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Abstract. In the present work, an efficient iterative coupling methodology between the Finite Element

Method (FEM) and the Spectral Finite Element Method (SFEM) for the modeling of elastodynamic

problems in the time domain is presented. The methodology allows the use of a nonconforming mesh at

the interface between the subdomains, as well as independent time-step sizes within each subdomain. By

minimizing a square error functional, an adaptive strategy for the relaxation parameter can be established

in the iterative process, increasing the efficiency of the FEM-SFEM coupled analysis. Numerical simu-

lations are presented in order to illustrate the accuracy and potentialities of the proposed methodology.
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1 INTRODUCTION

The finite element method (FEM) and the Spectral Finite Element Method (SFEM) are

widely used for the numerical solution of partial differential equations in many fields of en-

gineering and computational modeling (Bathe, 1996; Hughes, 2000; Komatitsch and Tromp,

1999; Canuto et al., 2006). The latter can be treated as a high-order FEM formulation, there-

fore, allowing to get the same accuracy as the FEM when using a reduced number of grid points,

thus giving rise to a significant save of computational resources (Komatitsch and Vilotte, 1998).

It is well-know that the SFEM presents loss of accuracy when dealing with complicated ge-

ometries (Canuto et al., 2007). In this sense, the FEM-SFEM coupling intends to take advantage

of both the methods, using the SFEM in the subdomain with simple geometries, saving compu-

tational resources, and the FEM in the complicated geometries subdomain, resulting in precise

numerical solutions.

Thus, interface coupling iterative procedures appear as an attractive way to handle the afore-

mentioned issue, once each subdomain is analyzed separately (resulting in well-conditioned

systems). Hence, only the information on the coupling interface needs to be transferred through

the subdomains iteratively until attain the desired precision, not being required matching meshes

at the coupling interface (Elleithy et al., 2001; Jr et al., 2015). Therefore, some numerical ad-

vantages like sparse matrix storage or iterative solvers may be preserved.

In this work an efficient iterative multi-time-step coupling methodology between the FEM-

SFEM for the modeling of elastodynamic problems in the time domain is presented. A numer-

ical example is presented in order to illustrate the accuracy of the methodology.

2 FEM/SFEM FOR ELASTODYNAMIC PROBLEMS

Elastodynamic problems are mathematically modeled as next: Let Ω =
S

Ωk ⊂ R
d be a

bounded domain, where d is the number of spatial dimensions of the problem under consider-

ation with k being related with the number of the subdomains, and I = (0, T ] ⊂ R
+ been the

time domain of the analysis. Thereby:

ρkük
i − σk

ij,j = bki in Ωk × I (1)

is the traditional elastodynamic equation, where uk
i : Ωk × I → R, bki : Ωk × I → R and

σk
ij : Ωk × I → R stand, respectively, for the displacements, given body force per unit volume

and Cauchy stress tensor components; and ρk : Ωk → R
+ is the mass density related to each

subdomain Ωk.

Moreover, considering the boundary partition ∂Ωk = Γk = Γk,Di
∪Γk,Ni

with Γk,Di
∩Γk,Ni

=
∅, the boundary conditions are given by:

uk
i = ūk

i on Γk,Di
× I, τ ki ≡ σk

ijn
k
j = τ̄ ki on Γk,Ni

× I

where ūk
i : Γk,Di

× I → R are prescribed displacements, τ̄ ki : Γk,Ni
× I → R are prescribed

traction and nk
j being the outward normal vector components on Γk,Ni

. Finally, the stress-strain

relation is considered to be linear and isotropic (Bathe, 1996).

2.1 Spectral elements

In a similar way to that in the FEM, in the SFEM formulation, the subdomain Ωk is also

partitioned into nel nonoverlapping elements Ωkn , i.e., Ωh
k = ∪nel

n=1Ωkn and Ωkn∩∀n 6=n′Ωk
n′
= ∅.

Hence, there is a diffeomorphism that preserves the orientation called mapping function, defined
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as F : Λ → Ωkn , which relates each element Ωkn with the reference closed element domain Λ;

in this case a biunitary square Λ = [−1, 1]2.
Defining S

h
k ⊂ Sk and V

h
k ⊂ Vk to be the finite element spaces (related with the h super-

script) of admissible solutions and the test functions (Hughes, 2000), respectively, and P(Λ) to

be the space generated by the tensor product of the Lagrange polynomials with degree ≤ m, we

have:

S
h
k =

n

pk,hi | pk,hi (·, t) ∈ H1(Ωk), p
k,h
i = p̄k,hi on Γk,Di

× I

and pk,hi |Ωkn
◦ F ∈ P(Λ)

o

V
h
k =

n

wk,h
i | wk,h

i ∈ H1(Ωk), w
k,h
i = 0 on Γk,Di

and wk,h
i |Ωkn

◦ F ∈ P(Λ)
o

where H1 is the classical Sobolev space that denotes the space of square-integrable functions

with square-integrable generalized first derivatives (Adams and Fournier, 2003).

In a different way to that the standard high-order FEM with degree m (with internal equidis-

tant nodal distributions), in the SFEM, the local nodal points are obtained by the tensor product

of the m+ 1 Gauss-Lobatto-Legendre (GLL) points localized in the interval [−1, 1], defined as

the roots of the equation ∂Pm

∂ξ
(ξ2 − 1) = 0, in which Pm is the mth Legendre polynomial and

resulting in (m+ 1)2 points for the case when are used quadrilaterals elements in the bidimen-

sional case (i.e., when d = 2) (Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999),

as one can see in the Fig. 1, where are illustrated some quadrilateral spectral finite elements

according to the degree m.

(a) (b) (c)

Figure 1: 2D spectral elements with degree m: (a) 4× 4; (b) 7× 7; (c) 9× 9.

In the same way, the local interpolation functions N e
i in Λ are obtained by the tensor product

of the Lagrange polynomials of degree m using the m+ 1 GLL points (previously introduced)

in each direction with the relation N e
i (ξj) = δij, i, j = 1, . . . , (m + 1)2, where δij is the

Kronecker delta operator.

At the same time, a quadrature rule based on the tensor product of the unidimensional GLL

formulae is used (Canuto et al., 2006), here, the weights ωi,m and corresponding quadrature

points are defined, respectively, as ωi,m = 2
m(m+1)

1
Pm(ξi)

and ξi. Such quadrature points coincide

with the GLL points also adopted in the interpolation functions, leading to a degree of precision

≤ 2m− 1.
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2.2 Time-stepping technique

By means of the semi-discrete FEM and SFEM formulation where the spatial domain is

discretized independently of the time domain, the following ODE system is obtained (Bathe,

1996):

MkÜk +KkUk = Fk (2)

where Mk ∈ R
nqk×nqk and Kk ∈ R

nqk×nqk denote the standard mass and stiffness matrices

respectively, the vectors Uk : I → R
nqk , Ük : I → R

nqk , Fk : I → R
nqk represent, respec-

tively, the nodal displacements, accelerations and external forces with nqk being the number of

equations related with each the subdomain Ωk.

In this work, the analysis time I is partitioned into Lk equal time subintervals (related

with each the Ωk subdomains, allowing a better time-domain modelling for each sub-domain),

i.e.,[0, T ] = ∪Lk−1
l=0 [tk,l, tk,l+1], with 0 < tk,0 < . . . < tk,Lk

= T , ∆tk = tk,l+1 − tk,l = T/Lk

and tk,l+1 = (l + 1)∆tk so that Ul+1
k = Uk(tk,l+1). Then the Newmark a-form is implemented

as follows (Hughes, 2000):

MkÜ
l+1
k +KkU

l+1
k = F

l+1
k

U
l+1
k = U

l
k +∆tkU̇

l
k +

∆t2k
2

h

(1− 2β)Ül
k + 2βÜl+1

k

i

U̇
l+1
k = U̇

l
k +∆tk

h

(1− γ)Ül
k + γÜl+1

k

i

(3)

followed by a predictor-corrector scheme, in the velocity and displacements nodal vectors as

next:

Ũ
l+1
k = U

l
k +∆tkU̇

l
k +

∆t2k
2

(1− 2β)Ül
k

˜̇
U

l+1
k = U̇

l
k + (1− γ)∆tkÜ

l
k

(4)

Equation (3) may then be written as:

(Mk + β∆t2kKk)Ü
l+1
k = F

l+1
k −KkŨ

l+1
k

U
l+1
k = Ũ

l+1
k + β∆t2kÜ

l+1
k

U̇
l+1
k = ˜̇

U
l+1
k + γ∆tkÜ

l+1
k

(5)

where, to start the time-marching process, Ü0
k may be calculated from

MkÜ
0
k = F

0
k −KkU

0
k (6)

Another point are the parameters γ and β, which determine the stability and accuracy char-

acteristics of the algorithm under consideration.

3 ITERATIVE MULTI-TIME-STEP COUPLING METHOD

In the present section, the coupling procedure is explained in a simple way. For the coupled

analysis in elastodynamic problems, the following continuity and equilibrium equations must

hold for the interfaces between the FEM and SFEM sub-domains:

Ū
l
k = Ū

l

k
′

F
l
k + F

l

k
′ = 0

; k 6= k
′

(7)
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where the upper bar means the interface nodal values, and in order to obtain consistency be-

tween the FEM and the SFEM formulations, Fl

k
′ represents SFEM equivalent nodal forces that

are obtained from the SFEM nodal traction vector by a pos-processing procedure. Additionally,

in order to speedup the convergence of the methodology, a relaxation process is employed for

the values of the variables at the coupling interface as discussed later on.

3.1 Non-conforming mesh at the coupling interface

In order to correctly approximate the nodal values at the coupling interface, an inverse map-

ping followed by an interpolation procedure are employed. This scheme is illustrated in Fig-

ure 2, notice that for the SFEM the GLL integration points coincide with the nodal points and

one can use this in order to improve the accuracy of the results.

k'

k

Figure 2: Sketch of the inverse mapping of the points; the inverse mapped points are represented

by the void points, the black points represent the mesh nodes.

Once the points in the physical coupling boundary of Ωk
′ are known (gray points), the corre-

sponding element on Ωk is readily identified, and an inverse mapping procedure in the element

Ωk enables us to compute the interpolated displacement values at the void nodes, using natu-

rally, the FEM interpolation function.

When the inverse mapping is performed in the subdomain Ωk instead the Ωk
′ , using a sub-

parametric approximation for the SFEM (i.e., bilinear quadrilateral elements with interpolation

functions of degree m = 1), the inverse mapping falls into the same case previously discussed.

Although this subparametric approximation is adopted here, if a better representation of the

geometry boundary is required, more complex mapping schemes could also be employed (e.g.,

blending or spline type functions) (Szabo and Babuška, 1991).

3.2 Time sub-cycling – different time steps

The difference between the time-step size at each sub-domain, is carried out by a interpo-

lation/extrapolation scheme as follows: Considering ∆tk ≤ ∆tk′ , and assuming that tk′ ,l <
tk,l+1 < tk′ ,l+1:

• Ū
l+1,h+1
k extrapolation:

– A constant time-extrapolation for the displacement nodal values of the current iter-

ative step h+ 1 is used, yielding Ū
l+1,h+1

k
′ = Ū

l+1,h+1
k
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• Ū
l+1,h+1

k
′ interpolation:

– The displacement nodal values, already obtained, are linearly time-interpolated be-

tween the values of the previous time step Ū
l

k
′ and those of the current iterative

step at the current time step, i.e. Ū
l+1,h+1
k = (1− ε) Ūl

k
′ + εŪl+1,h+1

k
′ , where

ε =
tk,l+1 − tk′ ,l

∆tk′
.

3.3 Optimal relaxation parameter

In order to enhance and/or speedup the convergence of the iterative procedure, a relaxation

parameter namely λ is adopted in the computation of the relevant variables at the coupling

interface.

In this work, an optimal value for the relaxation parameter for each iterative step is computed

based on the minimization of the square error functional of the displacements at the coupling

interface (i.e., Ūk) of one of the subdomains Ωk (Elleithy et al., 2001; Jr et al., 2015). More

precisely, the square error functional concerning the displacements in the time step l+1 between

two successive iterative steps h + 1 and h is considered (h here is referred to the iterative step

), namely:

L(λ) = kŪl+1,h+1
k − Ū

l+1,h
k k2 (8)

where Ū
l+1,h+1
k = λŪl+1,h+λ

k +(1−λ)Ūl+1,h
k and Ū

l+1,h
k = λŪl+1,h+λ−1

k +(1−λ)Ūl+1,h−1
k are

the relaxed displacements, and Ū
l+1,h+λ
k ; Ūl+1,h+λ−1

k the non-relaxed displacements, giving:

L(λ) = kλWh+λ + (1− λ)Whk2

= λ2kWh+λk2 + 2λ(1− λ)(Wh+λ,Wh) + (1− λ)2kWhk2
(9)

where (W,W) = kWk2 and with the variables Wh+λ = Ū
l+1,h+λ
k − Ū

l+1,h+λ−1
k and W

h =

Ū
l+1,h
k − Ū

l+1,h−1
k . Differentiating the functional with respect to λ and equating to zero, one

obtains:

λkWh+λk2 + (1− 2λ)(Wh+λ,Wh) + (λ− 1)kWhk2 = 0 (10)

and finally

λ =
(Wh,Wh −W

h+λ)

kWh −Wh+λk2
(11)

Notice that the obtained expression possesses a simple implementation and a low computa-

tional cost; and λ = 0.5, is employed at the first iteration step.

4 NUMERICAL EXAMPLE

In the numerical example, a partitioned elastic column is analyzed, and the sub-cycling

scheme (different time-steps for each sub-domain) is used. For the Newmark time-marching

scheme the constants are considered as γ = 0.60 and β = 0.3. Moreover, the tolerance used in

the iterative coupling procedure for the relative errors is set to ǫ = 10−7.

The elastic column with dimensions a = 4.0m and b = 1.0m is subjected to a sinusoidal load

f(t) = sin(πt)(H(t) − H(t − 1.0), acting at one of its ends, as depicted in Figure 3. As one

can see, the Ω1 subdomain is discretized by 4 spectral elements with degree m = 7, resulting in

a total of 225 nodes, whereas the Ω2 subdomain is discretized by 200 four-noded quadrilateral

elements, resulting in 231 nodes. The material properties of the medium in both the subdomains
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1 2 f(t)b

a/2

A

a/2

Figure 3: Elastic partitioned model and meshes.

are: E = 102N/m2 (Young modulus); ν = 0.25 (Poisson ratio); ρ = 1.0kg/m3. A time-step

size ∆t1 = 2× 10−3 is adopted for the SFEM subdomain, while the time step size for the FEM

subdomain is taken from this reference value.

In Figure 4, the y-displacements at point A = (a, b/2) are presented and, as one can see

the number of sub-cycling steps with the use of different time-step sizes for the subdomains

apparently does not influence on the accuracy of the results.

In Figure 5, snapshots of kuk in two different time instants are presented. The results appear

to satisfy the continuity restraints at the coupling interface quite well.

Figure 6(a) shows the number of iterations required to reach convergence at each time step

versus the percentage in which each iteration number appears. As one can see, when ∆t1 = ∆t2
(blue bars), the number of iterations per time step is in its majority 2 and 3, i.e., only 2 or

3 iterations are required to attain convergence for each time step. Moreover, as the difference

between the time-step sizes increases, the number of total iterations also increases, but as shown

in Figs.6(a), when ∆t1 = 5∆t2 (orange bars) 40% of the time-steps need just one iteration to

converge, indicating the importance of a dynamic relaxation parameter.

Figure 6(b) shows the values of λ versus the percentage of appearance (computed throughout

the whole iterative process in all the time steps). In the case of ∆t1 = ∆t2 (blue bars), the most

appeared values are around λ = 0.85 and λ = 0.99. In the case of ∆t1 = 5∆t2 (orange bars),

the values are around λ = 0.87, λ = 0.93 and λ = 0.99. Note that for this example, the values

of λ stay closer to λ = 1.0 than λ = 0.0, giving the wrong idea that the relaxation is not being

useful, however, it has been verified that if the optimal relaxation parameter is not used, but

rather a fixed value is employed, the number of iterations indeed increases.

5 CONCLUSIONS

In this work, the iterative coupling between the standard finite element method and the spec-

tral finite element method for elastodynamic problems has been discussed. The fact that the

subdomains are solved separately allows the use of distinct algorithms with respect to each

subdomain. This is one of the major advantage of the proposed FEM-SFEM iterative coupling

procedure. At the same time, the systems of equations to be solved are much smaller than the

conventional coupled systems. The validity of the proposed method has been verified by means

of a 2D numerical example. The lose of accuracy over the time, has been studied being able

to cite some factors, it may be these, the pos-processing procedure used and the subparametric

formulation for the SFEM.

Mecánica Computacional Vol XXXV, págs. 1859-1868 (2017) 1865

Copyright © 2017 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3

H
o
ri
z
o
n
ta

l 
d
is

p
la

c
e
m

e
n
t 
(m

)

time (s)

Ref. Solution
∆t1=∆t2

∆t1=5∆t2

(a) Horizontal displacements

 0

 5

 10

 15

 20

 25

 30

 0  0.5  1  1.5  2  2.5  3

V
e
rt

ic
a
l 
d
is

p
la

c
e
m

e
n
t 
(m

)

time (s)

Ref. Solution
∆t1=∆t2

∆t1=5∆t2

(b) Vertical displacements

Figure 4: Time-history results at the point A.
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Figure 5: Snapshots of kuk at t = 1.98s and t = 3s, respectively, from the top to the bottom.
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(a) Distribution of the number of iterations at each time step.

(b) Distribution of the λ values at each iteration step.

Figure 6: Distribution of the number of iterations at each time step and λ values at each iteration

step, the blue bars correspond to the case in which ∆t1 = ∆t2 and the orange bars to the

∆t1 = 5∆t2.
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