
Short Papers of the 8th Conference on Cloud Computing Conference, Big Data & Emerging Topics

Performance Analysis and Optimizations Techniques for
Legacy Code Numerical Simulations

Federico J. Díaz and Femando G. Tinetti1

III-LIDI, Fac. de Informática, Universidad Nacional de La Plata, Argentina
'Also with Comisión de Inv. Científicas de la Provincia de Buenos Aires

f e r n a n d o S i n f o . u n l p . e d u , a r

Abstract. Numerical simulations used today by scientists in various disciplines,
are frequently based on implementations created when the predominant compu
ting hardware was sequential by design. In this simulations, new features are
added or updated, when new discoveries are made, but the computational im-
plementation remains unchanged, not taking advantage of modern hardware ar-
chitectures. This “legacy code” study cases, presents the opportunity to create a
set of techniques and tools, oriented to perform optimizations from a computa
tional and software engineering points of view. As an example, in conjunction
with an astrophysics research group, a real-world case numerical integrator op-
timization is presented, were these techniques were applied, showing the results
obtained.

Keywords: High Performance Computing, Optimization, Numerical integrators
Legacy Numerical Software.

1 Introduction

Scientific disciplines often require complex numeric simulations to compute the mod-
els that describe real world/physical processes. The natural complexity of the real
world requires that the simulations process large volumes of data, and perform com-
putational-heavy calculations, in order to obtain the desired results.

The software used to compute these numerical simulations was often created in a
time where the predominant computing technologies were sequential in nature. This
software, today referred as “Legacy code” [1], is widely used amongst the scientific
community.

Scientists update the implementation of the models, introducing new features as
new discoveries are made in their respective disciplines. These new features frequent
ly do not inelude modern optimization techniques, thus maintaining the sequential
nature of the original implementation.

The shift of paradigm in current hardware design, moving away from sequential
single-core processors to parallel and distributed computing creates a new opportunity
to potential performance improvement of legacy code. But performing these optimiza-

18

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/334434993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Short Papers of the 8th Conference on Cloud Computing Conference, Big Data & Emerging Topics

tions requires a good knowledge on these mentioned parallel and distributed architec-
tures, which is usually agnostic to the actual model implemented.

1.1 Performance Optimizations

We can mention 2 types of performance-oriented optimization categories, as follows:
1) Automatic optimizations. These optimizations are implemented through

compiler options. A good example of them are the well-known optimizations
flags -0[1..3], which provide a very easy way of obtaining good performance
results [2]. Other examples are the automatic inlining of functions, using the
flag -inline on the ifort intel Fortran compiler [3], or the shared-memory paral-
lelization performed by the OpenMP library [4], using compiler directives to
generate automated threads in for-cycles.

2) Manual optimizations. These optimizations, require some understanding of
the underlying code structure, in order to successfully obtain good perfor
mance results, that don’t affect the execution numerical results. These are non-
trivial, and require a good amount of profiling and research in order to be
completely done.

1.2 Software engineering improvements

One of the characteristics of a “legacy code” implementation, is defmed by software
that is still being used today, but that have not been updated to modem software para-
digms. The most predominant feature of Fortran code, is the usage of the GOTO
statement.

While some of the GOTO usage can be removed automatically (like, for example,
when it is used to create a FOR-like structure) [5], there are other cases where it re
quires manual interaction. Removing GOTO statements from legacy code, should be
considered a must, before performing optimizations, if these statements are related to
the portion of the program that needs to be optimized.

2 Performance Analysis of a Real-World Case

An example of a numerical integrator that has “legacy code” embedded into its core
functionality, is the Mercury [6] N-Body integrator, and widely used by planetary
astronomers around the world. Mercury is completely developed in Fortran, integrat-
ing the SWIFT [7] libraries for numerical simulation, and performs calculations of
close-encounters in bodies. The Mercury integrator, has the ability to perform compu-
tations with “small bodies” and “large bodies”. The main difference between them, is
that the small bodies don’t produce interactions between them, only with a central
star, and other large bodies, while the large bodies, do internet between each other,
adding complexity to the simulation. The more “large bodies” used in the context, the
more compute-intensive the simulation becomes. Henee, common simulations involve
a mixture of large and small bodies, with hundreds of small bodies, and tens of large
ones. For the performance analysis, the research group from the Facultad de Ciencias

19

Short Papers of the 8th Conference on Cloud Computing Conference, Big Data & Emerging Topics

Astronómicas y Geofísicas of the Universidad Nacional de La Plata, provided 2 real
case scenarios, that used the simulator with 2 distinct execution paths. The first case
was all small bodies, one large body, and the central star, and the second case, was a
collection of large bodies, all interacting between each other.

2.1 Proflling Mercury

Initially, the GNU profiler gprof [8] was used to analyze the compute-intensive parts
of the code, so that the key areas of Mercury to optimize were detected. There are
some subprograms appearing in the top-ten most time consuming ones, for experi-
ments with predominant “small bodies” and “large bodies”. The rest of the top-ten
most time-consuming subprograms depend on the kind of bodies being simulated. We
also implemented a wall-clock like time metric. This allows to measure the real-world
time execution experienced by a human observer, as the gprof output only measures
processor timing, not taking into account extemal interferences. Comparing both ap-
proaches indicated a significant difference: it was discovered that the input/output
frequency and volume should be optimized as well.

3 Applying Optimizations

After the performance metrics where obtained, a number of optimizations have been
applied. For each optimization applied, the numerical result was carefully controlled,
so that consistency was maintained. When we found a numerical difference, the re-
sults were sent back to the scientists’ research group for approval. As a general meth-
od, it is always best to perform sequential optimizations first. Then, with the opti
mized code, move to implement parallel optimizations.

We applied several sequential optimizations (in critical subprograms) such as the
automatic ones (-02), 1/0 removal, removal of GoTo statements, and intrinsic opera-
tions replacement. We found that subprogram inlining along with operations reorder-
ing and redundant operations removal were the most successful in terms of providing
performance enhancement.

The small bodies case was almost discarded for including parallel computing, be-
cause the small bodies do not internet, they only require a small amount of processing
power to update their velocities and positions in each eyele. The large bodies case is
particularly well suited for including parallel computing, as they have to internet be
tween every other large body in the simulation to update their properties. Thus, the
parallelization of the execution is a must to reduce the simulation time. In this case, a
specific effort was made to elimínate data dependeney computations for aiding the
inclusión of parallel computing (e.g. via OpenMP further implementation).

20

Short Papers of the 8th Conference on Cloud Computing Conference, Big Data & Emerging Topics

4 Results and Future Works

Given the unoptimized initially legacy code, the sequential optimizations provided
great performance gains. For the small bodies case, the performance gain was about
50% reduction in runtime. The large bodies case, was also parallelized, and the per
formance gain provided by the OpenMP implementation in 8 cores was about a 40%
runtime reduction. We initially take all the optimization techniques as a guideline,
given its application on a real-world numerical integrator. The potential of automati-
cally apply some of them, has to be investigated further.

While the inline optimization is provided by some compilers (e.g. the Intel compil-
er), it cannot always be properly implemented. GoTo statements usually prevenís the
usage of many of the compilers optimizations, including inlining. As of now, there is
no automated way of removing GoTo statements in general, but some of them do
have a structure (e.g. GoTo statements used to replace For-like iteration structures).

The proper usage of cache memory, should be a topic of future research, with an
increased number of bodies in the integrators. Also, the future line of work, of paral-
lelizing further, using SIMD processors, like GP-GPU, could potentially increase the
size of the input valúes, to use hundreds of thousands of elements.

References

1. Fernando G. Tinetti, Mariano Méndez, Armando De Giusti.: Restructuring Fortran legacy
applications for parallel computing in multiprocessors. The Journal of Supercomputing,
Volume 64, Issue 2, pp. 638-659.126 (2013).

2. GNU GCC Compiler Homepage, https://gcc.gnu.org/onlinedocs/gcc/Optimize-
Options.html, last accessed 2020/03/30.

3. Intel Fortran Compiler Homepage, https://software.intel.com/en-us/fortran-compiler-
developer-guide-and-reference-inline-forceinline-and-noinline, last accessed 2020/03/30.

4. OpenMP Architecture Review Board., “OpenMP Application Programming
Interface", Versión 5.0, (2018).

5. Mariano Méndez, Fernando G. Tinetti.: Change-driven development for scientific soft
ware, The Journal of Supercomputing, Springer, Volume 73, Issue 5, pp. 2229-2257,
(2017).

6. Chambers, J.E; Migliorini, F., “Mercury - A New Software Package for Orbital Integra-
tions”, Bull. American Astron. Soc. ,29, 1024. (1997).

7. SW1FT Homepage, http://www.boulder.swri.edu/~hal/swift.html last accessed 2020/03/30.
8. JayFenlason, “GNUgprofmanual"Homepage,

http://sourceware.org/binutils/docs/gprof/index.html, last accessed 2020/03/30

21

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://software.intel.com/en-us/fortran-compiler-developer-guide-and-reference-inline-forceinline-and-noinline
https://software.intel.com/en-us/fortran-compiler-developer-guide-and-reference-inline-forceinline-and-noinline
http://www.boulder.swri.edu/~hal/swift.html
http://sourceware.org/binutils/docs/gprof/index.html

