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Abstract

In this paper, we present a set of strategies to underpin the
behavior of an agent that wants to arrive as close as possible
to its destination without revealing it to an observer, which
monitors its progress in the environment. This problem is an
instance of goal obfuscation (GO), which has lately received
significant attention in the AI community. With different vari-
ants of GO being proposed, the field lacks coherence and
characterization from first principles. In addition, existing
techniques are not robust to possible attempts of the observer
to learn the agent’s strategy. To fill this gap, we provide here
a foundational study of GO and offer robust techniques to en-
sure that the agent can protect its privacy as much as possible
regardless of the observer’s behavior. We cast GO as an opti-
mization problem, offer a complete theoretical analysis of it
and introduce efficient algorithms to find exact solutions.

1 Introduction
Lately, there has been significant interest in the robotics and
planning communities in interpretable agent behavior (see
Chakraborti et al. (2019) for a survey). One of its multi-
ple facets in adversarial settings is goal obfuscation (GO),
which is concerned with an agent (the actor) that wants to
maintain its goal private in the face of a second agent (the
observer) that monitors its actions to disclose such a goal.
GO techniques provides the actor with planning strategies to
increase the ambiguity over the possible goals that it might
want to achieve and, in consequence, help the actor protect
its privacy. These techniques find applications in several
fields, from surveillance to military planning to computer
games, just to mention a few. Although GO takes the actor’s
point of view, reasoning about an agent’s obfuscatory behav-
ior can also be used to inform the strategy of an intelligent
observer in applications such as search-and-tracking, where
searching for an evasive target is much harder than looking
for an oblivious one (Bernardini et al. 2017).

An obfuscatory actor faces a conflict between two desir-
able but incompatible objectives: minimizing the cost to its
goal, while maximizing ambiguity over all possible goals,
with the latter objective involving the use of some resources
to conceal instead of to achieve the goal. Focusing on this
trade-off, in this paper, we give a crisp mathematical formu-
lation of GO and propose two, dual optimization problems.
The first problem deals with minimizing the cost that the ac-

tor incurs to obtain a desired level of obfuscation; the second
problem concerns reaching the highest possible level of ob-
fuscation given a bound on cost. Our optimization approach
allows us to perform the formulation of plans to all possible
goals and the maximization of obfuscation jointly. Using
the resulting set of plans, the actor is guaranteed to achieve
its chosen degree of obfuscation for any goal it might pick,
even if these plans become known to the observer.

We consider settings in which the actor has full observ-
ability of its environment, while the observer can either fully
observe the state of the actor after it performs an action or
not at all. This is a specific case of partial observability
that is natural in several applicative contexts. Consider, for
example, a surveillance mission in which a target aims to
reach a destination that it wants to keep hidden moving on
a road network and an observer tries to detect such a des-
tination based on sensory input available only at certain lo-
cations (e.g. cameras at crossroads or search patterns cen-
tered in specific points of the network (Piacentini, Bernar-
dini, and Beck 2019)). This type of observability represents
a worst-case scenario for the actor because the observations,
when successful, leave no ambiguity on the state of the ac-
tor and its advancement towards the goal. Following these
assumptions, we present our results in a path planning set-
ting, which represents the most natural incarnation of them,
but our results hold in general for task planning when the
observation function satisfies the above conditions.

Our contribution is twofold. First, we offer a foundational
study of GO based on mathematical optimization and look
for exact solutions to the proposed optimization problems
that take into consideration both available resources and de-
sired obfuscation. This is in contrast with ad hoc, approxi-
mated strategies for GO that ignore resources, which have
been put forward by related works (Masters and Sardiña
2017). In addition, we propose GO techniques that are
secure according to the definition given by Kulkarni et al.
(2018). In particular, our approach is resilient to replay at-
tacks: the actor is indifferent to the fact that the observer
knows its algorithm and can rerun it with various goals. Ex-
isting GO techniques, on the other hand, either assume to be
deployed in one-shot settings and are not robust to multiple
runs of the algorithm (Keren, Gal, and Karpas 2014) or they
are secure but work in settings more favorable to the actor
(Kulkarni, Srivastava, and Kambhampati 2019).
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2 Related Work
The majority of the work in GO has been conducted within
the setting of task planning with partial observability, mod-
eled as a many-to-one observation function that maps pairs
of actions and states into observation tokens. This setting
represents a more advantageous scenario for the actor than
the one we consider because it forces the observer to reason
in a belief state space instead of the space determined by the
actual actions taken by the actor. In this context, Kulkarni et
al. (2019) present a unifying framework for secure planning
in both adversarial and cooperative environments. Keren et
al. (2016b), on the other hand, use the worst case distinctive-
ness (wcd) index (Keren, Gal, and Karpas 2014) to indicate
the maximum number of actions that the actor may take be-
fore revealing its goal. An optimal strategy for the actor is
determined by selecting, for each possible goal, a legal plan
to it that exhibits wcd. While in one-shot GO set-ups, this
strategy is optimal in maximizing obfuscation, this is not
the case in set-ups in which the observer monitors multiple,
subsequent runs of the actor’s algorithm. These observations
could lead the observer to learn the actor’s strategy. In this
case, the wcd index of the selected optimal paths could be
remarkably lower than the original one (see Example 4).

Reasoning about obfuscatory behavior is crucial in other
two emerging sub-fields of task planning: goal recognition
(GR) (Kautz and Allen 1986; Ramirez and Geffner 2009;
Pattison and Long 2011) and goal recognition design (GRD)
(Keren, Gal, and Karpas 2014; Keren, Gal, and Karpas
2016a). GR provides algorithms to identify the actor’s goal
by observing its actions. To come up with an intelligent
strategy for the observer, GR might need to reason about the
possible strategies of the actor. GRD, on the other hand,
deals with modifying the environment in which the actor
lives to facilitate or impede goal recognition. The above-
mentioned work by Keren et al. (2016b) stems from GRD.

Previous work in obfuscation in path planning concerns
deceptive path planning (Masters and Sardiña 2017). Based
on a rather narrow definition of deception as ambiguity be-
tween a bogus and a real goal, they present two types of
strategies, simulation and dissimulation. Simulation sim-
ply accounts for reaching a bogus destination before the real
one. This strategy is expensive and not robust as it is no
longer effective after the fake destination has been reached.
As for dissimulation, the authors give three ad hoc, non-
optimized strategies that all revolve around proceeding to-
wards a point for which the probabilities of going to the real
destination and a bogus one are equal, before switching to
the real destination. No limit on agents’ resources is consid-
ered. In contrast, exploring the trade-off between the desired
degree of obfuscatory behavior and the resources needed to
achieve it, we provide the actor with a feasible portfolio of
paths that allows it to proceed as close as possible to any of
the potential destinations without disclosing its intentions.

We note that there is a rich body of literature in “privacy-
preserving” multi-agent planning (Torreno, Onaindia, and
Sapena 2014; Brafman 2015) and path planning (Das et al.
2008; Nabil et al. 2019). However, work in these fields stud-
ies problems different from ours, making the techniques they
propose not directly relevant to our case of study.

3 Problem Statement
Given a directed graphH = (V,E) with a source node o ∈ V
(with only outgoing edges) and a set of destinations nodes
D ⊆ V (with only incoming edges), let us consider an actor
that is initially in o and aims to reach one of the destinations
inD by moving overH. The observer can see the actor only
when it traverses the nodes inO ⊆ V (observable nodes) and
aims to discover where the actor is going. We assume that
H, o, D, and O are known to both agents.

We call a path in H any sequence of vertices γ =
(γ0, . . . , γl) such that each pair (γi, γi+1) ∈ E . We say
that γ is connecting γ0 to γl and that l is the length of γ.
Given a, b such that 0 ≤ a ≤ b ≤ l, we define the subpath
γ∣ba = (γa, . . . , γb). Consider now a set P of paths in H
from o to the destination nodes. We say that P is (o,D)-
connecting if, for every d ∈ D, there is at least one path in
P that connects o to d. Notice that, due to the assumptions
made on the edges from the origin and into the destinations,
the paths considered cannot include o or any node in D as
intermediate nodes. We consider the map δ ∶ P → D such
that δ(γ) is the destination node of γ. We use the symbolPk
to indicate the set of prefixes of length k of all the paths in P
(having length at least k). Precisely, if γ = (γ0, . . . , γl) ∈ P ,
the prefix of γ of length k ≤ l is γk = γ∣k0 = (γ0, . . . , γk).

A strategy for the actor is a set of paths P that is (o,D)-
connecting, i.e. a set of paths that the actor can use to reach
any destination in D. We associate a cost to a strategy,
modeled by introducing a non-negative weight matrix W
whose rows and columns are labelled by the graph nodes: if
(i, j) ∈ E ,Wij can be interpreted as either the distance along
that edge or the time needed to traverse it. Conventionally,
we put Wij = +∞ whenever (i, j) /∈ E . The weight of a path

γ = (γ0, . . . , γl) is defined as W (γ) =
l−1
∑
h=0

Wγh,γh+1 .

We denote with ω(i, j) the geodetic distance in G between
the nodes i and j relatively toW (minimum weight of a path
connecting i to j in G). Finally, we define the cost of a path
as its normalized weight, i.e. its weight relative to the geode-
tic distance: C(γ) = W (γ)

ω(o,δ(γ)) and C(P) = max
γ∈P

C(γ). Our

theory and algorithms remain unchanged if path costs are de-
fined by using weights instead of normalized weights. Note
that, when C(P) > 1, it means that the strategy set P con-
tains non-minimal paths.

The actor’s performance relates to the position that the ac-
tor has achieved along the path towards its destination when
the observer discovers it. To formalize this concept, we set
some additional notation and concepts.

Definition 1. Two prefixes of the same length γk and γ′k
are said to be observer-equal if γi = γ′i for each i = 0, . . . , k
whenever γi or γ′i is in O. We use the notation γk =O γ′k.

If γk and γ′k are observer-equal, they are indistinguish-
able from the observer’s point of view.

Definition 2. Given a set of paths P from o to D, a path
γ ∈ P , and a non-negative integer t, we say that γ discloses
D at step t if, for every γ′ ∈ P such that γt =O γ′t, it holds
that δ(γ) = δ(γ′).



Definition 2 says that if the actor follows the path γ for t
steps, the observer can univocally decide which destination
the actor is going to because all paths in P compatible with
its observed behavior lead to the same destination.
Definition 3. Given a set of paths P from o to D and a path
γ = (γ0, . . . , γl) ∈ P , we now define the following indices:
• The disclosing index of γ is the minimum t for which γ

discloses D at step t and is denoted by tγ(P). This index
gives us the first node at which the intentions of the actor
are revealed to the observer. If γ does not disclose D
at any step (necessarily γ leads to a destination d /∈ O),
conventionally, we put tγ(P) equal to the length of γ.

• The disclosing distance of γ is a measure of how far the
actor is from its actual destination when the observer dis-
covers it. Formally, it is expressed as follows:

λγ(P) =
l−1
∑

t=tγ(P)
Wγt,γt+1 (1)

• The upper disclosing distance of P is defined as follows:

λ(P) = max
γ∈P

λγ(P)

The upper disclosing distance is a conservative index,
which is useful when the actor wants to guarantee a certain
“worst case” performance threshold: minimizing λ(P) en-
sures that the actor’s distance to any destination that it might
choose in D is below this threshold when the chosen desti-
nation becomes clear to the observer.
Remark 4. The concept of disclosing distance introduced
above is based exclusively on pairwise comparisons between
paths. In certain applications, it might be interesting to con-
sider more restrictive notions of disclosing distance, where
the number of destinations compatible with a given prefix is
required to be an integer q larger than 2.
Example 1. Consider the graph H depicted in Fig. 1.
We assume that all edges (i, j) have weight Wij = 1.
Destinations are in red and origin in green; they are ob-
servable. The other observable nodes are in black, while
unobservable ones are in white. We consider two cases:
when all nodes are observable O = V (left) and when
O = {o,C,F,G,H} ∪ D (right). We call P the set of all
minimum distance paths inH from o to the four destinations
D = {d1, d2, d3, d4}. Paths’ disclosing indices and distances
are given in Table 1. Note that λ(P) = 3 when all nodes are
observable, while λ(P) = 1 in the partially observable case.

γ ∈ P tγ(P) λγ(P)
oGd1 1 1
oEFId2 3 1
oEFd3 3 0
oEFCd4 3 1
oABCd4 1 3

γ ∈ P tγ(P) λγ(P)
oGd1 1 1
oEFId2 4 0
oEFd3 3 0
oEFCd4 3 1
oABCd4 3 1

Table 1: Disclosing indices and distances for the set of minimal
distance paths P connecting o to D relative to the graph of Fig. 1
when O = V (left) and O = {o,C,F,G,H} ∪D (right).

We now introduce the two optimization problems that we
study in this paper:

d1

d2

d4

A

E F

G H I

o

LJ

d3

B C

d1

d2

d4

A

E F

G H I

o

LJ

d3

B C

Figure 1: Example of a graph with 1 origin (in green), 4 destina-
tions (in red) and 2 possible sets of observable nodes (in black).

1. Find a set of paths P that minimizes the costC(P) within
those that are (o,D)-connecting and have the upper dis-
closing distance below a given threshold λ. Formally,

Cmin(λ) = min
P (o,D) − conn.
λ(P) ≤ λ

C(P) (2)

2. Find a set of paths P that minimizes the upper disclos-
ing distance λ(P) within those that are (o,D)-connecting
and have a cost below a given threshold C. Formally,

λmin(C) = min
P (o,D) − conn.
C(P) ≤ C

λ(P) (3)

The equations above have the following meaning. A set
P that minimizes Eq. (2) represents the cheapest set of paths
that allows the actor to maintain its disclosing distance be-
low λ. If the actor cannot afford a cost higher than C, the
choice of any set of paths P that minimizes Eq. (3) ensures
that it achieves the best possible upper disclosing distance. If
λmin(C) = 0, goal obfuscation is total: the destination will
be disclosed when the actor eventually reaches it. Instead, if
λmin(C) > 0, obfuscation is only partial.

Once the strategy P has been decided by solving Eq. (2)
or Eq. (3), the actor implements a simple strategy execution
protocol: upon choosing a specific destination d, it picks one
of the paths in P that leads to d uniformly at random. The
actor can reuse its strategy multiple times to reach the same
or different destinations. If the observer knows only the set
of paths P in the strategy, it cannot hope to disambiguate
the actor’s destination at a distance greater than the upper
disclosing one.

In Sections 4 and 5, we analyze the optimization problems
(2) and (3) and propose algorithms for their solution in the
special case whenO = V , i.e. when all nodes are observable.
From the agent’s point of view, this is a worst case scenario.
In Section 6, however, we show that this assumption does
not entail any loss of generality, as we can always transform
a graphH with any number of unobservable nodes to a new
graph HO where all nodes are observable and that is equiv-
alent toH for the purpose of solving problems (2) and (3).

4 Path Covering Properties
We now undertake an in-depth study of the notion of upper
disclosing distance introduced in Definition 3. In particular,



we prove a characterization result of fundamental impor-
tance in constructing the algorithms to solve the optimiza-
tion problems in Eqs. (2) and (3). We recall our standing
assumption that O = V . We start with a pairwise relation
that is at the core of the concept of disclosing distance.
Definition 5. Given two paths γ1 and γ2 from o to D, we
say that γ2 covers γ1 at level λ ≥ 0 (and write γ2 →λ γ1) iff:
• δ(γ1) ≠ δ(γ2);
• λγ1({γ1, γ2}) ≤ λ
When both γ2 →λ γ1 and γ1 →λ γ2, we write γ2 ↔λ γ1.

Definition 5 has the following interpretation: when P en-
compasses only the two paths γ1 and γ2, if the agent fol-
lows path γ1, it will disclose its destination when it is within
distance λ from it. The following result clarifies how this
covering concept is connected with the disclosing distance.
Proposition 6. Let P be an (o,D)-connecting set of paths
and let γ ∈ P . Then, for every λ ≥ 0,

∃γ′ ∈ P ∶ γ′ →λ γ ⇔ λγ(P) ≤ λ
Proof ⇒: Let t ≥ 0 be such that γt−1 = γ′t−1 and γt ≠
γ′t. Then, it must hold W (γ∣lt) ≤ λ where l is the length
of γ. Given the definition of disclosing index, we have that
tγ(P) ≥ t and thus λγ(P) =W (γ∣ltγ(P)) ≤W (γ∣lt) ≤ λ.
⇐: Proven similarly, inverting the steps above.

The following result plays a crucial role in our theory and
in the design of the optimization algorithms. It says that a
set of paths can achieve a certain threshold λ for the upper
disclosing distance only if specific covering relationships in-
volving either pairs or triples of paths exist among them.
Theorem 7. Let P be an (o,D)-connecting set of paths and
let λ(P) ≤ λ. Then, for every γ ∈ P , at least one of the
following facts must hold true:

1. There exists γ′ ∈ P such that γ′ ↔λ γ;
2. There exist γ′, γ′′ ∈ P such that γ′′ ↔λ γ

′ →λ γ.
Proof The proof of this result is presented in Appendix A
at the end of the paper.

We now introduce some notation that is helpful to prove
the results that follow and to illustrate our algorithms. Given
destinations d, d1, d2 ∈ D and λ ≥ 0, we define the following
subsets:
• Nλ

d = {i ∈ V ∣ω(i, d) ≤ λ}, the neighborhood of d con-
sisting of all the nodes within distance λ from d;

• ∂Nλ
d = {i ∈ (V∖Nλ

d ) ∣∃j ∈ Nλ
d s.t. (i, j) ∈ E}, the bound-

ary of neighborhood Nλ
d : it consists of the nodes having

an edge leading into Nλ
d ;

• N
λ

d = Nλ
d ∪ ∂Nλ

d , the closed neighborhood of d obtained
by unioning Nλ

d and its boundary ∂Nλ
d ;

• N
λ

d1,d2 = N
λ

d1 ∩N
λ

d2 , N2,λ = ⋃
(d1,d2)∈D×D

N
λ

d1,d2 ;

• ∂̃N
λ

d = ∂Nλ
d ∖N2,λ with the convention that ∂̃N

λ

d = {o}
if the right hand side set is empty. It is the boundary of
neighborhood Nλ

d after removing the nodes in N2,λ.

Definition 8. Two distinct destinations d1 ≠ d2 are called
λ-interacting if N

λ

d1,d2 ≠ ∅.

We further define:

D2
λ ∶= {(d1, d2) ∈ D ×D ∣d1, d2 λ-interacting}
D1
λ ∶= {d ∈ D ∣∃d′ ∈ D ∣ (d, d′) ∈ D2

λ}
λ∗ = min{λ ≥ 0 ∣ D2

λ ≠ ∅}

We now illustrate these objects in a simple example.

Example 2. In Figure 2, we consider a 10 × 10 grid (4-
degree graph) with unitary weights (we do not report edges
among nodes for better visibility). We assume that there are
4 destinations: D = {d1, d2, d3, d4} and consider λ = 1.
The shaded areas represent the closed neighbors N

1

di for
i = 1, . . . ,4, while the area shown in a darker color repre-
sents the intersection N

1

d2,d3 . The parts of the closed neigh-
borhoods of d1 and d4 within the dashed perimeters are the
neighborhoods, respectively, N1

d1
and N1

d4
, while the parts

outside the dashed perimeters are the boundaries, ∂N1
d1

and
∂N1

d4
, respectively. Ignore the paths shown in the figures for

now. Note that d2 and d3 are 1-interacting and no other
pairs in the graph is 1-interacting. Hence, in this case,
D2

1 = {(d2, d3), (d3, d2)} and D1
1 = {d2, d3}. Since d2

and d3 are not 0-interacting, it follows thatD2
0 = ∅ and thus

λ∗ = 1.

As a first application of Theorem 7, we obtain the follow-
ing fundamental limitation on the disclosing distance that
the actor can achieve, regardless of the budget at its disposal.

Corollary 9. Let P be an (o,D)-connecting set of paths.
Then, λ(P) ≥ λ∗

Proof Fix λ = λ(P) and notice that Theorem 7 im-
plies the existence of a pair of paths γ′ and γ′′ in P of
length, respectively, l′ and l′′, such that γ′ ↔λ γ′′. Nec-
essarily, there exists h ≤ l′, l′′ such that γ′∣h0 = γ′′∣h0 and
W (γ′∣l′h+1), W (γ′′∣l′′h+1) ≤ λ. This implies that γ′h = γ′′h ∈
N
λ

δ(γ′) ∩N
λ

δ(γ′′). Therefore, D2
λ ≠ ∅ and, given the defini-

tion of λ∗, it follows that λ ≥ λ∗.

The construction proposed in the next section shows that
the inequality in Corollary 9 is sharp: the limit λ∗ can al-
ways be achieved if a sufficient budget is available.

5 Algorithms for Optimization
In this section, we propose an exact algorithm for the solu-
tion of the optimization problems in Eqs. (2) and (3). The
first step is the construction of a family of small sets of paths
that can achieve any disclosing distance λ ≥ λ∗.

5.1 A Canonical Construction
For every two nodes i, j ∈ V , we take γi,j , a path in G from
i to j of minimal weight (W (γi,j) = ω(i, j)). For nodes
i1, i2, . . . , is ∈ V , we define γi1,...,is = γi1,i2�⋯�γis−1,is
where � indicates path concatenation.

We now fix λ ≥ 0 and take the following families of paths:



• For every (d, d′) ∈ D2
λ and h ∈ Nλ

d,d′ , define P(h)d,d′ =
{γo,h,d, γo,h,d

′}. Choose any h∗ ∈ N
λ

d,d′ for which

C(P(h)d,d′) is minimal and put Pλd,d′ = P
(h∗)
d,d′ .

• For every d ∈ D and pair of destinations (d′, d′′) ∈ D2
λ

with d /∈ {d′, d′′}, for every h1 ∈ ∂̃Nλ

d and h2 ∈ Nλ

d′,d′′ ,

put P(h1,h2)
d,d′,d′′ = {γo,h1,d, γo,h1,h2,d

′
, γo,h1,h2,d

′′}. Choose

now any (d′∗, d′′∗) ∈ D2
λ, h∗1 ∈ ∂̃Nλ

d and h∗2 ∈ Nλ

d′,d′′ for

which C(P(h1,h2)
d,d′,d′′ ) is minimal and put Pλd = P(h

∗
1,h

∗
2)

d,d′∗,d′′∗
.

We emphasize that the construction of the sets Pλd,d′ and
Pλd is in general not unique as it depends on the selection
of minimal paths and other optimal (typically not unique)
choices. This aspect does not impact our future analysis.

Finally, we define:

Pλ = ⋃
(d,d′)∈D2

λ

Pλd,d′ ∪ ⋃
d∈D
Pλd (4)

Example 3. In Figure 2, we show two examples of our
canonical construction for the graph of Example 2. On the
left, we represent the optimal pair of paths P1

d2,d3
with the

bifurcation node h∗ ∈ N1

d2,d3 . On the right, we represent the

optimal triple of paths P1
d4

= P(h
∗
1,h

∗
2)

d4,d2,d3
with the two bifurca-

tion nodes h∗1 ∈ ∂N1
d4 = ∂̃N

1

d4 and h∗2 ∈ N
1

d2,d3 .

d4

o

d4

o

Figure 2: Two examples of the canonical construction.

The protection pattern involving pairs of paths (see Figure
2-left) can be thought as an implementation of a dissimula-
tion strategy. We can protect pairs of destinations that are
close to each other by choosing a path that initially is am-
biguously compatible with both and bifurcates only when it
gets sufficiently close to them. In this way, the two desti-
nations reciprocally protect themselves. On the other hand,
the protection pattern involving triples of paths (see Figure
2-right) can be seen as an implementation of a simulation
strategy. We can protect a destination that is isolated from
the others, by selecting a path that first goes unambiguously
in its direction and then, once close by, bifurcates with one
branch going to it and another branch moving to a pair of
other destinations. From the bifurcation, the path becomes
ambiguous. In this case, the pair of destinations protects the
isolated one. If pairs of sufficiently close destinations do
not exist, the required level of obfuscation is impossible to
obtain (see Corollary 9).

The next example shows the power of our technique with
respect to other approaches. Our construction is resistant to
replay attacks (potential observer’s learning attempts).

Example 4. Figure 3-left shows the complete set of paths
P1 for the graph of Example 2. Consider now the set of
paths P̃ that, starting from all possible paths γ from o to D
withC(γ) ≤ C(P1), individually maximizes the wcd-di(D)
for i = 1, . . . ,4 as defined by Keren et al. (2016b) (Figure
3-right). If the observer learns P̃ via multiple observations,
obfuscation becomes as low as wcd-d4(D) = 0. Instead,
by using the equally costed path set P1, wcd-d4(D) always
remains 4 regardless of the observer’s learning efforts.

d4

o

d3

d4

Figure 3: The set of paths P1 (left) and P̃ (right).

The following result illustrates the first basic properties of
the set Pλ that we have introduced.

Theorem 10. Let λ ≥ λ∗. Then, Pλ is (o,D)-connecting
and λ(Pλ) ≤ λ.

Proof Note first that, based on the definition of λ∗, we
have that D2

λ is not empty. From this fact and the definition
of Pλd , it follows that, for any destination d ∈ D, it holds that
Pλd ≠ ∅. This proves that Pλ is (o,D)-connecting. Finally,
the fact that λ(Pλ) ≤ λ follows from Proposition 6.

We now present the main result of this section, which
shows the universal role of the set of paths Pλ. The theorem
asserts that, given a set of paths whose upper disclosing dis-
tance is below a certain threshold λ, the same performance
with the same budget can be obtained by a suitable subset of
Pλ. Therefore, when searching for a set of paths of minimal
cost that attains a given threshold λ, we can carry out the
search within this Pλ.

Theorem 11. Given λ ≥ 0, for every set of paths P that
is (o,D)-connecting and such that λ(P) ≤ λ, there exists
Q ⊆ Pλ that is (o,D)-connecting and such that:

λ(Q) ≤ λ, C(Q) ≤ C(P)

Proof We construct Q as follows. For every γ ∈ P , we
determine a corresponding set of paths Qγ ⊆ Pλ, of car-
dinality 2 or 3, containing in particular a path γ̃ such that
δ(γ) = δ(γ̃). Qγ satisfies the following two properties:

1. λσ(Qγ) ≤ λ for every σ ∈ Qγ ;

2. C(Qγ) ≤ C(P).

We take Q as the union of these sets Qγ . By construction,
Q ⊆ Pλ is (o,D)-connecting, and, by property 2., C(Q) ≤



C(P). Because of property 1., for each σ ∈ Qγ , there exists
σ′ ∈ Qγ such that σ′ →λ σ. This implies that λσ(Q) ≤ λ
and shows that Q has the desired properties. We are thus
left with proving the existence of the setsQγ that satisfy the
above properties 1. and 2.. This is done via Lemma 7.

Suppose γ ∈ P with d = δ(γ) satisfies condition 1. of
Theorem 7, i.e. there exists γ′ ∈ P such that γ′ ↔λ γ.
In this case, we pick Qγ = Pλd,d′ where d′ = δ(γ′). Prop-
erty 1. is automatically verified. To prove property 2. let
t be such that γ′t = γt and γ′t+1 ≠ γt+1. Necessarily,
h = γ′t = γt ∈ N̄λ

d,d′ . By the definition of Pλd,d′ and the fact
that C(γo,h,d) ≤ C(γ) and C(γo,h,d′) ≤ C(γ′), it follows
that C(Pλd,d′) ≤ C({γo,h,d, γo,h,d′}) ≤ C(γ, γ′)} ≤ C(P).

Suppose now that condition 1. of Theorem 7 does not
hold for γ. Then, condition 2. must hold. Hence, there
exist γ′ ∈ P and γ′′ ∈ P such that γ′′ −λ γ′ →λ γ. We
put d′ = δ(γ′) and d′′ = δ(γ′′). If d /∈ {d′, d′′}, we set
Qγ = Pλd , otherwise we set Qγ = Pλd′,d′′ . Property 1. is
automatically verified in both cases. To prove property 2.,
we argue as follows. Let t < t′ be such that γ′t = γt and
γ′t+1 ≠ γt+1 and h′ = γ′′t

′ = γ′t
′

and γ′′t′+1 ≠ γ′t′+1. Nec-

essarily, h = γ′t = γt ∈ N
λ

d and h′ ∈ Nλ

d′,d′′ . There must
exist s ≤ t such that h̃ = γ′s = γs ∈ ∂Nλ

d . Note that
h̃ /∈ N2,λ, otherwise condition 1. of Lemma 7 would in-
stead hold true. If d /∈ {d′, d′′}, by the definition of Pλd and
the fact that C(γo,h,d) ≤ C(γ), C(γo,h̃,h′,d′) ≤ C(γ′), and
C(γo,h̃,h′,d′′) ≤ C(γ′′), it follows that

C(Pλd ) ≤ C({γo,h,d, γo,h̃,h′,d′ , γo,h̃,h′,d′′})
≤ C(γ, γ′, γ′′)} ≤ C(P)

If d ∈ {d′, d′′}, we repeat the same line of reason-
ing considering now the definition of Pλd′,d′′ and the

fact that C(γo,h′,d′) ≤ C(γo,h̃,h′,d′) and C(γo,h′,d′′) ≤
C(γo,h̃,h′,d′′). The proof is now complete.

Theorem 11 implies that, when searching for a minimum
of the problem in Eq. (2), we can restrict to subsets of Pλ.
Corollary 12. Given λ ≥ 0, there exists Q ⊆ Pλ that is
(o,D)-connecting, λ(Q) ≤ λ and

C(Q) = min
P (o,D) − conn.
λ(P) ≤ λ

C(P )

Proof Let P be any set that achieves the minimum in Eq.
(2). By applying Theorem 11, we find Q ⊆ Pλ, (o,D)-
connecting and such that λ(Q) ≤ λ and C(Q) ≤ C(P). Q
also achieves the minimum in Eq. (2).

Remark 13. We measure the obfuscation level by means
of the upper disclosing distance λ(P), which is calculated
considering the entire set of destinations. This is a global,
“worst case” index that does not take into consideration
the level of obfuscation achieved for the single destinations.
However, it is worth noting that our canonical construction
is also optimal for destination specific indexes, defined as:

λ(P, d) = max
γ∈P δ(γ)=d

λγ(P)

Indeed, it follows from the proof of Theorem 11 that the
set Q also satisfies λ(Q, d) ≤ λ(P, d) for every possible
destination d ∈ D.

5.2 Algorithms to Compute Cmin(λ) and λmin(C)
A minimal-cost (o,D)-connecting subset of Pλ can easily
be determined as follows. For every d ∈ D, first define Cpair

d

to be the minimal cost achievable among the sets Pλd,d′ con-
sidering all λ-interacting pairs to which d possibly belongs:

Cpair
d = min

d′ ∈D ∶

(d,d′) ∈D2
λ

C(Pλd,d′) (5)

If the set over which we calculate the minimum is empty, we
conventionally put Cpair

d = +∞. This happens if d /∈ D1
λ.

For every destination, we then define:

Pλopt
d = { P

λ
d,d′ if Cpair

d ≤ C(Pλd ), C(Pλd,d′) = C
pair
d

Pλd if Cpair
d > C(Pλd )

(6)
Pλopt
d is the set of paths in Pλ (either pairs or triples) that

guarantees the connection of o to d, maintains the disclosing
distance below λ and achieves the minimal possible cost.

Finally, we put:

Pλopt = ⋃
d∈D
Pλopt
d (7)

This is a set of paths that solves the problem in Eq. (2):

Corollary 14. C(Pλopt) = Cmin(λ)
Proof Note that, by construction, Pλopt is (o,D)-
connecting and λ(Pλopt) ≤ λ. Consider now any subset
Q ⊆ Pλ that is (o,D)-connecting and satisfies λ(Q) ≤ λ.
We show that C(Pλopt) ≤ C(Q). Fix d ∈ D and consider
any γ ∈ Q such that δ(γ) = d. If there exists γ′ ∈ Q with
δ(γ′) = d′ such that γ′ ↔λ γ, then, given the definition of
Pλd,d′ , we have that:

C(Pλopt
d ) ≤ Cpair

d ≤ C(Pλd,d′) ≤ C({γ, γ′}) ≤ C(Q)

If, instead, such a γ′ ∈ Q does not exist, there must exist, in
virtue of Theorem 7, two paths γ′, γ′′ ∈ Q such that γ′′ ↔λ

γ′ →λ γ. Given how Pλd has been defined, it holds that:

C(Pλopt
d ) ≤ C(Pλd ) ≤ C({γ, γ′ γ′′} ≤ C(Q)

We have thus proven that C(Pλopt) ≤ C(Q) for every Q ⊆
Pλ that is (o,D)-connecting and satisfies λ(Q) ≤ λ. By
Corollary 12, the proof is complete.

We now make some comments on this construction.

1. Notice first that, when there is only one λ-interacting pair,
Pλopt coincides with Pλ. For the 10 × 10 grid analyzed
in Example 2, the set of paths represented in Figure 3 is
therefore, in that case, the optimal P1opt.

2. In the general case, the cardinality of Pλopt satisfies the
bound ∣Pλopt∣ ≤ 3∣D∣.



3. Even when λ is so large that all destinations belong to a
λ-interacting pair, namely D = D1

λ, it is not sufficient to
only use the pair-type subsets Pλd,d′ for the construction
of the optimal Pλopt. An example is reported in Figure
4. The graph is the grid graph constrained outside of the
gray, unpassable areas. On the left, we represent P2

d3,d4
.

This choice is not optimal either for d3 or for d4. On the
right, we represent the optimal choices P2

d3
and P2

d4
.

d1

d2

d3 d4

d5

d6

o

d1

d2

d3 d4

d5

d6

o

Figure 4: Left: Non-optimal choice for d3 and for d4. Right: Opti-
mal choices P2

d3
and P2

d4
.

In a practical implementation of this algorithm (Algo-
rithm 1), the construction of the optimal set of paths Pλopt

can be done directly, without constructing Pλ first.

Algorithm 1: Optimal Calculation of Pλopt

Input: V,D, o,λ
Output: Pλopt

1 BestPaths = ∅;

2 P
λopt

= ∅;
3 foreach d ∈D do
4 if ω(o, d) ≤ λ then
5 Add γo,d toPλ;
6 BestCost(d) = 1.0;
7 else
8 BestCost(d) =∞;
9 foreach d ∈D do

10 if ω(o, d) ≤ λ then
11 continue;
12 foreach d′ ∈D1

λ s.t. d ≠ d
′ do

13 foreach h ∈N
λ
d,d′ do

14 ifBestCost(d) > C(P(h)
d,d′

) then

15 BestCost(d) = C(P
(h)
d,d′

) ;

16 BestPaths(d) = ∀γ ∈ P
(h)
d,d′

;

17 foreach d ∈D do
18 if ω(o, d) ≤ λ then
19 continue;
20 foreach (d′, d′′) ∈D2

λ s.t. d ≠ d
′, d′′ do

21 foreach h1 ∈ ∂̃N
λ
d do

22 foreach h2 ∈N
λ
d′,d′′ do

23 ifBestCost(d) > C(P(h1,h2)
d,d′,d′′

) then

24 BestCost(d) = C(P
(h1,h2)
d,d′,d′′

) ;

25 BestPaths(d) = ∀γ ∈ P
(h1,h2)
d,d′,d′′

;

26 foreach γ ∈ BestPaths do
27 if γ /∈ Pλopt then
28 Add γ toPλopt;

29 returnPλopt;

The algorithm works in three steps:
1. For destinations d such that ω(o, d) ≤ λ, the algorithm

putsPλopt
d = {γo,d} without explicitly constructing a pair

or triple covering d, as any other path to another destina-
tion will do that (lines 3 to 6);

2. For destinations d ∈ D1
λ, it constructs the minimum-cost

pair covering Pλd,d′ (lines 9 to 16);

3. For destinations d ∈ D (including those already consid-
ered in 2.), it constructs the minimum-cost pair or triple
covering Pλopt

d (lines 17 to 25).
The computation complexity of this algorithm is dom-

inated by the computations of the minimal paths be-
tween the origin and the bifurcation nodes, between the
different bifurcation nodes, and between the bifurcation
nodes and the destinations. The number of such com-
putations is upper bounded by ∣D∣3f(λ) where: f(λ) =
5 maxd∈D [∣∂Nλ

d ∣ ⋅ ∣N̄λ
d ∣]. This is obtained considering the

worst case scenario where, to construct Pλopt
d , all possi-

ble pairs P(h)d,d′ (with d′ ≠ d) and triples P(h1,h2)
d,d′,d′′ (with

d′, d′′ ≠ d) need to be computed, considering that the num-
ber of minimal paths in each of them is at most 5.

If we call g(n,m) the worst complexity of a minimal path
search in a graph of n nodes and m edges, we can con-
clude that the complexity of our algorithm is bounded by:
∣D∣3f(λ)g(n,m). Note that the size of the graph only ap-
pears in the term g(n,m): if an optimized implementation
of the Dijkstra algorithm is employed for the minimal-path
search (as we did in our experiments), we have g(n,m) =
O(m + n lnn). The other two key parameters are ∣D∣, the
number of destinations, and λ, the upper disclosing distance
threshold. With respect to ∣D∣, the complexity is always cu-
bic, while, with respect to λ, it is determined by the topo-
logical properties of the graph at hand. For subgraphs of the
grids, it holds f(λ) = O(λ3).

We now briefly tackle the optimization problem dual to
the one of Eq. 2 considered so far, which is given in Eq. (3)
and that can be reformulated as follows:

λmin(C) = min{λ ∣Cmin(λ) ≤ C}
Although there are direct methods to address this problem,
we solve it here by exploiting the solution found for Eq. 2.
In particular, our goal is to produce a graph of cost C versus
λmin(C) that can be consulted to find the best possible λ
that can be achieved given a cost. We proceed as follows.
We start from λ = λ∗, compute Cmax = Cmin(λ∗) and put
λmin(Cmax) = λ∗. We then take the next λ > λ∗ such that
C = Cmin(λ) < Cmax. We put λmin(C) = λ. We iterate in
such a way until the cost becomes equal to 1 or λ hits the
higher value calculated in solving Eq. 2. We obtain a step
function for λmin(C), where each cost interval corresponds
to the smallest λ that can be achieved by incurring that cost.

6 Partial observability
This section is devoted to the partial observability case, i.e.
when O ≠ V . We show that we can always transform the
original graph with unobservable nodes to a new graph with
observable nodes only and that the two graphs are equiva-
lent with respect to solving the optimization problems (2)
and (3). Hence, we can apply the theory and algorithms de-
veloped above for the fully observable case to the partially
observable case. Below, we describe this important transfor-
mation step.
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σ ∈ P
O tσ(P

O
) λσ(P

O
)

oGd1 1 1
oFd2 2 0
oFd3 2 0
oFCd4 2 1
oCd4 1 1

Table 2: The set PO with dis-
closing indices and distances.

We first note that, because of the way the disclosing dis-
tances have been defined, it does not entail any loss of gen-
erality to assume that {o} ∪ D ⊆ O. We now define a new
graph HO = (O,F) where the edge set F is defined as
follows. Given a pair of nodes v,w ∈ O, consider the set
of paths Γv,w that connect v to w in H and do not pass
through observable nodes at the intermediate steps. Then,
F = {(v,w) ∈ O ×O ∣Γv,w ≠ ∅}. We also define a weight
WO on this new graph, by putting, for every (v,w) ∈ F ,
WO
vw = min{W (γ) ∣γ ∈ Γv,w}. For future use, for every

(v,w) ∈ F , we fix a priori a path γv,w ∈ Γv,w of minimal
length, i.e. such that W (γv,w) =WO

vw.
We can associate a path γO on the new graph HO to

every path γ connecting the origin o to a destination d in
the original graph H by simply deleting all nodes that are
not in O. γO still connects o to d in HO. Conversely,
given any path σ = (σ0, . . . , σm) connecting the origin o
to a destination d in the new graph HO, we associate to σ
a path σV that connects o to d in the old graph H defined
as follows: σV = γσ0,σ1�γσ1,σ2� . . .�γσm−1,σm . Note that
(σV)O = σ but in general (γO)V ≠ γ. Given the sets of
paths P and Q from o to D in, respectively, H and HO, we
put PO = {γO ∣γ ∈ P} and QV = {σV ∣γ ∈ Q}.

Example 5. Consider the graph H of Example 1 with O =
{o,C,F,G,H}∪D, depicted on the right in Fig. 1. P is the
set of all minimum distance paths in H from o to D whose
elements were listed on the right in Table 1. In Fig. 5, we
depict the graph HO and, in Table 2, we give the list of
elements in PO together with their disclosing indices and
distances. Note that λ(PO) = 1.

The following result asserts that our optimization prob-
lems (2) and (3) on H with partial observability can equiva-
lently be solved on the transformedHO where observability
is full. Its proof is postponed to Appendix B.

Theorem 15. The optimization problems (2) and (3) attain
the same minimum on the two graphsH andHO. Also,

P minimum for H ⇒ PO minimum for HO

Q minimum for HO ⇒ QV minimum for H
(8)

This result states that, from the theoretical point of view, it
does not entail any loss of generality to assume that O = V ,
i.e. that all nodes are observable.

6.1 Algorithm to ComputeHO
In what follows, we propose an algorithmic construction of
the graphHO = (O,F) and the weight matrix WO.

The algorithm works in three steps:

1. It puts in F all edges (v,w) in the original graph H that
connect pairs of nodes inO and temporarily give them the
same weight as they had inH (lines 4 to 8);

2. For each node v ∈ O, it constructs a subgraph of H by
trimming all outgoing edges from nodes inO except those
edges from v to nodes in V ∖O. Then, by using Dijkstra’s
algorithm, the algorithm finds the minimum cost paths
from v to all other reachable nodes (lines 10 to 16);

3. When there is a path from v to some node w ∈ O, it puts
(v,w) in F and updates the weight matrixW if the path’s
cost is inferior to the cost of the direct edge (v,w), if it
exists (lines 17 to 20).

Algorithm 2: Calculation ofHO
Input:H = (O,E),W

Output:HO = (O,F),WO

1 TempEdges = ∅;
2 TempOrigins = ∅;
3 ObsToUnobsEdges = ∅;
4 foreach (v,w) ∈ E do
5 if v ∈O then
6 ifw ∈O then
7 F ← (v,w);

8 WO
vw =Wvw ;

9 else
10 ObsToUnobsEdges← (v,w);
11 TempOrigins← v

12 else
13 TempEdges← (v,w)

14 foreach v ∈ TempOrigins do
15 foreach (v,w) ∈ ObsToUnobsEdges do
16 TempEdges← (v,w);
17 Γ =Dijkstra(v,TempEdges);
18 foreach γ = (γ0, . . . , γl) ∈ Γ do
19 if γl ∈O then
20 ifW (γ) <Wvγl then
21 F ← (v,γl);

22 WO
vγl

=W (γ);

23 foreach (v,w) ∈ ObsToUnobsEdges do
24 TempEdges ∖ (v,w);

7 Experiments
We performed a large set of experiments. A first batch of ex-
periments was conducted onN ×N square grid graphs (with
N equal to 50, 100, 150 and 200) with each node having de-
gree 4 (expect for boundaries nodes). For each N , we ran-
domly selected origin and destinations (with ∣D∣ equal to 4,
6, 8, 10, 12). For each combination of N and D, we run 100
experiments. A second batch was performed on city maps
from the ‘Moving-AI’ 2D pathfinding benchmarks (Sturte-
vant 2012). The maps are digitalizations of fragments of the
cities (e.g. Shanghai) and are represented as 256×256 square
grid graphs with obstacles and each node having degree 8
(except for boundaries nodes). For each city, we performed
100 experiments for 4,6,8,10 and 12 random destinations.
In all cases, the edges have unit cost. We used a server with
8 Intel E5-2583 cores running at 2.10 GHz to perform the
experiments. The memory limit by process is 8 GBs.
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For both groups of problems, we performed three series
of experiments. The first series (Figure 6) focuses on how
the runtime (in secs) of Algorithm 1 changes as a function of
the graph size (for grids) or configuration (for cities) and the
number of destinations in the full observability case. Run-
time for each setting has been averaged over 100 runs. Both
figures show that our algorithm is very fast even on very
large problems, with a maximum average runtime below 4
minutes for 200 × 200 square grids and 12 destinations and
around 6 minutes for Denver with 12 destinations.

The second series of experiments studies how the cost
Cmin(λ) changes when we vary the upper disclosing dis-
tance λ. As an example, Figure 7-left shows results for an
instance of a grid 100×100 with 8 destinations, and Figure 7-
right shows results for an instance of Shanghai with 12 des-
tinations. We indicate with PO the percentage of observable
nodes. We randomly select the number of observable nodes,
and each data point is the average of 10 randomized selec-
tions with different seeds. We see that a dramatic drop in the

cost happens when λ approaches a certain threshold value.
This happens when new bifurcations, cheaper to reach, can
be used to cover the different destinations. The figure also
shows that the more unobservable nodes, the cheapest is for
the actor to obfuscate. This is unsurprising: unobservable
nodes allow the actor to reach destinations via paths whose
λ would be higher if all nodes were observable.

The third series of experiments looks at how the algorithm
scales with increasing λ. Figure 8-left shows results for an
instance of a grid 100 × 100 with 8 destinations, and Fig-
ure 8-right shows results for an instance of Shanghai with
12 destinations. It is apparent that the algorithm scales well
in λ. With total observability, it runs in around 400 seconds
for the biggest λ for the 100x100 grid and around 30 minutes
for Shanghai. In most of the cases, the lower the PO rate, the
higher the runtime. This is due to the fact that, despite the re-
duction in size of the observable graphHO, its construction
becomes increasingly more expensive as the Dijkstra search
need to be performed on graphs with an increased number



of edges (Algorithm 2, line 17).

8 Conclusions and Future Work
In this paper, we rigorously define GO in terms of two opti-
mization problems that allow the actor to balance its avail-
able resources with its desired level of obfuscatory behavior.
We consider a specific case of partial observability: when
the actor takes an action, the observer either fully observes
the resulting state or not at all. This case is particularly un-
favorable to the actor as the observer does not need to reason
within a belief search space and it is a natural assumption in
path-planning domains. In contrast with existing methods,
we present algorithms to tackle this case and offer the actor
solutions that are exact and resilient to replay attacks by the
observer. Building on this foundational work, we will tackle
domains with different observation functions in future work.

Appendix A: Proof of Theorem 7
We first note that the covering relation γ1 →λ γ2 ( Definition
5) naturally leads to a directed graph structure on the set of
paths from o toD, which we denote with the symbolHP(λ).
The graphHP (λ) is monotonically increasing in λ.

We start with some topological properties of the graph
HP(λ). The first is a sort of transitivity for the relation←λ.
Lemma 16. Let P be an (o,D)-connecting set of paths and
let λ > 0. Suppose that γ1, . . . , γn ∈ P are such that

1. γ1 ←λ γ2 ←λ ⋯←λ γn
2. γk /→λ γk+1 for any k = 1, . . . , n − 2

3. δ(γ1) ≠ δ(γn)
Then, γ1 ←λ γn
Proof Let lk be the length of the path γk. Assumptions 1.
and 2. guarantee the existence of points sk for k = 1, . . . , n−
1, such that

(a) γk ∣sk0 = γk+1∣sk0 for every k ≤ n − 1

(b) W (γk ∣lksk+1) ≤ λ for every k ≤ n − 1

(c) W (γk+1∣lk+1sk+1) > λ for every k ≤ n − 2

From (b) and (c), it follows that sk < sk+1 for every k =
1, . . . , n − 2. This implies that γ1∣s10 = γ2∣s10 = ⋯ = γn∣s10
Using now Assumption 3., we deduce that γ1 ←λ γn.

Lemma 17. Let P be an (o,D)-connecting set of paths,
λ > 0 and γ1, . . . , γn ∈ P be such that

γ1 ←λ γ2 ←λ ⋯←λ γn ←λ γ1
Then, at least one of the first n − 1 relations is undirected,
namely γk →λ γk+1 for some k = 1, . . . , n − 1.
Proof By contradiction, if γk /→λ γk+1 for all k = 1, . . . n−
1, applying Lemma 16 to the subsequence starting from γ2,
we obtain that γ2 ←λ γ1. This implies the contradictory fact
that γ1 ↔λ γ2.

Proof [of Theorem 7] Put γ1 = γ and note first that, because
of Proposition 6, there exists γ2 ∈ P such that γ2 →λγ1,P
γ1. Since λ ≥ λ(P) ≥ λγ1,P , we also have that γ2 →λ
γ1. In other terms, in the directed graph HP , every node

admits at least an incoming edge. In view of Lemma 17 and
considering the fact that P is finite, starting from γ1 = γ, it is
always possible to find a sequence of paths γ2, . . . , γs, γs+1
such that γ1 = γ ←λ γ2 ←λ ⋯ ←λ γs ↔λ γs+1 where we
are assuming that the step s is the first at which we meet an
undirected edge, namely γk /→λ γk+1 for any k = 1, . . . , s −
1. If s = 1, then we are in the situation 1. If s > 1 and
δ(γs) ≠ δ(γ1), the assumptions of Lemma 16 are satisfied,
and we deduce that γ ←λ γs ↔λ γs+1. If instead δ(γs) =
δ(γ1), necessarily it must hold that δ(γs+1) ≠ δ(γ1) and
applying again Lemma 16 on the entire sequence up to γs+1
we deduce this time that γ ←λ γs+1 ↔λ γs. In both cases,
we have proven condition 2.

Appendix B: Proof of Theorem 15
Proposition 18. Given the set of paths P and Q from o to
D in, respectively,H andHO, the following relations hold:

1. C(PO) ≤ C(P), C(QV) = C(Q)
2. λ(PO) ≤ λ(P), λ(QV) = λ(Q)
Proof By construction, for every γ ∈ P and σ ∈ Q, it holds
WO(γO) ≤W (γ) and WO(σ) =W (σV). This yields 1.

We now prove the first inequality in item 2. Consider
a path γ ∈ P of length l and put t = tγ(P). There ex-
ists γ′ ∈ P such that δ(γ) ≠ δ(γ′), γt−1 =O γ′t−1 and,
necessarily, γt ∈ O. Consider γO = (γ0, γk1 , . . . , γkm)
and let s ∈ {1, . . . ,m} be such that ks = t. Then,
(γO)s−1 = (γ′O)s−1 and thus tγO(PO) ≥ s. This implies
λγO(PO) ≤ WO(γOs , . . . , γOm)≤ W (γt, . . . , γl) = λγ(P)
This yields λ(PO) ≤ λ(P). We now prove the second re-
lation in item 2. Consider a path σ ∈ Q of length l and
put t = tσ(PO). There exists σ′ ∈ Q such that δ(σ) ≠
δ(σ′), σt−1 = σ′t−1 and σt ≠ σ′t. Let s be the length of
the prefix γσ0,σ1�γσ1,σ2� . . .�γσt−1,σt . Since (σV)s−1 =O
(σ′V)s−1, it follows that tσV (QV) ≥ s and, thus, λσV (QV) ≤
W (γσt,σt+1� . . .�γσl−1,σl) = WO(σt, . . . , σl) = λσ(Q).
This yields λ(QV) ≤ λ(Q). To show that the equality ac-
tually holds, note that from the first relation proven and the
fact that Q = (Q)V)O, we have that λ(Q) = λ((Q)V)O) ≤
λ(QV). The proof is now complete.

Proof [of Theorem 15] Consider the problem (2) and put
Cmin(λ) and COmin(λ) the minimum attained for the two
graphs H and HO, respectively. For a fixed λ, suppose P is
an (o,D)-connecting set of paths in H such that λ(P) ≤ λ
and it reaches the minimum of (2), i.e. Cmin(λ) = C(P).
Then, PO is an (o,D)-connecting set of paths in HO and
λ(PO) ≤ λ due to item 2. of Proposition 18. Also, due to
item 1. of Proposition 18,C(PO) ≤ C(P) = Cmin(λ). This
implies that COmin(λ) ≤ Cmin(λ). Arguing on the dual
transformation Q → QV , we instead obtain that Cmin(λ) ≤
COmin(λ). This proves equality and the validity of impli-
cations (8). A similar proof works for problem (3).
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