3. (Tubos Colmenar, 2018).

1.3. Definiciones Conceptuales

1.3.1. Adoquín

La NTP 399.611 clasifica a los adoquines de concreto para pavimentos en tres tipos. El adoquín de concreto (Peatonal) de 20 cm x 10 cm x 6 cm, corresponde al Tipo I, espesor nominal 60, indicado en la citada NTP.

Los materiales empleados en la fabricación del adoquín de concreto deberán cumplir con las siguientes Normas Técnicas Peruanas: Cementos: NTP 334.009, NTP 334.082 y NTP 334.090, Agua de Mezcla: NTP 339.088, Agregados: NTP 400.037, Aditivos químicos: NTP 334.089 y NTP 334.088,

Pigmentos de color: NTP 339.231

1.3.2. PET reciclado

Los materiales plásticos corresponden a un gran número de productos muy diferentes, tanto por su materia prima como por sus procesos de fabricación y usos. Para facilitar la identificación de cada polímero, y ayudar a su clasificación para poder implementar sistemas de reciclado, se ha instituido en Código Internacional SPI, que permite identificar de que material específicamente esta hecho un objeto de plástico. El proceso de reciclado y el producto que se obtenga dependerá del tipo de plástico que se recicle.

PET (Tereftalato de polietileno) se obtiene de, envases de gaseosas, jugos, jarabes, aceites comestibles, bandejas, artículos de farmacia.

PEAD (polietileno de alta densidad) se obtiene de, envases de leche, detergente, champú, baldes, tanques de agua, cajones para pescado.

PVC (Policloruro de vinilo) se obtiene de, tuberías de agua, desagüe, aceites, mangueras, cables, bolsas de sangre.

1.3.3. Resistencia a la compresión

Es la característica principal del concreto, se define como la capacidad para soportar una carga por unidad de área, se expresa en términos de esfuerzo generalmente en kg/cm2, estos resultados obtenidos de las pruebas de resistencia al a compresión, se emplean fundamentalmente para determinar que la mezcla del concreto cumpla con los requerimientos de la resistencia especificada.

La edad de ensayo de estas muestras de concreto, suele ser de 28 días, aunque hay una tendencia para realizar los ensayos a edades antes y después de 28 días (1, 3, 7, 14, 90). Al diseñar una estructura, los constructores se valen de la resistencia especificada (f'c) porque que especifican que el concreto cumple con el requerimiento de resistencia estipulado, para disminuir el riesgo de no cumplir con la especificación de resistencia, en el diseño se le adiciona un factor de seguridad el cual nos permite cumplir con los requerimientos establecidos de resistencia a la compresión. Para finalizar, la velocidad de ganancia de resistencia mecánica del concreto, depende de numerosas variables y resultan muy diferentes entre unos y otros tipos de concreto. De esas variables, la más importante puede ser la composición química del cemento, la finura, la relación agua-cemento, la calidad intrínseca de los agregados, las condiciones de temperatura ambiente y la eficiencia del curado. (Cemex Perú, 2019).

1.4. Formulación del problema

¿Cuál es la influencia del PET reciclado en la resistencia a la compresión de adoquines convencionales en la ciudad de Trujillo, 2020?

1.5. Objetivos

1.5.1. Objetivo general

Determinar la influencia del PET reciclado en la resistencia a la compresión de adoquines convencionales en la ciudad de Trujillo, 2020.

1.5.2. Objetivos específicos

- Definir un diseño de mezcla del adoquín con cemento y plástico reciclado.
- Elaborar probetas de adoquines de tipo I con el respectivo diseño de mezcla previo a pruebas de compresión de las probetas patrón elaboradas.
- Realizar ensayos de Resistencia a la compresión en conformidad con la NTP
 399.611. a probetas por realizar de adoquines de tránsito liviano tipo I.
- Comparar resultados de Resistencia a la compresión de probetas de adoquines convencionales con probetas de adoquines con PET.
- Evaluar el costo de fabricar adoquines con PET reciclado.

1.6. Hipótesis

1.6.1. Hipótesis general

El plástico reciclado influirá en gran medida en la determinación de la resistencia a la compresión del adoquín, ya que aumenta su resistencia a la compresión; permitiéndonos tener un diseño eficiente y reducir costos.

Tabla 1: Hipótesis General

Hipótesis General	Componentes metodológicos			Componentes	
				Referenciales	
	Variables	Unidad de	Conectores	El espacio	El
El plástico reciclado		Análisis	lógicos		tiempo
influirá en gran					
medida en la					
determinación de la	V.I:Plástico Reciclado			Laboratorio de	
resistencia a la	Reciciado			la Universidad	
compresión del	V.D: Resistencia			Privada del	
adoquín, ya que	a la compresión	Adoquín	Influirá	Norte – Sede	2020
aumenta su		convencional		San Isidro de	
resistencia a la				San Island de	
compresión;				la ciudad de	
permitiéndonos				Trujillo,	
tener un diseño				departamento	
eficiente y reducir				de La Libertad	
costos.					

Fuente: Propia

1.6.2. Hipótesis específicas

1.6.2.1.El plástico reciclado al, 10%, 20% y 30% influirá en gran medida en la determinación de la resistencia a la compresión del adoquín, ya que aumenta su resistencia a la compresión; permitiéndonos tener un diseño eficiente y reducir costos.

Tabla 2: Hipótesis especifica

Hipótesis	Componentes me	etodológicos		Componentes	
Especifica				Referenciales	
	Variables	Unidad de	Conectores	El espacio	El
El plástico reciclado		Análisis	lógicos		tiempo
al 0%, 10%, 20% y					
30% influirá en gran					
medida en la	V.I:Plástico Reciclado al 0%,			Laboratorio de	
determinación de la	10%, 20% y			la Universidad	
resistencia a la	30%.			Privada del	
compresión del		Adoquín	Influirá	Norte – Sede	2020
adoquín, ya que	V.D: Resistencia a la compresión	convencional		San Isidro de	
aumenta su					
resistencia a la				la ciudad de	
compresión;				Trujillo,	
permitiéndonos				departamento	
tener un diseño				de La Libertad	
eficiente y reducir					
costos.					

Fuente: Propia

CAPÍTULO II. METODOLOGÍA

2.1. Tipo de investigación

2.1.1. Por el fin que persigue:

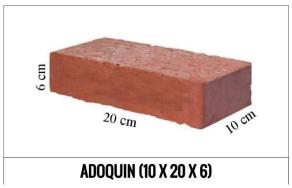
Fue una investigación aplicada (práctica), porque buscó la utilización o aplicación de los conocimientos adquiridos para el conocimiento del acervo científico, después de implementar y sistematizar la practica basada en la investigación. Su principal propósito fue hacer un uso inmediato del conocimiento existente.

2.1.2. Por el diseño:

La presente investigación fue de tipo Experimental, cuya situación de control en la cual se manipula de manera intencional, una o más variables independientes, se analizó las consecuencias sobre una o más variables independientes, según lo investigado se basó en la influencia del plástico reciclado PET en la resistencia a la compresión del adoquín convencional en la ciudad de Trujillo.

2.1.3. Por el nivel:

Fue una investigación concluyente de tipo explicativo; ya que buscó el porqué de los hechos mediante el establecimiento de relaciones causa- efecto. En este sentido, los estudios explicativos pueden ocuparse tanto de la determinación de las causas (investigación post facto), como de los efectos (investigación experimental), mediante la prueba de hipótesis. Sus resultados y conclusiones constituyen el nivel más profundo de conocimientos.



2.2. Población y muestra (Materiales, instrumentos y métodos)

2.2.1. Unidad de estudio

La unidad de estudio son especímenes de probetas de adoquín (20cm x 10cm x 6 cm).

Figura 1: modelo de adoquín

Fuente: Propia

2.2.2. Población

La población de estudio son todas las probetas en un m3 de concreto evaluados en un tiempo de 7, 14 y 28 días obtenidas de una dosificación de (agregado, %plástico, agua, cemento) de 10%, 20%, 30%, utilizando un cemento de alta resistencia y trabajando con agregado grueso de TMN ¾ considerando todo esto para el ensayo de compresión.

2.2.3. Muestra

La presente investigación se empleó la técnica de muestreo probabilístico cuyo criterio realizara por medio de cálculo estadístico por la fórmula de tamaño de muestra con el antecedente "mejoramiento de las características físico mecánicas de adoquines de cemento para pavimentación, adicionando escoria de horno eléctrico en su proceso de fabricación – nuevo chimbote – 2015" ya que se

utilizó plástico reciclado; elaborando 3 especímenes de adoquín para cada porcentaje de PET: PET (10%, 20%, 30%), y 3 especímenes de adoquines convencionales, para comparar resultados evaluándolas a 7 días, 14 días y 28 días.

Ecuación 1: Cálculo de la muestra

$$n_0 = \frac{Z^2 S^2}{E^2}$$

Donde:

 N_0 = Tamaño de la muestral

Z = Valor de distribución normal estandarizada, para el nivel de confianza fijado por el investigador, con un valor de 96% de confiabilidad se tiene 2.05.

S = Desviación estándar de la variable fundamental de estudio (Investigación previo).
 E= Error fijado por el investigador de 4%.

Promedio obtenido de ensayos previos de la tesis "MEJORAMIENTO DE LAS CARACTERÍSTICAS FISICO MECÁNICAS DE ADOQUINES DE CEMENTO PARA PAVIMENTACIÓN, ADICIONANDO ESCORIA DE HORNO ELÉCTRICO EN SU PROCESO DE FABRICACIÓN – NUEVO CHIMBOTE – 2015"

	F'C (Kg/cm2)
Resistencia	320
a la	337
compresión	365
	321
Promedio	336

Varianza y desviación estándar del antecedente de estudio.

Varianza	Desviación estándar
440.92	21.00

Teniendo el 4% de error, se calcula en función del promedio de los datos obtenidos de la investigación como antecedente.

$$E\% = 336x0.04$$

$$E\% = 13.43 \ kg/cm^2$$

Reemplazando en la ecuación de tamaño de muestra. Se obtiene como resultado una muestra de:

$$n_0 = \frac{(2.05)^2 (21)^2}{(13.43)^2}$$

$$n_0 = 10.27$$

Tabla 3: tamaño de la muestra

0/ 1 11 1/	Tr. 1	Edad de ensayo 7 Días 14 Días 28 Días		
% de adición	Tipo de _ material			
0%		10	10	10
10%	Plástico PET	10	10	10
20%	Plástico PET	10	10	10
30%	Plástico PET	10	10	10
Sub total de	especímenes	40	40	40
Total de es	specímenes		120	

Fuente: Propia

2.3. Técnicas e instrumentos de recolección y análisis de datos

2.3.1. Técnicas de recolección de datos

La presente investigación utilizó la técnica de observación puesto que esta implicó seleccionar, ver y registrar sistemáticamente, la conducta y características de la unidad de estudio respectiva. Esta técnica es muy común en los proyectos de investigación ya que nos permitió ver de manera más detallada lo que está pasando en un determinado espacio y tiempo. Por medio de esta técnica apreciamos la resistencia a la compresión de los especímenes a 7 días, 14 días y 28 días mediante el ensayo del compresómetro en la ciudad de Trujillo.

2.3.2. Instrumento de Recolección de Datos

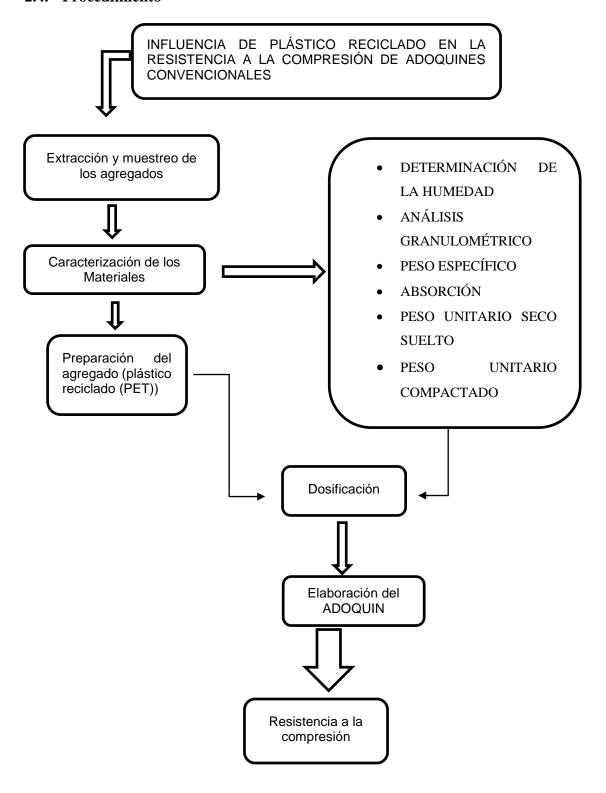
El instrumento que se utilizó es la guía de observación debido a que esta permitió dar a conocer una mayor descripción de nuestra unidad de estudio.

2.3.3. Análisis de Datos

Debido a que se empleó un diseño experimental, la técnica de análisis de datos empleada para esta investigación es la inferencia estadística, la cual nos permitió inducir, a partir de la información empírica proporcionada por la muestra, cual es el comportamiento de la población con un riesgo de error medible en términos de probabilidad.

Por consiguiente, se realizó la **prueba de hipótesis** y para esto primero se evaluó la prueba de normalidad de los datos utilizando **Shapiro - Wilk** ya que nuestra muestra es de 120 especímenes. Se realizó el análisis de la varianza mediante el método del anova, para cada grupo de estudio en comparación con la patrón para poder observar la incidencia de estos sub grupos en referencia al punto de partida. Esta prueba se realizó mediante el software SPSS y ya que nuestros datos son normales utilizamos **pruebas paramétricas**.

Inferencia Estadística


 La cual permite incluir, a partir de la información empírica proporciona por una muestra, cual es el comportamiento de una determinada población con un riesgo de error mediable en términos de probabilidad

Prueba de Hipótesis

- Primero se evaluao la prueba de normalidad de los datos utilizando kolmogorov
- Utilizamos **pruebas paramétricas**, aplicada cuando la población estudiada sigue una distribución normal pero el tamaño de la muestra es demasiado pequeño, utilizandose un estimación de la desviación típica del valor real

2.4. Procedimiento

2.4.1. Ensayos realizados

Se efectuaron los siguientes ensayos estándar de laboratorio siguiendo los protocolos normativos establecidos por la Norma Técnica Peruana de Suelos.

Cementos: NTP 334.009, NTP 334.082, NTP 334.090

Agua de Mezcla: NTP 339.008

Agregados: NTP 400.037

Tabla 4: Ensayos realizados en laboratorio

Ensayo	Normativa
Determinación de la Humedad.	NTP 339.127:1998
Análisis Granulométrico	MTC E204 - NTP 400.012
Desgaste por Abrasión	MTC-207
Peso Específico	MTC E205-1999- NTP 400.022
Absorción	MTC E205-1999 - NTP 400.022
Peso Unitario Seco Suelto	NTP 400.017
Peso Unitario Compactado	NTP 400.017
Fuente: Propia	

2.4.1.1. Contenido de Humedad (NTP 339.127)

Determinar y registrar la masa de un contenedor limpio y seco (y su tapa si es usada). Seleccionar especímenes de ensayo representativos. Colocar el espécimen de ensayo húmedo en el contenedor y, si se usa, colocar la tapa asegurada en su posición. Determinar el peso del contenedor y material húmedo usando una balanza seleccionada de acuerdo al peso del espécimen. Registrar este valor. Remover la tapa

(si se usó) y colocar el contenedor con material húmedo en el horno. Secar el material hasta alcanzar una masa constante. Mantener el secado en el horno a 110 ± 5 °C a menos que se especifique otra temperatura. El tiempo requerido para obtener peso constante variará dependiendo del tipo de material, tamaño de espécimen, tipo de horno y capacidad, y otros factores. La influencia de estos factores generalmente puede ser establecida por un buen juicio, y experiencia con los materiales que sean ensayados y los aparatos que sean empleados. Luego que el material se haya secado a peso constante, se removerá el contenedor del horno (y se le colocará la tapa si se usó). Se permitirá el enfriamiento del material y del contenedor a temperatura ambiente o hasta que el contenedor pueda ser manipulado cómodamente con las manos y la operación del balance no se afecte por corrientes de convección y/o esté siendo calentado. Determinar el peso del contenedor y el material secado al homo usando la misma balanza usada en registrar este valor. Las tapas de los contenedores se usarán si se presume que el espécimen está absorbiendo humedad del aire antes de la determinación de su peso seco.

2.4.1.2. Análisis Granulométrico (NTP 400.012)

Selecciónese un grupo de tamices de tamaños adecuados para cumplir con las especificaciones del material que se va a ensayar. Colóquense los tamices en orden decreciente, por tamaño de abertura. Efectúese la operación de tamizado a mano o por medio de un tamizador mecánico, durante un período adecuado. Limítese la cantidad de material en un tamiz dado, de tal forma que todas las partículas tengan la oportunidad de alcanzar las aberturas del tamiz varias veces durante la operación del tamizado. El peso retenido en tamices menores al de 4.75 mm (No. 4) cuando se complete la operación de tamizado, no debe ser mayor de 6 kg/m2 de superficie

tamizada. Para tamices de 4.75 mm (No. 4) y mayores, el peso en kg/m2 por superficie de tamizado no excederá el producto de 2.5 x abertura del tamiz (mm).

En ningún caso, el peso debe ser tan grande que cause deformación permanente en la malla del tamiz. Continúese el tamizado por un período suficiente, de tal forma que después de terminado, no pase más del 1% de la cantidad en peso retenida en cada tamiz, durante un (1) minuto de tamizado continuo a mano, realizado de la siguiente manera: tómese individualmente cada tamiz, con su tapa y un fondo que ajuste sin holgura, con la mano en una posición ligeramente inclinada. Se golpea secamente el lado del tamiz, con un movimiento hacia arriba contra la palma de la otra mano, a razón de 150 veces por minuto, girando el tamiz aproximadamente 1/6 de vuelta en cada intervalo de 25 golpes. Se considerará satisfactorio el tamizado para tamaños mayores al tamiz de 4.75 mm (No. 4), cuando el total de las partículas del material sobre la malla forme una sola capa. Si el tamaño de los tamices hace impracticable el movimiento de tamizado recomendado, utilícense tamices de 203 mm (8") de diámetro para comprobar la eficiencia del tamizado. En el caso de mezclas de agregados gruesos y finos, la porción de muestra más fina que el tamiz de 4.75 mm (No. 4) puede distribuirse entre dos o más grupos de tamices para prevenir sobrecarga de los tamices individuales. Para partículas mayores de 75 mm (3"), el tamizado debe realizarse a mano, determinando la abertura del tamiz más pequeño por el que pasa la partícula. Comiéncese el ensayo con el tamiz más pequeño que va a ser usado. Rótense las partículas si es necesario, con el fin de determinar si ellas pasarán a través de dicho tamiz; sin embargo, no deberán forzarse las partículas para que pasen a través de éste. Cuando sea necesario determinar la cantidad de material que pasa el tamiz de 75 mm (No. 200), se ensayará primero la muestra de

acuerdo con la norma citada. Se añade el porcentaje de material más fino que el tamiz de 75 mm (No. 200) determinado por el mencionado método, al porcentaje tamizado sobre este mismo tamiz, determinado en el resto de la muestra, cuando se ensaye en seco mediante el presente método. Determínese el peso de la muestra retenido en cada tamiz, con una balanza que cumpla lo exigido. El peso total del material después del tamizado, debe ser comparado con el peso original de la muestra que se ensayó. Si la cantidad difiere en más del 0.3%, basado en el peso de la muestra original seca, el resultado no debe ser aceptado.

2.4.1.3. Desgaste por abrasión (MTC-207)

Ejecución del ensayo. La muestra y la carga abrasiva correspondiente, se colocan en la máquina de Los Ángeles, y se hace girar el cilindro a una velocidad comprendida entre 30 y 33 rpm; el número total de vueltas deberá ser 500. La máquina deberá girar de manera uniforme para mantener una velocidad periférica prácticamente constante. Una vez cumplido el número de vueltas prescrito, se descarga el material del cilindro y se procede con una separación preliminar de la muestra ensayada, en el tamiz # 12. La fracción fina que pasa, se tamiza a continuación empleando el tamiz de 1.70 mm (No. 12). El material más grueso que el tamiz de 1.70 mm (No. 12) se lava, se seca en el horno, a una temperatura comprendida entre 105 a 110 °C (221 a 230 °F), hasta peso constante, y se pesa con precisión de 1 g. Cuando el agregado esté libre de costras o de polvo, puede eliminarse la exigencia del lavarlo antes y después del ensayo. La eliminación del lavado posterior, rara vez reducirá la pérdida medida, en más del 0.2% del peso de la muestra original.

2.4.1.4. Peso Específico (NTP 400.021 y NTP 400.022)

Después de homogeneizar completamente la muestra y eliminar el material de tamaño superior a 4.75 mm (tamiz No. 4), se selecciona, por cuarteo, una cantidad aproximada de 1 Kg., que se seca en el horno a 100 - 110 °C, se enfría luego al aire a la temperatura ambiente durante 1 a 3 horas. Una vez fría se pesa, repitiendo el secado hasta lograr peso constante. A continuación, se cubre la muestra completamente con agua y se la deja así sumergida durante 24 ± 4 horas.

Cuando los pesos específicos y la absorción vayan a utilizarse en el proyecto de mezclas de concretos hidráulicos, en las que los agregados son utilizados normalmente en estado húmedo, puede prescindirse del secado previo hasta peso constante. Además, si los agregados se han mantenido previamente con su superficie continuamente mojada, se puede igualmente omitir el periodo de 24 h de inmersión. Los valores que se obtienen para la absorción y el peso específico aparente saturado con superficie seca, pueden ser significativamente más altos si se omite el secado previo antes del periodo de inmersión, por lo cual deberá consignarse siempre en los resultados cualquier alteración introducida en el proceso general.

Después del período de inmersión, se decanta cuidadosamente el agua para evitar la pérdida de finos y se extiende la muestra sobre una bandeja, comenzando la operación de desecar la superficie de las partículas, dirigiendo sobre ella una corriente moderada de aire caliente, mientras se agita continuamente para que la desecación sea uniforme, y continuando el secado hasta que las partículas puedan fluir libremente. Para fijar este punto, cuando se empiece a observar visualmente que se está aproximando el agregado a esta condición, se sujeta firmemente el molde cónico con su diámetro mayor apoyado sobre una superficie plana no absorbente, echando en su interior a través de un embudo y sin apelmazar, una cantidad de

muestra suficiente, que se apisona ligeramente con 25 golpes de la varilla, levantando a continuación, con cuidado, verticalmente el molde. Si la superficie de las partículas conserva aún exceso de humedad, el cono de agregado mantendrá su forma original, por lo que se continuará agitando y secando la muestra, realizando frecuentemente la prueba del cono hasta que se produzca un primer desmoronamiento superficial, indicativo de que finalmente ha alcanzado el agregado la condición de superficie seca.

El procedimiento descrito anteriormente solamente es válido cuando el desmoronamiento superficial no se produce en la primera prueba, por la falta de seguridad en el estado de humedad superficial que ello comportaría. En este caso, deberán añadirse al agregado algunos centímetros cúbicos de agua, mezclar completamente toda la muestra y dejarla tapada para evitar la evaporación durante una media hora.

A continuación, se repiten de nuevo los procesos de secado y pruebas del cono, explicados en los numerales 4.2. y 4.3., hasta determinar el estado correcto de saturado con superficie seca. 4.4 Inmediatamente, se introducen en el picnómetro previamente tarado, 500.0 g del agregado fino, preparado como se ha descrito anteriormente, y se le añade agua hasta aproximadamente un 90 por ciento de su capacidad; para eliminar el aire atrapado se rueda el picnómetro sobre una superficie plana, e incluso agitando o invirtiéndolo si es preciso, introduciéndolo seguidamente en un baño de agua a una temperatura entre 21° y 25°C durante 1 hora, transcurrida la cual se enrasa con agua a igual temperatura, sé saca del baño, se seca rápidamente su superficie y se determina su peso total (picnómetro, muestra y agua), con una

aproximación de 0.1 g. Pueden emplearse cantidades de muestra inferiores a los 500

g especificados en el procedimiento general (aunque nunca menos de 50 g).

En los casos en que se utilice una cantidad inferior a 500 g, los límites de exactitud

para las pesadas y medidas deberán reducirse en las proporciones correspondientes.

Símbolos:

A = masa de la muestra seca al horno g

B = masa del picnómetro llenado de agua hasta la marca de calibración g

C = masa del picnómetro lleno de la muestra y el agua hasta la marca de calibración

S = masa de la muestra de saturado superficialmente seca (utilizado en el

procedimiento gravimétrico para la densidad y la densidad relativa (gravedad

específica), o para la absorción con ambos procedimientos), g

Densidad Relativa: masa

CÁLCULOS

Ecuación 2: Densidad relativa de masa

$$A(B+S-C)$$

Ecuación 3 Densidad relativa saturada superficialmente seca

$$S(B+S-C)$$

Ecuación 4: Densidad Relativa Aparente

$$A(A+B-C)$$

2.4.1.5.Absorción (NTP 400.022)

Después de homogeneizar completamente la muestra y eliminar el material de tamaño superior a 4.75 mm (tamiz No. 4), se selecciona, por cuarteo, una cantidad aproximada de 1 Kg., que se seca en el horno a 100 - 110 °C, se enfría luego al aire a la temperatura ambiente durante 1 a 3 horas. Una vez fría se pesa, repitiendo el secado hasta lograr peso constante. A continuación, se cubre la muestra completamente con agua y se la deja así sumergida durante 24 ± 4 horas.

Cuando los pesos específicos y la absorción vayan a utilizarse en el proyecto de mezclas de concretos hidráulicos, en las que los agregados son utilizados normalmente en estado húmedo, puede prescindirse del secado previo hasta peso constante. Además, si los agregados se han mantenido previamente con su superficie continuamente mojada, se puede igualmente omitir el periodo de 24 h de inmersión. Los valores que se obtienen para la absorción y el peso específico aparente saturado con superficie seca, pueden ser significativamente más altos si se omite el secado previo antes del periodo de inmersión, por lo cual deberá consignarse siempre en los resultados cualquier alteración introducida en el proceso general.

Después del período de inmersión, se decanta cuidadosamente el agua para evitar la pérdida de finos y se extiende la muestra sobre una bandeja, comenzando la operación de desecar la superficie de las partículas, dirigiendo sobre ella una corriente moderada de aire caliente, mientras se agita continuamente para que la desecación sea uniforme, y continuando el secado hasta que las partículas puedan fluir libremente. Para fijar este punto, cuando se empiece a observar visualmente que se está aproximando el agregado a esta condición, se sujeta firmemente el molde cónico con su diámetro mayor apoyado sobre una superficie plana no absorbente, echando en su interior a través de un embudo y sin apelmazar, una cantidad de

muestra suficiente, que se apisona ligeramente con 25 golpes de la varilla, levantando a continuación, con cuidado, verticalmente el molde. Si la superficie de las partículas conserva aún exceso de humedad, el cono de agregado mantendrá su forma original, por lo que se continuará agitando y secando la muestra, realizando frecuentemente la prueba del cono hasta que se produzca un primer desmoronamiento superficial, indicativo de que finalmente ha alcanzado el agregado la condición de superficie seca.

El procedimiento descrito anteriormente solamente es válido cuando el desmoronamiento superficial no se produce en la primera prueba, por la falta de seguridad en el estado de humedad superficial que ello comportaría. En este caso, deberán añadirse al agregado algunos centímetros cúbicos de agua, mezclar completamente toda la muestra y dejarla tapada para evitar la evaporación durante una media hora.

A continuación, se repiten de nuevo los procesos de secado y pruebas del cono, explicados en los numerales 4.2. y 4.3., hasta determinar el estado correcto de saturado con superficie seca. 4.4 Inmediatamente, se introducen en el picnómetro previamente tarado, 500.0 g del agregado fino, preparado como se ha descrito anteriormente, y se le añade agua hasta aproximadamente un 90 por ciento de su capacidad; para eliminar el aire atrapado se rueda el picnómetro sobre una superficie plana, e incluso agitando o invirtiéndolo si es preciso, introduciéndolo seguidamente en un baño de agua a una temperatura entre 21° y 25°C durante 1 hora, transcurrida la cual se enrasa con agua a igual temperatura, sé saca del baño, se seca rápidamente su superficie y se determina su peso total (picnómetro, muestra y agua), con una

aproximación de 0.1 g. Pueden emplearse cantidades de muestra inferiores a los 500 g especificados en el procedimiento general (aunque nunca menos de 50 g).

En los casos en que se utilice una cantidad inferior a 500 g, los límites de exactitud para las pesadas y medidas deberán reducirse en las proporciones correspondientes.

2.4.1.6. Peso unitario Suelto y Compactado (NTP 400.017)

El procedimiento para la determinación de peso unitario suelto se usará sólo cuando sea indicado específicamente.

De otro modo, el peso unitario compactado será determinado por el procedimiento de apisonado para agregados que tengan un tamaño máximo nominal de 37,5 mm (1 ½ pulg) o menos; o por el procedimiento de percusión para agregados con tamaño máximo nominal entre 37,5 mm y 150 mm (1 ½ pulg a 6 pulg).

PROCEDIMIENTO DE APISONADO: Se llena la tercera parte del recipiente de medida y se nivela la superficie con la mano.

Se apisona la capa de agregado con la barra compactadora, mediante 25 golpes distribuidos uniformemente sobre la superficie. Se llena hasta las dos terceras partes de la medida y de nuevo se compacta con 25 golpes como antes.

Finalmente, se llena la medida hasta rebosar, golpeándola 25 veces con la barra compactadora; el agregado sobrante se elimina utilizando la barra compactadora como regla. Al compactar la primera capa, se procura que la barra no golpee el fondo con fuerza.

Al compactar las últimas dos capas, sólo se emplea la fuerza suficiente para que la barra compactadora penetre la última capa de agregado colocada en el recipiente. Se determina el peso del recipiente de medida más su contenido y el peso del recipiente sólo y se registra los pesos con una aproximación de 0,05 kg (0,1 lb).

Procedimiento con pala: El recipiente de medida se llena con una pala o cuchara hasta rebosar, descargando el agregado desde una altura no mayor de 50 mm (2") por encima de la parte superior del recipiente.

El agregado sobrante se elimina con una regla. Se determina el peso del recipiente de medida más su contenido y el peso del recipiente y se registran los pesos con una aproximación de 0,05 kg (0,1 lb).

Método del apisonado. Para agregados de tamaño nominal menor o igual que 39 mm (1½"). El agregado debe colocarse en el recipiente, en tres capas de igual volumen aproximadamente, hasta colmarlo. Manual de Ensayos de Materiales para Carreteras MTC E203-1999 · Cada una de las capas se empareja con la mano y se apisona con 25 golpes de varilla, distribuidos uniformemente en cada capa, utilizando el extremo semiesférico de la varilla. · Al apisonar la primera capa, debe evitarse que la varilla golpee el fondo del recipiente. Al apisonar las capas superiores, se aplica la fuerza necesaria para que la varilla solamente atraviese la respectiva capa. · Una vez colmado el recipiente, se enrasa la superficie con la varilla, usándola como regla, y se determina el peso del recipiente lleno, en kg (lb). Método del vibrado. Para agregados de tamaño nominal, comprendido entre 39 mm (1½) y 100 mm (4"). El agregado debe colocarse en el recipiente, en tres capas de igual volumen aproximadamente, hasta colmarlo.

Cada una de las capas se compacta del siguiente modo: se coloca el recipiente sobre una base firme y se inclina, hasta que el borde opuesto al punto de apoyo, diste unos 50 mm (2") de la base. Luego se suelta, con lo que se produce un golpe seco y se repite la operación inclinando el recipiente por el borde opuesto.

Estos golpes alternados se ejecutan 25 veces de cada lado, de modo que el número total sea 50 para cada capa y 150 para todo el conjunto. Una vez compactada la última capa, se enrasa la superficie del agregado con una regla o con la mano, de modo que las partes salientes se compensen con las depresiones en relación con el plano de enrase, y se determina el peso en kg (lb) del recipiente lleno.

2.4.1.7. Clasificación de adoquines

Son bloques utilizados principalmente para pavimentación del tránsito peatonal y vehicular; de acuerdo al que se utilice, habrá variaciones en sus dimensiones.

Los bloques convencionales utilizados para uso peatonal son piezas macizas de hormigón y prefabricados con paredes verticales que les permite ajustarse unos con otros. Esto, les permite formar una superficie completa.

Requisitos de adoquines de concreto según la NTP 399.611

Uno muy importante para la elaboración de adoquines es la resistencia a la compresión, que dependerá del uso y espesor.

Tabla 5: tipos de adoquines y resistencias mínimas aceptadas

	Espesor nominal	Resistencia a la compresión, min.	
	(mm)	MPa (kg	g/cm2)
		Promedio de 3	Unidad
		unidades	Individual
I	40	31 (320)	28 (290)
(Peatonal)	60	31 (320)	28 (290)
II	60	41 (420)	37 (380)
(Vehicular Ligero)	80	37 (380)	33 (340)
	100	35 (360)	32 (325)
Ш			
(Vehicular pesado, patios	>80	55 (561)	50 (510)
industriales o de			
contenedores)			

Fuente: Norma Técnica Peruana (NTP 399.611)

- La absorción deberá ser menor al 5% como promedio, debido a que se quiere impedir que el agua deteriore de forma más rápida este material.
- La variación que puede haber en el largo y ancho es de 1.6 mm y en el espesor podrá ser de un máximo de 3.2 mm.

2.4.1.8. Clasificación de los plásticos

Tabla 6: identificación de materiales plásticos y sus usos

Siglas	Nombre	Usos
PET	Tereftalato de Polietileno	Envases de bebidas gaseosas, jugos, jarabes, aceites comestibles, bandejas, artículos de farmacia, medicamentos, etc.
PEAD(HDPE)	Polietileno de alta densidad	Envases de leche, detergentes, champú, baldes, bolsas, tanques de agua, cajones para pescado, etc.
PVC	Policloruro de Vinilo	Tuberías de agua, desagüe, aceites, mangueras, cables, símil cuero, usos médicos como catéteres, bolsas de sangre, etc.

Propiedades del plástico reciclado:

Los plásticos pueden obtener casi las mismas funcionalidades a través de reutilización dicha materia prima. Sin embargo, su calidad disminuirá después de un pasar por un proceso de reciclado.

Tabla 7: influencia en las propiedades del plástico posterior al reciclaje

Propiedades	Disminución de la densidad	Aumento del índice de fluencia
Elongación a la rotura	Disminuye mucho	Disminuye
Módulo E	Disminuye mucho	Disminuye
Dureza	Disminuye	Disminuye poco
Temperatura de fusión	Disminuye	Casi no cambia
Temperatura máxima de uso	Disminuye	Disminuye poco
Temperatura de fragilización	Aumenta	Aumenta
Resistencia al impacto	Disminuye	Disminuye mucho
Hinchamiento	Aumenta mucho	Aumenta poco
Permeabilidad	Aumenta	Aumenta
Tenso fisuración	Disminuye	Aumenta
Transparencia	Aumenta	No cambia
Fluidez	Aumenta poco	Aumenta mucho

Fuente: Revista Alconpat

2.4.1.9. Dosificación

Se realizó un diseño de mezcla mediante el ACI 211, para concreto convencional de F'c de 250 kg/cm2 en el cual se determinó las cantidades de agregado grueso, agregado fino, cemento y agua para elaboración de los adoquines, en cuestión del agregado fino se reemplazó en porcentajes del 10%, 20%, 30% en función al peso de la arena.

También sirvió estudiar el diseño de concreto de la Universidad Libre de Colombia, realizado por el ingeniero Raúl Omar Di Marco Morales.

Habiendo realizado pruebas en adoquines con una proporción de 1 de cemento por 1.5 de arena y 0.5 de PET, se obtuvo 100.63 kg/cm2 de resistencia, estos resultados son prometedores ya que fueron examinados a los 7 días de curado, donde la resistencia actual está entre el 25% - 30% de la resistencia final según el diseño de concreto obtenido. Por esto, el bloque cumpliría con la NTP 399.611 con una resistencia mayor a la exigida. (Salazar, Seminario, Tineo, Zapata, 2015).

2.4.1.10. Ensayo de Resistencia a la compresión

El ensayo se realizará una vez retirado de la poza de curado y manteniendo la humedad del adoquín. Se le aplicara la carga de manera continua y permanente a una velocidad de 0.25 ± 0.05 MPa/s. Calcular la resistencia a la compresión de la probeta dividendo la carga máxima entre el área en contacto de la probeta, expresar el resultado con aproximación a 0.1 MPa.

CAPÍTULO III. RESULTADOS

Tabla 8: Resultado de resistencia a la compresión de adoquines Tipo I para tránsito Peatonal de acuerdo a la Norma Técnica Peruana 366.911.

RES	SULTADOS I	DE RESISTEN	ICIA A COM CONCRETO		Z ADOQUINI	ES DE
porcentaje de reemplazo en peso	Resistenci a (MPa)	Promedio Resistenci a (Mpa)	Resistenci a (Mpa)	Promedio Resistenci a (Mpa)	Resistenci a (Mpa)	Promedio Resistenci a (Mpa)
	7]	Días	14 l	Días	28 1	Dias
	43.041		47.234		48.324	
	40.172		44.501		45.198	
	41.562		45.678		46.342	
	43.124		44.841		46.884	
	42.665		44.963		48.254	
0%	41.965	42.21	45.078	46.116	47.669	47.184
	42.125		48.365		48.254	
	42.987		48.254		48.654	
	41.654		47.254		46.330	
	42.768		44.987		45.926	
	37.322		40.541		42.544	
	34.545		37.342		39.762	
	35.654		38.776		40.554	
	36.981		39.774		40.875	
	36.254		39.456		41.621	40.963
10%	37.524	36.097	37.863	39.101	40.987	
	37.89		37.987		42.012	
	34.655		40.068		38.987	
	34.268		39.741		40.325	
	35.875		39.465		41.965	
	24.599		28.765		30.778	
	21.987		25.555		27.667	
	22.567		26.789		28.889	
	22.875		28.321		29.414	
	22.814		26.768		28.988	29.385
20%	23.857	23.141	28.645	27.338	30.078	
	23.986		27.044		29.787	
	22.085		27.862		28.845	
	22.987		26.745		29.785	
	23.648		26.887		29.615	
	3.963		8.654		9.556	
	3.432		8.124		10.654	
	3.123		8.335		9.887	
	3.570		8.125		10.872	
	3.586		8.752		9.785	9.902
30%	3.015	3.542	8.089	8.325	9.667	
	3.861		8.266		9.714	
	3.582		8.235		9.863	
	3.873		8.457		9.557	
	3.412		8.215		9.460	

Fuente: Propia

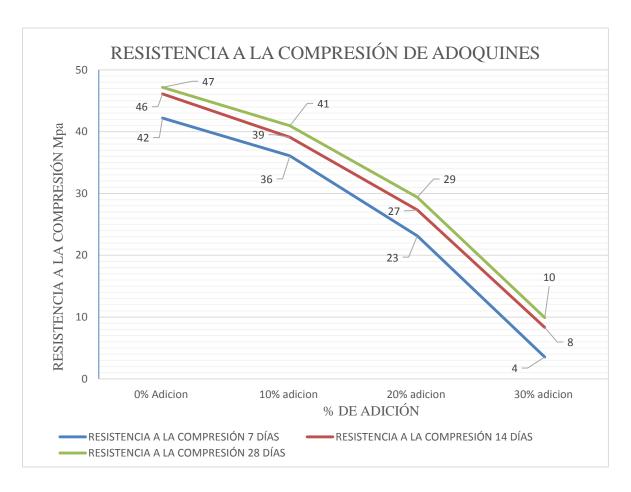


Figura 2: Gráfica de la resistencia promedio por % reemplazo

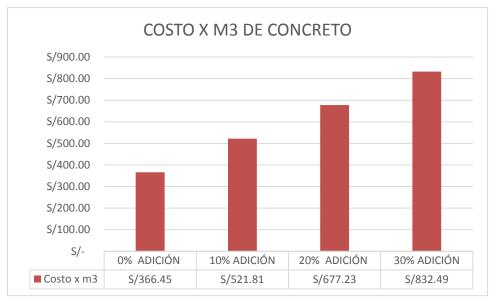


Figura 3: Gráfica del costo por metro cúbico de concreto convencional y con % de reemplazo

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1. Discusión

4.1.1. Compresión

Según Pascal C. (1993), la relación agua/cemento puede decirse que es el factor que más influencia tiene sobre la probeta. Si la probeta es amasada con exceso de agua de la que precisa para la hidratación del cemento, quedará un gran volumen de huecos al evaporarse, con lo cual disminuirá la resistencia.

La adición del 10% plástico reciclado triturado a la probeta genera una mayor temperatura de fragilización, mayor permeabilidad lo cual genera un incremento en las propiedades mecánicas provocando una mayor resistencia a la compresión. También al obtener granos con una mayor finura, ocupará los espacios vacíos y poros capilares formados en el proceso de la hidratación y conformado de la mezcla, disminuyendo su porosidad y contribuyendo a formar una mezcla más homogénea.

Según la norma NTP 399.611 los adoquines tipo I para tránsito Peatonal sus rangos mínimos son para un promedio de 3 unidades un F'cr de 320 y unidad individual un F'cr de 290 lo cual se observó que los resultados de roturas de probetas con dosificación del 10% de plástico reciclado triturado son favorables a estos rangos mínimos, caso contrario con el de 20% y 30% que no logró cumplir con los rangos mínimos ya que presentó mucha porosidad y no trabajabilidad con los demás agregados. Como nos dice (Barrantes Villanueva, Jorge & Holguin Romero, Rita; 2015). En su tesis "Influencia del porcentaje de reemplazo de ceniza volante por cemento, sobre la resistencia a la compresión y absorción en la fabricación de adoquines de tránsito liviano", que, al utilizar porcentajes tan elevados de adiciones para el concreto, la medida de la resistencia a la compresión tiende a decaer, se observó que al 30% de reemplazo de ceniza, ocasionó una disminución del 9%.

Figura 4: Gráfica de resistencia promedio a 7 días

4.1.2. Evaluación económica

Los costos para la elaboración de un metro cúbico de concreto están constituidos básicamente por el precio del cemento, agregados y en menor escala el agua. Se observa una comparación de costos utilizando un agregado natural (arena) y agregado reciclado (plástico) de 366.45 nuevos soles y al 10% de 521.81. Cabe recalcar que los costos presentados en esta investigación son referenciales, dado que los índices de precios de materiales de construcción varían mensualmente siendo publicados por el Instituto Nacional de Estadística e Informática y en El Peruano.

En cuanto al costo de producción de un metro cúbico de agregado fino (arena) fue de s/.50.00, el cual aumenta si se utiliza un agregado reciclado (plástico) con un precio de S/. 840 al 30% de un m3 de arena. De ello, podemos decir que si utilizamos plástico reciclado triturado de empresas privadas sale no factible esta investigación como sustituto de arena.

Asimismo, esta investigación es para reducir los desechos plásticos de nuestro planeta y cuidar el medio ambiente, vemos que la utilización del plástico triturado reciclado permite una reducción de arena por m3 de 10% lo cual conlleva a decir que mientras más cantidad de adoquines con porcentaje de plástico se requiera en una obra mayor será el ahorro de agregado natural y reducción de rellenos sanitarios.

Tabla 9: Análisis de costos por metro cubico de concreto

ANALISIS DE COSTOS DE UNA M3 DE CONCRETO			
0% ADICION	10% ADICION	20% ADICION	30% ADICION
S/. 366.45	S/. 521.81	S/. 677.23	S/. 832.49

Fuente: Propia

El plástico, al ser obtenida del reciclaje de residuos sólidos bajo el Decreto Legislativo N°1278, disminuye la cantidad de basura y evita la degradación de los recursos naturales no renovables, es decir, contribuye con la conservación del medio ambiente. Desde el punto de vista económico, esta propuesta es atractiva ya que se utilizará un residuo como materia prima, siendo así los costos de producción disminuyen Durand, A. (2017).

4.1.3. Análisis de datos

Se utilizó la prueba de Shapiro-Wilk debido a que la muestra es menor a 50 para que se pueda contrastar la normalidad. El valor de significancia no debe de superar el 5%, lo que quiere decir una probabilidad de 0.05 ya que si estos valores son bajos de probabilidad indica que la hipótesis nula no cumple con el número suficiente de ocasiones por lo que deberá rechazarse, y aceptar la hipótesis alternativa.

Para determinar si los datos no siguen una distribución normal, se comparó el valor p con el nivel de significancia. Un nivel de significancia de 0.05 indica un riesgo de 5% de concluir que los datos no siguen una distribución normal, cuando los datos sí siguen una distribución normal. En el caso de los ensayos se rechaza la hipótesis nula (H0), debido a que el:

Valor $p \le \alpha$: Los datos no siguen una distribución normal (Rechaza H0)Q

El análisis de la varianza (anova) contempla el trabajo por sub grupos viendo así el grupo que tiene mayor incidencia a comparación con un grupo establecido para el estudio, esto quiere decir que en la investigación se fijó la resistencia a la compresión patrón vs cada porcentaje de adicion, se observó que el que presento mayor significancia fue el del 30% el cual no cumple con los parámetros normativos de resistencia establecidos por el tipo de adoquín.

I. Prueba de Normalidad (Shapiro Wilk).

Nos sirve para ver si los resultados presentan una distribución normal, la cual es necesaria para poder realizar el análisis de la varianza, asumimos 2 hipótesis (0 y 1). teniendo el grado de significancia de los resultados obtenidos, observando si el nivel significancia es mayor a 0.05 entonces se acepta la hipótesis 1, caso contrario se acepta la hipótesis 0.

H0 = los resultados no presentan una distribución normal

H1 = los resultados presentan una distribución normal

Tabla 10: Distribución normal de la resistencia a la compresión de adoquines a los 7 días

	% de reemplazo	Sh	apiro-Wilk	
	en peso	Estadístico	gl	Sig.
	0% de Reemplazo en peso	,880	10	,131
Resistencia a la compresión	10% de Reemplazo en peso	,927	10	,422
de los adoquines a	20% de Reemplazo en peso	,954	10	,720
7 días	30% de Reemplazo en peso	,938	10	,536

Fuente: Propia

✓ Se observó que al 0%, 10%,20%,30% de reemplazo en peso la significancia es mayor a 0.05 por lo tanto se concluyó que a la edad de 7 días todos los grupos de estudio presentaron una distribución normal.

Tabla 11: Distribución normal de la resistencia a la compresión de adoquines a los 14 días

	% de reemplazo	Shapiro-Wilk		
	en peso	Estadístico	gl	Sig.
	0% reemplazo en peso	,841	10	,056
Resistencia a la compresión de	10% reemplazo en peso	,928	10	,432
los adoquines a	20% reemplazo en peso	,915	10	,316
14 días	30% reemplazo en peso	,881	10	,132

Fuente: Propia

✓ Se observó que al 0%, 10%,20%,30% de reemplazo en peso la significancia es mayor a 0.05 por lo tanto se concluyó que a la edad de 14 días todos los grupos de estudio presentaron una distribución normal.

Tabla 12: Distribución normal de la resistencia a la compresión de adoquines a los 28 días

	% de reemplazo	Shapiro-Wilk		
	en peso	Estadístico	gl	Sig.
	0% reemplazo en peso	,913	10	,301
Resistencia a la	10% reemplazo en peso	,974	10	,924
compresión de los adoquines a	20% reemplazo en peso	,961	10	,802
14 días	30% reemplazo en peso	,787	10	,070

Fuente: Propia

✓ Se observó que al 0%, 10%,20%,30% de reemplazo en peso la significancia es mayor a 0.05 por lo tanto se concluyó que a la edad de 28 días todos los grupos de estudio presentaron una distribución normal.

II. Confiabilidad de los resultados (alpha de Cronbach)

Se observó que para poder ejecutar el análisis de la varianza debemos tener datos confiables esto da paso a una prueba estadística para ver la confiabilidad de los resultados George y Mallley (2003, p.231) sugieren que para el alpha de Cronbach se debe consideras como mínimo aceptable 0.7 es decir tener una confiabilidad mínimo del 70%.

Tabla 13: Confiabilidad de la resistencia a la compresión de adoquines (0% y 10%) a 7 días

	Estadísticas de fiabilidad	
Alfa de Cronbach	Alfa de Cronbach basada en elementos estandarizados	N de elementos
,769	,795	2

Fuente: Propia

✓ Se observó que la confiabilidad entre 0% y 10%, de reemplazo en peso es de 0.769 por lo tanto se concluyó que a la edad de 7 días se obtuvo una confiabilidad del 76.90% con la cual nos da paso a realizar el análisis de la varianza.

T abla 14: Confiabilidad de la resistencia a la compresión de adoquines (0% y 20%9 a edad de 7 días

	Estadísticas de fiabilidad	
Alfa de Cronbach	Alfa de Cronbach basada	N de elementos
	en elementos	
	estandarizados	
,772	,774	2

Fuente: Propia

✓ Se observó que la confiabilidad entre 0% y 20%, de reemplazo en peso es de 0.772 por lo tanto se concluyó que a la edad de 7 días se obtuvo una confiabilidad del 77.20% con la cual nos da paso a realizar el análisis de la varianza.

Tabla 15: Confiabilidad de la resistencia a la compresión de adoquines (0% y 30%) a edad de 7 días

	Estadísticas de fiabilidad	
Alfa de Cronbach	Alfa de Cronbach basada	N de elementos
	en elementos	
	estandarizados	
,807	,859	2

Fuente: Propia

✓ Se observó que la confiabilidad entre 0% y 30%, de reemplazo en peso es de 0.807 por lo tanto se concluyó que a la edad de 7 días se obtuvo una confiabilidad del 80.70% con la cual nos da paso a realizar el análisis de la varianza.

Tabla 16: confiabilidad de la resistencia a la compresión de adoquines (0% y 10%) a edad de 14 días

Estadísticas de fiabilidad	
Alfa de Cronbach basada en elementos estandarizados	N de elementos
,848	2
	Alfa de Cronbach basada en elementos estandarizados

Fuente: Propia

✓ Se observó que la confiabilidad entre 0% y 10%, de reemplazo en peso es de 0.821 por lo tanto se concluyó que a la edad de 14 días se obtuvo una confiabilidad del 82.21% con la cual nos da paso a realizar el análisis de la varianza.

Tabla 17: Confiabilidad de la resistencia a la compresión de adoquines (0% y 20%) a edad de 14 días

Estadísticas de fiabilidad						
Alfa de Cronbach	Alfa de Cronbach basada en elementos estandarizados	N de elementos				
,741	,762	2				

Fuente: Propia

✓ Se observó que la confiabilidad entre 0% y 10%, de reemplazo en peso es de 0.741 por lo tanto se concluyó que a la edad de 14 días se obtuvo una confiabilidad del 74.10% con la cual nos da paso a realizar el análisis de la varianza.

Tabla 18: Confiabilidad de la resistencia a la compresión de adoquines (0% y 30%) a edad de 14 días

Estadísticas de fiabilidad						
Alfa de Cronbach	Alfa de Cronbach basada	N de elementos				
en elementos						
	estandarizados					
,817	,846	2				

Fuente: Propia

✓ Se observó que la confiabilidad entre 0% y 30%, de reemplazo en peso es de 0.817 por lo tanto se concluyó que a la edad de 14 días se obtuvo una confiabilidad del 81.70% con la cual nos da paso a realizar el análisis de la varianza.

Tabla 19: Confiabilidad de la resistencia a la compresión de adoquines (0% y 10%) a edad de 28 días

Estadísticas de fiabilidad							
Alfa de Cronbach	Alfa de Cronbach basada en elementos estandarizados	N de elementos					
,776	,777	2					

Fuente: Propia

✓ Se observó que la confiabilidad entre 0% y 10%, de reemplazo en peso es de 0.776 por lo tanto se concluyó que a la edad de 28 días se obtuvo una confiabilidad del 77.60% con la cual nos da paso a realizar el análisis de la varianza.

Tabla 20: Confiabilidad de la resistencia a la compresión de adoquines (0% y 20%) a edad de 28 días

Estadísticas de fiabilidad						
Alfa de Cronbach	Alfa de Cronbach basada	N de elementos				
en elementos						
	estandarizados					
,815	,841	2				

Fuente: Propia

✓ Se observó que la confiabilidad entre 0% y 20%, de reemplazo en peso es de 0.815 por lo tanto se concluyó que a la edad de 28 días se obtuvo una confiabilidad del 81.50% con la cual nos da paso a realizar el análisis de la varianza.

Tabla 21: confiabilidad de la resistencia a la compresión de adoquines(0% y 30%) a edad de 28 días

	Estadísticas de fiabilidad	
Alfa de Cronbach	Alfa de Cronbach basada en elementos estandarizados	N de elementos
,833	,882	2

Fuente: Propia

✓ Se observó que la confiabilidad entre 0% y 30%, de reemplazo en peso es de 0.833 por lo tanto se concluyó que a la edad de 28 días se obtuvo una confiabilidad del 83.30% con la cual nos da paso a realizar el análisis de la varianza.

III. Análisis de la varianza (anova)

Se observó las incidencias más significativas en un cuadro comparativo de cada sub grupo, aquí se observa la F de Fisher, el que tiene mayor valor es el que tiene mayor incidencia en cuanto a los resultados obtenidos.

Tabla 22: Análisis de la varianza de la resistencia a la compresión de adoquine a 7 días

		Resistencia HSD Tukey				
% de Reemplazo en peso	N		Subconjunto para alfa = 0.05			
a edad de 7 días		1	2	3	4	
30% de Reemplazo en peso	10	3,54170				
20% de Reemplazo en peso	10		23,14050			
10% de Reemplazo en peso	10			36,09680		
0% de Reemplazo en peso	10				42,20630	
Sig.		1,000	1,000	1,000	1,000	

Fuente: Propia

✓ Se observó que el análisis de la varianza divide en 4 subgrupos el que tiene mayor valor es que tiene mayor incidencia dentro de la investigación, no obstante, aquí se observó que es en caso contrario teniendo como el de mayor incidencia al menor valor, se concluyó que a la edad de 7 días el que tiene mayor incidencia es el de 30% de reemplazo en peso.

Tabla 23: Análisis de la varianza de la resistencia a la compresión de adoquines a 14 días

		Resistencia			
		HSD Tukey			
% de Reemplazo en peso	N		Subconjunto p	para alfa = 0.0	5
a edad de 14 días		1	2	3	4
30% reemplazo en peso	10	8,32520			
20% reemplazo en peso	10		27,33810		
10% reemplazo en peso	10			39,10130	
0% reemplazo en peso	10				46,11550
Sig.		1,000	1,000	1,000	1,000

Fuente: Propia

✓ Se observó que el análisis de la varianza divide en 4 subgrupos el que tiene mayor valor es que tiene mayor incidencia dentro de la investigación, no obstante, aquí se observó que es en caso contrario teniendo como el de mayor incidencia al menor valor, se concluyó que a la edad de 14 días el que tiene mayor incidencia es el de 30% de reemplazo en peso.

Tabla 24: análisis de la varianza de la resistencia a la compresión de adoquine a 28 días

		Resistencia HSD Tukey			
% de Reemplazo en	N	S	Subconjunto j	para alfa = 0.0)5
peso a edad de 28 días		1	2	3	4
30% reemplazo en peso	10	9,90150			
20% reemplazo en peso	10		29,38460		
10% reemplazo en peso	10			40,96320	
0% reemplazo en peso	10				47,18350
Sig.		1,000	1,000	1,000	1,000

Fuente: Propia

✓ Se observó que el análisis de la varianza divide en 4 subgrupos el que tiene mayor valor es que tiene mayor incidencia dentro de la investigación, no obstante, aquí se observó que es en caso contrario teniendo como el de mayor incidencia al menor valor, se concluyó que a la edad de 28 días el que tiene mayor incidencia es el de 30% de reemplazo en peso.

4.2. Conclusiones

- Se observó que, al utilizar el plástico, tuvo una influencia muy significativa ya que se reemplazó en peso de la arena esto quiere decir que como el plástico es de menor peso por ende se necesitó más plástico en una tanda elaborada, debido a esto es que los resultados con un reemplazo al 30% de reemplazo pues se observó una caída en la resistencia de 85.85% de resistencia a la edad de 28 días.
- Se realizó un diseño de mezcla mediante el ACI 211, para concreto convencional de F'c de 250 kg/cm2 en el cual se determinó las cantidades de agregado grueso, agregado fino, cemento y agua para elaboración de los adoquines, en cuestión del agregado fino se reemplazó en porcentajes del 10%, 20%, 30% en función al peso de la arena.
- Se elaboró los adoquines tanto de control como los de adición de plástico PET en función del peso del cemento, al 10% se reemplazó 2.68 kg de arena por 2.68 kg de plástico, al 20% se reemplazó 4.37 kg de arena por 4.37 kg de plástico, al 30% se reemplazó 8.05 kg de arena por 8.05 kg de plástico.
- Se observó que los adoquines al 20% y 30% su resistencia a la compresión decae un 28.62% y 85.85%, esto se debió a que la cantidad de plástico en reemplazo de la arena fue considerable, haciendo que el adoquín se vuelva muy plástico y pierda mucha resistencia.
- Se observó que el adoquín en 10% de plástico PET en reemplazo de la arena, aún mantiene una resistencia aceptable según la tabla de valores mínimos para cada tipo de adoquín, por esto se concluyó que al 10% de reemplazo es el mejor resultado la resistencia se mantiene esto nos permite poder ahorrar y reciclar, de esta forma apoyar al medio ambiente.

 Con respecto a los agregados aunque sean de una buena cantera siempre debemos hacer los ensayos como en este caso que hubo un módulo de finura 0.18 mayor a los parámetros.

4.3. Recomendaciones

Para futuros estudios, en la misma rama de la investigación, se recomienda el estudiar el porcentaje de PET reciclado, pero en reemplazo por volumen de arena, Se recomienda también, ver cómo influirá si el agregado grueso también es reemplazo por plástico, pero moldeado a el TMN que uno requiera en su dosificación, ya que de esta forma se le estaría dando más uso a los materiales reciclados.

Se recomienda variar los porcentajes ya que se observó que al 30% es considerable la reducción de resistencia, se recomienda trabajar con valores menores al 10% para poder determinar el pico más alto y poder ver el punto donde la resistencia empieza a decaer.

Con respecto a los resultados del módulo de finura lo ideal sería que al finalizar el vaciado del concreto darle una pequeña y rápida vibración para que los huecos de aire ocasionados por este módulo de finura se vean resuelto con satisfacción.

REFERENCIAS

- NTP 400.012. (2001). AGREGADOS. Análisis granulométrico del agregado fino grueso y global. Lima, Perú: Comisión de Reglamentos Técnicos y Comerciales-INDECOPI.
- NTP 400.010. (2001). AGREGADOS. Extracción y preparación de muestras. Lima,
 Perú: Comisión de Reglamentos Técnicos y Comerciales-INDECOPI
- NTP 339.034. (2008). HORMIGON (CONCRETO). Método de ensayo normalizado para la determinación de la resistencia a la compresión de concreto, en muestras cilíndricas. Lima, Perú: Comisión de Reglamentos Técnicos y Comerciales-INDECOPI.
- NTP 339.216. (2007). HORMIGON (CONCRETO). Método para la utilización de cabezales con almohadillas de neopreno en el ensayo de resistencia a la compresión de cilindros de concreto endurecido. Comisión de Reglamentos Técnicos y Comerciales-INDECOPI.
- NTP 400.017. (2011). AGREGADOS. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados. Lima, Perú: Comisión de Normalización y de Fiscalización de Barreras Comerciales No Arancelarias INDECOPI.
- NTP 400.021. (2002). AGREGADOS. Método de ensayo normalizado para peso específico y absorción del agregado grueso. Lima, Perú: Comisión de Reglamentos Técnicos y Comerciales-INDECOPI.
- NTP 400.022. (2013). AGREGADOS. Método de ensayo normalizado para la densidad,
 la densidad relativa (peso específico) y absorción del agregado fino. Lima, Perú:

Comisión de Normalización y de Fiscalización de Barreras Comerciales no Arancelarias-INDECOPI.

- NTP 339.033. (2015). CONCRETO. Práctica normalizada para la elaboración y curado de especímenes de concreto en campo. Lima, Perú: Dirección de Normalización-INACAL.
- Cementera y distribuidora Cemex (2019):" Resistencia a la compresión y características del concreto".
- Tesis de grado, Barrantes y Holguín (2015): "Influencia del porcentaje de reemplazo de ceniza volante por cemento, sobre la resistencia a la compresión y absorción en la fabricación de adoquines de transito liviano".
- Tesis de grado, López y Pinedo (2015): "Mejoramiento de las características físico mecánicas de adoquines de cemento para pavimentación, adicionado escoria de horno eléctrico en su proceso de fabricación- nuevo Chimbote".
- Tesis de grado, Chaluiza Charro (2012): "Relaciones de compresión y tensión en adoquines fabricados con materiales procedentes de la cantera de pesillo, ubicada en el cantón Cayambe, provincia de Pichincha".

ANEXOS

Anexo nº 1: Análisis Granulométrico

A	FICHA DE RECOLECCION DE DATO Nº 1
Y	

Análisis granulométrico- agregado fino 3/16 (NTP 400.012)

DATOS GENERALES

UNIVERSIDAD PRIVADA DEL NORTE

CANTERA TRANSPORTES SAN MARTIN

UBICACIÓN HUANCHACO- PANAMERICANA NORTE KM 599

EVALUADOR CABANILLAS HERNANDEZ, HAROLD

Ensayo de Análisis Granulométrico del Agregado Fino

		Lin	nites	P. retenido	%retenenido	%ret.acumulado	%pasa
Tamiz	Abertura (mm)	inferior	superior				
3/8"	9.50	100	100	0	0	0	100
N° 4	4.75	95	100	2	0.40	0.40	99.60
N° 8	2.36	80	100	176	35.20	35.60	64.40
N° 16	1.18	50	85	112	22.40	58.00	42.00
N° 30	0.6	25	60	29	5.80	63.80	36.20
N° 50	0.3	5	30	20	4.00	67.80	32.20
N° 100	0.15	0	10	124	24.80	92.60	7.40
Fondo				37	7.40	100	0.00

UNIVERSIDAD PRIVADA DEL NORTE

FICHA DE RECOLECCION DE DATOS Nº 2

Análisis granulométrico- agregado grueso 3/4 (NTP 400.012)

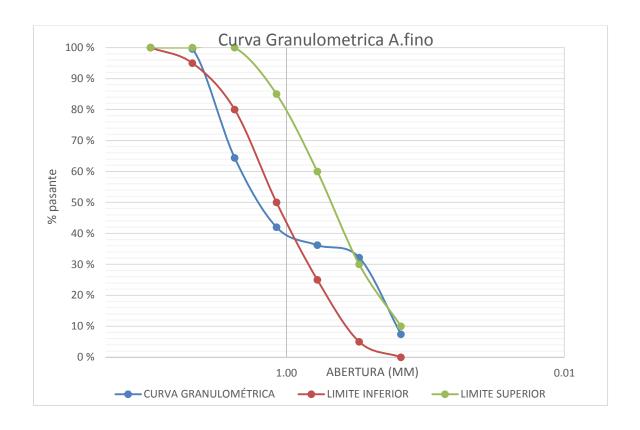
DATOS GENERALES

CANTERA

TRANSPORTES SAN MARTIN

UBICACIÓN

HUANCHACO- PANAMERICANA NORTE KM 599


EVALUADOR

CABANILLAS HERNANDEZ, HAROLD

Ensayo de Análisis Granulométrico del Agregado Grueso

		Lin	Limites		%retenenido	%ret.acumulado	%pasa
Tamiz	Abertura (mm)	inferior	superior				
1"	25	100	100	0.00	0.00	0.00	100
3/4"	19	90	100	385.40	7.71	7.71	92.29
1/2"	12.5	20	55	2010.10	40.20	47.91	52.09
3/8"	9.5	0	15	1720.90	34.42	82.33	17.67
N° 04	4.75	0	5	883.60	17.67	100.00	0.00

Anexo 2: Contenido de Humedad

A	FICHA DE RECOLECCION DE DATOS N° 3			
UNIVERSIDAD PRIVADA DEL NORTE	CONTENIDO DE HUMEDAD AGREGADO FINO (NTP 339.127)			
DATOS GENERALES				
CANTERA	TRANSPOR	ΓES SAN MARTIN		
UBICACIÓN	HUANCHACO- PANAMERICANA NORTI KM 599			
EVALUADOR	CABANILLAS HERNANDEZ, HAROLD			
ENSAYO CONTENIDO DE HUMEDAD AGREGADO FINO				
N° DE MUESTRA	N° 1	N°2		
P. MUESTRA + P. TARA (gr)	654	720		
PESO TARA (gr)	54	120		
P. MUESTRA SECA + P. TARA (gr)	646	712.1		
P. MUESTRA SECA (gr)	592	592.1		
PESO DEL AGUA (gr)	8	8		
%W	1.35	1.33		
%W PROMEDIO	1.34			

A	
N	UNIVERSIDAD PRIVADA DEL NORTE

FICHA DE RECOLECCION DE DATOS Nº 4

CONTENIDO DE HUMEDAD AGREGADO Grueso (NTP 339.127)

DATOS GENERALES

CANTERA TRANSPORTES SAN MARTIN

UBICACIÓN HUANCHACO- PANAMERICANA NORTE

KM 599

EVALUADOR CABANILLAS HERNANDEZ, HAROLD

ENSAYO CONTENIDO DE HUMEDAD AGREGADO GRUESO

N° DE MUESTRA	N ° 1	N°2
P. MUESTRA + P. TARA (gr)	5286	5262
PESO TARA (gr)	286	136
P. MUESTRA SECA + P. TARA (gr)	5248	5224.1
P. MUESTRA SECA (gr)	4962	5088.1
PESO DEL AGUA (gr)	38	38
% W	0.77	0.75
%W PROMEDIO		0.76

Anexo n° 3 : Desgaste por abrasión

_	
N	UNIVERSIDAD PRIVADA DEL NORTE

FICHA DE RECOLECCION DE DATOS Nº 5

DESGASTE POR ABRASIÓN (NTP 400.019)

DATOS GENERALES

CANTERA TRANSPORTES SAN MARTIN

UBICACIÓN HUANCHACO- PANAMERICANA NORTE

KM 599

EVALUADOR CABANILLAS HERNANDEZ, HAROLD

ENSAYO DE DESGASTE POR ABRASIÓN

N° DE MUESTRA N°1

P. MUESTRA INCIAL 5000

P. MUESTRA FINAL 4398

% DESGASTE ((**PMI-PMF**)/**PMI**) 12.04

Anexo n° 4 : Peso específico de los sólidos

A	
N	UNIVERSIDAD PRIVADA DEL NORTE

FICHA DE RECOLECCION DE DATOS Nº 6

PESO ESPECÍFICO DE LOS SÓLIDOS AGREGADO FINO (NTP 400.021)

DATOS GENERALES

CANTERA TRANSPORTES SAN MARTIN

UBICACIÓN HUANCHACO- PANAMERICANA NORTE

KM 599

EVALUADOR CABANILLAS HERNANDEZ, HAROLD

ENSAYO PESO ESPECÍFICO AGREGADO FINO

A	
N	UNIVERSIDAD PRIVADA DEL NORTE

FICHA DE RECOLECCION DE DATOS Nº 7

PESO ESPECÍFICO DE LOS SÓLIDOS AGREGADO GRUESO (NTP 400.022)

DATOS GENERALES

CANTERA TRANSPORTES SAN MARTIN

UBICACIÓN HUANCHACO- PANAMERICANA NORTE

KM 599

EVALUADOR CABANILLAS HERNANDEZ, HAROLD

ENSAYO PESO ESPECÍFICO AGREGADO GRUESO

N° DE MUESTRA	N°1
P. de Muestra en estado SSS gr	500
Peso suspendido gr	1005
Peso canastilla suspendida gr	695
P. muestra seca gr	490
Peso Específico Seco gr/cm3	2.58
Peso Específico tripe S (Pesss) gr/cm3	2.63
% Absorción	1.78

Anexo n° 5 : Peso unitario seco suelto

A	
M	UNIVERSIDAD
7.4	UNIVERSIDAD PRIVADA DEL NORTE

FICHA DE RECOLECCION DE DATOS Nº 8

PESO UNITARIO SECO SUELTO – AGREGADO FINO (NTP 400.017)

DATOS GENERALES

CANTERA TRANSPORTES SAN MARTIN

UBICACIÓN HUANCHACO- PANAMERICANA NORTE

KM 599

EVALUADOR CABANILLAS HERNANDEZ, HAROLD

ENSAYO PESO UNITARIO SECO SUELTO - ARENA

N° DE MUESTRA

P. molde

5,504

Peso molde + agua

19,584

P. especifico del agua

1,000

P. del molde+ arena 25,018

Peso de la arena 19,514

Volumen del Molde 0.014080

Peso Unitario Seco Suelto (PUSS) 1390

UNIVERSIDAD PRIVADA DEL NORTE

FICHA DE RECOLECCION DE DATOS Nº 9

PESO UNITARIO SECO SUELTO – AGREGADO GRUESO (NTP 400.017)

DATOS GENERALES

CANTERA TRANSPORTES SAN MARTIN

UBICACIÓN HUANCHACO- PANAMERICANA NORTE

KM 599

EVALUADOR CABANILLAS HERNANDEZ, HAROLD

ENSAYO PESO UNITARIO SECO SUELTO - PIEDRA

N° DE MUESTRA N°1 P. molde 5,504 Peso molde + agua 19,584 P. especifico del agua 1,000 P. del molde+ piedra 27,631 Peso de la piedra 22,127 Volumen del Molde 0.014080 Peso Unitario Seco Suelto (PUSS) 1572

Anexo nº 6: Peso unitario seco compactado

A	
N	UNIVERSIDAD PRIVADA DEL NORTE

FICHA DE RECOLECCION DE DATOS Nº 10

PESO UNITARIO SECO COMPACTADO – AGREGADO FINO (NTP 400.017)

DATOS GENERALES

CANTERA TRANSPORTES SAN MARTIN

UBICACIÓN HUANCHACO- PANAMERICANA NORTE

KM 599

EVALUADOR CABANILLAS HERNANDEZ, HAROLD

ENSAYO PESO UNITARIO SECO SUELTO - ARENA

N° DE MUESTRA N°1

P. molde 5,504

Peso molde + agua 19,584

P. especifico del agua 1,000

P. del molde+ arena 27,593

Peso de la arena 22,089

Volumen del Molde 0.014080

Peso Unitario Seco Compactado (PUSC) 1569

A	
NI	
	UNIVERSIDAD PRIVADA DEL NORTE

FICHA DE RECOLECCION DE DATOS N° 11

PESO UNITARIO SECO COMPACTADO – AGREGADO PIEDRA (NTP 400.017)

DATOS GENERALES

CANTERA TRANSPORTES SAN MARTIN

UBICACIÓN HUANCHACO- PANAMERICANA NORTE

KM 599

EVALUADOR CABANILLAS HERNANDEZ, HAROLD

ENSAYO PESO UNITARIO SECO SUELTO - PIEDRA

N° DE MUESTRA N°1 P. molde 5,504 19,584 Peso molde + agua P. especifico del agua 1,000 P. del molde+ piedra 28,670 Peso de la piedra 23,160 Volumen del Molde 0.014080 Peso Unitario Seco Compactado (PUSC) 1645

Anexo nº 7: Diseño de mezcla ACI 211

Tabla 03: Volumen de agua por m²

Asentamiento	Agua en lt/m³, para TNM agregados y consistencia indicac								
Asemannemo	3/8"	1/2"	3/4"	1"	1 ½"	2"	3"	6"	
Concreto sin aire incorporado									
1" a 2"	207	199	190	179	166	154	130	113	
3" a 4"	228	216	205	193	181	169	145	124	
6" a 7"	243	228	216	202	190	178	160		
		Со	ncreto cor	aire incor	porado				
1" a 2"	181	175	168	160	150	142	122	107	
3" a 4"	202	193	184	175	165	157	133	119	
6" a 7"	216	205	187	184	174	166	154		

Caso 3: Contamos con escasos (menos de 15 ensayos) o ningún dato estadístico

Para este caso el Comité del ACI nos indica aplicar la siguiente tabla para determinar el f'cr.

f'c especificado	F'cr (Kg/cm ²)
< 210	f'c + 70
210 a 350	f'c + 84
> 350	f'c + 98

Tabla 04: Relación agua/cemento por resistencia

f'c	Relación a/c en peso								
Kg/cm ²	Concreto sin	Concreto con							
Kg/till	aire incorporado	aire incorporado							
150	0.8	0.71							
200	0.70	0.61							
250	0.62	0.53							
300	0.55	0.46							
350	0.48	0.40							
400	0.43								
450	0.38								

Tabla 02: Contenido de aire atrapado

TNM del	Aire Atrapado
agregado Grueso	%
3/8"	3.0
1/2"	2.5
3/4"	2.0
1"	1.5
1 ½"	1.0
2"	0.5
3"	0.3
4"	0.2

Tabla 05: Peso del agregado grueso por unidad de volumen del concreto

TNM del	Volumen del agregado grueso seco y compactado por unidad de volumen de concreto para diversos Módulos de fineza del fino (b/bo)								
agregado Grueso	2.40	2.60	2.80	3.00					
3/8"	0.50	0.48	0.46	0.44					
1/2"	0.59	0.57	0.55	0.53					
3/4"	0.66	0.64	0.62	0.60					
1"	0.71	0.69	0.67	0.65					
1 ½"	0.76	0.74	0.72	0.70					
2"	0.78	0.76	0.74	0.72					
3"	0.81	0.79	0.77	0.75					
6"	0.87	0.85	0.83	0.81					

6136
.81
78
' 6
)4
34
50637
.36
-

ANALISIS DE COSTOS UNITARIOS SIN ADICIÓN									
CONCRETO PARA ADOQUINES	250	KG/CM2				TOTAL S/366.55			
RENDIMIENTO	12	M3/DIA							
JORNADA	8	H/DIA							
CON EQUIPO									
NOMBRE DEL RECURSO		UND	CUADRILLA	CANTIDAD	PRECIO	PARCIAL	TOTAL		
		MATER	RIALES				S/ 202.18		
CEMENTO		BOLSAS		8.43	S/ 20.00	S/ 168.60			
PIEDRA		M3		0.54	S/ 35.00	S/ 18.90			
ARENA		M3		0.55	S/ 25.00	S/ 13.75			
AGUA		M3		0.185	S/ 5.00	S/ 0.93			
PLASTICO RECICLADO		KG		0	S/ 1.78	S/ -			
		MANO D	DE OBRA				S/ 120.73		
CAPATAZ			0.2	0.133	S/ 15.90	S/ 2.12			
OFICIAL			1	0.667	S/ 10.80	S/ 7.20			
OPERADOR DE EQUIPO			2	1.333	S/ 12.23	S/ 16.31			
OPERARIO			2	1.333	S/ 12.23	S/ 16.31			
PEON			12	8	S/ 9.85	S/ 78.80			
		EQUI	IPOS				S/ 43.64		
HERRAMIENTAS MANUALES				5		S/ 6.04			
MEZCLADORA			1	0.8	S/ 35.00	S/ 28.00			
VIBRADORA			1	0.8	S/ 12.00	S/ 9.60			

ANALISIS DE COSTOS UNITARIOS 10% PLASTICO EN REEMPLAZO DE LA ARENA									
CONCRETO PARA ADOQUINES	250	KG/CM2			,	TOTAL S/521.81			
RENDIMIENTO	12	M3/DIA							
JORNADA	8	H/DIA							
CON EQUIPO									
NOMBRE DEL RECURSO		UND	CUADRILLA	CANTIDAD	PRECIO	PARCIAL	TOTAL		
		MATER	RIALES				S/ 357.44		
CEMENTO		BOLSAS		8.43	S/ 20.00	S/ 168.60			
PIEDRA		M3		0.54	S/ 35.00	S/ 18.90			
ARENA		M3		0.495	S/ 25.00	S/ 12.38			
AGUA		M3		0.185	S/ 5.00	S/ 0.93			
PLASTICO RECICLADO		KG		88	S/ 1.78	S/ 156.64			
		MANO D	DE OBRA				S/ 120.73		
CAPATAZ			0.2	0.133	S/ 15.90	S/ 2.12			
OFICIAL			1	0.667	S/ 10.80	S/ 7.20			
OPERADOR DE EQUIPO			2	1.333	S/ 12.23	S/ 16.31			
OPERARIO			2	1.333	S/ 12.23	S/ 16.31			
PEON			12	8	S/ 9.85	S/ 78.80			
		EQU	IPOS				S/ 43.64		
HERRAMIENTAS MANUALES				5		S/ 6.04			
MEZCLADORA			1	0.8	S/ 35.00	S/ 28.00			
VIBRADORA			1	0.8	S/ 12.00	S/ 9.60			

ANALISIS DE COSTOS UNITARIOS 20% PLASTICO EN REEMPLAZO DE LA ARENA									
CONCRETO PARA ADOQUINES	250	KG/CM2			TOTAL S/677.23				
RENDIMIENTO	12	M3/DIA							
JORNADA	8	H/DIA							
CON EQUIPO									
NOMBRE DEL RECURSO		UND	CUADRILLA	CANTIDAD	PRECIO	PARCIAL	TOTAL		
		MATER	RIALES				S/ 512.86		
CEMENTO		BOLSAS		8.43	S/ 20.00	S/ 168.60			
PIEDRA		M3		0.54	S/ 35.00	S/ 18.90			
ARENA		M3		0.446	S/ 25.00	S/ 11.15			
AGUA		M3		0.185	S/ 5.00	S/ 0.93			
PLASTICO RECICLADO		KG		176	S/ 1.78	S/ 313.28			
		MANO D	DE OBRA				S/ 120.73		
CAPATAZ			0.2	0.133	S/ 15.90	S/ 2.12			
OFICIAL			1	0.667	S/ 10.80	S/ 7.20			
OPERADOR DE EQUIPO			2	1.333	S/ 12.23	S/ 16.31			
OPERARIO			2	1.333	S/ 12.23	S/ 16.31			
PEON			12	8	S/ 9.85	S/ 78.80			
		EQUI	IPOS				S/ 43.64		
HERRAMIENTAS MANUALES				5		S/ 6.04			
MEZCLADORA			1	0.8	S/ 35.00	S/ 28.00			
VIBRADORA			1	0.8	S/ 12.00	S/ 9.60			

ANALISIS DE COSTOS UNITARIOS 30% PLASTICO EN REEMPLAZO DE LA ARENA									
CONCRETO PARA ADOQUINES	250	KG/CM2			TOTAL S/832.49				
RENDIMIENTO	12	M3/DIA							
JORNADA	8	H/DIA							
CON EQUIPO									
NOMBRE DEL RECURSO		UND	CUADRILLA	CANTIDAD	PRECIO	PARCIAL	TOTAL		
		MATER	RIALES				S/ 668.12		
CEMENTO		BOLSAS		8.43	S/ 20.00	S/ 168.60			
PIEDRA		M3		0.54	S/ 35.00	S/ 18.90			
ARENA		M3		0.391	S/ 25.00	S/ 9.78			
AGUA		M3		0.185	S/ 5.00	S/ 0.93			
PLASTICO RECICLADO		KG		264	S/ 1.78	S/ 469.92			
		MANO D	DE OBRA				S/ 120.73		
CAPATAZ			0.2	0.133	S/ 15.90	S/ 2.12			
OFICIAL			1	0.667	S/ 10.80	S/ 7.20			
OPERADOR DE EQUIPO			2	1.333	S/ 12.23	S/ 16.31			
OPERARIO			2	1.333	S/ 12.23	S/ 16.31			
PEON			12	8	S/ 9.85	S/ 78.80			
		EQU	IPOS				S/ 43.64		
HERRAMIENTAS MANUALES				5		S/ 6.04			
MEZCLADORA			1	0.8	S/ 35.00	S/ 28.00			
VIBRADORA			1	0.8	S/ 12.00	S/ 9.60			

Figura 5: Cantera de extracción del material

Figura 6: Saturación del Agregado- Peso Especifico

Figura 7: Análisis Granulométrico

Figura 8: plástico triturado PET

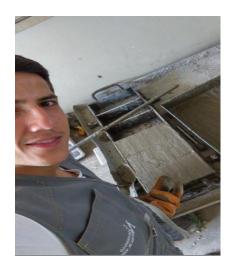


Figura 9: adoquines en encofrado

Figura 10: Ensayo de adoquines

Figura 11: ensayo de resistencia a la compresión de los adoquines

Figura 12: Valor de la resistencia a la compresión en kilogramos