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Abstract. Numerical simulations used today by scientists in various disciplines, 
are frequently based on implementations created when the predominant compu
ting hardware was sequential by design. In this simulations, new features are 
added or updated, when new discoveries are made, but the computational im- 
plementation remains unchanged, not taking advantage of modern hardware ar- 
chitectures. This “legacy code” study cases, presents the opportunity to create a 
set of techniques and tools, oriented to perform optimizations from a computa
tional and software engineering points of view. As an example, in conjunction 
with an astrophysics research group, a real-world case numerical integrator op- 
timization is presented, were these techniques were applied, showing the results 
obtained.
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1 Introduction

Scientific disciplines often require complex numeric simulations to compute the mod- 
els that describe real world/physical processes. The natural complexity of the real 
world requires that the simulations process large volumes of data, and perform com- 
putational-heavy calculations, in order to obtain the desired results.

The software used to compute these numerical simulations was often created in a 
time where the predominant computing technologies were sequential in nature. This 
software, today referred as “Legacy code” [1], is widely used amongst the scientific 
community.

Scientists update the implementation of the models, introducing new features as 
new discoveries are made in their respective disciplines. These new features frequent
ly do not inelude modern optimization techniques, thus maintaining the sequential 
nature of the original implementation.

The shift of paradigm in current hardware design, moving away from sequential 
single-core processors to parallel and distributed computing creates a new opportunity 
to potential performance improvement of legacy code. But performing these optimiza-
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tions requires a good knowledge on these mentioned parallel and distributed architec- 
tures, which is usually agnostic to the actual model implemented.

1.1 Performance Optimizations

We can mention 2 types of performance-oriented optimization categories, as follows:
1) Automatic optimizations. These optimizations are implemented through 

compiler options. A good example of them are the well-known optimizations 
flags -0[1..3], which provide a very easy way of obtaining good performance 
results [2]. Other examples are the automatic inlining of functions, using the 
flag -inline on the ifort intel Fortran compiler [3], or the shared-memory paral- 
lelization performed by the OpenMP library [4], using compiler directives to 
generate automated threads in for-cycles.

2) Manual optimizations. These optimizations, require some understanding of 
the underlying code structure, in order to successfully obtain good perfor
mance results, that don’t affect the execution numerical results. These are non- 
trivial, and require a good amount of profiling and research in order to be 
completely done.

1.2 Software engineering improvements

One of the characteristics of a “legacy code” implementation, is defmed by software 
that is still being used today, but that have not been updated to modem software para- 
digms. The most predominant feature of Fortran code, is the usage of the GOTO 
statement.

While some of the GOTO usage can be removed automatically (like, for example, 
when it is used to create a FOR-like structure) [5], there are other cases where it re
quires manual interaction. Removing GOTO statements from legacy code, should be 
considered a must, before performing optimizations, if these statements are related to 
the portion of the program that needs to be optimized.

2 Performance Analysis of a Real-World Case

An example of a numerical integrator that has “legacy code” embedded into its core 
functionality, is the Mercury [6] N-Body integrator, and widely used by planetary 
astronomers around the world. Mercury is completely developed in Fortran, integrat- 
ing the SWIFT [7] libraries for numerical simulation, and performs calculations of 
close-encounters in bodies. The Mercury integrator, has the ability to perform compu- 
tations with “small bodies” and “large bodies”. The main difference between them, is 
that the small bodies don’t produce interactions between them, only with a central 
star, and other large bodies, while the large bodies, do internet between each other, 
adding complexity to the simulation. The more “large bodies” used in the context, the 
more compute-intensive the simulation becomes. Henee, common simulations involve 
a mixture of large and small bodies, with hundreds of small bodies, and tens of large 
ones. For the performance analysis, the research group from the Facultad de Ciencias
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Astronómicas y  Geofísicas of the Universidad Nacional de La Plata, provided 2 real 
case scenarios, that used the simulator with 2 distinct execution paths. The first case 
was all small bodies, one large body, and the central star, and the second case, was a 
collection of large bodies, all interacting between each other.

2.1 Proflling Mercury

Initially, the GNU profiler gprof [8] was used to analyze the compute-intensive parts 
of the code, so that the key areas of Mercury to optimize were detected. There are 
some subprograms appearing in the top-ten most time consuming ones, for experi- 
ments with predominant “small bodies” and “large bodies”. The rest of the top-ten 
most time-consuming subprograms depend on the kind of bodies being simulated. We 
also implemented a wall-clock like time metric. This allows to measure the real-world 
time execution experienced by a human observer, as the gprof output only measures 
processor timing, not taking into account extemal interferences. Comparing both ap- 
proaches indicated a significant difference: it was discovered that the input/output 
frequency and volume should be optimized as well.

3 Applying Optimizations

After the performance metrics where obtained, a number of optimizations have been 
applied. For each optimization applied, the numerical result was carefully controlled, 
so that consistency was maintained. When we found a numerical difference, the re- 
sults were sent back to the scientists’ research group for approval. As a general meth- 
od, it is always best to perform sequential optimizations first. Then, with the opti
mized code, move to implement parallel optimizations.

We applied several sequential optimizations (in critical subprograms) such as the 
automatic ones (-02), 1/0 removal, removal of GoTo statements, and intrinsic opera- 
tions replacement. We found that subprogram inlining along with operations reorder- 
ing and redundant operations removal were the most successful in terms of providing 
performance enhancement.

The small bodies case was almost discarded for including parallel computing, be- 
cause the small bodies do not internet, they only require a small amount of processing 
power to update their velocities and positions in each eyele. The large bodies case is 
particularly well suited for including parallel computing, as they have to internet be
tween every other large body in the simulation to update their properties. Thus, the 
parallelization of the execution is a must to reduce the simulation time. In this case, a 
specific effort was made to elimínate data dependeney computations for aiding the 
inclusión of parallel computing (e.g. via OpenMP further implementation).
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4 Results and Future Works

Given the unoptimized initially legacy code, the sequential optimizations provided 
great performance gains. For the small bodies case, the performance gain was about 
50% reduction in runtime. The large bodies case, was also parallelized, and the per
formance gain provided by the OpenMP implementation in 8 cores was about a 40% 
runtime reduction. We initially take all the optimization techniques as a guideline, 
given its application on a real-world numerical integrator. The potential of automati- 
cally apply some of them, has to be investigated further.

While the inline optimization is provided by some compilers (e.g. the Intel compil- 
er), it cannot always be properly implemented. GoTo statements usually prevenís the 
usage of many of the compilers optimizations, including inlining. As of now, there is 
no automated way of removing GoTo statements in general, but some of them do 
have a structure (e.g. GoTo statements used to replace For-like iteration structures).

The proper usage of cache memory, should be a topic of future research, with an 
increased number of bodies in the integrators. Also, the future line of work, of paral- 
lelizing further, using SIMD processors, like GP-GPU, could potentially increase the 
size of the input valúes, to use hundreds of thousands of elements.
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