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Abstract11

We present 2-D, 3-D, and spherical mesh generators for triangular and tetrahedral elements. The mesh nodes12

are treated as if they were linked by virtual springs that obey Hooke’s law. Given the desired lengths for the13

springs, a finite element problem is solved for optimal (static equilibrium) nodal positions. A ’guide-mesh’14

approach allows the user to define embedded high-resolution sub-regions within a coarser mesh. The method15

converges rapidly. For example, the algorithm is able to refine within a few iterations a specific region16

embedded in an unstructured tetrahedral spherical shell so that the edge-length factor l0r/l0c = 1/33 where17

l0r and l0c are the desired spring length for elements inside the refined and coarse regions respectively. The18

algorithm also includes routines to locally improve the quality of the mesh and to avoid ill-shaped ’sliver-like’19

tetrahedra. We include a geodynamic modelling example as a direct application of the mesh generator.20

1 Introduction21

Mesh generation and (adaptive) refinement are essential ingredients for computational modelling in22

science and industry. During modelling, low-quality meshes can potentially lead to larger numerical approx-23

imation errors. A high-quality mesh would consist of elements with aspect ratios near 1, i.e. with similar24

edge lengths. There are three main techniques to generate meshes: (1) The advancing front method [Löhner25

and Parikh, 1988; Schöberl, 1997; Choi et al., 2003; Ito et al., 2004] starts from the boundary of the domain.26

New elements are created one-by-one from an existing front of elements towards the interior until the region27

is filled. This method generally creates high-quality meshes close to the domain boundaries but can have28

difficulties in regions where advancing fronts merge. (2) Octree-based methods [Mitchell and Vavasis, 1992;29

Labelle and Shewchuk, 2007; Ito et al., 2009] produce graded meshes through recursive subdivision of the do-30

main. The simplicity of these methods makes them very efficient. However, poorly shaped elements can form31

near region boundaries. (3) Delaunay Triangulation ensures that the circumcircle/circumsphere associated to32

each triangle/tetrahedron does not contain any other point in its interior. This feature makes Delaunay-based33

methods [Chew, 1989; Ruppert, 1995; Chew, 1997; Shewchuk, 1998] robust and efficient. However, in 3-D34

they can generate very poorly shaped ’sliver’ tetrahedra with four almost coplanar vertex nodes and a near35

zero volume. Several techniques to remove slivers have been proposed [Cheng et al., 2000; Li and Teng,36

2001; Cheng and Dey, 2002], although near boundaries slivers can typically persist [Edelsbrunner and Guoy,37

2002]. Any ’good’ mesh should meet the following requirements [Bern et al., 1994]: (1) It conforms to the38

boundary; (2) It is fine enough in those regions where the problem to be solved demands higher accuracy; (3)39

Its total number of elements is as small as possible to reduce the computational costs to solve the problem;40

(4) It has well-shaped elements that improve the performance of iterative methods.41
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Current mesh-generation algorithms for engineering such as Netgen [Schöberl, 1997], GiD (https:42

//www.gidhome.com) or TetGen [Si, 2015] are based on the above methods. Variational methods [Alliez43

et al., 2005] rely on energy minimization to optimize the mesh during the generation procedure. A widely44

used open access community-code for 2-D mesh generation is Triangle [Shewchuk, 1996]. DistMesh [Persson45

and Strang, 2004] is a spring-based method that allows the user to create 2D and 3D unstructured meshes46

based on the distance from any point to the boundary of the domain. However, this algorithm is typically47

slow.48

Frequently used mesh generators in 3-D geodynamic problems are the ones included in the ASPECT49

[Kronbichler et al., 2012], Rhea [Burstedde et al., 2008] and Fluidity [Davies et al., 2011] codes. ASPECT and50

Rhea are written in C++ with adaptive mesh refinement (AMR). However, their regular hexahedral elements51

create so-called "hanging nodes" in regions where the resolution changes and cannot be directly applied to52

create well-formed tetrahedral elements. Fluidity is another example of AMR for tetrahedral meshes, with53

very limited mesh-generation capabilities.54

Here we present a new unstructured mesh generator that is based on a finite element implementation of55

the DistMesh approach, using virtual springs between nodes and solving for the static equilibrium positions56

of the nodes. This makes it considerably faster than the DistMesh algorithm. The user can create tetrahedral57

meshes without hanging nodes and also create embedded high-resolution sub-regions within a much coarser58

mesh. Throughout the algorithm, MATLAB’s (http://www.mathworks.com) ’delaunay’ function is called59

to generate the spring connectivity matrix that relates nodes to triangles or tetrahedra. We have also developed60

and tested techniques for adding or rejecting nodes in regions where mesh resolution is too high or too low61

respectively. Smooth variations in element size between high-resolution and low-resolution regions are62

achieved by using a guide-mesh defining the desired resolution in space. It defines the mesh sizing function63

to be a linearly varying function over its element size. The mesh-generation code is written in vectorized64

MATLAB. We will show that its speed is faster than competing compiled algorithms.65

The motivation to build this computational tool was twofold: (1) We wished to perform numerical66

experiments on 3-D spherical shell meshes with embedded high-resolution regions, and found no available67

open source code that could readily and efficiently construct this type of mesh; (2) We wished to add the68

capability to adaptively remesh high-resolution regions during a time-dependent solution, and wanted an69

easy-to-modify mesh-generation code that could be further customized for this task.70

We present this approach by showing its methodology for rectangular, cylindrical annulus, and spherical71

shell meshes (Section 2). In Section 3 we show the results for these meshes. Section 4 presents a geodynamic72
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modelling example where a 3-D spherical shell mesh is generated. In Section 5 we compare the performance73

of our algorithm to other algorithms.74

2 Methods75

2.1 Spring-based solver76

Inspired by Persson and Strang [2004], we treat mesh points as the locations of finite element nodes77

linked by virtual elastic springs. Spring length is used to define the desired nodal distance within any mesh78

region. Nodal positions are solved for so that the global network of virtual springs is in static equilibrium.79

The flowchart of the entire algorithm is presented later in Section 2.5 and Figure 9.80

The behaviour of each fictitious spring is described by Hooke’s law81

F = −kδs , (1)

where F is the force acting at each end of spring, k is its stiffness, and δs is the distance the spring is stretched

or compressed from its equilibrium length l0. Forces and nodal positions are expressed in x, y coordinates in

2-D (Figure 1a). Because Hooke’s law is formulated along the spring direction, it is necessary to introduce

the X ′ axis as the local 1-D reference system. Hooke’s law for each spring in its local 1-D reference system

is given by

f1 ′ = kδs = k(x2
′ − x1

′ − l0) , (2a)

f2 ′ = −kδs = −k(x2
′ − x1

′ − l0) , (2b)

where f ′ and x ′ are the force and position of the ends of the spring (subscripts 1 and 2). Writing equations82

(2a) and (2b) in matrix form, and moving the force terms to the left-hand side yields83

©«
f1 ′

f2 ′

ª®®¬ + k


−1 1

1 −1


©«

0

l0

ª®®¬ = k


−1 1

1 −1


©«

x1
′

x2
′

ª®®¬ . (3)

To solve for the nodal positions in 2-D, we change from local coordinates (x1
′, 0; x2

′, 0) to global coordinates84

(x1, y1; x2, y2). This change of coordinates is described in matrix form as85

R2D =


cosα sinα 0 0

0 0 cosα sinα

 , (4)
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b)a)

Figure 1: (a) Virtual spring in the 2-D space. The global (X , Y ) and local (X ′, Y ′) reference systems are

shown. (b) Virtual spring in the 3-D space. The global (X , Y , Z) and local (X ′, Y ′, Z ′) reference systems are

shown. Grey dots represent two nodes linked by the virtual spring. Red arrows represent the forces acting at

each end of the spring.

where α is the angle of the X ′ axis measured from the X axis in the counterclockwise direction (Figure 1a).86

Applying equation (4) to equation (3) (see Appendix A: for further details), equation (3) becomes87

k



−cα2 −sαcα cα2 sαcα

−sαcα −sα2 sαcα sα2

cα2 sαcα −cα2 −sαcα

sαcα sα2 −sαcα −sα2



©«

x1

y1

z1

x2

ª®®®®®®®®¬
=

©«

f1,x

f1,y

f2,x

f2,y

ª®®®®®®®®¬
+ kl0

©«

cα

sα

−cα

−sα

ª®®®®®®®®¬
, (5)

where sα ≡ sinα and cα ≡ cosα. Equation (5) can be written in the matrix form as88

Kx = fr + fl0 , (6)

where K is the stiffness matrix, x is the nodal displacement vector, fr is the residual force and fl0 is the89

force-term created by the fact that the springs would have zero-force at their desired length. In equilibrium,90

fr = 0. The solution is the ’optimal’ position of each node obtained by solving91

x = K−1 fl0 . (7)

In 3-D, forces and nodal positions are expressed in x, y and z coordinates (Figure 1b). Here, a change92

from local coordinates (x1
′, 0, 0; x2

′, 0, 0) to global coordinates (x1, y1, z1; x2, y2, z2) is needed. This change93

consists of the 3-D rotation described by94

R3D =


cosα cos β cosα sin β sinα 0 0 0

0 0 0 cosα cos β cosα sin β sinα

 , (8)
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where α and β are angles equivalents to latitude and longitude, respectively (Figure 1b). Applying equation95

(8) to equation (3) (see Appendix B: for details), equation (3) becomes96

k



−cα2cβ2 −cα2sβcβ −sαcαcβ cα2cβ2 cα2sβcβ sαcαcβ

−cα2sβcβ −cα2sβ2 −sαcαsβ cα2sβcβ cα2sβ2 sαcαsβ

−sαcαcβ −sαcαsβ −sα2 sαcαcβ sαcαsβ sα2

cα2cβ2 cα2sβcβ sαcαcβ −cα2cβ2 −cα2sβcβ −sαcαcβ

cα2sβcβ cα2sβ2 sαcαsβ −cα2sβcβ −cα2sβ2 −sαcαsβ

sαcαcβ sαcαsβ sα2 −sαcαcβ −sαcαsβ −sα2



©«

x1

y1

z1

x2

y2

z2

ª®®®®®®®®®®®®®®®¬

=

©«

f1,x

f1,y

f1,z

f2,x

f2,y

f2,z

ª®®®®®®®®®®®®®®®¬

+ kl0

©«

cαcβ

cαsβ

sα

−cαcβ

−cαsβ

−sα

ª®®®®®®®®®®®®®®®¬

,

(9)

where sα ≡ sinα, cα ≡ cosα, sβ ≡ sin β and cβ ≡ cos β. The system of equations is solved as described97

above (see equation (7)).98

2.2 Boundary Conditions99

Boundary conditions are necessary to constrain the mesh to the desired domain boundaries. In the100

simple case of a rectangular mesh, a boundary node is free to slide along a domain edges parallel to the101

X- or Y -axis. This is done by fixing one of its yi or xi values and letting the other value vary so that the102

node is free to move along the boundary. In the general case of a boundary oblique to the X- or Y -axes,103

this requires a transformation to a new local coordinate system in which the constraint direction is parallel to104

a local coordinate axis. This is sketched in Figure 2 where node 2 is free to slide along the tilted segment105

(yellow dashed line in Figure 2) since y2
′ = 0 defines the boundary constraint. The boundary condition is106

imposed by the rotation of coordinate system for node 2 given by the transformation matrix T relating x to x ′107

by108 ©«

x1

y1

x2

y2

x3

y3

ª®®®®®®®®®®®®®®®¬︸ ︷︷ ︸
x

=



1

1

cosα2 − sinα2

sinα2 cosα2

1

1

︸                                                ︷︷                                                ︸
T

©«

x1

y1

x2
′

0

x3

y3

ª®®®®®®®®®®®®®®®¬︸  ︷︷  ︸
x′

. (10)

Applying T to the stiffness matrix and force vector109

K ′ = TTKT , (11)

110

fl0
′ = TT fl0 , (12)
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2

3

1

a
2

Figure 2: Implementation of boundary conditions along a tilted boundary segment (yellow dashed line),

showing one triangle of the mesh. A rotation is needed for the node 2 in order to pass from the global

reference system (X , Y ) to the local reference system (X ′, Y ′) where y2
′ = 0 is the constrained boundary

condition.

with the system of equations transformed into111

K ′x ′ = fl0
′ , (13)

which is solved for x ′. Original global coordinates are recovered through the back-transformation112

x = T x ′ . (14)

Boundary conditions for a cylindrical annulus mesh further generalize the treatment for straight-sided113

boundary line-segments. This boundary condition prescribes boundary nodes that freely move along a local114

tangent to the boundary. Nodal motion involves two independent steps (Figure 3a): 1) The node moves along115

the tangent line to the circle at its current location, and 2) the new node location is projected back to the circle116

in the radial direction. This approximation assumes that the radial distance needed to put the node back onto117

the circle is small compared to the distance moved along the tangent line. The mathematical implementation118

is sketched in Figure 3b. The boundary condition for node 2 is that it can move along its tangent line (dashed119

line in Figure 3b) since y2
′ = |r |, where r is the radial distance from the centre of the cylindrical annulus mesh120

to the boundary. This boundary condition is imposed by the coordinate rotation given by the transformation121
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2

3

1

|r| q2

b)

r

r

r

a)

1

2

Figure 3: (a) Conceptual diagram for circular boundary conditions. The motion of boundary nodes is first

restricted to be along a tangent line to the circle. Nodes are then ’pulled back’ to the circle by projecting in

the radial direction. (b) Implementation of circular boundary conditions for one triangle. A rotation is needed

for the node 2 in order to pass from the global reference system (X , Y ) to the local surface-parallel reference

system (X ′, Y ′) where y2
′ = |r | is the constrained boundary condition.

matrix T relating x to x ′ (local surface-parallel reference system (X ′, Y ′) in green in Figure 3b) as122

©«

x1

y1

x2

y2

x3

y3

ª®®®®®®®®®®®®®®®¬︸ ︷︷ ︸
x

=



1

1

cos θ2 sin θ2

− sin θ2 cos θ2

1

1

︸                                               ︷︷                                               ︸
T

©«

x1

y1

x2
′

|r |

x3

y3

ª®®®®®®®®®®®®®®®¬︸  ︷︷  ︸
x′

, (15)

where θ2 is the angle of the node 2 measured from the Y axis in the clockwise direction.123

For 3-D applications, we currently focus on developing unstructured spherical meshes. In this case, a124

useful boundary condition consists in prescribing boundary nodes free to move along a local tangent plane to125

the spherical surface. Nodal sliding again involves two independent steps (Figure 4a): 1) The node is allowed126

to move along the local tangent plane to the sphere, and 2) the node is returned to the sphere’s surface by127

projecting in the radial direction. This is sketched in Figure 4b. Node 2 is free to slide along the tangent plane128
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a) b)

Figure 4: (a) Conceptual diagram for spherical boundary conditions. The motion of boundary nodes is first

restricted to be along the tangent plane to the sphere. Then, they are ’pulled back’ to the sphere’s surface by

projecting in the radial direction. (b) Implementation of spherical boundary conditions for one tetrahedron.

Two rotations are needed for node 2 to pass from the global reference system (X , Y , Z) to the local reference

system (X ′′, Y ′′, Z ′′), where z2
′′ = |r | is the boundary condition.

since the boundary condition is z2
′′ = |r |, where r is sphere radius. The boundary condition is imposed by129

two rotations of the coordinate system for node 2. The first rotation is around the Z axis by an angle φ2, which130

is the longitude of node 2 (local reference system (X ′,Y ′, Z ′) in blue in Figure 4b). The second rotation is131

around the Y ′ axis by an angle θ2, which is the colatitude for node 2 (local reference system (X ′′,Y ′′, Z ′′) in132

green in Figure 4b). The complete rotation is given by the transformation matrixT relating global coordinates133

x to local coordinates x ′′134

©«

x1
y1
z1
x2
y2
z2
x3
y3
z3
x4
y4
z4

ª®®®®®®®®®®®®®®®®¬︸   ︷︷   ︸
x

=



1
1

1
cosφ2 cos θ2 − sinφ2 cosφ2 sin θ2
sinφ2 cos θ2 cos θ2 sinφ2 sin θ2
− sin θ2 0 cos θ2

1
1

1
1

1
1

︸                                                                                         ︷︷                                                                                         ︸
T

©«

x1
y1
z1
x2
′′

y2
′′

|r |
x3
y3
z3
x4
y4
z4

ª®®®®®®®®®®®®®®®®¬︸     ︷︷     ︸
x′′

. (16)

This transformation matrix contains a θ and φ angle for each node on the spherical boundary.135
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2.3 Mesh refinement136

In this algorithm we refine a mesh by decreasing element sizes in the region of interest. One common137

issue in the refinement process arises when the size contrast between large and small elements occurs over a138

short spatial interval so that poorly-shaped elements may form. To mitigate this issue a transition region is139

defined to surround the refined region by use of a guide-mesh approach.140

2.3.1 Definition of preferred nodal distances (background guide-mesh)141

The first task is to define the preferred nodal distances within the refined (l0r ) and coarse (l0c) regions142

and their dimensions. To avoid poor quality elements, an appropriately smooth transition for mesh refinement143

should be specified. We choose a preferred spring-length function that is defined on a background ’guide-144

mesh’. This approach is very similar to the background grid approach described by Löhner and Parikh145

[1988].146

The generation of a refined rectangular mesh using the guide-mesh approach involves the following147

steps. First, create a (coarse) mesh to serve as a guide-mesh, typically using a small number of nodes to define148

the boundaries of the domain and the internal boundaries of the embedded high-resolution and transition149

sub-regions. Second, create the design function l0(x, y) for each node of the guide-mesh. This function150

defines the desired length for the springs around those points. Third, the function l0(x, y) is evaluated at the151

midpoint of all springs by interpolation with linear Finite Element shape functions. We find that this coarse152

guide-mesh is a simple and flexible way to impose smoothly varying nodal spacing during mesh generation.153

Figure 5a shows the guide-mesh for the rectangular mesh example whose parameters are listed in Table 1.154

The generation of a refined cylindrical annulus mesh using the guide-mesh is similar except that the155

function l0(x, y) becomes l0(θ, r). In this case the guide-mesh is a coarse cylindrical annulus mesh defined in156

polar coordinates. Figure 6a shows the guide-mesh (white dashed lines) defining the refined (red), transition157

(green) and coarse (blue) regions and the parameters are listed in Table 1. Figure 6c shows a zoom of158

the guide-mesh defined in polar coordinates. The use of a guide-mesh defined in polar coordinates (white159

dashed lines in Figure 6a and Figure 6c) instead of Cartesian coordinates (white dashed lines in Figure 6b and160

Figure 6d) takes advantage of higher precision when l0 values are interpolated in points both close and on the161

boundaries (green dots in Figure 6c).162

The generation of a refined spherical shell mesh using the guide-mesh involves similar steps except that163

the preferred length function l0(θ, r) is now l0(θ, φ, r). In this case the guide-mesh is a coarse spherical shell164

mesh defined in spherical coordinates (Figure 7a).165
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Figure 5: (a) Guide-mesh for a rectangular mesh defined by a few nodes in Cartesian coordinates. The

parameters for this mesh are listed in Table 1. Each node is assigned a value for the desired spring length,

being l0r for red dots and l0c for blue dots. The length of the springs within the refined region (in red) is

approximately equal to l0r . The length of the springs within the transition region (in green) varies smoothly

from l0r to l0c . The length of springs within the coarse region (in blue) is approximately equal to l0c . (b)

Initial guess for the rectangular mesh. (c) Zoom around the left boundary of the refined region for the initial

guess (yellow line in (b)). Corresponding pictures of the final mesh are shown in Figure 11a. The guide-mesh

defining refined (red) and transition (green) regions is shown with white dashed lines.

2.3.2 Initial placement of the nodes166

The next step is to create a starting guess for node locations (computational work is significantly reduced167

with a good initial guess for nodal positions). Nodes on the boundary and within the domain are created168

considering both the location of the refined region and the desired spring lengths for elements inside the169

refined and coarse regions. In 2-D, the boundary nodes in the refined and coarse regions are created using l0r170

and l0c respectively for the spacing between the nodes. Interior nodes within the refined and coarse regions are171

created using a circle packing lattice with radii equal to l0r/2 and l0c/2 respectively. This fills each region with172

an equilateral triangular tiling. In the transition region the size of the elements is expected to change smoothly173

between l0r and l0c . The initial placement for boundary and interior nodes in the transition region is created174

using l0r as explained above. After this step, the rejection method described in Persson and Strang [2004]175

is used to discard points and create a ’balanced’ initial distribution of nodes. After performing a Delaunay176

triangulation, a quasi-regular mesh of triangles is created within the refined and coarse regions, with a poorly177

structured transition region between them (see Figure 5b for an example of a rectangular mesh). Figure 5c178
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Figure 6: (a) Guide-mesh (white dashed lines) defined by a few nodes (red and blue dots represent l0r and l0c

respectively) in polar coordinates for a cylindrical annulus mesh (initial guess is shown in black solid lines).

Red, green and blue colours represent the refined, transition and coarse regions respectively. (b) Guide-mesh

defined in Cartesian coordinates. Same colours as in (a). (c) Zoom around an edge of the transition region

in polar coordinates. The function l0(θ, r) can be interpolated at green dots with maximum precision since

both boundaries – the cylindrical annulus mesh and its guide-mesh – overlap. (d) Zoom around an edge of

the transition region in Cartesian coordinates. The function l0(x, y) cannot be interpolated at magenta dots

since they lay outside of the outer boundary of a Cartesian guide-mesh. The precision of the interpolated l0

values at yellow dots is reduced since both boundaries – the cylindrical annulus mesh and its guide-mesh –

do not overlap.
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Figure 7: (a) Guide-mesh defined by a few nodes (red and blue dots represent l0r and l0c respectively)

in spherical coordinates for a spherical shell. The length of the springs within the refined region (red) is

approximately equal to l0r . The length of the springs within the transition region (green) smoothly varies

from l0r to l0c . Outside the transition region the length of the springs is approximately equal to l0c . (b) Model

domain representing a 3-D spherical shell with an embedded high-resolution sub-region.

shows a zoom of the initial rectangular mesh. In theory, Delaunay triangulations could potentially have the179

issue of not respecting complex boundaries. However, we have yet to see this issue in a mesh generated180

with our algorithm, perhaps the main application are global-scale models with relatively simple and smooth181

external boundaries.182

In 3-D, the boundary nodes in the refined and coarse regions are created by recursively splitting an initial183

dodecahedron according to l0r and l0c respectively. This gives a uniform distribution of equilateral triangles184

on the spherical surface. In contrast to equilateral triangles in 2-D, which are able to fill up the plane, regular185

tetrahedra do not fill up the entire space. However, there do exist some compact lattices, e.g. the hexagonal186

close packing (hcp) lattice, that create a nodal distribution that leads to well-shaped tetrahedra. The interior187

nodes within the refined and coarse regions are created by a close-packing of equal spheres with radii equal188

to l0r/2 and l0c/2 respectively. Initial placement for boundary and interior nodes in the transition region is189

created using l0r as explained above, with the rejection method of Persson and Strang [2004] used to discard190

points and create the initial nodal guess.191

2.3.3 Quality factor192

The ’quality’ of a mesh is determined by assessing the quality of its individual elements. This usually193

involves measures of angles, edge lengths, areas (in 2-D), volumes (in 3-D), or the radius of its inscribed194
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and circumscribed circles/spheres [e.g. Dompierre et al., 1998; Shewchuk, 2002]. Here we use a normalized195

quality factor, which in 2-D is given by196

q2D =
2rc
Rc

, (17)

where rc is the radius of the element’s inscribed circle and Rc is the radius of its circumscribed circle. Rc and197

rc can be expressed as198

rc =
1
2

√
(b + c − a)(c + a − b)(a + b − c)

a + b + c
, (18)

199

Rc =
abc√

(a + b + c)(b + c − a)(c + a − b)(a + b − c)
, (19)

where a, b and c are the side lengths of the triangle. A fair criterion to evaluate the quality of a mesh is to200

provide the minimum and mean values of the quality factor [cf. Alliez et al., 2005]. Here both are used as201

control parameters to determine when the iterative algorithm has reached the desired mesh quality tolerances202

(Figure 9).203

The corresponding 3-D quality factor for a tetrahedron is defined by204

q3D =
3rs
Rs

, (20)

where rs is the radius of the tetrahedron’s inscribed sphere and Rs is the radius of its circumscribed sphere.205

Rs and rs are given by206

rs =
|a · (b × c) |

(|a × b | + |b × c | + |c × a | + | (a × b) + (b × c) + (c × a) |)
, (21)

207

Rs =
|a2 · (b × c) + b2 · (c × a) + c2 · (a × b) |

2|a · (b × c) |
, (22)

where a, b and c are vectors pointing from one node, O, to the three other nodes of the tetrahedron A, B and C208

respectively (Figure 8a). This quality factor is normalized to be 0 for degenerate tetrahedra and 1 for regular209

tetrahedra. Different definitions for normalized aspect ratios lead to different estimators for the global quality210

of a mesh. For example, Anderson et al. [2005] define a shape measure s that depends on tetrahedral volume211

and the lengths of its edges. Computing q3D and s for the same mesh gives differences of up to 0.1 for the212

worst element (Figure 8b). The quality factor q3D that we choose to use is a more restrictive aspect ratio than213

the measure s.214

2.4 Local mesh improvements215

So far, the above algorithm only moves nodes within the domain to meet desired spring lengths/internodal216

distances. However, in general we do not know a priori howmany nodes will be needed for a mesh. Therefore,217
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Figure 8: (a) Tetrahedron with vertices OABC. R and r are the radius of the circumscribed and inscribed

spheres respectively. (b) Number of tetrahedra as a function of the quality factor q3D (green) and the shape

measure s (red) for the same mesh.

we use algorithms to locally add and remove nodes when the equilibrium spacing is too loose or tight. After218

solving for nodal positions, we check if the mesh has reached the expected nodal density by determining the219

mean of the misfit in spring lengths (Figure 9), given by220

µ =
1
N

N∑
i=1

���� li − l0i
l0i

���� , (23)

where l is the actual spring length, l0 is the desired spring length and N is the total number of springs in221

the mesh. Nodes are added or rejected (Section 2.4.1) if µ ≥ µt . When µ < µt the expected nodal density222

is achieved and element shape improvements (Section 2.4.2) are applied to obtain higher quality elements.223

After some experimentation we found it appropriate to use 0.02 < µt < 0.05 for 2-D meshes. In 3-D we224

use µt = 0.14, although this can vary from 0.1 to 0.2 depending on the degree of mesh refinement. Note225

attainable values of µt for 2-D meshes are much smaller than for 3-D meshes.226

2.4.1 Add/reject nodes227

The possibility to either add or reject nodes plays an important local role. This feature is especially228

relevant when the goal is to create a global coarse mesh with an embedded high-resolution sub-region. The229

logic for adding or rejecting nodes is based on the relative length change of the virtual springs that connect230

nodes231

ε =
l − l0

l0
, (24)

indicating whether springs are stretched (ε > 0) or compressed (ε < 0) with respect to their desired lengths.232

A new node is created at the midpoint of those springs with ε > 0.5, i.e. springs stretched more than 50%233
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greater than their desired length. One node at the end of a spring is rejected when ε < −0.5, i.e. springs234

compressed more than 50% below their desired length. In order to save computational time, the add/reject235

nodes routine is called as a sub-iteration within the main iteration in which nodal positions are found. Sub-236

iterations are performed until the percentage of springs with |ε | > 0.5 in the sub-iteration j + 1 is higher than237

in the sub-iteration j. This implementation is especially useful when a large fraction of nodes needs to be238

added or rejected within a particular region of the mesh, e.g. when a relatively poor initial guess is used. For239

a cylindrical annulus mesh and a spherical shell mesh the only difference appears when a new node is added240

on a boundary spring. In this case, the new boundary node needs to be projected onto the surface along the241

radial direction.242

2.4.2 Element shape improvement243

2.4.2.1 Smooth positions of the interior nodes Good quality meshes are directly related to the244

generation of isotropic elements [Alliez et al., 2005]. The ’Laplacian smoothing’ criterion [Choi et al., 2003]245

is used to improve the shape of poorly shaped elements, i.e. to make elements as close to equilateral triangles246

or regular tetrahedra as possible. This fast matrix-free algebraic operation is only applied to interior nodes.247

We find that this additional algebraic smoothing operation leads to a significant mesh improvement at a248

computational cost much lower than that needed to form and solve the matrix equation for internal spring249

equilibrium. The interior nodes are repositioned to the mean of the barycentres of their surrounding elements,250

i.e.251

xs =

N∑
i=1

xb i

N
, (25)

where xs are the new coordinates of the interior node, N is the number of elements surrounding the interior252

node and xb i are the barycentre coordinates of the i-th surrounding element. Figure S1 shows an example of253

Laplacian smoothing of interior nodes for a 2-D mesh.254

In 3-D, even when the expected nodal density is achieved (µ < µt ) by adding or rejecting nodes, a255

considerable number of poorly shaped tetrahedra can still persist. Methods based on swapping edges or faces256

to improve element quality can possibly generate non-Delaunay triangulations, which will cause problems in257

algorithms that rely on a mesh created by a Delaunay triangulation (e.g. point search algorithms). Hence,258

in addition to smoothing the position of interior nodes, we recommend two additional operations to further259

improve the quality of tetrahedral elements.260

2.4.2.2 Improvement of badly shaped tetrahedra Unstructured 3-D meshes from Delaunay trian-261

gulations typically have a few elements with poor quality factors (see Cheng et al. [2000] for a complete262

categorization of badly shaped tetrahedra). We improve these by modifying one node of each badly shaped263
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tetrahedron. For each badly shaped tetrahedron, identified by q3D < qbad , where 0.2 ≤ qbad ≤ 0.3, we select264

the spring with the maximum distortion, i.e. max(|ε |). If ε > 0, a new node is created in the midpoint of the265

selected spring, while a node at one end of the selected spring is removed if ε < 0. A new connectivity is266

then created by another Delaunay triangulation. The new connectivity is only modified in the surroundings267

of nodes that have been added or removed, keeping the rest of the connectivity to be the same as the old268

triangulation. Figure S2 illustrates a simple example that improves the badly shaped tetrahedra which form269

when meshing the unit cube.270

2.4.2.3 Removing slivers Slivers are degenerate tetrahedra whose vertices are well-spaced and near271

the equator of their circumsphere, hence their quality factor and enclosed volume are close to zero. We define272

a sliver to be a tetrahedron with q3D < 0.1. Our routine for removing slivers is purely geometrical, i.e. it does273

not consider the actual or desired length of the springs. The four vertices of each sliver are replaced by the274

three mesh points of the best potential triangle that can be generated from all permutations of its vertices and275

potential new nodes created at the midpoints of its springs (Figure S3). Delaunay triangulation is then called276

to create the connectivity matrix around the changed nodes. In all our tests, this simple algorithm removed277

all slivers within 2-3 iterations.278

2.5 Flow charts for iterative mesh generation279

This mesh-generation algorithm has its simplest form when creating a 2-D rectangular mesh with an280

embedded high-resolution sub-region (white and yellow boxes in Figure 9). The algorithm can also generate281

a 2-D cylindrical annulus mesh with an embedded high-resolution sub-region (white and orange boxes in282

Figure 9). The white and green boxes in Figure 9 show the flowchart that describes the algorithm for the283

generation of 3-D spherical shell meshes that include an embedded high-resolution sub-region.284

3 Results285

Several tests were performed with the above implementations to assess the robustness and performance286

of this mesh-generation algorithm (Figure 10). The input parameters that controlled the algorithm are listed287

in Table 1. All tests in this study were performed using MATLAB R2015a (8.5.0.197613) on a 3.2 GHz Intel288

Core i5 (MacOSX 10.12.5) with 24 GB of 1600MHz memory. The code to generate these meshes is available289

in the Supporting information.290
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Figure 9: Flow chart of the mesh-generation algorithm. Yellow, orange and green boxes represent routines

exclusively used for creating 2-D rectangular meshes, 2-D cylindrical annulus meshes and 3-D spherical shell

meshes, respectively. White boxes represent shared routines. µ is the mean misfit spring length (equation

(23)) and q is the element quality factor (equations (17) and (20) for triangular and tetrahedral elements

respectively). Tolerance parameters µt , qt and q̄t are listed in Table 1.
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Table 1: Mesh Parameters.

Symbol Meaning
Rectangular

box

Cylindrical

annulus

Spherical

shell

d Depth 2900 km - -

l Length 40000 km - -

ri Inner radius - 3471 km 3471 km

ro Outer radius - 6371 km 6371 km

x0 x-coordinate centre of refined region 0 km - -

z0 z-coordinate centre of refined region 0 km - -

θ0 Colatitude centre of refined region - 90◦ 90◦

φ0 Longitude centre of refined region - - 90◦

r0 Radial distance centre of refined region - 6371 km 6371 km

l0c Desired spring length for elements in-

side the coarse region

1500 km 2000 km 2000 km

l0r Desired spring length for elements in-

side the refined region

7.5 km 10 km 60 km

dt Transition region depth 2900 km 2900 km 2900 km

lt Transition region length 8000 km 8000 km 6800 km

wt Transition region width - - 9600 km

dr Refined region depth 300 km 300 km 300 km

lr Refined region length 3333 km 3333 km 2200 km

wr Refined region width - - 5000 km

qt Tolerance for minimum quality factor 0.45 0.40 0.23

q̄t Tolerance for mean quality factor 0.89 0.93 0.80

µt Tolerance for mean misfit spring length 0.025 0.04 0.14
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3.1 Rectangular mesh with an embedded high-resolution region291

The algorithm created this mesh in 9 s (purple dot in Figure 10) after 8 outermost loop iterations (cf.292

Figure 9). Figure 11a shows the final mesh (top) and a zoom around the left boundary of the refined region293

(bottom) for the iteration 8 (see Figure S4 for iterations 0 (initial mesh) and 1). The final mesh has 22000294

nodes forming 43000 triangles with an edge-length factor l0r/l0c = 1/200. The percentage of triangles within295

the coarse, transition and refined regions is 0.3%, 6.3% and 93.4% respectively.296
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Figure 10: Computational time as a function of the number nodal degrees of freedom (dofs). All meshes

were generated using the parameters listed in Table 1; only l0r was varied. The purple dot (7.5 km-rect. mesh)

is for the example shown in Figure 11, the blue dot (10 km-cyl. mesh) for Figure 12, and the orange dot (60

km-3D sph. mesh) for Figure 13. For the last data point in blue line (5 km-cyl. mesh), a reduction in qt from

the chosen 0.4 to a less stringent 0.35 would lead to a 2.6 × speed-up. This example highlights the trade-off

between compute speed and mesh-quality.
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Figure 11: (a) Final mesh (top) for a rectangular box with an embedded high-resolution sub-region and a

zoom around the left boundary of the refined region (bottom). (b) Minimum quality factor (red line), mean

quality factor for all elements (blue line) and percentage of elements having a quality factor lower than 0.6%

(green line) as a function of iteration number. (c) Histogram of the fraction of elements as a function of

quality factor for the final mesh. The lowest quality factor for an element is 0.51.
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3.2 Cylindrical annulus mesh with an embedded high-resolution region297

The algorithm created this mesh in 6 s (blue dot in Figure 10) after 7 iterations. Figure 12a shows the298

final mesh for iteration 7 (see Figure S5 for iterations 0 (initial mesh) and 1). Figure 12b shows a zoom299

around an edge of the refined region. The final mesh has 12000 nodes forming 23000 triangular elements with300

an edge-length factor l0r/l0c = 1/200. The percentage of triangles within the coarse, transition and refined301

regions is 0.2%, 6.1% and 93.7% respectively.
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Figure 12: (a) Final mesh for a cylindrical annulus with an embedded high-resolution sub-region. (b) Zoom

around an edge of the refined region. (c) Minimum quality factor (red line), mean quality factor for all

elements (blue line) and percentage of elements having a quality factor lower than 0.6% (green line) as a

function of iteration number. (d) Histogram of the fraction of elements as a function of quality factor for the

final mesh. The lowest quality factor for an element is 0.40.
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3.3 Spherical shell mesh with an embedded high-resolution region303

The domain of this mesh is a spherical shell whose boundaries represent the core-mantle boundary and304

the Earth’s surface (Figure 7b). The smallest tetrahedra with quasi-uniform size lie inside the high-resolution305

region (red spherical prism in Figure 7b). This region is embedded within a coarser global mesh. A transition306

region (green spherical prism in Figure 7b) guarantees a gradual change in tetrahedral size from the high-307

resolution region to the coarse region. We recommend setting the point around which the refined region is308

created far from the polar axis since the guide-mesh is worse at smoothly interpolating desired spring lengths309

near the polar axis. The algorithm created the mesh in 42 s (orange dot in Figure 10) after 2 iterations (see310

Figure 13a for a cross section of the final mesh). Figure 13b shows a detail of the mesh around the northern311

boundary of the refined region. The mesh has 27000 nodes forming 150000 tetrahedra with an edge-length312

factor l0r/l0c = 1/33. The fraction of tetrahedra within the coarse, transition and refined regions is 0.7%,313

21.6% and 77.7% respectively (Figure S6).314
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Figure 13: (a) Cross section of the final mesh with an embedded high-resolution sub-region after refinement

using the guide-mesh. (b) Zoom around the boundary of the refined region. (c) Minimum quality factor

(red line), mean quality factor for all elements (blue line) and fraction of elements having a quality factor

lower than 0.4% (green line) as a function of iteration number. (d) Histogram of the fraction of elements as a

function of quality factor for the final mesh. The lowest quality factor for an element is 0.23.
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4 Geodynamic modelling example315

As a practical use-case of the mesh generator, we show its application in recent work. This is a study of316

the potential mantle flow associated with the first 30 Myr of rifting evolution in the South Atlantic, exploring317

the influence of Tristan da Cunha plume and initial lithospheric thickness variations. We use M3TET_SPH318

[Taramon, 2018] to solve for the thermo-mechanical viscous flow evolution of the mantle in a whole-mantle319

spherical shell geometry. The mantle is modelled as a 3-D incompressible fluid that satisfies the Boussinesq320

approximation.321

Figure 14 shows the 3-D model domain. With this mesh generator, we construct an embedded mesh that322

avoids the need for the fictitious bounding surface boundary conditions used in a nested modelling approach;323

instead boundary conditions are only applied on the top and bottom surfaces of the spherical shell. Velocity324

boundary conditions are prescribed to be free slip along the core-mantle boundary and prescribed plate325

motions along the top surface. Surface plate velocities are extracted every 1 Myr from the plate kinematic326

reconstructions given by Gurnis et al. [2012] using GPlates (http://www.gplates.org). Intermediate-age327

velocities are linearly interpolated from these values. The simulation time for early rifting and break-up of328

the South Atlantic Ocean spans from 130 to 100 Ma.329

The initial thermal structure assumes the lithosphere to be the thermal boundary layer arising from a half-330

space cooling model. Plate thicknesses for non-cratonic and cratonic continental lithosphere are simulated331

using ages of 100 and 350 Myr, respectively. This results in a depth for the 1170 ◦C isotherm of 130 km332

for non-cratonic continental lithosphere and 245 km for cratonic lithosphere. Craton contours are digitised333

from de Wit et al. [2008]. The model also contains a single ’hot Tristan Plume’. The initial geometry of334

the plume tail consists of a cylinder of radius 100 km extending from 670 km depth to the bottom of the335

high-resolution region. The initial thermal structure for the plume is assumed to follow a Gaussian-shaped336

radial temperature profile with a maximum temperature anomaly of 150 ◦C with respect to backgroundmantle.337

Velocity boundary conditions for the plume are implemented by a parabolic-shaped radial velocity profile338

with the maximum velocity in the centre of the plume tail. The maximum ascent velocity is339

Vmax =
2Qp

πR2 , (26)

where Qp is the plume flux (km3yr-1) and R is the plume tail radius (km). Here we show a run with a plume340

flux of 15 km3 yr−1, consistent with ~20 – 40 mantle plumes supplying an upward return flow to the shallow341

mantle that balances the ~300 km3 yr−1 downward flux associated with plate subduction [cf. Yamamoto et al.,342

2007].343
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Figure 14: Model domain representing a 3-D spherical shell for the Earth’s mantle (left) and zoom for the

embedded high-resolution region (right). Black lines represent the plate boundaries. Colour arrows are the

speed for the plate motion (left). In the embedded high-resolution region (right) the colour represents the

depth of the isosurface of temperature T = 1170 ◦C and black arrows are the velocity field obtained after

imposing the plate motion boundary conditions. Red colour shows plume material with the isosurface of

log(η) = 18.2, where η is the viscosity.

The calculation also assumes a temperature and pressure dependent upper mantle rheology given by344

η(T, p) = η0exp
[

1
RT0

(
Ea

(
T0
T
− 1

)
+ pVa

)]
, (27)

where η0 = 2 x 1018 Pa·s is the reference viscosity, R is the universal gas constant,T0 = 1300 ◦C is the reference345

mantle temperature, Ea = 400 kJ/mol is the activation energy, T is the temperature, p is the pressure and Va346

= 4 x 10-6 m3/mol is the activation volume [Hirth and Kohlstedt, 2003]. The minimum and maximum cut-off347

viscosities are 1018 Pa·s and 1023 Pa·s, respectively. For simplicity, the lower mantle viscosity is considered348

to be uniform with a value of 5x1021 Pa·s.349

Figure 15 shows the 3-D evolution of a model where the plume flux is 15 km3 yr−1, located at colatitude350

= 118 ◦ and longitude = 354 ◦. In this experiment hotter, weaker, plume material preferentially migrates351

southwards. This preferential southward flow appears to be mainly due to the presence of thicker São352

Francisco and conjugate Congo cratonic roots in the North combined with ’suction’ associated with early353
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plate stretching in the non-cratonic regions [Taramon, 2018]. For this calculation, the use of local higher-354

resolution embedded mesh allowed us to take a more computationally efficient approach involving a problem355

with only 7 ·106 flow unknowns, instead of the 2 ·109 unknowns for a similar resolution global mesh. We were356

also able to apply ’easy-to-characterize’ global plate motion boundary conditions at the surface of the global357

mesh instead of being forced to apply a more restrictive nested approach in which the effects of the Tristan358

plume are potentially not considered in the determination of the time dependent flow boundary conditions359

along the interior surfaces of the nested high-resolution region.360

b)

a)

Figure 15: 3-D evolution of plume material during rifting and break-up of the South Atlantic.
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d)

c)

Figure 15 (Cont.): 3-D evolution of plume material during rifting and break-up of the South Atlantic. Main:

3-D images showing the geometry of the plume material at different times: (a) 6.06 Myr, (b) 12.05 Myr, (c)

18.08 Myr and (d) 28.08 Myr. Colour represents logarithm of viscosity. The velocity field and isotherms

every 200 ◦C in the vertical cross sections are represented by arrows and white lines, respectively. Black line

represents the plate boundary. The plumematerial is represented by the red isosurface with log(η) = 18.2. Top

inset: Top view of the 3-D evolution shown in the main inset. The isosurface with a temperature of 1170 ◦C

is coloured with depth to show the lithospheric thickness variations. The plume material is represented by

the red isosurface with log(η) = 18.2. Colour arrows represent the top surface plate motion. Grey lines and

black thick lines represent the reconstructed coastlines and the plate boundaries, respectively. Capital letters

show the ends of the along ridge profiles shown in bottom inset. Numbers between parentheses show the full

opening speed in mm/yr. Bottom inset: Plume contribution to axial topography in km. The red horizontal

line represents the plume material beneath the ridge profile.
–28–



Confidential manuscript submitted to <enter journal name here>

5 Discussion and comparison with other algorithms361

In 2-D, there are many open source and commercial mesh generators that are flexible and work well,362

e.g. Triangle [Shewchuk, 1996], so we will not further discuss the 2-D version of our code here. In general,363

comparing meshes created by different algorithms is a complex task because typically each algorithm creates364

a mesh with desirable characteristics for a specific problem. For this reason, we test our 3-D algorithm by365

creating a simple geometry that can be easily reproduced by each compared algorithm. We compare the366

performance of three additional algorithms (ADP3D [Dompierre et al., 1998], DistMesh [Persson and Strang,367

2004] and Netgen [Schöberl, 1997]) to create a unit-radius sphere with a preferred nodal distance l0 = 0.2.368

DistMesh, Netgen and this study’s algorithm were run on the same machine. For ADP3D we only have the369

benchmark published by Dompierre et al. [1998]. Table 2 shows the number of nodal degrees of freedom370

(dofs), the number of mesh elements, the computational time (in sec on our 3.2 GHz Intel Core i5 (MacOSX371

10.12.5) machine with 24 GB of 1600 MHz memory) and several tetrahedral shape-quality measures [cf.372

Dompierre et al., 1998] for each algorithm:373

• Quality factor q3D given by equation (20), also known as the radius ratio ρ.374

Table 2: Statistical data.

ADP3D 1 DistMesh 2 Netgen 3 This study

Number of nodal dofs 3132 3207 3453 3498

Number of elements 4905 5177 4942 5230

Computational time (s) - - 16.51 3.46 2.77

Quality factor q3D
min 0.324 0.045 0.501 0.486

mean 0.873 0.898 0.793 0.881

Aspect ratio γ
min 0.317 0.038 0.457 0.405

mean 0.772 0.796 0.684 0.773

Mean ratio η
min 0.501 0.112 0.624 0.560

mean 0.898 0.915 0.832 0.899

Solid angle θmin

min 0.178 0.044 0.185 0.232

mean 0.665 0.737 0.525 0.686

1[Dompierre et al., 1998] 2[Persson and Strang, 2004] 3[Schöberl, 1997]
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• Aspect ratio γ given by375

γ = 2
√

6
rs

lmax
, (28)

where lmax is the length of the longest edge of the tetrahedron.376

• Mean ratio η given by377

γ =
12 3√9v2

6∑
i=1

l2
i

, (29)

where li is the length of each edge of the tetrahedron.378

• Solid angle θmin given by379

θmin = βmin
[
sin

(
θi
2

)]
, (30)

380

sin(θi/2) = 12v
©«

∏
j,k,i

0≤ j<k≤3

( (
li j + lik

)2
− l2

jk

)ª®®®¬
−1/2

, (31)

where β−1 =
√

6/9.381

The histograms corresponding to these data are shown in Figure 16. The new approach, in MATLAB382

code, creates a comparable mesh in 20% less time than the compiled Netgen C++ code with Python interface383

and six times faster than the Distmesh MATLAB code (Table 2). Distmesh produces slightly higher mean384

values for all shape measures. However, since it does not include routines to deal with slivers, it also produces385

the lowest minimum values for all shape measures, e.g. it always produces a few sliver-like ’bad’ elements.386

Netgen gives the highest minimum value for all shape measures except for the solid angle. However, its mean387

values are the lowest. ADP3D produces comparable, but slightly lower minimum and mean values for all the388

shape measures to our MATLAB codetool. A missing feature from our code is that there is no graphical user389

interface (GUI). For the meshes we wished to make, it is relatively easy to define a guide-mesh with a few390

lines of MATLAB code. Since our plan is to combine this algorithm with an adaptive finite element code, it391

was not a high priority to create an associated GUI. Distmesh is also written in MATLAB, so a user could392

straightforwardly modify the original Distmesh code to include our guide-mesh approach and tetrahedral393

shape-improvement routines. The other algorithms would require larger modifications to similarly control the394

mesh refinement associated with mesh generation and include embedded high-resolution sub-regions.395

6 Summary and conclusions396

We have developed the tools for generating unstructured meshes in 2-D, 3-D, and spherical geometries397

that contain embedded high-resolution sub-regions. For the generation of a Cartesian 3-D mesh, only small398

modifications to the 3-D spherical code would be needed to place boundary points along linear boundary399
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Figure 16: Histogram of the fraction of elements as a function of: (a) quality factor, (b) aspect ratio, (c) mean

ratio and (d) solid angle.

edges and planar boundary surfaces in place of spherical shell boundaries. The algorithm uses the FEM to400

solve for nodal locations that would arise if they were connected by virtual springs with prescribed preferred401

lengths. Straight line, circular and spherical boundary conditions are imposed to constrain the shape of402

mesh boundaries. A guide-mesh is used to smoothly refine the mesh around higher resolution sub-regions.403

Methods to achieve the expected nodal density and further improve element shape and quality are also404

discussed in detail. Comparison to other open source mesh generators shows that our algorithm generates405

the highest quality mesh, i.e. the highest minimum and mean value for all the shape measures, with the406

fastest computational time. The new mesh generator can be easily modified for adaptive mesh refinement by407

varying the desired spring length depending on solution variables of interest. Since an adaptive refinement408

(or coarsening) would often only change node positions in regions where the spatial resolution is changed,409

most nodes of the spring system would remain in equilibrium so that few iterations would be required to410

update the mesh. We have demonstrated the utility of this approach for geodynamic modelling by showing its411

application solving for 3-D spherical mantle flow associated with mantle plume-rift interactions, with use of412

a global spherical shell mesh that contains an embedded high-resolution sub-region.413

Code availability414

The mesh generator code is open source and available to download at415

https://data.mendeley.com/datasets/nkr6p8ndtd/1. This site also contains the input files to create416

the meshes discussed in this paper.417
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Supporting information421

The following supporting information is available as part of the online article:422

b)a)

Figure S1: (a) Initial 2-D mesh. (b) Mesh after applying the Laplacian correction to smooth positions of

its interior nodes. Blue points are the barycentres of the triangles. Green and black crosses are the nodal

positions before and after smoothing, respectively. Red arrows indicate the motions of interior nodes.
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Figure S2: (a) Initial mesh with badly shaped tetrahedra (in blue). Rejected nodes in red. (b) Badly

shaped tetrahedra. (c) Mesh after improving badly shaped tetrahedra contains no badly shaped tetrahedra.

(d) Fraction of tetrahedra for a given quality factor for both before (dashed line) and after (solid line) local

improvements to the shape of badly shaped tetrahedra. The minimum quality factor for the initial mesh is

0.04 and for the final mesh is 0.39.
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Figure S3: Removing a sliver (represented by black lines and dashed grey line for hidden edge). Possible

triangles (grey and green colours) created from permutations of the vertices and midpoints of the edges of a

sliver. Black, red and green points represent unaltered, removed and added nodes, respectively. qtri is the

quality factor for each triangle. The four vertices of the sliver are replaced by the three mesh points of the

potential triangle with the best quality factor (green colour).
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Figure S4: (a) Initial mesh (top) for a rectangular box with an embedded high-resolution sub-region and a

zoom around the left boundary of the refined region (bottom). (b) Mesh (top) and zoom (bottom) after the

first iteration.
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Figure S5: (a) Initial mesh (top) for a cylindrical annulus with an embedded high-resolution sub-region

and a zoom around an edge of the refined region (bottom). (b) Mesh (top) and zoom (bottom) after the first

iteration.
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Figure S6: (a) Tetrahedra within the coarse region. (b) Tetrahedra within the transition region. (c) Tetrahedra

within the refined region.
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A: Derivation of equation (5)423

The 2-D development of equation (3), rewritten here for convenience424

©«
f1 ′

f2 ′

ª®®¬ + k


−1 1

1 −1


©«

0

l0

ª®®¬ = k


−1 1

1 −1


©«

x1
′

x2
′

ª®®¬ , (A.1)

is given by two steps. First, develop the right-hand side of equation (A.1) by writing local coordinates as a425

function of global coordinates (see Figure 1a)426

k


−1 1

1 −1


©«

x1
′

x2
′

ª®®¬
= k


x2
′ − x1

′

−(x2
′ − x1

′)
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[
(x2 − x1)cα + (y2 − y1)sα

]
−
[
(x2 − x1)cα + (y2 − y1)sα

] 
= k


−1 1

1 −1




x1cα + y1cα

x2cα + y2cα


= k


−1 1

1 −1




cosα sinα 0 0

0 0 cosα sinα


©«

x1

y1

x2

y2

ª®®®®®®®®¬
,

(A.2)

where sα ≡ sinα and cα ≡ cosα. Second, express the global coordinates of the force vector as a function of427

local coordinates (see Figure 1a)428

©«

f1,x

f1,y

f2,x

f2,y

ª®®®®®®®®¬
=



cα 0

sα 0
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0 sα
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f2 ′

ª®®¬ . (A.3)

Combining equations (A.1) and (A.2) gives429

©«
f1 ′

f2 ′

ª®®¬ = k


−1 1

1 −1




cosα sinα 0 0

0 0 cosα sinα
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Substituting equation (A.4) into equation (A.3) and reordering gives430

k



cα 0

sα 0

0 cα

0 sα



−1 1

1 −1




cosα sinα 0 0
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+ k
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0

l0

ª®®¬ ,
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which is equivalent to equation (5).431

B: Derivation of equation (25)432

The 3-D development of equation (3), rewritten here for convenience433

©«
f1 ′
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©«

0
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ª®®¬ , (B.1)

also involves two steps. First, develop the right-hand side of equation (B.1) by writing local coordinates as a434

function of global coordinates (see Figure 1b)435
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where sα ≡ sinα, cα ≡ cosα, sβ ≡ sin β and cβ ≡ cos β. Second, express the global coordinates of the force436

vector as a function of local coordinates (see Figure 1b)437
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Combining equations (B.1) and (B.2) gives438
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Substituting equation (B.4) into equation (B.3) and reordering gives439
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which is equivalent to equation (9).440
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