
Principled and Pragmatic Specification of
Programming Languages

Adrian Johnstone[0000−0002−9446−9701] and Elizabeth Scott[0000−0001−5907−8513]

Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
{a.johnstone,e.scott}@rhul.ac.uk

Abstract. Programmers from the imperative tradition often have lit-
tle experience of using inductive definitions and inference, and that may
explain why executable SOS specifications have not become a standard
feature of mainstream language development toolkits. We wish to ‘de-
mystify’ SOS for such programmers, allowing precise and principled spec-
ifications to be given for even small industrial DSL’s. eSOS (elided Struc-
tural Operational Semantics) is a compact tool for specifying executable
formal semantics. It is designed to be a translation target for enriched
SOS specification languages. The simplicity of eSOS and its reference
Java implementation allow programmers to follow the details of an exe-
cution trace, and to step through rules using a conventional debugging
framework, allowing them to understand and use SOS-based specifica-
tions to construct usable language interpreters.

Keywords: Structural Operational Semantics, Domain Specific Lan-
guage specification, operationalising formal specifications

1 Introduction

Formal specification of programming language semantics is still seen by most
software engineers as an esoteric and opaque approach to language implementa-
tion. In this paper we describe our approach to ‘de-mystifying’ formal semantics
by embedding a simple model of SOS interpretation into a final year course on
the engineering of Domain Specific Languages. We use the formal specification
of semantics as a concise and precise specification from which an interpreter
may be automatically generated rather than emphasising verification or proving
properties of programs. We limit ourselves to sequential languages and as a re-
sult direct interpretation of the rules can yield processors which are fast enough
for many applications.

A key part of the approach is to show how to write the SOS rule inter-
preter itself in a few lines of a procedural programming language. This allows
practitioner programmers who may have little or no mathematical training to
understand operationally how the specification is executed, and to think of for-
mal specification as ‘just another kind of programming’. We have found that the
approach is successful even with ‘maths-averse’ students.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/334431177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Adrian Johnstone and Elizabeth Scott

Is this sort of programmer-driven approach necessary or even desirable? Well,
it is nearly 40 years since Plotkin introduced Structural Operational Semantics
(SOS) in a series of lectures at Aarhus University [6]. In that time the computer
science theory community has generated myriad related papers, and SOS is now
firmly established as part of the basic toolkit for any programming language
researcher. Perhaps surprisingly, the practitioner community has in large mea-
sure eschewed formal semantics, including SOS. This is in marked contrast to,
say, syntax definition using BNF, formal parsing algorithms and even attribute
grammars which are widely used (at least in the somewhat informal way that Bi-
son and some other parsing toolkits provide). This ought not to be the case: the
core ideas of SOS are certainly no harder to grasp than the notions of grammars
and derivation trees.

We would consider that SOS had entered the mainstream if some of the
following were true: textbooks on languages and compilers had a chapter on
using SOS to write precise descriptions of some or all of a language; widely used
language implementation toolkits included a SOS specification capability and
an associated interpreter; programming language standards used at least a little
SOS to clarify details; and online forums featured discussion of the pragmatics of
applying SOS. In fact none of these are true – for instance on the Stack Overflow
forums there are a few questions about SOS and its place in the spectrum of
formal semantics techniques, but almost none of the pragmatic ‘how do I do X
in Y’ questions that characterise the forums for widely deployed software tools.

Why might this be? It could be that SOS specifications quickly become too
large to be useful, but current informal programming language standards docu-
ments are hardly noted for brevity. We suspect that the problem simply arises
from the usual cultural gap in our discipline: that in practice the entry price for
understanding declarative specifications comprising inductive definitions of rela-
tions via inference rules is too high for many working procedural programmers.

Our hypothesis, then, is that if we could reduce SOS interpretation to a simple
procedural operation over the rules, programmers would embrace the brevity
and clarity of the approach. The problem seems to be that the core idea of
inference and the heavy use of mathematical notation in typical SOS textbooks
are offputting to ‘normal’ programmers: perhaps ironically, they simply don’t
understand the meaning of the semantic formalism.

Several ambitious projects aim to deliver the benefits of formal semantics
specification in a programmer-friendly manner; including the well known and
now-venerable ASF+SDF system [10] (and its successors including RascalMPL [4]
and the Spoofax [3] language workbench), the K system [7] and tools such as
OTT [9]. The PlanCompS project [1] provides a unifying approach by abstract-
ing away from formal semantics frameworks, building specifications from small
fundamental constructs.

Our eSOS system, described in this paper, certainly does not compete with
these rich systems, but rather attempts to leverage procedural programmers’
existing knowledge to give them a way into formal semantics. The core tool
comes as two small Java packages, one containing a value system which pro-

Principled and pragmatic specification 3

vides straightforward runtime type checking, and the other containing a parser
for eSOS specifications, classes implementing an abstract syntax for SOS, and
an SOS interpreter for sequential programs. Though conceived as a back end
for richer SOS notations, we have found that it is a comfortable notation for
neophyte users who can think of it as just another form of programming, and
can answer questions such as ‘yes, but what does that really do’ by looking at
the source code and exercising SOS specifications using the debugger from their
preferred development environment to walk through traces.

2 The Course

We run a third year course entitled Software Language Engineering (SLE). This
was originally conceived as a pragmatic counterpart to our existing compiler
theory course which presents topics in parsing and code generation and optimi-
sation. The SLE course is intended to equip students with the engineering skills
needed to design and deliver a fully working interpreter or compiler for a small
language, with no emphasis on optimisation: the primary goal is correctness of
the language processor, not high performance. The focus is on Domain Specific
Languages, with motivating examples which include 3D modelling languages for
graphics and 3D printing; music specification languages which connect to the
Java MIDI synthesizer; and image processing languages. As part of the course,
students develop their own DSL’s, usually in one of these domains.

Over time, the two courses have developed independently, and now not all of
the SLE students take the compiler theory course. As a result, we work ab initio
and make no assumptions about prior knowledge of compilers.

The students are rarely mathematically confident. They will have taken typ-
ical first year courses on discrete maths with some exposure to logic and the
use of inference rules, but they will not have previously applied that knowledge
beyond very small pencil-and-paper exercises.

The course is taught over ten weeks (plus one week of revision and consolida-
tion) each of which has two one-hour lectures and a two-hour lab session. There
are seven programmed labs; the remaining sessions are used for tutorial support
whilst the students develop their own language projects.

The first week is critical. The goal is to de-mystify formal systems by pre-
senting rule based ‘symbol-pushing’ games. We use Conway’s Game of Life as
an example. Our students are familiar with this formal system because the first
large program that they write in year one is a graphical version of Life.

We then need to help students become comfortable with a reduction model
of program execution in which the program is progresively rewritten (with side-
effects recorded in semantic entities such as the store and the environment). Most
students have a von Neumann mind set in which a static program is traversed
under the control of the program counter: we tell them that we need to ‘get rid of
the program counter’ before we can use our chosen formal specification method.

We introduce the idea of establishing a program’s meaning by repeatedly
rewriting it, rather than by an execution walkthrough, using a version of Eu-

4 Adrian Johnstone and Elizabeth Scott

clid’s Greatest Common Divisor (GCD) algorithm written in a simple procedural
language with implicit declarations:

a := 15; b := 9;

while a != b

if a > b

a := a - b;

else

b := b - a;

gcd := a;

The program leaves its result in variable gcd; with a and b initialised to 15
and 9 we expect that after execution gcd would contain 3.

We also give the program in an internal (abstract) syntax form, as a term
built from prefix functions. The internal abstract syntax is not formally defined
at this stage: we simply use a form that is sufficiently close to the concrete
program that students can accept it as being equivalent.

seq(seq(seq(

assign(a, 15), assign(b, 9)),

while(ne(deref(a), deref(b)),

if(gt(deref(a), deref(b)),

assign(a, sub(deref(a), deref(b))),

assign(b, sub(deref(b), deref(a)))))),

assign(gcd, deref(a)))

We then compare the behaviour of the concrete program (as observed via a
walkthrough in the Eclipse debugger) with the behaviour of the internal abstract
syntax term under term rewriting. This is a purely illustrative exercise, but
nevertheless sufficient to informally show that term rewriting can mimic the
execution of the program as conventionally understood.

In the main body of the course, students learn four key techniques: eSOS in-
terpretation; parsing; attribute grammar evaluation; and (limited) term rewrit-
ing. In each case, the technique is presented as a formal system, but with an
accompanying procedural model rendered in Java code. Often the procedural
model presented in lectures is not fully general but is sufficient to provide an in-
tellectual model that allows them to use more powerful versions of the same idea
in the labs as a black box, without being burdened by their internal complexity.

Parsing forms a good example of this style of learn-by-doing, and take-the-
rest-on-trust. For project work, the production parsing technology that we use
is the GLL generalised parser [8] but a detailed description of that method
would require too much classroom time. Instead, students learn how to hand-
write in Java simple singleton-backtracking recursive descent parsers. We then
look at grammatical constructs for which which that approach fails: we believe
that things which are broken can be more educational than things that seem to
magically work. The students go on to use a GLL parser which behaves to some
extent like a backtracking parser but overcomes these problems in a way they
don’t need to know the details of. We extend the parsers to support attributes
and attribute equations, and use the resulting tool to implement a grammar for

Principled and pragmatic specification 5

BNF itself with attribute equations which generate. By the end of this two week
segment the students have developed a bootstrapped parser generator which can
reproduce itself. They understand parsing, meta-description and generation of
programs from specifications. Students know that the parsing technology they
have explored is weak, but understand that the principles scale up directly to
more general parsing approaches.

3 How we Teach SOS

We teach SOS using eSOS, a variant we have developed to be accessible to
mainstream students with a basic procedural programming background. In the
later sections we shall describe the eSOS interpreter that allows students to
experiment by executing their specifications. However, we don’t just want to
talk about teaching, we want to illustrate our classroom style. The SLE course
has an accompanying textbook which is being developed as we gain experience
and feedback from the course. In this section we provide a precis of the lecture
material which introduces eSOS to illustrate the way in which we strip the
subtleties down to a basic minimum. The rest of Section 3 is written as though
for students. This allows the reader who is not a SOS practitioner to pick up
the notions and terminology they need for the subsequent sections. Experts will
find nothing surprising and can skip to the description of the eSOS interpreter
in Section 4.

At hardware level, computer programs exist as essentially static patterns
of instructions, traversed under the control of a program counter which forms
a pointer into the program. It can be difficult to directly prove properties of
programs in this model, since the evolution of the computation is a property
of the trace of the program counter. An initial step in formalising programming
language semantics is often to move to a ‘reduction’ model, in which the program
is a dynamic object that may be rewritten during execution. Most (though not
all) execution steps reduce the size of the program term. For pure functional
programming languages, these rewrites capture everything there is to say about
the computation, but most languages also allow side-effects such as store updates
and appends to output lists.

Here is the four step reduction of a program term which computes 10− 2− 4
and ‘outputs’ the result by appending it to an initially empty list.

<output(sub(sub(10, 2),4)), []>

<output(sub(8,4)), []>

<output(4), []>

<, [4]>

At each point, some part of the program term called the reducible expression or
redex has been identified, a simple computation performed and then the term
rewritten: in the first step the redex sub(10, 2) has been rewritten to 8.

6 Adrian Johnstone and Elizabeth Scott

A configuration 〈 program term, output list 〉 thus captures everything about
the state of the computation at some point: the list captures side-effects of pre-
vious computations and the program term contains what is left to be computed.
The output list is an example of a semantic entity : depending on the style of
language we are specifying, configurations may have several entities in addition
to the program term.

In eSOS we have five kinds of entity: (i) read-only lists and (ii) write-only lists
model input and output; (iii) maps whose bindings may be changed which model
read/write memory (usually called stores); (iv) maps whose bindings may not
changed which model symbol tables (or environments) and (v) singleton sets
which are used for describing signals and exceptions. We refer to a 〈program
term, entity list〉 pair as a configuration. If the entity list is empty, we may omit
it.

Execution of programs, then, is modeled by stepping from configuration to
configuration. The components of a configuration vary according to the language
being specified. In the subtraction example we have a program term and a write-
only list. Our abstract internal form of the GCD program above does not have
input and output, so all we need is a program term and a store, denoted as
〈θ, σ〉.

We can view program execution as a sequence of configuration transitions:
configuration X transitions to Y if there is a program whose transition sequence
has Y appearing as a successor to X. The set of all transitions describes every-
thing that could possibly be executed: in a deep sense it is the semantics of the
language of those programs.

An SOS specification is merely a device for specifying a (usually infinite)
set of transitions using a finite recipe of inference rules. For languages with
configurations 〈θ, σ〉, each rule has the form

C1 C2 . . . Ck

〈θ, σ〉 → 〈θ′, σ′〉

The single transition below the line is the conclusion. The Ci are the condi-
tions: there may be zero or more of them. Conditions can themselves be transi-
tions, or may be functions. The latter are referred to as side-conditions.

One might read an inference rule in this style as:

if you have a configuration 〈θ, σ〉,
and C1 succeeds and C2 succeeds and . . . and Ck succeeds
then we can transition to configuration 〈θ′, σ′〉

One uses this kind of rule by checking that the current configuration matches
the left hand side of the conclusion, then checking the conditions (in any order)
and then, if everything succeeds, rewriting the current configuration into the
right hand side of the conclusion. Where a condition is itself a transition we
must recursively apply our checking process to transitions in the conditions. The
subchecking can only terminate when we encounter a rule with no transitions in
its conditions.

Principled and pragmatic specification 7

In practice, to produce a finite specification, SOS rules are written as rule
schemas in which variables are used as placeholders for subterms. For example,

< seq(done, C) >→< C >

is a rule schema with variable C, and a rule is obtained by replacing C with a
program term

< seq(done, output(6)) >→< output(6) > .

When interpreting these rule schemas, we use the operations of pattern matching
and substitution to dissect and reconstruct terms. We call a term which contains
variables an open term or pattern. A term with no variables is closed.

We shall write θ . π for the operation of matching closed term θ against
pattern π. The result of such a pattern match is either failure represented by ⊥,
or a set of bindings. So, in these expressions where X is a variable

seq(done, output(6)) . seq(done, X)

returns {X 7→ output(6)} whereas

seq(done, output(6)) . seq(X, done)

returns ⊥ because output(6) does not match done.
Pattern substitution is the process of substituting bound subterms for the

variables in the pattern. We shall write π / ρ for the operation of replacing
variables in pattern π with their bound terms from ρ. So

plus(X, 10) / {X 7→ 6} returns plus(6, 10).

The following SOS rule (schema) handles the subtraction of two integers. It
has three side conditions which use pre-specified functions isInt and subOp. The
construct sub belongs to the abstract syntax of the language whose semantics
are being specified.

isInt(n1) . true isInt(n2) . true subOp(n1, n2) . V

〈sub(n1, n2)〉 → 〈V 〉
[sub]

The conclusion tells us that this rule will rewrite expressions of the form
sub(n1, n2) to some value, if the conditions (which are all side-conditions) are
met.

How should we use such rules to implement interpreters? Let us assume that
the current program term is θ, then one way to compute whether the transition
may be made is:

if ρ1 = (θ . sub(n1,n2)) then
if (isInt(n1) / ρ1) . true
and (isInt(n2) / ρ1) . true
and ρ2 = ((subOp(n1,n2) / ρ1) . V)
then θ′ = V / ρ2

8 Adrian Johnstone and Elizabeth Scott

Informally, we try to match the current program term against the left-hand
side of the conclusion and store any variable bindings in the map ρ1. We then
work through the conditions substituting for variables on their left hand sides and
perhaps creating new environments for pattern matches. If all of the conditions
succeed then we make a new program term θ′ by substituting the most recent
environment. If we can guarantee that each variable appears only once as an
argument to a pattern match operator ., then we can use a single environment
which is extended as we work through the conditions.

Using the two rules below, we specify program terms which are nested sub-
tractions.

〈E1, α〉 → 〈I1, α〉
〈sub(E1, E2), α〉 → 〈sub(I1, E2), α〉

[subLeft]

〈E2, α〉 → 〈I2, α〉 isInt(n) . true

〈sub(n,E2), α〉 → 〈sub(n, I2), α〉
[subRight]

The rule [subLeft] rewrites the left argument to a simpler expression whilst
preserving the second argument. Rule [subRight] will only process terms that
had a single integer as the left hand argument, and rewrites the second argument.
The original [sub] rule will then perform the subtraction of the integers. Together
these three rules comprise a so-called small-step SOS for subtraction and act so
as to enforce left to right parameter evaluation order.

When running the interpreter on a particular initial term, we can put in
checks to ensure that at most one rule is activated at each rewrite step, though of
course that will only detect non-determinism that is triggered by that particular
term. Static checking of rules can detect some forms of non-determinism.

Example: SOS rules for the GCD internal language

An SOS specification may name more than one set of transitions. The rules we
have looked at so far are so-called ‘small-step’ rules. Big-step rules in which, say,
arithmetic operations proceed directly to their result without the fine-grained
elaboration of the left and right arguments are also possible, and both types of
transition may occur within one set of rules. We illustrate this technique with
a complete set of rules for our GCD abstact internal language in which the
relational and arithmetic operations are specified using a big-step transition ⇒
and the commands using a small-step transition →. It is sometimes helpful to
think of small-step rules such as [assignResolve] ‘calling’ the big step transition
to reduce a complex arithmetic expression to a value.

As well as arithmetic and boolean values, this specification uses the special
value done (sometimes called skip in the literature) which represents the final
reduction state of a program term.

< seq(done, C), σ >→< C, σ > [sequenceDone]

< C1, σ >→< C
′

1, σ
′
>

< seq(C1, C2), σ >→< seq(C
′
1, C2), σ′ >

[sequence]

Principled and pragmatic specification 9

< if(true, C1, C2), σ >→< C1, σ > [ifTrue]

< if(false, C1, C2), σ >→< C2, σ > [ifFalse]

< E, σ >⇒< E
′
, σ

′
>

< if(E,C1, C2), σ >→< if(E′ , C1, C2), σ′ >
[ifResolve]

< if(E, seq(C,while(E,C)), done), σ >→< C
′
, σ

′
>

< while(E,C), σ >→< C ′ , σ′ >
[while]

isInt(n) . true updateOp(σ,X, n) . σ1
< assign(X,n), σ >→< done, σ1 >

[assign]

< E, σ >⇒< n, σ
′
>

< assign(X,E), σ >→< assign(X,n), σ′ >
[assignResolve]

< E1, σ >⇒< n1, σ1 >< E2, σ1 >⇒< n2, σ2 > gtOp(n1, n2) . V

< gt(E1, E2), σ >⇒< V, σ2 >
[gtBig]

< E1, σ >⇒< n1, σ1 >< E2, σ1 >⇒< n2, σ2 > neOp(n1, n2) . V

< ne(E1, E2), σ >⇒< V, σ2 >
[neBig]

< E1, σ >⇒< n1, σ1 >< E2, σ1 >⇒< n2, σ2 > subOp(n1, n2) . V

< sub(E1, E2), σ >⇒< V, σ2 >
[subBig]

valueOp(σ,R) . V

< deref(R), σ >⇒< V, σ >
[variable]

The result of running the eSOS interpreter with these rules on the input term
above is a 30-step reduction of the initial term to the terminating value done,
the last four configuations of which are:

< seq(done, assign(gcd, deref(a))), sig = { a->3 b->3 } >

< assign(gcd, deref(a)), sig = { a->3 b->3 } >

< assign(gcd, 3), sig = { a->3 b->3 } >

< done, sig = { a->3 b->3 gcd->3 } >

Happily, after the final step the store in the final configuration contains a
binding from gcd to 3.

One can write specifications that are incomplete, but appear to work. The
characteristic symptom is that the behaviour of the interpreter is sensitive to
the order of the rules. In fact this specification contains nondeterminsim: rules
[assign] and [assignResolve] can both trigger if the redex is an integer.

With the ordering shown here, the interpreter prioritises [assign] over [assign-
Resolve] which has the effect of invoking [assignResolve] on complex expressions
until they are reduced to an integer, at which point [assign] performs the assign-
ment. If the order of the rules is reversed, the interpreter will loop forever on
[assignResolve].

The cure for this class of problem is to ensure that sufficient side-conditions
are added to the rules to ensure that at most one rule at a time can be triggered.

10 Adrian Johnstone and Elizabeth Scott

4 The eSOS Interpreter

The origins of the eSOS tool lie in providing efficient interpretation of rules
for funcons. The software was developed within the PLanCompS project as a
sort-of ‘assembly language’ for SOS rules. The intention was to reduce SOS rule
interpretation to a minimalist core, with richer and more expressive forms of
specification languages (such as Mosses’ CBS notation) being translated down
into eSOS before execution. Once developed, we created experimental lab ses-
sions for the SLE course. These were very successful and led to a reworking of
the course which put SOS at its centre.

In the literature a variety of notations are used within SOS specifications.
Some are just syntactic sugar: for instance a turnstile symbol ` may be used in
expressions such as ρ ` 〈θ, σ〉 → 〈θ′, σ′〉 as shorthand for 〈θ, ρ, σ〉 → 〈θ′, ρ, σ′〉.

More significantly, most authors use standard mathematical notation where
possible, and allow computations and function calls to appear directly within
transitions. For instance, a rule for subtraction might be written:

n1 ∈ Z n2 ∈ Z

〈sub(n1, n2)〉 → 〈n1 − n2〉
[subConcise]

using standard symbols for set membership and the set of integers. The expres-
sion in the right-hand side of the conclusion should be read as the arithmetic
result of performing subtraction on the substituted variables n1 and n2.

These conventions certainly allow for more succinct expression, but can be
a little daunting at first encounter, especially the ellision of side conditions into
transitions. We might think of them as ‘high level’ formats which are convenient
for the human reader when exercising small example specifications.

The eSOS format is extremely limited, but no less expressive than these richer
forms. We can view it as a low level format in which the operations needed for
our style of interpretation are explicit. eSOS allows only the three operations:
pattern matching, substitution and evaluation of functions from term(s) to term.
In fact the substitution operator is automatically applied to the right hand side of
all transitions and side conditions, and so never needs to be written. In addition,
configurations must be comprised of terms with no embedded functions.

Functions can only appear on the left hand side of side-conditions. The ar-
guments to, and the return value from, a function, must be terms. This means
that terms such as the number 67 or the boolean false are represented as trees
containing a single node which is labeled with 67 or false accordingly.

New values may be computed and inserted into the result of a transition by
matching the result of function to a variable, and then binding that variable in
the right hand side of a conclusion, as shown in rule [sub] above.

The current eSOS interpreter works greedily in the sense that the first rule
that succeeds will be used, and rules are checked in the order that they are writ-
ten. Within a rule, conditions are checked in strict left to right order. In principle
we could also use more sophisticated interpretation strategies that supported
non-determinism so as to model concurrency.

Principled and pragmatic specification 11

eSOS provides a value system which has built in dynamic type checking
allowing a designer to test parts of their implementation before they have im-
plemented the static semantics of their type system. The system has a fixed set
of operations with suggestive names such as add, union and so on. The value
classes are all extensions of class Value, which contains a method for each op-
eration. Within Value, the operation methods all throw a Java exception. The
idea is that the class for, say, Integer extends Value and implements its own
overriding method for each operation that is meaningful on that type. If an op-
eration is called on an inappropriate value (for which is no operation defined)
the top level method in Value will issue a run time error.

Function calls in eSOS side conditions are almost all direct calls to the func-
tions in the value library; all the interpreter needs to do is to extract the label
from a term (which will be an instance of a value package class) and call the cor-
responding method. The interpreter contains a case statement which branches on
the function name and performs the extract-and-call action. Here is the branch
for the subOp() function used in our GCD rules:

case "subOp":

functionResult = new ValueTerm(

leftPayload.sub(children.get(1).getPayload()));

break;

The value system also provides a set of coercion operations which can inter-
convert values where appropriate.

Most of the value classes are really wrappers on the underlying Java API
class. We offer these primitive types: Boolean, Character, Integer32, IntegerAr-
bitrary, Real64, RealArbitrary, Null and Void; and these collection types: Array,
String, List, Set, Tuple, Map, Record, MapHierarchy.

The IntegerArbitrary and RealArbitrary classes support arbitrary length val-
ues. The MapHierarchy class contains a map and a reference to another MapHier-
archy called the parent. If a key lookup is performed on a MapHierarchy, the
search proceeds recursively through the base MapHierachy and its parents. This
naturally implements nested scoping of key-value bindings. In addition there are
Term and TermVariable classes that construct trees whose nodes are labeled
with instances of Value types. The Term class includes pattern match and sub-
stitute operations. Some of the collection classes also have implementations of
match and substitute that generalise over the terms held in the collection.

The implementation of eSOS relies heavily on the classes in the value pack-
age; for instance SOS configurations are represented by instances of the Record
class and environments by instances of MapHierarchy. Terms are, of course,
represented by instances of value class Term and the builtin matching and sub-
stitution methods are sensitive to instances of variables represented with the
TermVariable class.

With so much of the work being done within the operation methods of the
Value library, the main interpreter function may be compactly expressed. The
current implementation requires some 30 lines of Java.

12 Adrian Johnstone and Elizabeth Scott

5 The eSOS Concrete Syntax

eSOS rules may be constructed directly by programs written in Java and other
JVM languages through an Application Programmer Interface (API), but the
usual way to create a specification is via a text file containing eSOS concrete
rules. The prelude and a concrete form of the first two rules from our GCD
specification is shown below. From this, LATEX source to typeset the equations
is automatically generated.

relation ->, sig:map, done

relation =>, sig:map

latex sig "\\sigma", -> "\\rightarrow", => "\\Rightarrow"

-sequenceDone

seq(done, C) -> C

-sequence

C_1 -> C_1'

seq(C_1, C_2) -> seq(C_1', C_2)

The relation directive declares each transition symbol and zero or more
associated syntactic entities. These are typed as one of the five classes of entity
mentioned on page 6; in this case entity sig is of type map and thus can be used
to model the store. The configurations of the complete specification is the union
of the entities declared in all of the relation directives.

The latex directive creates a set of mappings which are used to generate
LATEX aliases, enabling us to write sig in the source file and have it appear as
σ in the typeset output.

The rules themselves are elided in that entities which are used in ‘standard’
ways need not be mentioned. This approach is inspired by Peter Mosses’ work
on MSOS [5], in which semantic entities are gathered into a record which labels
the transition. Mosses provides a category-theoretic classification of propagation
rules for entities. In eSOS we use a single propagation rule which we call the
‘round the clock’ rule, so for instance an unmentioned store entity σ propagates
as:

〈, σ0〉 → 〈, σ1〉 〈, σ1〉 → 〈, σ2〉 . . . 〈, σk−1〉 → 〈, σk〉
〈, σ0〉 → 〈, σk〉

Apart from reducing the amount of writing required, the main purpose of this
elision is to support modularity, allowing fragments of specifications which may
use different configurations to be brought together in the manner of MSOS. Our
uniform propagation rule has the merit of simplicity but in general will generate
more bindings during interpretation than strictly necessary.

Space precludes a detailed example, but the motivation for adopting this
capability is to support the Funcon methodology mentioned in Section 1. In

Principled and pragmatic specification 13

particular, we wish to support the use of signal entities which manage the prop-
agation of exceptions and other forms of unusual control flow. In general, the
only constructs needing to access signal entities are those originating or handling
the exceptions. We do not want to clutter all of the other rules with references
to signals; in eSOS they can be simply elided away in the source, and will then
be automatically generated as the rules are expanded for interpretation.

6 Connecting Parsers to eSOS

A BNF context free grammar for the GCD language in Section 2 is shown be-
low. Terminals are stropped 'thus' and we assume the availability of two lexical
items INTEGER and ID which match decimal digit sequences and alpha-numeric
identifiers in the conventional way. (Ignore for the moment the ^ annotations.)
For compactness, the grammar only provides definitions for the >, 6= and sub-
traction operations though it does encode their relative priorities and associa-
tivities. The grammar does not generate empty programs.

statement ::= seq^^ | assign^^ | if^^ | while^^

seq ::= statement statement

assign ::= ID ':='^ subExpr ';'^

if ::= 'if'^ relExpr statement 'else'^ statement

while ::= 'while'^ relExpr statement

relExpr ::= subExpr^^ | gt^^ | ne^^

gt ::= relExpr '>'^ subExpr

ne ::= relExpr '!='^ subExpr

subExpr ::= operand^^ | sub^^

sub ::= subExpr '-'^ operand

operand ::= deref^^ | INTEGER^^ | '('^ subExpr^^ ')'^

deref ::= ID

When used to parse the GCD program above, this grammar yields a derivation
tree containing 92 nodes. The relatively large structure contains nodes repre-
senting, for instance, keywords and punctuation that may be safely discarded
without losing the underlying meaning of the program. It is conventional in for-
mal semantics work (and indeed in compiler construction) to generate a more
compact intermediate form. For instance, the GNU compilers use the GENERIC
libraries to build simplified trees which are translated into three-address code
for optimisation, and the metamodelling community typically use Java classes
to represent semantic entities which are initialised by concrete parsers.

In formal semantics, connections to concrete parsing are often eschewed in
favour of starting with some abstract syntax capturing syntactic-categories such
as declarations, commands, expressions and so on. This is reasonable for research,
but can be a bar to progress for those wishing to simply execute semantic speci-
fications, whether on paper or via interpreters. For example, how should phrases
in the simplified abstract syntax to be constructed from a concrete program
source?

14 Adrian Johnstone and Elizabeth Scott

An approach we have found useful is to deploy folds [2] to convert full deriva-
tion trees to simplified abstract syntax trees. There are two fold operations
denoted by ^ (fold under) and ^^ (fold over). In both cases, the annotated node
A is combined with its parent P and the children of A are ‘pulled up’ and in-
serted as children of P , in order, between the siblings of A. When folding-over,
the label of P is replaced by the label of A.

When folding under, P retains its original label and thus A disappears: a fold-
under applied to a terminal, therefore, has the effect of deleting it from the tree
and can be used to remove syntactic clutter such as the '(' and ')' terminals in
the GCD grammar. Fold-overs can be used to telescope chains of nonterminals:
for instance we use it above to overwrite all instances of nonterminal operand
with deref, subExpr or an integer literal as appropriate. We have also used
carrier nonterminals such as ge and sub to replace concrete syntax operators
such as >= with alphanumeric names. The reader may like to check that the
annotations above, when applied to the derivation tree for our GCD program
yields this abstracted tree, which has 39 nodes.

seq

seq assign

seq while

assign assign

a 15 b 9

ne if

deref deref

a b

gt assign assign

deref deref

a b

a sub

deref deref

a b

b sub

deref deref

b a

gcd deref

a

If we output the labels in a preorder traversal using the usual bracketing
convention, we get this text rendition which is in a format suitable for use directly
as a program term with the eSOS interpreter.

seq(seq(seq(assign(a, 15), assign(b, 9)),

while(ne(deref(a), deref(b)), if(gt(deref(a), deref(b)),

Principled and pragmatic specification 15

assign(a, sub(deref(a), deref(b))),

assign(b, sub(deref(b), deref(a)))))),

assign(gcd, deref(a)))

Tree construction with fold operations may be described using an L-attributed
grammar and hence folded derivation trees may be produced in a single pass, or
even ‘on the fly’ by recursive descent parsers.

7 Student Response and Conclusions

eSOS is a distillation of the core operating principles of a sequential SOS inter-
preter, and as such it represents a ‘lowest common denominator’ of the various
enriched notations that one encounters in the research literature. The simple
syntax, combined with a compact interpreter written in Java provide a com-
fortable entry to formal semantics for undergraduate students. Student response
has been enthusiastic. The even split between laboratory and lecture room time
enabled impressive project work, and in formal questionnaire returns students
rated the course as being significantly more intellectually stimulating than the
mean scores across all other courses in our school.

References

1. M. Churchill, P. D. Mosses, N. Sculthorpe, and P. Torrini. Reusable components
of semantic specifications. Trans. Aspect-Oriented Software Development, 12:132–
179, 2015.

2. A. Johnstone and E. Scott. Tear-Insert-Fold grammars. In Proceedings of the
Tenth Workshop on Language Descriptions, Tools and Applications, LDTA ’10,
pages 6:1–6:8, New York, NY, USA, 2010. ACM.

3. L. C. Kats and E. Visser. The spoofax language workbench: Rules for declarative
specification of languages and ides. SIGPLAN Not., 45(10):444–463, Oct. 2010.

4. P. Klint, T. van der Storm, and J. J. Vinju. RASCAL: A domain specific language
for source code analysis and manipulation. In Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2009, Edmonton,
Alberta, Canada, September 20-21, 2009, pages 168–177, 2009.

5. P. D. Mosses and M. J. New. Implicit propagation in structural operational se-
mantics. Electr. Notes Theor. Comput. Sci., 229(4):49–66, 2009.

6. G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.
Program., 60-61:17–139, 2004.

7. G. Roşu and T. F. Şerbănuţă. An overview of the K semantic framework. Journal
of Logic and Algebraic Programming, 79(6):397–434, 2010.

8. E. Scott and A. Johnstone. GLL syntax analysers for EBNF grammars. Science
of Computer Programming, 166:120–145, 11 2018.

9. P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Str-
nisa. Ott: Effective tool support for the working semanticist. J. Funct. Program.,
20(1):71–122, 2010.

10. M. van den Brand, J. Heering, P. Klint, and P. Olivier. Compiling language defi-
nitions: the ASF+SDF compiler. ACM Transactions on Programming Languages
and Systems, 24(4):334–368, 2002.

