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Abstract 

The chemical control of Triatoma infestans, the major Chagas disease vector in 

southern South America, has been threatened in the last years by the emergence of 

pyrethroid-resistant bug populations. As an alternative approach, the efficacy of the 

entomopathogenic fungus Beauveria bassiana to control T. infestans populations 

(regardless their pyrethroid susceptibility) has been demonstrated. Growing research efforts 

on the interaction between T. infestans and B. bassiana by molecular, ecological, 

biochemical and behavioral traits has allowed framing such interaction as an evolutionary 

arms race. This review will focus on the relationships established in this particular host-

pathogen system, compiling available data on the relevance of fungal pathogenesis, insect 

behavior, population dynamics and human intervention to favor fungal dissemination in 

bug populations. The current snapshot shows the fungus ahead in the evolutionary arms 

race and predicts a promissory landscape for the biological control of Chagas disease 

vectors. 

Keywords: arms race, biological control, Chagas disease vectors, entomopathogenic fungi, 

insect behavior.   
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1. Introduction 

 Coevolutionary processes involve reciprocal, adaptive genetic changes in two or 

more interacting species populations. In the particular case of host-pathogen interaction, 

both antagonistic organisms share a strong connection and apply selective pressure on each 

other (Joop and Vilcinskas, 2016; Woolhouse et al., 2002). This selective pressure acts as a 

major driving force for natural selection between the involved organisms and drives them 

to continuously adapt; the host changing their defense mechanisms, and their counterpart 

pathogens developing means to overcome the new defenses (Clay and Kover, 1996; 

Brockhurst et al., 2014).  

In host-pathogen interaction, most of the metabolites that are used in the crosstalk 

between pathogens and host cells are chemically similar or identical. At the metabolic 

level, chemical signalling events enabling pathogens to sense anatomical location and the 

local physiology of the host, and microbial metabolic pathways dedicated to circumvent 

host immune mechanisms, together with some metabolites considered as central points of 

competition between the host and pathogens have been recently reviewed in bacteria (Olive 

and Sassetti, 2016). The outcome of this interaction is determined by the nature of the 

damage resulting from the host-pathogen relationship. Immune responses arise from the 

detection of danger signals produced by pathogens. Thus, host damage is often a 

requirement for the induction of a pathogen-specific immune response (Casadevall and 

Pirofski, 2000).  

The interaction between insects and their microbial pathogens has been a subject of 

study for the past 50 years, and served as a model system for studying the coevolutionary 

processes involved in invertebrate-pathogen interaction (recently reviewed by Lovett and 
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St. Leger, 2017; Pedrini, 2017; Wang and Wang, 2017). Among all insect pathogens 

including bacteria, virus, nematodes and entomopathogenic fungi (Lacey et al., 2015), the 

most common microbial pathogens of insects are fungi (Lovett and St. Leger, 2017). Over 

the past 400 million years, both insects and fungi have coevolved a wide array of 

interactions; specifically, entomopathogenicity is a trait that has evolved in all major fungal 

phyla (Araujo and Hughes, 2016; Blackwell and Vega, 2005).  Most of the available 

information about insect-fungi interaction is based on two model species, Beauveria 

bassiana and Metarhizium anisopliae (Ascomycota: Hypocreales); their experimental 

tractability has allowed explore a broad range of ecological, evolutive and behavioral traits 

and more recently molecular mechanisms involved in such interactions (Lovett and St. 

Leger, 2017).  Both species are the most frequently used entomopathogenic fungi as 

biological control agents, having a wide host range that includes insects and other 

arthropods (Lacey et al., 2015). A few of these underlying mechanisms that take place in 

arthropod-fungal interactions and might define the competing aspects of an evolutionary 

arms race have been described in the insect models Galleria mellonella and Tribolium 

castaneum (Joop and Vilcinskas, 2016; Pedrini et al., 2015; Pedrini, 2017; Vilcinskas, 

2010).  

Chagas disease (American trypanosomiasis) is the major vector borne infectious 

disease caused by a parasite in Latin America. Its etiological agent Tripanosoma cruzi is 

transmitted and spread by triatomine insects through an infective bite. Triatominae 

subfamily (Hemiptera: Reduviidae) comprises 149 species grouped into 18 genera and five 

tribes (Justi and Galvão, 2017; Schofield and Galvão, 2009). Although all triatomine 

species are potential vectors of T. cruzi, their likely sanitary risk is directly linked to their 

ability to adapt and survive in contact with human habitats. Thus, from an epidemiologic 
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view and based on domiciliation success, Triatoma infestans and Rhodnius prolixus are 

considered the most relevant vectors of Chagas disease (WHO, 2000). The Southern Cone 

Initiative and similar initiatives for Central America and Andean countries resulted in 

efficient chemical control of T. infestans and R. prolixus domiciliated populations 

(Schofield and Dias, 1999; Hashimoto and Schofield, 2012). However, the detection of 

growing numbers of T. infestans residual populations in the Gran Chaco geographic area 

(shared by Argentina, Bolivia and Paraguay) showed failures in chemical control due to 

high levels of insecticide resistance (Mougabure-Cueto and Picollo, 2015; Picollo et al., 

2005). 

In parallel, during the last 10 years, there was a continuously growing research on 

the ability of B. bassiana to attack and kill T. infestans populations, and thus this fungus 

was proposed by our laboratory as an efficient and safe biological tool against this vector, 

regardless bug susceptibility to chemical insecticides (Forlani et al., 2011; 2015; Pedrini et 

al., 2009). T. infestans and B. bassiana are a good example of insect-entomopathogenic 

fungi interacting system, coevolutive traits between them are currently a subject of 

undergoing research. This review intend to compile available recent information about the 

interactions and the relationships established in this particular system, in an attempt to 

unravel coevolutive traits that both participants might have acquired during such 

interaction, and also to highlight the relevance of human intervention taking advantage of 

insect behavior to favor fungal dissemination in domestic and peridomestic bug 

populations.  
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2. An overview on the interaction between triatomines and entomopathogenic fungi 

The first studies on the potential of B. bassiana as biological control tool against 

triatomines were done by Romaña et al. (1987). From then, several biological and 

biochemical traits on the interaction between triatomine insects and their fungal pathogens 

have been described, including the very initial mechanism of cuticle penetration 

(Napolitano and Juárez, 1997; Juárez et al., 2000, Pedrini et al., 2007), the effects of 

molting and starvation on the insect susceptibility to the fungal pathogen (Luz et al., 

2003a), the importance of conidial autodissemination on the overall insect mortality 

(Forlani et al., 2011), and the effect of fungal infection in female fecundity and oviposition 

(Forlani et al., 2015) and in immune response (Flores-Villegas et el., 2016; Lobo et al., 

2015). Also, a good number of fungal isolates with potential to be used in the biological 

control of triatomines have been reported (Garcia et al., 2016; Juárez et al., 2000; Luz et al., 

1998; Lecuona et al., 2001).  

Interestingly, fungal pathogens have been isolated from naturally infected 

triatomines; the first reported was an Evlachovaea-like fungi in Brazil (Luz et al., 2003b) 

and then the Argentinian isolates of B. bassiana and Paecilomyces lilacinus (Ascomycota: 

Hypocreales) in Córdoba and Santiago del Estero provinces, respectively (Marti et al., 

2005; 2006). More recently, a native strain of B. bassiana was isolated from a T. infestans 

cadaver in Salta province (R. M. Cardozo, personal communication).  

The landmark that triggered a second research wave on T. infestans and its pathogen 

B. bassiana was the detection of several pyrethroid-resistant foci of T. infestans in the Gran 

Chaco geographical region (Mougabure-Cueto and Picollo, 2015). Several laboratory and 
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field studies showed the efficacy of this entomopathogenic fungus against both susceptible 

and resistant T. infestans populations (Forlani et al., 2015; Juárez et al., 2008; Pedrini et al., 

2009).  Furthermore, its use has been approved and successfully applied in rural houses 

infested with resistant bugs in Salta province, Argentina (A. Gentile and R.M. Cardozo, 

personal communication).    

Another interesting point to be addressed is the susceptibility of T. cruzi-infected 

triatomines to fungal pathogens. Garcia et al. (2016) reported higher survival rates of T. 

cruzi-infected R. prolixus compared to non-parasitized bugs after treatment with B. 

bassiana. The authors suggested that the parasite might trigger the host’s immune system 

and thus help acquire better defenses against the attack of other pathogen, e.g., an 

entomopathogenic fungus. This apparent reduction in the virulence of a secondary infective 

agent should be further explored; in particular, under similar environmental conditions to 

those bugs are exposed at their natural habitats; there are no reports on this regard neither 

on T. infestans nor other triatomines. 

 

3. Triatoma infestans as a host for Beauveria bassiana      

The insect cuticle is the first barrier against contact insecticides, and also is the point 

of entry for entomopathogenic fungi such as B. bassiana. In triatomines, the epicuticle —

the outermost protective surface— is covered by a thin layer of mostly saturated lipids with 

very long chains (between 20 to more than 40 carbons), the predominant components are 

hydrocarbons, wax esters, fatty alcohols and either free or esterified fatty acids (Juárez and 

Calderón-Fernández, 2007).  Among other functions, its physico-chemical properties help 
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delay the entry of chemical pesticides (Juárez, 1994). The role of the cuticle in the 

pyrethroid resistance mechanism has been revealed by the first time in T. infestans 

populations from the Gran Chaco region (Pedrini et al., 2009). Pyrethroid-resistant insects 

have a thicker cuticle, together with a higher content of epicuticular hydrocarbons 

compared to susceptible insects; these biochemical data correlated well with reduced 

penetration of the insecticide and thus a decrease in the effective dose (Juárez et al., 2010; 

Pedrini et al., 2009). Cuticle thickness is most likely related with the overexpression of 

selected cuticle protein genes from the integument of pyrethroid-resistant insects 

(Calderón-Fernández et al., 2017).    

The epicuticle is also the first barrier to be beaten by the fungus prior initiation of 

the infection process within the insect body. Entomopathogenic fungi have the ability to 

grow using its host cuticle hydrocarbons as the sole carbon source; furthermore, this 

mechanism is inducible and was shown to help reduce the time to kill (Napolitano and 

Juárez, 1997; Pedrini et al., 2009). Interestingly, B. bassiana efficiently degrades the 

epicuticle of T. infestans regardless its chemical insecticide resistance level (Pedrini et al., 

2009). Thus, these bioinsecticide properties make the fungus ideal to counter insecticide 

resistance. 

 

4. Beauveria bassiana as a pathogen of Triatoma infestans 

Entomopathogenic fungi are the predominant natural pathogens in arthropod 

populations, therefore these microbes have a formidable potential as pest control agents 

(Lacey et al., 2015). B. bassiana is the entomopathogenic fungi most frequently tested 
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against triatomine, and its potential against T. infestans has already being exploited (Forlani 

et al., 2015; Pedrini et al., 2009). In order to improve the horizontal transmission and 

residual activity parameters of a fungal formulation, the success relies on the fungal strain, 

the propagule stability and the formulation optimization (de Faria and Wraight, 2007; 

Forlani et al., 2011).  

Several aspects of the biochemical processes involved in the interaction between B. 

bassiana and T. infestans cuticle were already examined (Crespo et al, 2000; Napolitano 

and Juarez 1997; Pedrini et al. 2007; 2009; 2010). The attachment and adhesion of the 

conidia to the epicuticle layer is in general dependent on the chemical composition of the 

host cuticle and the possibilities of the microbe to breach this structure (Pedrini et al., 

2007). The utilization of T. infestans epicuticular hydrocarbons by entomopathogenic fungi 

was first demonstrated by Napolitano and Juárez (1997). Hydrocarbons were shown to be 

the preferred epicuticle lipid component for fungal growth. These components are fully 

metabolized to CO2, used for energy production and utilized in the biosynthesis of cellular 

components. Furthermore, the hydrocarbons extracted from insects were shown to be better 

substrates than synthetic hydrocarbons of similar structure (Crespo et al., 2000; Napolitano 

and Juárez, 1997). However, growth on alkanes causes major changes in fungal 

metabolism, e.g., altering the profile of fatty acids and other lipids compared with fungi 

grown in rich media (Crespo et al., 2000, Juárez et al., 2000; 2004), and also display an 

oxidative stress scenario (Huarte-Bonnet et al., 2015). A set of fungal hydrocarbon-

assimilating enzymes allow the degradation of host cuticle lipids (Alconada and Juárez, 

2006; Pedrini et al., 2006; 2010), and help growth solely on very long chain hydrocarbons 

(Pedrini et al., 2010) boosting its ability to breach T. infestans cuticle (Pedrini et al., 2009).  
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The degradation pathway starts with alkane’s activation by terminal oxidation to the 

corresponding alcohol derivative, which is oxidized by alcohol and aldehyde 

dehydrogenases. Biochemical studies showed that the resulting activated fatty acids might 

be incorporated in membranes, stored as triacylglycerides, or enter the β-oxidation pathway 

in peroxisomes (Juárez et al. 2004; Pedrini et al. 2007). The first oxidation round of the 

alkane substrate is catalyzed by microsomal cytochrome P450 (CYP) enzymes (Pedrini et 

al., 2007; 2010). Microbial genes of the CYP52 subfamily have been reported to participate 

in alkane degradation (Ohkuma et al., 1995; Seghezzi et al., 1992). Up-regulation of these 

genes was shown in B. bassiana during growth in several synthetic alkanes, as well as in T. 

infestans hydrocarbon extracts (Huarte-Bonnet et al., 2017a,b; Pedrini et al., 2010). 

Once the cuticle is breached, the fungus moves into the insect’s hemocoel and 

develops cells that can elude the host’s immune system (Pendland et al., 1993). During this 

invasive step, B. bassiana infects and progressively degrades different tissues until the 

host’s death; emerging then through the cuticle (Valero-Jiménez et al., 2016). At this point, 

secretion of compounds that show antibiotic properties can help prevent competition for 

nutrients with other microorganisms (Pedrini, 2017). The potential role of these compounds 

also in fungal virulence against T. infestans is discussed below. 

 

5. Biological and behavioral traits from Triatoma infestans may aid its natural enemy? 

Blood-sucking arthropods have undergone an evolutionary selection process leading 

to key morphological, physiological and behavioral adaptations. Among Triatomines, some 

behavioral traits such as shelter recognition, predation risk, circadian rhythms, chemical 
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communication and microclimatic preferences are shared (Guerenstein and Lazzari, 2009; 

Sant´Anna et al., 2017). Among a variety of chemical communication traits, adult T. 

infestans secrete alarm pheromones in the presence of predators (Manrique et al. 2006). 

Volatile and contact chemical signals mediate sex communication and mating success 

(Cocchiararo-Bastias et al., 2011, Manrique and Lorenzo, 2012). Also, aggregation 

behavior is mediated by thigmotaxis, by volatile cues from their faeces, and by contact 

chemical signals from their cuticle surface – mostly specific fatty acid components 

facilitating arresting behavior in selected shelters (Lorenzo Figueiras et al., 2009). This 

typical aggregation behavior help maintain triatomines in reduced size shelters during 

daylight and thus remaining in close contact to each other, favoring fungal horizontal 

transmission (also known as autodissemination process). Thus, it was reported that conidia 

autodissemination contributes significantly to the overall insect mortality and is dependent 

of the bug size (Pedrini et al., 2009). Also, the fungal horizontal transmission is associated 

to bug density and is very active for several days, since an infected bug was able to transmit 

fungal conidia by horizontal transmission to a healthy bug at least until one week after 

being in contact with a conidia powder formulation (Forlani et al., 2011). 

Another behavioral trait worth commenting is the characteristic camouflage 

phenomenon exhibited by triatomines. In order to hide themselves, T. infestans have been 

reported to cover their bodies with soil dust, helping to hide themselves from predators in a 

typical camouflage adaptation reported in other members of the family Reduviidae, and 

likewise probably in thermoregulation (Brandt and Mahsberg, 2002; Zeledón et al., 1973). 

Remarkably, this behavior is also observed when the dust is a powder formulation of B. 
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bassiana conidia (Pedrini et al., 2009). Thus, the initial inoculum with a fungal formulation 

might be favored by triatomine behavior. 

In summary, some behavioral traits might aid in some way the pathogen B. bassiana 

to infect an initial host with a high dose of conidia that can then be actively spreaded by 

autodissemination during daylight bug aggregation (Forlani et al., 2011, 2015; Pedrini et 

al., 2009). In the arms race to survive, T. infestans has a series of traits that naturally put 

them behind its pathogen, and as we detailed below, it might be even more noticeable due 

to human intervention. 

 

6. Molecular basis of infective/defensive mechanisms in the Beauveria bassiana-

Triatoma infestans system 

During the invasive process, insect pathogenic fungi produce and secrete an array of 

toxic and immunosuppressive compounds (secondary metabolites) that help pathogen 

invasion and overcome the host defenses (Ferron, 1985; Trienens and Rohlfs, 2012).  B. 

bassiana produces the cyclooligomer nonribosomal peptides beauvericin and bassianolide, 

the diketomorpholine bassiatin, the cyclic peptides beauverolides, the dibenzoquinone 

oosporein, and the 2-pyridone tenellin (Gibson et al., 2014; Molnar et al., 2010). They have 

a different degree of influence in the invasion/infection process depending on the host (Eley 

et al., 2007; Feng et al., 2015; Xu et al., 2008; 2009). In the specific pair B. bassiana 

infecting T. infestans, it was possible to determine the expression levels of the fungal 

synthetase genes encoding for tenellin (BbtenS), beauvericin (BbbeaS) and bassianolide 

(BbbslS) in fungus-infected insects (Lobo et al., 2015). The expression profiles in different 
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stages of the infective process suggested that these three genes display differential roles. 

Both BbtenS and BbbeaS were found to be highly expressed in conidia-treated insects at 

day 3 and day 12 post-treatment, in coincidence with the mortality peaks previously 

observed in T. infestans infected with B. bassiana (Luz et al., 1998), suggesting a role as 

virulence factors. The high expression levels of BbtenS and BbbeaS detected at day 12 post-

treatment also agrees with the high levels of secondary metabolites found in moribund/dead 

insects probably helpful to protect cadavers from competitive microorganisms (Pedrini, 

2017). 

T. infestans responds to B. bassiana infection by activating its humoral immune 

system; in a dual qPCR approach, Lobo et al. (2015) measured three genes involved in such 

response, including prophenoloxidase, hemolectin and defensin in the same samples 

containing RNA from both insect and fungus. During the middle-stage infection, and in 

conjunction with toxin decay, insects attempt to respond by inducing the three genes 

mentioned (Lobo et al., 2015). This result suggests that insect host immune responses are 

critical in attempts to limit or to stop the fungal infections. Although a correlation was 

found between the peak of expression of immunity related genes and the time course of 

fungal infection, the immune response is modulated by the infective fungal dose, and host 

responses may not be uniform and rather highly dependent on the inoculum. In conclusion, 

once the cuticle is breached and the fungus reaches the hemolymph, the immune response 

is overcome; the fungal “invader” proliferates throughout the host and death is mostly 

certain. Again, the major barrier to fungal infection seems to be the insect cuticle, and as 

the fungus evolved to degrade it and to invade the body cavity, it is seemingly ahead in the 

arms race. 
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This dual qPCR approach represented a first but limited contribution to decipher the 

dynamics of the molecular interaction between triatomines and entomopathogenic fungi. 

However, current dual RNA-seq techniques will contribute to a better and extensive 

comprehension of this phenomenon, since this analysis allows mapping simultaneously the 

expression pattern of all genes, including their allelic variants, in both organisms during the 

infection process (Pedrini, 2017). 

 

7. A case of success: Control of Triatoma infestans populations with “attraction-

infection” traps based on Beauveria bassiana conidia 

Taking advantage of some of the biological and behavioral features of both 

organisms described before, a box containing attractants for triatomines and a powder 

formulation containing B. bassiana conidia and diatomaceous earth was designed and used 

to control T. infestans populations in the Argentina-Bolivia border (Juárez et al., 2008). The 

infective box variants included both long distance attractants (CO2) (Pedrini et al., 2009) 

and contact aggregation pheromones, i.e., cuticular lipids extracted from T. infestans 

(Forlani et al., 2015; Lorenzo Figueiras et al., 2009). Thus, insects may well be attracted to 

the trap by CO2, a well-known attractant of most blood-sucking arthropods including T. 

infestans (Guerenstein and Lazzari, 2009), and once inside the box eventually induced to 

maximize their permanence in close contact with contact aggregation pheromones (Forlani 

et al., 2015) and the powder formulation. After loading with a high dose of conidia favored 

by the camouflage behavior, insect might leave the box and return to their nests, an ideal 

place for an efficient horizontal transmission. The results showed 50-60% bug mortality in 
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rural village houses infested with pyrethroid-resistant insects after one or two monthly 

interventions using 6 boxes/room (Pedrini et al., 2009; Forlani et al., 2015). Furthermore, a 

stage-specific matrix model was developed to describe the effects of B. bassiana infection 

on T. infestans population dynamics and demonstrated that the number of boxes per house 

is the main driver of the reduction of the total domestic bug population (Forlani et al., 

2015). Thus, this low cost, low tech, ecologically friendly methodology using a 

pheromone-containing infective box is a promising tool against indoor populations of 

triatomines; repeated fungal applications could eventually halt infection transmission as is 

predicted by available mathematical models (Pedrini et al., 2009). 

 

8. Conclusions and remarks 

As a general rule, pathogenic fungi have developed many strategies to overcome the 

insect host defenses; a key phase is the adhesion and penetration of the cuticle since once 

inside the insect, the fungal pathogen has almost “won the survival battle”. An opposite 

situation has been observed in Coleoptera, both the red flour beetle and the rice stalk stink 

bug secrete respectively benzoquinones and α,β-unsaturated aldehydes. These repellent 

components wrapping the insect cuticle prevent the fungus to attach, colonize and grow 

(Pedrini et al., 2015; da Silva et al., 2015). Once inside the body cavity, the fungus 

produces a plethora of secondary metabolites that facilitate the fungal invasion and/or 

interfere with the insect immune response, although some differences in their effects have 

been assigned through both host and fungal species and thus their role as virulence factor is 

still discussed (Lovett and St. Leger, 2017; Wang et al., 2012). The insects´ immune 
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response is triggered after penetration, but the entomopathogenic fungi have evolved 

specific mechanisms to avoid the host response, including shedding epitopes to escape from 

hemocyte encapsulation (Pendland et al., 1993), which often leads to a successful infectious 

cycle. 

For the particular system of T. infestans and B. bassiana, all the previous statements 

are true. Once B. bassiana has attached to the insects´ cuticle the degradation process 

begins. The cuticular hydrocarbon profile of T. infestans (Juárez and Calderón-Fernández, 

2007) offers no resistance to fungal penetration (Pedrini et al., 2007), and the humoral 

immune defensive response of T. infestans shows a delayed activation to this aggression 

making the insect not capable to prevent fungal infection (Lobo et al., 2015). B. bassiana is 

“running forward” since it is able to overcome whatever barrier the insect interposes.  

As B. bassiana is used worldwide as an integral part of biological control strategies, 

among them vector control programs, it is put in contact with a wider spectrum of insect 

populations that it would naturally be, or at least in a shorter time span. So the question 

rises, Are we helping B. bassiana “win” by using it as a biotechnological tool? Human 

intervention in the contact dynamics of these two organisms could be affecting the way 

they establish their interactions. An example of this is the use of biopesticide box traps, 

which helps B. bassiana spread faster and more efficiently (Forlani et al., 2015; Pedrini et 

al., 2009).  Is the evolutive and adaptive rate of B. bassiana faster and more efficient than 

T. infestans or is this particular arms race biased because of human intervention? In the 

coevolutive adaptations, the human intervention should be considered a major driving force 

of the evolutive path this system undergoes. The further the research goes and the more 
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information becomes available, the more questions seem to emerge regarding the human 

impact on the coevolutive link between B. bassiana and T. infestans.  

Many cues at the molecular level remain unknown; some of them are currently 

being addressed in order to get a better understanding on what events take place when the 

fungus reaches the hemolymph, and which molecular pathways became involved in the 

response to the infection. The host initial response appears to be insufficient to overcome 

the amount of fungal resources after colonization has been established. A suite of immune-

related genes was recently shown to be expressed in the integument of T. infestans 

(Calderón-Fernández et al., 2017), suggesting an earlier start of the immune system 

response, i.e., at the cuticular epidermal layer. There is yet a lot further to be explored 

regarding the coevolutive relationship between T. infestans and B. bassiana. In this 

snapshot of the current situation, attack and defense by the fungal pathogen and the host are 

being identified and assessed. The knowledge and comprehension of this information may 

aid to develop better biopesticides, design more efficient vector management strategies and 

therefore better vector-borne disease prevention. 
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Table 1. Effectiveness of several isolates of Beauveria bassiana against Triatoma infestans 
and Rhodnius prolixus, under different laboratory conditions.  

Insect Stage Fungal exposure Fungal dose Humidity Mortality 
percentage 

References 

Triatoma 
infestans 

Nymphs Immersion 1×107-108 
conidia/ml 

≥ 90% 90-100 Luz et al., 1998; 
Lecuona et al., 
2001 

 Nymphs Immersion 1×107-109 
conidia/ml 

50% 50-100 Luz et al., 1998; 
Pedrini et al., 
2009 

 Nymphs Immersion 1×108 conidia/ml 35% 54-68 Lecuona et al., 
2001 

 Adults Immersion 1×108 conidia/ml 90% 90-100 Lecuona et al., 
2001 

 Nymphs Contact with 
treated filter 
paper 

3×106-107 
conidia/cm2 

 

50% 40-94 Luz et al., 1999 

 Nymphs Contact with 
powder 
formulation 

3×108 
conidia/cm2 

50% 82-100 Forlani et al., 
2011 

 Adults Contact with 
powder 
formulation 

3×108 
conidia/cm2 

50% 88 Forlani et al., 
2011 

Rhodnius 
prolixus 

Nymphs Immersion 1×107 conidia/ml > 90% 50-98 Cazorla-Perfetti 
and Morales-
Moreno, 2016 

 Nymphs Contact with 
treated filter 
paper 

~ 1×106 conidia/ 
cm2 

80% 100 Garcia et al., 
2016 

 Nymphs Sprayed onto 
insect 

3×105 
conidia/cm2 

> 90% 50-100 Romaña and 
Fargues, 1992 

 Adults Sprayed onto 
insect 

3×105 
conidia/cm2 

> 90% 100 Romaña and 
Fargues, 1992 

This is not an inclusive list, it only provides representative examples. 
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Highlights 

 

- The interaction between triatomines and their fungal pathogens is reviewed 

- Some mechanisms involved in fungal attack and insect defense are identified 

- Such interaction can be framed within an evolutionary arms race 

- The fungus seems to be ahead since it overcome whatever barrier its host interposes 

- B. bassiana is an effective tool to control pyrethroid-resistant T. infestans 
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