
 

Feeder-Level  Deep Learning-based Photovoltaic 

Penetration Estimation Scheme 

Abstract—The increasing penetration of renewable energy to 

the distribution grids, especially photovoltaic (PV), helps 

smooth out supply and demand, and reduces greenhouse gas 

emissions. However, the PV generation is behind-the-meter, and 

cannot be detected by the smart meter. To address this problem, 

a hybrid regression multi-layer perceptron (MLP) deep neural 

network (DNN) model is designed to separate the PV generation 

from the overall grid measurements. The model utilizes grid 

measurements, weather-related measurements, satellite-driven 

irradiance measurements, and temporal information as inputs 

to evaluate the PV generation in real-time. We also examine the 

performance of the model with different levels of PV 

penetration. We show the proposed model reduces the mean 

square error by 49% compared to single variable input models. 

Keywords—deep neural network, photovoltaic penetration, 

online system, energy disaggregation, power system monitoring  

I. INTRODUCTION 

Simultaneous with the development of the smart grid and 

microgrid, the penetration of renewable and embedded 

energy generation in the grid increases,  which provides great 

challenges to grid operators to manage and plan the 
distributed network. Above all other renewable energy 

generation, the capacity of photovoltaic (PV) increased 1.4 

times from 2014 to 2019, from  5.4 GW to over 13 GW in 

June 2019 [1]. The large penetration of  PV influences the 

steady-state stability and transient stability in the power 

system [2]. However, most PV generation is behind-the-

meter. The measurements recorded by the smart meter are the 

aggregate of load and power generated by the PV, which 

means the generated PV power cannot be detected by the 

utility. The grid operator can neither make an accurate 

forecast of load nor PV generation. Moreover, lacking 

visibility prevents the grid operators from implementing 
essential management to minimize the stability problems in 

time. Hence, an algorithm to disaggregate the PV generation 

from the grid measurement is required. 

The target of the project, PV penetration estimation (also 

named PV energy disaggregation), is to estimate the PV 

generation in a small geographic area (normally the feeder of 

the distribution line) from the grid measurements at the 

feeder-level by the smart meter. Both household-level and 

feeder-level methods to separate the PV generation are 

discussed in the literature [3-6]. Unsupervised learning 

approaches, including feature extraction based methods [5, 
7], SunDance [4]; Supervised learning approaches, including 

Contextually Supervised Source Separation (CSSS) [8], 

linear regression [9]; and hybrid approach [3] are proposed. 

The unsupervised learning approaches do not require the 

access to historical records of PV generation, but more 

features (such as irradiance, weather) are required to build 

linear/ nonlinear correlation between the PV output and these 

features. In contrast, the supervised learning approaches 

require fewer features as input but need historical  grid 

measurements to train their models. 

Moreover, PV generation forecasting approaches are 

available in many works [10-16], especially these works, 

based on machine learning/ deep learning [13-17]. These 

works use historical PV generation, as well as satellite-driven 

measurement (e.g. Global Horizontal Irradiance (GHI), 

Direct Normal Irradiance (DNI), Diffuse Horizontal 

Irradiance (DHI)), and weather measurement (e.g. 
temperature, humidity) to forecast the PV generation both 

short-term (hours) and long-term (days to one month). The 

above works provide enriched theoretical foundations to 

construct a deep neural network (DNN) model to separate PV 

generation from the grid measurement.  

Feeder-level energy disaggregation techniques are 

introduced in [18-21]. A shallow neural network is proposed 

by Xu et al. and Asres et al. respectively [19, 21]. The 

synthetic load components data is generated from ZIP/ 

exponential load models, so the overall load, as well as the 

portion of each component, are known to researchers. Then a 
neural network is trained to disaggregate the overall power 

consumption into individual components. This method is 

straight forward in the experiment, however, since the real 

power system is dynamic and grid components are complex; 

as such it is difficult to implement the algorithm with real-

world measurements. Particularly relevant to our work,  

Ledva et al. [20] proposed an online learning method based 

on real-world smart meter measurements. Household-level 

smart meter measurements provided by the Pecan Street 

Dataport [22] are aggregated to build a feeder-level load. 

Then an online learning algorithm, Dynamic Fixed Share 

(DFS) is adopted to perform energy disaggregation.  
 To address the problem discussed above, we propose a 

hybrid regression multi-layer perceptron (MLP) DNN model 

to estimate the PV penetration in real-time. This work learns 

from the hybrid model proposed in [12], and deep learning 

forecasting model proposed in [15], and energy 

disaggregation algorithm proposed in  [20]. The model 

disaggregates the overall power consumption into PV 

generation and load power consumption. Rather than using 

grid measurements as input only, satellite-driven irradiance 

data, weather data, temporal information, and grid 

measurements are also adopted as inputs. 

 The contributions of this paper are as follows: 

 We propose a deep neural network model to evaluate 
the PV penetration rate on a real-time basis. 

 We analyze the variables (satellite-driven irradiance 
data, weather-related variables, temporal variables, 
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and grid measurements) that influence the accuracy of 
the model. 

 We examine the accuracy of the model under different 
PV penetration rates.  

II. METHODOLOGY 

A. Problem Identification 

The grid power measured by the feeder-level smart meter 

����� , is the aggregation of the power load �����  and the PV 

generation �	
, see (1). To obtain the real value of the load 

consumption, the PV generation should be estimated at first. 

Normally, the PV generation is behind the meter, and cannot 

be detected by the smart meter.  

������� � ������� � �	
��   (1) 

PV penetration is defined as follows: 

�� ���������� � 	��� 	
 ����
	��� ���� ������ 	����   (2) 

Like PV energy forecasting, the PV penetration 

estimation focused on estimating the generation of PV in a 

targeted area. However, these two research problems have 

two differences: 

 The input of the PV generation forecasting is the 
historical data of PV generation at the target 
geographic area. While the PV penetration estimation 
requires the measurements of the grid. 

 The PV penetration estimation is evaluated in real-time 
for grid operation and management purposes, while the 
PV generation forecasting task is to estimate the future 
generation.  

B. Input Features 

The input variables are chosen from four datasets that are 
related to the generation of solar energy, which are satellite-
driven irradiance data, weather-related measurement data, 
feeder-level power measurement data, and temporal data. The 
detailed description is shown as follows: 

1) Grid Measurement: By accessing the grid 

measurements provided by the feeder-level smart meter, 

features such as active/ reactive power, voltage, current are 

collected. In this paper, active power � ���  is chosen as the 

grid measurement variable.  

2) Satellite-driven Irradiance Features: Satellite-driven 

data includes GHI, DNI, DHI.  

a) GHI: The total amount of shortwave radiation 

received from above by a surface horizontal to the ground.  

!"# �  $%#&�'�( )  $"#    (3) 

b) DNI: Amount of solar radiation received per unit 

area by a surface that is always held perpendicular (or 

normal) to the rays that come in a straight line from the 

direction of the sun at its current position in the sky. 

c) DHI:  The amount of radiation received per unit area 

by a surface (not subject to any shade or shadow) that does 

not arrive on a direct path from the sun, but has been scattered 

by molecules and particles in the atmosphere and comes 

equally from all directions.  

�* � +#�,����,�-&�'�90 � ( '��0 &�'�1 � 2 (4-a) 

) '���90 � ( &�'03   (4-b)  

Where ( is the sun’s zenith angle above, �90 � (  is the 

sun’s elevation angle, 2 is the sun’s orientation angle, 0 is 

the solar tilt angle, and 1 is the solar module’s azimuth angle. 

Solar tilt angle: 0° when lying flat on the ground, 90° when 

vertical; sun’s zenith angle: 0°  when the sun is directly 

overhead, 90°  when sunrise or sunset; solar module’s 

orientation angle: 0°  when direct north, 90°  when direct 

south. 

5	
,� � 5�,� ) #	
,�
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Where 5	
,� is the temperature of the solar module, 5�,�  is 

the ambient air temperature, #	
,� is the solar irradiance that 

is striking the solar module, %LMN is the nominal operating 

cell temperature, and 48℃ is selected as a typical value. 

3) Temporal-related Features: the temporal variables 

include the number of the hour of the day H, the month of the 

year M. The heatmap shown in Fig.1 presents the PV outputs 

throughout the year. It is observed that both the hour of the 

day and the month of the year influence the PV generation. 

Normally, the maximum output powers are generated 

between 10 am and 15 pm, and between May to July. 

4) Weather-related Features: the weather-related 

measurements include temperature T, humidity U, weather 

description (e.g. sunny, rainy, snowy, cloudy) D.  

To summarize, all features can be divided into numerical 

variables N and categorical variables C.  The numerical 

variables N is: 

RS � -� ���,�  , 5�  , T�  3    (7) 

A categorical variable is a category or type. Although 

some categorical variables are recorded as a number, they do 

not have numerical meaning, such as month and hour. Before 

feeding the data to the DNN model, all categorical variables 

should be converted to numerical forms via one-hot encoding. 

A new binary variable is used to represent the original variable 

[23]. In this paper, categorical variable matrix C contains: 

US � -$�  , "� , V�  3    (8) 

By implementing one-hot encoding, the variables are 

transferred to: 

USW � XL�US    (9) 

where XL  is the one-hot encoding function, and USW is the 

one-hot encoding matrix. Hence, the overall input matrix X 

is shown as follow: 

 

Fig. 1. Heatmap of PV generation thorugh the year. 



 

 YS � -USW, RS3    (10)  

C. PV Penetration Estimation Framework 

 In this section, a regression MLP DNN model is designed 

to estimate the PV penetration. The DNN model contains one 

input layer, one output layer, and three hidden layers. Each 

layer contains a few neurons, and each neuron contains bias 

and an activation function [24]. The researchers would 
choose different activation functions for different tasks (e.g. 

ReLU, Tanh for nonlinear regression, SoftMax for 

classification task) The target of the model is to estimate the 

PV penetration and the real load, see Fig. 2. Hence, the output 

matrix Y can be expressed as: 

Z � -�	
  , �����3   (11) 

The hidden layers, which are mathematical functions 

perform a nonlinear transformation to the inputs. An MLP-

DNN has two steps: forward propagation and 

backpropagation [24]. 

1) Forward propagation: the input layer obtains the 

inputs and propagates the information through hidden layers 

and finally produce outputs. The mathematical expression of 

the MLP-DNN model is: 

Z[ � ∅7�∅7;E�⋯ ∅E�Y, ^_, &E, ^R;_, &7;E, ^R , &7 (12) 

where ∅� is the activation function of the ith layer, and ^� 
and &� is the weight matrix and bias of the ith layer. A loss 

function is adopted to measure the error between the ground 

truth output and the output generated by the model. Normally, 

a mean square error (MSE) is used as a loss function: 

`�a; Y, Z � E
, ∑ �Zd � Z<,�eE     (13) 

where a  is the matrix of all model parameters, including 

weights and bias. Referring to [9], a Taxicab norm (ℓE norm) 

is added into the loss function to obtain a sparse model. The 

objectives of the ℓE norm in this model are two aspects: (1) 
reduce the overfitting of the model; (2) extract features from 

the inputs. Hence, the final cost function becomes: g̀�a; Y, Z � `�a; Y, Z ) 2‖a‖E �2 ∈ -0, )∞ (14) 

where 2 is the hyperparameter that reflects the regularization 

weight. 

2) Backpropagation: Backpropagation is used to update 

the model parameters generated in forward propagation 

referring to the loss function, the direction is from outputs to 

inputs [24]. The gradients of the model parameters are 

calculated: 

k ← ∇a g̀�a; Y, Z � ∇^`�a; Y, Z ) 2'�k��a (15) 
Then the parameters are updated via the gradient direction 

with a learning rate n: 

a∗ ← a � n∇a g̀�a; Y, Z    (16) 

Further hyperparameters in the DNN model are illustrated 

in Table I. 

III. EXPERIMENTS AND RESULTS 

A. Dataset  

Pecan Street Dataport [22] is used as the dataset to train 
the proposed model. The dataset contains nearly one 

thousand household-level power consumption in the last five 

years with an interval resolution of 15 minutes. The 

household-level measurements are added together to 

construct a synthetic feeder model. In this paper, 75 houses 

are aggregated to build a feeder with a capacity of 100 kW 

during Jan 2018 and  Dec 2018 in Austin, Texas, US. The PV 

penetration rate of the feeder is adjusted via adding or 

deleting houses with PV installed to match the requirement. 

The irradiance measurements and weather data at the same 

location are obtained from the National Climatic Data Center 
(NCDC) [25].  

B. Software& Hardware 

The simulation and computation are implemented on a 

Dell laptop equipped with Core i7-7700HQ CPU, NVIDIA 

GTX 1060 GPU, and 8GB RAM. The deep learning 

algorithm is run on Python 3.6, the TensorFlow framework is 
adopted to train the DNN model. 

C. Error Metrics 

In this paper, two error metrics are adopted to measure the 

errors between the ground truth and estimated values, which 

are Root Mean Squared Error (RMSE) and Normalized 

RMSE (nRMSE): 

1) Root Mean Squared Error (RMSE) 

pVqr � s∑ �	tBC,D;	BC,D:Duv
N    (17) 

2) Normalized RMSE（nRMSE） 

�pVqr � wxyz
	{|}~�

    (18) 

D. Case Study 

Model 1 Grid Measurements-only Approach: in this 

model, only the feeder-level grid measurement � ���  is 

considered as the input of the DNN model.  

.

.

.

.

.

.

.

.

.

Inputs Feature extraction and learning Outputs

Hidden Layers  

Fig. 2. MLP-DNN PV penetration estimation scheme . 

TABLE I.  HYPERPARAMETERS OF THE MODEL 

Hyperparameters  Value Description  

Learning rate n 0.05 
The steps to adjust ( 

according to errors. 

Hidden layers 

number 
3 

The total number of hidden 

layers. 

Batch size B 128 

The number of training 

examples utilized in one 

iteration. 

Activation function 

for hidden layers  
ReLU Xw��� � max -0, z3.  

Activation function 

for hidden layers 
ReLU Positive Output 

Epoch number 100 
One cycle through the full 

training dataset. 

Loss function MSE Optimize the model 

2 0.01 
Reduce overfitting and 

extract features 

Dropout 0.5 Reduce overfitting 

 



Model 2 Satellite-driven Irradiance Data -only 

Approach: in this model, only the irradiance data 

$"#, $%#, !"#  are considered as the input of the DNN 

model.  
Model 3 Hybrid Data-Driven Approach: in this case, all 

features are described in Section II. C is adopted as inputs, 

including grid measurements, irradiance data, temporal data, 

as well as weather-related measurements.  

We apply all three models to five PV penetration rate 

data (5%, 10%, 20%, 40%, 70%) respectively. Fig. 4 and 

Fig.5 show the disaggregated PV output as well as the load 

power in three days with 20% and 40% penetration rate. The 

results show that across all penetration rates, Model 3, which 

is the hybrid data-driven approach, performs the best. The 

estimation curve of Model 3 closely matches the real curve. 

Table II and Fig. 4 show the RMSE and nRMSE between 
the ground truth PV generation and estimated values by the 

three DNN models, respectively. As for Model 1, which 

performs the worst throughout the whole experiment, an 

increase of both RMSE and nRMSE is observed when the PV 

penetration rate is decreased. Model 2 has a better 

performance at a low penetration rate (e.g. 5% and 10%), 

RMSE, and nRMSE of Model 2 is approaching the values of 

Model 3 in these groups. However, with the penetration rate 

rising, the performance of the model becomes worse, nRMSE 

increase from 0.241% to 0.357% when the penetration rate 

increases from 20% to 40%. One reason for this result is that 

a high penetration rate would contain higher uncertainty 

caused by other conditions such as consumers’ behaviors, 
weather conditions rather than irradiance variables. Finally, 

Model 3 has the best and stable performance throughout the 

experiment, although an increase of error is witnessed when 

we reduce the amount of PV generation into the grid. 

To sum up, the hybrid model can have a stable estimation 

with high accuracy even the penetration rate is extremely 

small. Especially when we compare Model 3 with Model 1, 

the hybrid approach reduces the nRMSE up to 49%.  

IV. CONCLUSION 

 In this paper, a hybrid regression MLP DNN model is 
proposed to separate the PV generation from the grid 
measurements. Multiple variables related to the PV generation 
(weather-related variables, irradiance variables, feeder-level 
grid measurement, etc. ) are adopted as the inputs of the DNN 
model.  The proposed model contains three hidden layers to 
extract and  learn input features deeply.  Then a synthetic 
feeder model used for the experiment is constructed by 
aggregating household-level data together. The performance 
of the proposed hybrid method is examined via a comparison 

 

 

Fig. 4. Groundtruth and estimated value of PV output and load with 20% PV penetration. 

 

 

Fig. 5. Groundtruth and estimated value of PV output and load with 40% PV penetration. 



with the grid measurement-only approach and irradiance 
measurement-only approach. A conclusion is made that the 
hybrid model has a better performance than others under 
different PV penetration rates (from 5% to 70%). 
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TABLE II.  PERFORMANCE METRICS OF DIFFERENT MODELS 

Penetration 

Rate 
Model 

Performance Metrics  

RMSE (kW) nRMSE (%) 

5% 

1 

2 

3 

1.982 

0.768 

1.251 

0.440 

0.164 

0.262 

10% 

1 

2 

3 

3.481 

1.705 

1.992 

0.367 

0.185 

0.201 

20% 

1 6.815 0.343 

0.241 

0.216 

2 4.900 

3 4.322 

40% 

1 13.238 0.326 

0.357 

0.165 

2 8.256 

3 6.747 

70% 

1 19.553 0.254 

0.189 

0.162 

2 14.537 

3 12.511 

 

 

Fig. 6. NRMSE for different models. 


