
Open access to the Proceedings of
the 24th USENIX Security Symposium

is sponsored by USENIX

Attacks Only Get Better: Password Recovery
Attacks Against RC4 in TLS

Christina Garman, Johns Hopkins University; Kenneth G. Paterson and

Thyla Van der Merwe, University of London
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/garman

This paper is included in the Proceedings of the
24th USENIX Security Symposium

August 12–14, 2015 • Washington, D.C.
ISBN 978-1-939133-11-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/334431165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

USENIX Association 	 24th USENIX Security Symposium  113

Attacks Only Get Better: Password Recovery Attacks Against RC4 in TLS

Christina Garman
Johns Hopkins University
cgarman@cs.jhu.edu

Kenneth G. Paterson
Royal Holloway, University of London

kenny.paterson@rhul.ac.uk

Thyla van der Merwe
Royal Holloway, University of London

thyla.vandermerwe.2012@rhul.ac.uk

Abstract
Despite recent high-profile attacks on the RC4 algorithm
in TLS, its usage is still running at about 30% of all
TLS traffic. We provide new attacks against RC4 in TLS
that are focussed on recovering user passwords, still the
pre-eminent means of user authentication on the Inter-
net today. Our new attacks use a generally applicable
Bayesian inference approach to transform a priori infor-
mation about passwords in combination with gathered
ciphertexts into a posteriori likelihoods for passwords.
We report on extensive simulations of the attacks. We
also report on a “proof of concept” implementation of the
attacks for a specific application layer protocol, namely
BasicAuth. Our work validates the truism that attacks
only get better with time: we obtain good success rates in
recovering user passwords with 226 encryptions, whereas
the previous generation of attacks required around 234

encryptions to recover an HTTP session cookie.

1 Introduction

TLS in all current versions allows RC4 to be used as its
bulk encryption mechanism. Attacks on RC4 in TLS
were first presented in 2013 in [2] (see also [13, 16]).
Since then, usage of RC4 in TLS has declined, but it
still accounted for around 30% of all TLS connections
in March 2015.1 Moreover, the majority of websites still
support RC42 and a small proportion of websites only
support RC4.3

1According to data obtained from the International Computer Sci-
ence Institute (ICSI) Certificate Notary project, which collects statis-
tics from live upstream SSL/TLS traffic in a passive manner; see
http://notary.icsi.berkeley.edu.

2According to statistics obtained from SSL Pulse; see https://

www.trustworthyinternet.org/ssl-pulse/.
3Amounting to 0.79% according to a January 2015 sur-

vey of about 400,000 of the Alexa top 1 million sites; see
https://securitypitfalls.wordpress.com/2015/02/01/

january-2015-scan-results/.

We describe attacks recovering TLS-protected pass-
words whose ciphertext requirements are significantly
reduced compared to those of [2]. Instead of the 234 ci-
phertexts that were needed for recovering 16-byte, base64-
encoded secure cookies in [2], our attacks now require
around 226 ciphertexts. We also describe a proof-of-
concept implementation of these attacks against a spe-
cific application-layer protocol making use of passwords,
namely BasicAuth.

1.1 Our Contributions
We obtain our improved attacks by revisiting the statis-
tical methods of [2], refining, extending and applying
them to the specific problem of recovering TLS-protected
passwords. Passwords are a good target for our attacks
because they are still very widely used on the Internet for
providing user authentication in protocols like BasicAuth
and IMAP, with TLS being used to prevent them being
passively eavesdropped. To build effective attacks, we
need to find and exploit systems in which users’ pass-
words are automatically and repeatedly sent under the
protection of TLS, so that sufficiently many ciphertexts
can be gathered for our statistical analyses.

Bayesian analysis We present a formal Bayesian anal-
ysis that combines an a priori plaintext distribution with
keystream distribution statistics to produce a posteriori
plaintext likelihoods. This analysis formalises and ex-
tends the procedure followed in [2] for single-byte attacks.
There, only keystream distribution statistics were used
(specifically, biases in the individual bytes in the early
portion of the RC4 keystream) and plaintexts were as-
sumed to be uniformly distributed, while here we also
exploit (partial) knowledge of the plaintext distribution
to produce a more accurate estimate of the a posteriori
likelihoods. This yields a procedure that is optimal (in
the sense of yielding a maximum a posteriori estimate for
the plaintext) if the plaintext distribution is known exactly.

1

114  24th USENIX Security Symposium	 USENIX Association

In the context of password recovery, an estimate for the
a priori plaintext distribution can be empirically formed
by using data from password breaches or by synthetically
constructing password dictionaries. We will demonstrate,
via simulations, that this Bayesian approach improves per-
formance (measured in terms of success rate of plaintext
recovery for a given number of ciphertexts) compared to
the approach in [2].

Our Bayesian analysis concerns vectors of consecu-
tive plaintext bytes, which is appropriate given passwords
as the plaintext target. This, however, means that the
keystream distribution statistics also need to be for vec-
tors of consecutive keystream bytes. Such statistics do not
exist in the prior literature on RC4, except for the Fluher-
McGrew biases [10] (which supply the distributions for
adjacent byte pairs far down the keystream). Fortunately,
in the early bytes of the RC4 keystream, the single-byte
biases are dominant enough that a simple product distri-
bution can be used as a reasonable estimate for the distri-
bution on vectors of keystream bytes. We also show how
to build a more accurate approximation to the relevant
keystream distributions using double-byte distributions.
(Obtaining the double-byte distributions to a suitable de-
gree of accuracy consumed roughly 4800 core-days of
computation; for details see the full version [12].) This
approximation is not only more accurate but also neces-
sary when the target plaintext is located further down the
stream, where the single-byte biases disappear and where
double-byte biases become dominant. Indeed, our double-
byte-based approximation to the keystream distribution
on vectors can be used to smoothly interpolate between
the region where single-byte biases dominate and where
the double-byte biases come into play (which is exhib-
ited as a fairly sharp transition around position 256 in the
keystream).

In the end, what we obtain is a formal algorithm that
estimates the likelihood of each password in a dictio-
nary based on both the a priori password distribution
and the observed ciphertexts. This formal algorithm is
amenable to efficient implementation using either the
single-byte based product distribution for keystreams or
the double-byte-based approximation to the distribution
on keystreams. The dominant terms in the running time
for both of the resulting algorithms is O(nN) where n is
the length of the target password and N is the size of the
dictionary used in the attack.

An advantage of our new algorithms over the previous
work in [2] is that they output a value for the likelihood
of each password candidate, enabling these to be ranked
and then tried in order of descending likelihood.

Note that our Bayesian approach is quite general and
not limited to recovery of passwords, nor to RC4 – it can
be applied whenever the plaintext distribution is approx-
imately known, where the same plaintext is repeatedly

encrypted, and where the stream cipher used for encryp-
tion has known biases in either single bytes or adjacent
pairs of bytes.

Evaluation We evaluate and compare our password re-
covery algorithms through extensive simulations, explor-
ing the relationships between the main parameters of our
attack:

• The length n of the target password.

• The number S of available encryptions of the pass-
word.

• The starting position r of the password in the plain-
text stream.

• The size N of the dictionary used in the attack, and
the availability (or not) of an a priori password dis-
tribution for this dictionary.

• The number of attempts T made (meaning that our
algorithm is considered successful if it ranks the cor-
rect password amongst the top T passwords, i.e. the
T passwords with highest likelihoods as computed
by the algorithm).

• Which of our two algorithms is used (the one com-
puting the keystream statistics using the product dis-
tribution or the one using a double-byte-based ap-
proximation).

• Whether the passwords are Base64 encoded before
being transmitted, or are sent as raw ASCII/Unicode.

Given the many possible parameter settings and the
cost of performing simulations, we focus on comparing
the performance with all but one or two parameters or
variables being fixed in each instance.

Proofs of concept Our final contribution is to apply
our attacks to specific and widely-deployed applications
making use of passwords over TLS: BasicAuth and (in
the full version [12]), IMAP. We introduce BasicAuth and
describe a proof-of-concept implementation of our attacks
against it, giving an indication of the practicality of our
attacks. We do the same for IMAP in the full version [12].

For both applications, we have significant success rates
with only S = 226 ciphertexts, in contrast to the roughly
234 ciphertexts required in [2]. This is because we are
able to force the target passwords into the first 256 bytes
of plaintext, where the large single-byte biases in RC4
keystreams come into play. For example, with S = 226

ciphertexts, we would expect to recover a length 6 Ba-
sicAuth password with 44.5% success rate after T = 5
attempts; the rate rises to 64.4% if T = 100 attempts are

2

USENIX Association 	 24th USENIX Security Symposium  115

made. In practice, many sites do not configure any limit
on the number of BasicAuth attempts made by a client;
moreover a study [5] showed that 84% of websites sur-
veyed allowed for up to 100 password guesses (though
these sites were not necessarily using BasicAuth as their
authentication mechanism). As we will show, our result
compares very favourably to the previous attacks and to
random guessing of passwords without any reference to
the ciphertexts.

However, there is a downside too: to make use of the
early, single-byte biases in RC4 keystreams, we have to
repeatedly cause TLS connections to be closed and new
ones to be opened. Because of latency in the TLS Hand-
shake Protocol, this leads to a significant slowdown in
the wall clock running time of the attack; for S = 226, a
latency of 100ms, and exploiting browsers’ propensity to
open multiple parallel connections, we estimate a running
time of around 300 hours for the attack. This is still more
than 6 times faster than the 2000 hours estimated in [2].
Furthermore, the attack’s running time reduces propor-
tionately to the latency of the TLS Handshake Protocol,
so in environments where the client and server are close
– for example in a LAN – the execution time could be a
few tens of hours.

2 Further Background

2.1 The RC4 algorithm
Originally a proprietary stream cipher designed by Ron
Rivest in 1987, RC4 is remarkably fast when implemented
in software and has a very simple description. Details of
the cipher were leaked in 1994 and the cipher has been
subject to public analysis and study ever since.

RC4 allows for variable-length key sizes, anywhere
from 40 to 256 bits, and consists of two algorithms,
namely, a key scheduling algorithm (KSA) and a pseudo-
random generation algorithm (PRGA). The KSA takes
as input an l-byte key and produces the initial internal
state st0 = (i, j,S) for the PRGA; S is the canonical
representation of a permutation of the numbers from 0
to 255 where the permutation is a function of the l-byte
key, and i and j are indices for S . The KSA is specified
in Algorithm 1 where K represents the l-byte key array
and S the 256-byte state array. Given the internal state
str, the PRGA will generate a keystream byte Zr+1 as
specified in Algorithm 2.

2.2 Single-byte biases in the RC4
Keystream

RC4 has several cryptographic weaknesses, notably the
existence of various biases in the RC4 keystream, see for
example [2, 10, 14, 15, 19]. Large single-byte biases are

Algorithm 1: RC4 key scheduling (KSA)
input :key K of l bytes
output : initial internal state st0
begin

for i = 0 to 255 do
S [i]← i

j ← 0
for i = 0 to 255 do

j ← j+S [i]+K[i mod l]
swap(S [i],S [j])

i, j ← 0
st0 ← (i, j,S)
return st0

Algorithm 2: RC4 keystream generator (PRGA)
input : internal state str
output :keystream byte Zr+1

updated internal state str+1
begin

parse (i, j,S)← str
i ← i+1
j ← j+S [i]
swap(S [i],S [j])
Zr+1 ← S [S [i]+S [j]]
str+1 ← (i, j,S)
return (Zr+1,str+1)

prominent in the early postions of the RC4 keystream.
Mantin and Shamir [15] observed the first of these biases,
in Z2 (the second byte of the RC4 keystream), and showed
how to exploit it in what they called a broadcast attack,
wherein the same plaintext is repeatedly encrypted under
different keys. AlFardan et al. [2] performed large-scale
computations to estimate these early biases, using 245

keystreams to compute the single-byte keystream distribu-
tions in the first 256 output positions. They also provided
a statistical approach to recovering plaintext bytes in the
broadcast attack scenario, and explored its exploitation
in TLS. Much of the new bias behaviour they observed
was subsequently explained in [18]. Unfortunately, from
an attacker’s perspective, the single-byte biases die away
very quickly beyond position 256 in the RC4 keystream.
This means that they can only be used in attacks to extract
plaintext bytes which are found close to the start of plain-
text streams. This was a significant complicating factor
in the attacks of [2], where, because of the behaviour
of HTTP in modern browsers, the target HTTP secure
cookies were not so located.

3

116  24th USENIX Security Symposium	 USENIX Association

2.3 Double-byte biases in the RC4
Keystream

Fluhrer and McGrew [10] showed that there are biases
in adjacent bytes in RC4 keystreams, and that these so-
called double-byte biases are persistent throughout the
keystream. The presence of these long-term biases (and
the absence of any other similarly-sized double-byte bi-
ases) was confirmed computationally in [2]. AlFardan
et al. [2] also exploited these biases in their double-byte
attack to recover HTTP secure cookies.

Because we wish to exploit double-byte biases in early
portions of the RC4 keystream and because the anal-
ysis of [10] assumes the RC4 permutation S is uni-
formly random (which is not the case for early keystream
bytes), we carried out extensive computations to esti-
mate the initial double-byte keystream distributions: we
used roughly 4800 core-days of computation to generate
244 RC4 keystreams for random 128-bit RC4 keys (as
used in TLS); we used these keystreams to estimate the
double-byte keystream distributions for RC4 in the first
512 positions.

While the gross behaviour that we observed is domi-
nated by products of the known single-byte biases in the
first 256 positions and by the Fluhrer-McGrew biases in
the later positions, we did observe some new and inter-
esting double-byte biases. Since these are likely to be of
independent interest to researchers working on RC4, we
report in more detail on this aspect of our work in the full
version [12].

2.4 RC4 and the TLS Record Protocol
We provide an overview of the TLS Record Protocol with
RC4 selected as the method for encryption and direct the
reader to [2, 6, 7, 8] for further details.

Application data to be protected by TLS, i.e, a sequence
of bytes or a record R, is processed as follows: An 8-byte
sequence number SQN, a 5-byte header HDR and R are
concatenated to form the input to an HMAC function.
We let T denote the resulting output of this function. In
the case of RC4 encryption, the plaintext, P = T ||R, is
XORed byte-per-byte with the RC4 keystream. In other
words,

Cr = Pr ⊕Zr,

for the rth bytes of the ciphertext, plaintext and RC4
keystream respectively (for r = 1,2,3 . . .). The data that
is transmitted has the form HDR||C, where C is the con-
catenation of the individual ciphertext bytes.

The RC4 algorithm is intialized in the standard way at
the start of each TLS connection with a 128-bit encryption
key. This key, K, is derived from the TLS master secret
that is established during the TLS Handshake Protocol; K

is either established via the the full TLS Handshake Pro-
tocol or TLS session resumption. The first few bytes to
be protected by RC4 encryption is a Finished message
of the TLS Handshake Protocol. We do not target this
record in our attacks since this message is not constant
over multiple sessions. The exact size of this message is
important in dictating how far down the keystream our
target plaintext will be located; in turn this determines
whether or not it can be recovered using only single-byte
biases. A common size is 36 bytes, but the exact size
depends on the output size of the TLS PRF used in com-
puting the Finished message and of the hash function
used in the HMAC algorithm in the record protocol.

Decryption is the reverse of the process described
above. As noted in [2], any error in decryption is treated
as fatal – an error message is sent to the sender and all
cryptographic material, including the RC4 key, is dis-
posed of. This enables an active attacker to force the use
of new encryption and MAC keys: the attacker can induce
session termination, followed by a new session being es-
tablished when the next message is sent over TLS, by
simply modifying a TLS Record Protocol message. This
could be used to ensure that the target plaintext in an at-
tack is repeatedly sent under the protection of a fresh RC4
key. However, this approach is relatively expensive since
it involves a rerun of the full TLS Handshake Protocol,
involving multiple public key operations and, more impor-
tantly, the latency involved in an exchange of 4 messages
(2 complete round-trips) on the wire. A better approach
is to cause the TCP connection carrying the TLS traffic
to close, either by injecting sequences of FIN and ACK

messages in both directions, or by injecting a RST mes-
sage in both directions. This causes the TLS connection
to be terminated, but not the TLS session (assuming the
session is marked as “resumable” which is typically the
case). This behaviour is codified in [8, Section 7.2.1].
Now when the next message is sent over TLS, a TLS
session resumption instance of the Handshake Protocol
is executed to establish a fresh key for RC4. This avoids
the expensive public key operations and reduces the TLS
latency to 1 round-trip before application data can be sent.
On large sites, session resumption is usually handled by
making use of TLS session tickets [17] on the server-side.

2.5 Passwords

Text-based passwords are arguably the dominant mecha-
nism for authenticating users to web-based services and
computer systems. As is to be expected of user-selected
secrets, passwords do not follow uniform distributions.
Various password breaches of recent years, including the
Adobe breach of 150 million records in 2013 and the
RockYou leak of 32.6 million passwords in 2009, attest
to this with passwords such as 123456 and password

4

USENIX Association 	 24th USENIX Security Symposium  117

frequently being counted amongst the most popular.4 For
example, our own analysis of the RockYou password data
set confirmed this: the number of unique passwords in
the RockYou dataset is 14,344,391, meaning that (on av-
erage) each password was repeated 2.2 times, and we
indeed found the most common password to be 123456
(accounting for about 0.9% of the entire data set). Our
later simulations will make extensive use of the Rock-
You data set as an attack dictionary. A more-fine grained
analysis of it can be found in [20]. We also make use of
data from the Singles.org breach for generating our target
passwords. Singles.org is a now-defunct Christian dating
website that was breached in 2009; religiously-inspired
passwords such as jesus and angel appear with high fre-
quency in its 12,234 distinct entries, making its frequency
distribution quite different from that of the RockYou set.

There is extensive literature regarding the rea-
sons for poor password selection and usage, includ-
ing [1, 9, 21, 22]. In [4], Bonneau formalised a number of
different metrics for analysing password distributions and
studied a corpus of 70M Yahoo! passwords (collected in
a privacy-preserving manner). His work highlights the
importance of careful validation of password guessing
attacks, in particular, the problem of estimating attack
complexities in the face of passwords that occur rarely
– perhaps uniquely – in a data set, the so-called hapax
legomena problem. The approach to validation that we
adopt benefits from the analysis of [4], as explained fur-
ther in Section 4.

3 Plaintext Recovery via Bayesian Analysis

In this section, we present a formal Bayesian analysis
of plaintext recovery attacks in the broadcast setting for
stream ciphers. We then apply this to the problem of
extracting passwords, specialising the formal analysis and
making it implementable in practice based only on the
single-byte and double-byte keystream distributions.

3.1 Formal Bayesian Analysis

Suppose we have a candidate set of N plaintexts, denoted
X , with the a priori probability of an element x ∈ X
being denoted px. We assume for simplicity that all the
candidates consist of byte strings of the same length n.
For example X might consist of all the passwords of a
given length n from some breach data set, and then px can
be computed as the relative frequency of x in the data set.
If the frequency data is not available, then the uniform
distribution on X can be assumed.

4A comprehensive list of data breaches, including password breaches,
can be found at http://www.informationisbeautiful.net/

visualizations/worlds-biggest-data-breaches-hacks/.

Next, suppose that a plaintext from X is encrypted S
times, each time under independent, random keys using
a stream cipher such as RC4. Suppose also that the first
character of the plaintext always occurs in the same po-
sition r in the plaintext stream in each encryption. Let
c = (ci j) denote the S× n matrix of bytes in which row
i, denoted c(i) for 0 ≤ i < S, is a vector of n bytes cor-
responding to the values in positions r, . . . ,r + n− 1 in
ciphertext i. Let X be the random variable denoting the
(unknown) value of the plaintext.

We wish to form a maximum a posteriori (MAP) es-
timate for X , given the observed data c and the a priori
probability distribution px, that is, we wish to maximise
Pr(X = x | C = c) where C is a random variable corre-
sponding to the matrix of ciphertext bytes.

Using Bayes’ theorem, we have

Pr(X = x |C = c) = Pr(C = c | X = x) · Pr(X = x)
Pr(C = c)

.

Here the term Pr(X = x) corresponds to the a priori
distribution px on X . The term Pr(C = c) is inde-
pendent of the choice of x (as can be seen by writing
Pr(C = c) = ∑x∈X Pr(C = c | X = x) ·Pr(X = x)). Since
we are only interested in maximising Pr(X = x |C = c),
we ignore this term henceforth.

Now, since ciphertexts are formed by XORing
keystreams z and plaintext x, we can write

Pr(C = c | X = x) = Pr(W = w)

where w is the S×n matrix formed by XORing each row
of c with the vector x and W is a corresponding random
variable. Then to maximise Pr(X = x |C = c), it suffices
to maximise the value of

Pr(X = x) ·Pr(W = w)

over x ∈ X . Let w(i) denote the i-th row of the matrix w,
so w(i) = c(i)⊕ x. Then w(i) can be thought of as a vector
of keystream bytes (coming from positions r, . . . ,r+n−1)
induced by the candidate x, and we can write

Pr(W = w) =
S−1

∏
i=0

Pr(Z = w(i))

where, on the right-hand side of the above equation, Z
denotes a random variable corresponding to a vector of
bytes of length n starting from position r in the keystream.
Writing B = {0x00, . . . ,0xFF} for the set of bytes, we
can rewrite this as:

Pr(W = w) = ∏
z∈Bn

Pr(Z = z)Nx,z

where the product is taken over all possible byte strings
of length n and Nx,z is defined as:

Nx,z = |{i : z = c(i)⊕ x}0≤i<S|,

5

118  24th USENIX Security Symposium	 USENIX Association

that is, Nx,z counts the number of occurrences of vector
z in the rows of the matrix formed by XORing each row
of c with candidate x. Putting everything together, our
objective is to compute for each candidate x ∈ X the
value:

Pr(X = x) · ∏
z∈Bn

Pr(Z = z)Nx,z

and then to rank these values in order to determine the
most likely candidate(s).

Notice that the expressions here involve terms Pr(Z =
z) which are probabilities of occurrence for n consecu-
tive bytes of keystream. Such estimates are not generally
available in the literature, and for the values of n we are
interested in (corresponding to putative password lengths),
obtaining accurate estimates for them by sampling many
keystreams would be computationally prohibitive. More-
over, the product ∏z∈Bn involves 28n terms and is not
amenable to calculation. Thus we must turn to approxi-
mate methods to make further progress.

Note also that taking n = 1 in the above analysis, we
obtain exactly the same approach as was used in the single-
byte attack in [2], except that we include the a priori
probabilities Pr(X = x) whereas these were (implicitly)
assumed to be uniform in [2].

3.2 Using a Product Distribution
Our task is to derive simplified ways of computing the
expression

Pr(X = x) · ∏
z∈Bn

Pr(Z = z)Nx,z

and then apply these to produce efficient algorithms for
computing (approximate) likelihoods of candidates x ∈
X .

The simplest approach is to assume that the n bytes of
the keystreams can be treated independently. For RC4,
this is actually a very good approximation in the regime
where single-byte biases dominate (that is, in the first
256 positions). Thus, writing Z = (Zr, . . . ,Zr+n−1) and
z = (zr, . . . ,zr+n−1) (with the subscript r denoting the
position of the first keystream byte of interest), we have:

Pr(Z = z)≈
n−1

∏
j=0

Pr(Zr+ j = zr+ j) =
n−1

∏
j=0

pr+ j,z

where now the probabilities appearing on the right-hand
side are single-byte keystream probabilities, as reported
in [2] for example. Then writing x = (x0, . . . ,xn−1) and
rearranging terms, we obtain:

∏
z∈Bn

Pr(Z = z)Nx,z ≈
n−1

∏
j=0

∏
z∈B

p
Nx j ,z, j

r+ j,z

where Ny,z, j = |{i : z = ci, j ⊕y}0≤i<S| counts (now for sin-
gle bytes instead of length n vectors of bytes) the number
of occurrences of byte z in the column vector formed by
XORing column j of c with a candidate byte y.

Notice that, as in [2], the counters Ny,z, j for y ∈ B
can all be computed efficiently by permuting the coun-
ters N0x00,z, j, these being simply counters for the number
of occurrences of each byte value z in column j of the
ciphertext matrix c.

In practice, it is more convenient to work with loga-
rithms, converting products into sums, so that we evaluate
for each candidate x = (x0, . . . ,xn−1) an expression of the
form

γx := log(px)+
n−1

∑
j=0

∑
z∈B

Nx j ,z, j log(pr+ j,z).

Given a large set of candidates X , we can streamline the
computation by first computing the counters Ny,z, j, then,
for each possible byte value y, the value of the inner sum
∑z∈B Ny,z, j log(pr+ j,z), and then reusing these individual
values across all the relevant candidates x for which x j = y.
This reduces the evaluation of γx for a single candidate x
to n+1 additions of real numbers.

The above procedure, including the various optimiza-
tions, is specified as an attack in Algorithm 3. We refer to
it as our single-byte attack because of its reliance on the
single-byte keystream probabilities pr+ j,z. It outputs a
collection of approximate log likelihoods {γx : x∈X } for
each candidate x ∈ X . These can be further processed to
extract, for example, the candidate with the highest score,
or the top T candidates.

3.3 Double-byte-based Approximation

We continue to write Z = (Zr, . . . ,Zr+n−1) and z =
(zr, . . . ,zr+n−1) and aim to find an approximation for
Pr(Z = z) which lends itself to efficient computation of
approximate log likelihoods as in our first algorithm. Now
we rely on the double-byte keystream distribution, writing

ps,z1,z2 := Pr((Zs,Zs+1) = (z1,z2)), s ≥ 1,k1,k2 ∈ B

for the probabilities of observing bytes (z1,z2) in the RC4
keystream in positions (s,s + 1). We estimated these
probabilities for r in the range 1 ≤ r ≤ 511 using 244 RC4
keystreams – for details, see the full version; for larger
r, these are well approximated by the Fluhrer-McGrew
biases [10] (as was verified in [2]).

We now make the Markovian assumption that, for each
j,

Pr(Z j = z j | Z j−1 = z j−1 ∧·· ·∧Z0 = z0)

≈ Pr(Z j = z j | Z j−1 = z j−1),

6

USENIX Association 	 24th USENIX Security Symposium  119

Algorithm 3: Single-byte attack
input :ci, j : 0 ≤ i < S,0 ≤ j < n – array formed from S independent encryptions of fixed n-byte candidate X

r – starting position of X in plaintext stream
X – collection of N candidates
px – a priori probability of candidates x ∈ X
pr+ j,z (0 ≤ j < n, z ∈ B) – single-byte keystream distribution

output :{γx : x ∈ X } – set of (approximate) log likelihoods for candidates in X
begin

for j = 0 to n−1 do
for z = 0x00 to 0xFF do

N′
z, j ← 0

for j = 0 to n−1 do
for i = 0 to S−1 do

N′
ci, j , j ← N′

ci, j , j +1

for j = 0 to n−1 do
for y = 0x00 to 0xFF do

for z = 0x00 to 0xFF do
Ny,z, j ← N′

z⊕y, j

Ly, j = ∑z∈B Ny,z, j log(pr+ j,z),

for x = (x0, . . . ,xn−1) ∈ X do
γx ← log(px)+∑n−1

j=0 Lx j , j

return {γx : x ∈ X }

meaning that byte j in the keystream can be modelled as
depending only on the preceding byte and not on earlier
bytes. We can write

Pr(Z j = z j | Z j−1 = z j−1) =
Pr(Z j = z j ∧Z j−1 = z j−1)

Pr(Z j−1 = z j−1)

where the numerator can then be replaced by p j−1,z j−1,z j

and the denominator by p j−1,z j−1 , a single-byte keystream
probability. Then using an inductive argument and our
assumption, we easily obtain:

Pr(Z = z)≈
∏n−2

j=0 pr+ j,z j ,z j+1

∏n−2
j=1 pr+ j,z j

giving an approximate expression for our desired prob-
ability in terms of single-byte and double-byte prob-
abilities. Notice that if we assume that the adjacent
byte pairs are independent, then we have pr+ j,z j ,z j+1 =
pr+ j,z j · pr+ j+1,z j+1 and the above expression collapses
down to the one we derived in the previous subsection.

For candidate x, we again write x = (x0, . . . ,xn−1) and
rearranging terms, we obtain:

∏
z∈Bn

Pr(Z = z)Nx,z ≈
∏n−2

j=0 ∏z1∈B ∏z2∈B p
Nx j ,x j+1,z1,z2, j

r+ j,z1,z2

∏n−2
j=1 ∏z∈B p

Nx j ,z,r+ j

r+ j,z

where Ny1,y1,z1,z2, j = |{i : z1 = ci, j ⊕ y1 ∧ z2 = ci, j+1 ⊕
y2}0≤i<S| counts (now for consecutive pairs of bytes) the
number of occurrences of bytes (z1,z2) in the pair of col-
umn vectors formed by XORing columns (j, j+1) of c
with candidate bytes (y1,y2) (and where Nx j ,z,r+ j is as in
our previous algorithm).

Again, the counters Ny1,y2,z1,z2, j for y1,y2 ∈ B can
all be computed efficiently by permuting the counters
N0x00,0x00,z1,z2, j, these being simply counters for the num-
ber of occurrences of pairs of byte values (z1,z2) in col-
umn j and j + 1 of the ciphertext matrix c. As before,
we work with logarithms, so that we evaluate for each
candidate x = (x0, . . . ,xn−1) an expression of the form

γx := log(px)+
n−2

∑
j=0

∑
z1∈B

∑
z2∈B

Nx j ,x j+1,z1,z2, j log(pr+ j,z1,z2)

−
n−2

∑
j=1

∑
z∈B

Nx j ,z,r+ j log(pr+ j,z).

With appropriate pre-computation of the terms
Ny1,y2,z1,z2, j log(pr+ j,z1,z2) and Ny,z,r+ j log(pr+ j,z) for all
y1,y2 and all y, the computation for each candidate
x ∈ X can be reduced to roughly 2n floating point
additions. The pre-computation can be further reduced by
computing the terms for only those pairs (y1,y2) actually
arising in candidates in X in positions (j, j+1). We use

7

120  24th USENIX Security Symposium	 USENIX Association

this further optimisation in our implementation.
The above procedure is specified as an attack in Algo-

rithm 4. We refer to it as our double-byte attack because
of its reliance on the double-byte keystream probabili-
ties ps,z1,z2 . It again outputs a collection of approximate
log likelihoods {γx : x ∈ X } for each candidate x ∈ X ,
suitable for further processing. Note that for simplicity
of presentation, it involves a quintuply-nested loop to
compute the values Ny1,y2,z1,z2, j; these values should of
course be directly computed from the (n− 1) · 216 pre-
computed counters N′

ci, j ,ci, j+1, j in an in-line fashion using
the formula Ny1,y2,z1,z2, j = N′

z1⊕y1,z2⊕y2,, j.

4 Simulation Results

4.1 Methodology
We performed extensive simulations of both of our attacks,
varying the different parameters to evaluate their effects
on success rates. We focus on the problem of password re-
covery, using the RockYou data set as an attack dictionary
and the Singles.org data set as the set of target passwords.
Except where noted, in each simulation, we performed
256 independent runs of the relevant attack. In each attack
in a simulation, we select a password of some fixed length
n from the Singles.org password data set according to the
known a priori probability distribution for that data set,
encrypt it S times in different starting positions r using
random 128-bit keys for RC4, and then attempt to recover
the password from the ciphertexts using the set of all pass-
words of length n from the entire RockYou data set (14
million passwords) as our candidate set X . We declare
success if the target password is found within the top T
passwords suggested by the algorithm (according to the
approximate likelihood measures γx). Our default settings,
unless otherwise stated, are n = 6 and T = 5. Six is the
most common password length in the data sets we encoun-
tered; T = 5 is an arbitrary choice, and we examine the
effect of varying T in detail below. We try all values for r
between 1 and 256−n+1, where the single-byte biases
dominate the behaviour of the RC4 keystreams. Typical
values of S are 2s where s ∈ {20,22,24,26,28}.

Using different data sets for the attack dictionary and
the target set from which encrypted passwords are cho-
sen is more realistic than using a single dictionary for
both purposes, not least because in a real attack, the exact
content and a priori distribution of the target set would
not be known. This approach also avoids the problem of
hapax legomena highlighted in [4]. However, this has the
effect of limiting the success rates of our attacks to less
than 100%, since there are highly likely passwords in the
target set (such as jesus) that do not occur at all, or only
have very low a priori probabilities in the attack dictio-
nary, and conversely. Figure 1 compares the use of the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

Su
cc

es
s

Ra
te

Starting Position

Singles.org
RockYou

Figure 1: Recovery rate for Singles.org passwords using
RockYou data set as dictionary, compared to recovery
rate for RockYou passwords using RockYou data set as
dictionary (S = 224, n = 6, T = 5, 1 ≤ r ≤ 251, double-
byte attack).

RockYou password distribution to attack Singles.org pass-
words with the less realistic use of the RockYou password
distribution to attack RockYou itself. It can be seen that,
for the particular choice of attack parameters (S = 224,
n = 6, T = 5, double-byte attack), the effect on success
rate is not particularly large. However, for other attack
parameters, as we will see below, we observe a maximum
success rate of around 80% for our attacks, whereas we
would achieve 100% success rates if we used RockYou
against itself. The observed maximum success rate could
be increased by augmenting the attack dictionary with
synthetically generated, site-specific passwords and by
removing RockYou-specific passwords from the attack
dictionary. We leave the development and evaluation of
these improvements to future work.

Many data sets are available from password breaches.
We settled on using RockYou for the attack dictionary
because it was one of the biggest data sets in which all
passwords and their associated frequencies were available,
and because the distribution of passwords, while certainly
skewed, was less skewed than for other data sets. We
used Singles.org for the target set because the Singles.org
breach occurred later than the RockYou breach, so that
the former could reasonably used as an attack dictionary
for the latter. Moreover, the Singles.org distribution being
quite different from that for RockYou makes password re-
covery against Singles.org using RockYou as a dictionary
more challenging for our attacks. A detailed evaluation of
the extent to which the success rates of our attacks depend
on the choice of attack dictionary and target set is beyond
the scope of this current work.

A limitation of our approach as described is that we
assume the password length n to be already known. Sev-

8

USENIX Association 	 24th USENIX Security Symposium  121

Algorithm 4: Double-byte attack
input : ci, j : 0 ≤ i < S,0 ≤ j < n – array formed from S independent encryptions of fixed n-byte candidate X

r – starting position of X in plaintext stream
X – collection of N candidates
px – a priori probability of candidates x ∈ X
pr+ j,z (0 ≤ j < n, z ∈ B) – single-byte keystream distribution
pr+ j,z1,z2 (0 ≤ j < n−1, z1,z2 ∈ B) – double-byte keystream distribution

output :{γx : x ∈ X } – set of (approximate) log likelihoods for candidates in X
begin

for j = 0 to n−2 do
for z1 = 0x00 to 0xFF do

N′
z, j ← 0

for z2 = 0x00 to 0xFF do
N′

z1,z2, j ← 0

for j = 0 to n−2 do
for i = 0 to S−1 do

N′
ci, j , j ← N′

ci, j , j +1
N′

ci, j ,ci, j+1, j ← N′
ci, j ,ci, j+1, j +1

for j = 1 to n−2 do
for y = 0x00 to 0xFF do

for z = 0x00 to 0xFF do
Ny,z, j ← N′

z⊕y, j

Ly, j = ∑z∈B Ny,z, j log(pr+ j,z),

for j = 0 to n−2 do
for y1 = 0x00 to 0xFF do

for y2 = 0x00 to 0xFF do
for z1 = 0x00 to 0xFF do

for z2 = 0x00 to 0xFF do
Ny1,y2,z1,z2, j ← N′

z1⊕y1,z2⊕y2,, j

Ly1,y2, j = ∑z1∈B ∑z2∈B Ny1,y2,z1,z2, j log(pr+ j,z1,z2),

for x = (x0, . . . ,xn−1) ∈ X do
γx ← log(px)+∑n−2

j=0 Lx j ,x j+1, j −∑n−2
j=1 Lx j , j

return {γx : x ∈ X }

9

122  24th USENIX Security Symposium	 USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Su
cc

es
s

Ra
te

Starting Position

220
222
224
226
228

Figure 2: Recovery rates for single-byte algorithm for
S = 220, . . . ,228 (n = 6, T = 5, 1 ≤ r ≤ 251).

eral solutions to this problem are described in the full
version [12].

4.2 Results

Single-Byte Attack We ran the attack described in Al-
gorithm 3 with our default parameters (n = 6, T = 5,
1 ≤ r ≤ 251) for S = 2s with s ∈ {20,22,24,26,28} and
evaluated the attack’s success rate. We used our default
of 256 independent runs per parameter set. The results
are shown in Figure 2. We observe that:

• The performance of the attack improves markedly
as S, the number of ciphertexts, increases, but the
success rate is bounded by 75%. We attribute this
to the use of one dictionary (RockYou) to recover
passwords from another (Singles.org) – for the same
attack parameters, we achieved 100% success rates
when using RockYou against RockYou, for example.

• For 224 ciphertexts we see a success rate of greater
than 60% for small values of r, the assumed position
of the password in the RC4 keystream. We see a
drop to below 50% for starting positions greater than
32. We note the effect of the key-length-dependent
biases on password recovery; passwords encrypted
at starting positions 16�− n,16�− n+ 1, . . . ,16�−
1,16�, where �= 1,2, . . . ,6, have a higher probabil-
ity of being recovered in comparison to neighbouring
starting positions.

• For 228 ciphertexts we observe a success rate of more
than 75% for 1 ≤ r ≤ 120.

Double-Byte Attack Analogously, we ran the attack
of Algorithm 4 for S = 2s with s ∈ {20,22,24,26,28}

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Su
cc

es
s

Ra
te

Starting Position

220
222
224
226
228

Figure 3: Recovery rates for double-byte algorithm for
S = 220, . . . ,228 (n = 6, T = 5, 1 ≤ r ≤ 251).

and our defaults of n = 6, T = 5. The results for these
simulations are shown in Figure 3. Note that:

• Again, at 224 ciphertexts the effect of key-length-
dependent biases is visible.

• For 226 ciphertexts we observe a success rate that is
greater than 78% for r ≤ 48.

Comparing the Single-Byte Attack with a Naive Al-
gorithm Figure 4 provides a comparison between our
single-byte algorithm with T = 1 and a naive password
recovery attack based on the methods of [2], in which the
password bytes are recovered one at a time by selecting
the highest likelihood byte value in each position and
declaring success if all bytes of the password are recov-
ered correctly. Significant improvement over the naive
attack can be observed, particularly for high values of r.
For example with S = 224, the naive algorithm essentially
has a success rate of zero for every r, whereas our single-
byte algorithm has a success rate that exceeds 20% for
1 ≤ r ≤ 63. By way of comparison, an attacker knowing
the password length and using the obvious guessing strat-
egy would succeed with probability 4.2% with a single
guess, this being the a priori probability of the password
123456 amongst all length 6 passwords in the Singles.org
dataset (and 123456 being the highest ranked password
in the RockYou dictionary, so the first one that an attacker
using this strategy with the RockYou dictionary would
try). As another example, with S = 228 ciphertexts, a
viable recovery rate is observed all the way up to r = 251
for our single-byte algorithm, whereas the naive algo-
rithm fails badly beyond r = 160 for even this large value
of S. Note however that the naive attack can achieve a
success rate of 100% for sufficiently large S, whereas our
attack cannot. This is because the naive attack directly

10

USENIX Association 	 24th USENIX Security Symposium  123

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

Su
cc

es
s

Ra
te

Starting Position

sb, 220
sb, 222
sb, 224
sb, 226
sb, 228

old, 220
old, 222
old, 224
old, 226
old, 228

Figure 4: Performance of our single-byte algorithm versus
a naive single-byte attack based on the methods of AlFar-
dan et al. (labelled “old”) (n = 6, T = 1, 1 ≤ r ≤ 251).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

Su
cc

es
s

Ra
te

Starting Position

db, 220
db, 222
db, 224
db, 226
db, 228
sb, 220
sb, 222
sb, 224
sb, 226
sb, 228

Figure 5: Recovery rate of single-byte versus double-byte
algorithm for S= 220, . . . ,228 (n= 6, T = 5, 1≤ r ≤ 251).

computes a password candidate rather than evaluating
the likelihood of candidates from a list which may not
contain the target password. On the other hand, our attack
trivially supports larger values of T , whereas the naive
attack is not so easily modified to enable this feature.

Comparing the Single-Byte and Double-Byte Attacks
Figure 5 provides a comparison of our single-byte and
double-byte attacks. With all other parameters equal, the
success rates are very similar for the initial 256 positions.
The reason for this is the absence of many strong double-
byte biases that do not arise from the known single-byte
biases in the early positions of the RC4 keystream.

Effect of the a priori Distribution As a means of test-
ing the extent to which our success rates are influenced by
knowledge of the a priori probabilities of the candidate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

Su
cc

es
s

Ra
te

Starting Position

uniform
a priori

Figure 6: Recovery rate for uniformly distributed pass-
words versus known a priori distribution (S = 224, n = 6,
T = 5, 1 ≤ r ≤ 251, double-byte algorithm).

passwords, we ran simulations in which we tried to re-
cover passwords sampled correctly from the Singles.org
dataset but using a uniform a priori distribution for the
RockYou-based dictionary used in the attack. Figure 6
shows the results (S = 224, n = 6, T = 5, double-byte
attack) of these simulations, compared to the results we
obtain by exploiting the a priori probabilities in the attack.
It can be seen that a significant gain is made by using the
a priori probabilities, with the uniform attack’s success
rate rapidly dropping to zero at around r = 128.

Effect of Password Length Figure 7 shows the effect
of increasing n, the password length, on recovery rates,
with the sub-figures showing the performance of our
double-byte attack for different numbers of ciphertexts
(S = 2s with s ∈ {24,26,28}). Other parameters are set
to their default values. As intuition suggests, password
recovery becomes more difficult as the length increases.
Also notable is that the ceiling on success rate of our
attack decreases with increasing n, dropping from more
than 80% for n = 5 to around 50% for n = 8. This is due
to the fact that only 48% of the length 8 passwords in the
Singles.org data set actually occur in the RockYou attack
dictionary: our attack is doing as well as it can in this
case, and we would expect stronger performance with an
attack dictionary that is better matched to the target site.

Effect of Increasing Try Limit T Recall that the pa-
rameter T defines the number of password trials our at-
tacks make. The number of permitted attempts for specific
protocols like BasicAuth and IMAP is server-dependent
and not mandated in the relevant specifications. Whilst
not specific to our chosen protocols, a 2010 study [5]
showed that 84% of websites surveyed allowed at least
T = 100 attempts; many websites appear to actually al-

11

124  24th USENIX Security Symposium	 USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

Su
cc

es
s

Ra
te

Starting Position

Len 5
Len 6
Len 7
Len 8

(a) 224 ciphertexts

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

Su
cc

es
s

Ra
te

Starting Position

Len 5
Len 6
Len 7
Len 8

(b) 226 ciphertexts

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

Su
cc

es
s

Ra
te

Starting Position

Len 5
Len 6
Len 7
Len 8

(c) 228 ciphertexts

Figure 7: Effect of password length on recovery rate (T = 5, 1 ≤ r ≤ 251, double-byte algorithm).

low T = ∞. Figure 8 shows the effect of varying T in our
double-byte algorithm for different numbers of cipher-
texts (S = 2s with s ∈ {24,26,28}). Other parameters are
set to their default values. It is clear that allowing large
values of T boosts the success rate of the attacks.

Note however that a careful comparison must be made
between our attack with parameter T and the success rate
of the obvious password guessing attack given T attempts.
Such a guessing attack does not require any ciphertexts
but instead uses the a priori distribution on passwords in
the attack dictionary (RockYou) to make guesses for the
target password in descending order of probability, the
success rate being determined by the a priori probabilities
of the guessed passwords in the target set (Singles.org).
Clearly, our attacks are only of value if they significantly
out-perform this ciphertext-less attack.

Figure 9 shows the results of plotting log2(T) against
success rate α for S = 2s with s ∈ {14,16, . . . ,28}. The
figure then illustrates the value of T necessary in our
attack to achieve a given password recovery rate α for
different values of S. This measure is related to the α-
work-factor metric explored in [4] (though with the added
novelty of representing a work factor when one set of
passwords is used to recover passwords from a different
set). To generate this figure, we used 1024 independent
runs rather than the usual 256, but using a fixed set of
1024 passwords sampled according to the a priori distri-
bution for Singles.org. This was in an attempt to improve
the stability of the results (with small numbers of cipher-
texts S, the success rate becomes heavily dependent on
the particular set of passwords selected and their a pri-
ori probabilities, while we wished to have comparability
across different values of S).

The success rates shown in Figure 9 are for our double-
byte attack with n = 6 and r = 133, this specific choice of
r being motivated by it being the location of passwords for
our BasicAuth attack proof-of-concept when the Chrome
browser is used (similar results are obtained for other
values of r). The graph also shows the corresponding
work factor T as a function of α for the guessing attack

(labeled “optimal guessing” in the figure).
Figure 9 shows that our attack far outperforms the

guessing attack for larger values of S, with a significant
advantage accruing for S = 224 and above. However, the
advantage over the guessing attack for smaller values of
S, namely 220 and below, is not significant. This can be
attributed to our attack simply not being able to compute
stable enough statistics for these small numbers of ci-
phertexts. In turn, this is because the expected random
fluctuations in the keystream distributions overwhelm the
small biases; in short, the signal does not sufficiently
exceed the noise for these low values of S.

Effect of Base64 Encoding We investigated the effect
of Base64 encoding of passwords on recovery rates, since
many application layer protocols use such an encoding.
The encoding increases the password length, making re-
covery harder, but also introduces redundancy, potentially
helping the recovery process to succeed. Figure 10 shows
our simulation results comparing the performance of our
double-byte algorithm acting on 6-character passwords
and on Base64 encoded versions of them. It is apparent
from the figure that the overall effect of the Base64 en-
coding is to help our attack to succeed. In practice, the
start of the target password may not be well-aligned with
the Base64 encoding process (for example, part of the
last character of the username and/or a delimiter such as
“:” may be jointly encoded with part of the first charac-
ter of the password). This can be handled by building a
special-purpose set of candidates X for each possibility.
Handling this requires some care when mounting a real
attack against a specific protocol; a detailed analysis is
deferred to future work.

Shifting Attack In certain application protocols and
attack environments (such as HTTPS) it is possible for the
adversary to incrementally pad the plaintext messages so
that the unknown bytes are always aligned with positions
having large keystream biases. Our algorithm descriptions

12

USENIX Association 	 24th USENIX Security Symposium  125

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

Su
cc

es
s

Ra
te

Starting Position

1
3
5

10
100

(a) 224 ciphertexts

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

Su
cc

es
s

Ra
te

Starting Position

1
3
5

10
100

(b) 226 ciphertexts

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

Su
cc

es
s

Ra
te

Starting Position

1
3
5

10
100

(c) 228 ciphertexts

Figure 8: Effect of try limit T on recovery rate (n = 6, 1 ≤ r ≤ 251, double-byte algorithm).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

Su
cc

es
s

Ra
te

Starting Position

db, 220
db, 222
db, 224
db, 226
db, 228

base64, 220
base64, 222
base64, 224
base64, 226
base64, 228

Figure 10: Recovery rate of Base64 encoded password
versus a “normal” password for 6-character passwords
(T = 5, 1 ≤ r ≤ 251, double-byte algorithm).

and code are both easily modified to handle this situation,
and we have conducted simulations with the resulting
shift attack. We report on these simulations in the full
version, [12].

5 Practical Validation

In this section we describe proof-of-concept implemen-
tations of our attacks against a specific application-layer
protocol running over TLS, namely BasicAuth. In the full
version [12], we additionally consider the IMAP protocol
as a target.

5.1 Introducing BasicAuth
Defined as part of the HTTP/1.0 specification [3] and ex-
tended in [11], the Basic Access Authentication scheme
(BasicAuth) provides a simple means for controlling ac-
cess to webpages and other protected resources. In view
of its simplicity, the scheme is still very widely used in
the enterprise application space. The protocol essentially

involves the client sending the server a username and pass-
word in Base64 encoded form, and as such, requires the
use of a lower-layer secure protocol like TLS to mitigate
trivial eavesdropping attacks. Certain web browsers dis-
play a login dialog when an initiating challenge message
is received from the server and many browsers present
users with the option of storing their user credentials in
the browser, with the credentials thereafter being automat-
ically presented on behalf of the user.

The client response to the challenge is of the form
Authorization: Basic Base64(userid:password)

where Base64(·) denotes the Base64 encoding function
(which maps 3 characters at a time onto 4 characters of
output).

5.2 Attacking BasicAuth
To obtain a working attack against BasicAuth, we need to
ensure that two conditions are met:

• The Base64-encoded password included in the Ba-
sicAuth client response can be located sufficiently
early in the plaintext stream.

• There is a method for forcing a browser to repeatedly
send the BasicAuth client response.

We have observed that the first condition is met for
particular browsers, including Google Chrome. For exam-
ple, we inspected HTTPS traffic sent from Chrome to an
iChair server.5 We observed the user’s Base64-encoded
password being sent with every HTTP(S) request in the
same position in the stream, namely position r = 133 (this
includes 16 bytes consumed by the client’s Finished

message as well as the 20-bytes consumed by the TLS
Record Protocol tag). For Mozilla Firefox, the value of r
was the less useful 349.

5iChair is a popular system for conference reviewing, widely used in
the cryptography research community and available from http://www.

baigneres.net/ichair. It uses BasicAuth as its user authentication
mechanism.

13

126  24th USENIX Security Symposium	 USENIX Association

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g 2

(T
)

Recovery Rate

214
216
218
220
222
224
226
228
optimal guessing

Figure 9: Value of T required to achieve a given password recovery rate α for S = 2s with s ∈ {14,16, . . . ,28} (n = 6,
r = 133, double-byte algorithm).

For the second condition, we adopt the methods used
in the BEAST, CRIME and Lucky 13 attacks on TLS, and
also used in attacking RC4 in [2]: we assume that the user
visits a site www.evil.com which loads JavaScript into
the user’s browser; the JavaScript makes GET or POST re-
quests to the target website at https://www.good.com
by using XMLHttpRequest objects (this is permitted un-
der Cross Origin Resource Sharing (CORS), a mechanism
developed to allow JavaScript to make requests to a do-
main other than the one from which the script originates).
The Base64-encoded BasicAuth password is automati-
cally included in each such request. To force the pass-
word to be repeatedly encrypted at an early position in
the RC4 keystream, we use a MITM attacker to break the
TLS connection (by injecting sequences of TCP FIN and
ACK messages into the connection). This requires some
careful timing on the part of the JavaScript and the MITM
attacker.

We built a proof-of-concept demonstration of these
components to illustrate the principles. We set up a vir-
tual network with three virtual machines each running

Ubuntu 14.04, kernel version 3.13.0-32. On the first ma-
chine, we installed iChair. We configured the iChair web
server to use RC4 as its default TLS cipher. The sec-
ond machine was running the Chrome 38 browser and
acted as the client in our attack. We installed the required
JavaScript directly on this machine rather than download-
ing from another site. The third machine acted as the
MITM attacker, required to intercept the TLS-protected
traffic and to tear-down the TLS connections. We used
the Python tool Scapy6 to run an ARP poisoning attack
on the client and server from the MITM so as to be able to
intercept packets; with the connection hijacked we were
able to force a graceful shutdown of the connection be-
tween the client and the server after the password-bearing
record had been observed and recorded. We observed that
forcing a graceful shutdown of each subsequent connec-
tion did allow for TLS resumption (rather than leading to
the need for a full TLS Handshake run).

With this setup, the JavaScript running in the client
browser sent successive HTTPS GET requests to the

6Available at http://www.secdev.org/projects/scapy/.

14

USENIX Association 	 24th USENIX Security Symposium  127

iChair server every 80ms. Our choice of 80ms was moti-
vated by the fact that for our particular configuration, we
observed a total time of around 80ms for TLS resumption,
delivery of the password-bearing record and the induced
shutdown of the TCP connection. This choice enabled
us to capture 216 encrypted password-bearing records in
1.6 hours (the somewhat greater than expected time here
being due to anomalies in network behaviour). Running
at this speed, the attack was stable over a period of hours.

We note that the latency involved in our setup is much
lower than would be found in a real network in which the
server may be many hops away from the client: between
500ms and 1000ms is typical for establishing an initial
TLS connection to a remote site, with the latency being
roughly half that for session resumptions. Notably, the
cost of public key operations is not the issue, but rather
the network latency involved in the round-trips required
for TCP connection establishment and then running the
TLS Handshake. However, browsers also open up multi-
ple TLS connections in parallel when fetching multiple
resources from a site, as a means of reducing the latency
perceived by users; the maximum number of concurrent
connections per server is 6 for both the Chrome and Fire-
fox browsers (though, we only ever saw roughly half this
number in practice, even with low inter-request times).
This means that, assuming a TLS resumption latency
(including the client’s TCP SYN, delivery of the password-
bearing record and the final, induced TCP ACK) of 250ms
and the JavaScript is running fast enough to induce the
browser to maintain 6 connections in parallel, the amount
of time needed to mount an attack with S = 226 would
be on the order of 776 hours. If the latency was further
reduced to 100ms (because of proximity of the server to
the client), the attack execution time would be reduced to
312 hours.

Again setting n = 6 , T = 100, r = 133 and using the
simulation results displayed in Figure 10, we would ex-
pect a success rate of 64.4% for this setup (with S = 226).
For T = 5, the corresponding success rate would be
44.5%.

We emphasise that we have not executed a complete
attack on these scales, but merely demonstrated the feasi-
bility of the attack in our laboratory setup.

6 Conclusion and Open Problems

We have presented plaintext recovery attacks that derive
from a formal Bayesian analysis of the problem of esti-
mating plaintext likelihoods given an a priori plaintext
distribution, suitable keystream distribution information,
and a large number of encryptions of a fixed plaintext
under independent keys. We applied these ideas to the
specific problem of recovering passwords encrypted by
the RC4 algorithm with 128-bit keys as used in TLS,

though they are of course more generally applicable – to
uses of RC4 other than in TLS, and to stream ciphers with
non-uniform keystream distributions in general. Using
large-scale simulations, we have investigated the perfor-
mance of these attacks under different settings for the
main parameters.

We then studied the applicability of these attacks for
a specific application layer protocol, BasicAuth. For cer-
tain browsers and clients, the passwords were located at
a favourable point in the plaintext stream and we could
induce the password to be repeatedly encrypted under
fresh, random keys. We built a proof-of-concept imple-
mentation of the attack. It was difficult to arrange for the
rate of generation of encryptions to be as high as desired
for a speedy attack. This was mainly due to the latency
associated with TLS connection establishment (even with
session resumption) rather than any fundamental barrier.

Good-to-excellent password recovery success rates can
be achieved using 224 – 228 ciphertexts in our attacks. We
also demonstrated that our single-byte attack for pass-
word recovery significantly outperforms a naive password
recovery attack based on the ideas of [2]. We observed an
improvement over a guessing strategy even for low num-
bers (222 or 224) of ciphertexts. By contrast to these num-
bers, the preferred double-byte attack of [2] required on
the order of 234 encryptions to recover a 16-byte cookie,
though without incurring the time overheads arising from
TLS session resumption that our approach incurs.

Our research has led to the identification of a number
of areas for further work:

• Our Bayesian approach can also be applied to the
situation where we model the plaintext as a word
from a language described as a Markov model with
memory. It would be interesting to investigate the
extent to which this approach can be applied to either
password recovery or more general analysis of, say,
typical HTTP traffic.

• We have focussed on the use of the single-byte bi-
ases described in [2] and the double-byte biases of
Fluhrer and McGrew (and from our own extensive
computations for the first 512 keystream positions).
Other biases in RC4 keystreams are known, for ex-
ample [14]. It is a challenge to integrate these in our
Bayesian framework, with the aim being to further
improve our attacks.

• We identified new double-byte biases early in the
RC4 keystream which deserve a theoretical explana-
tion.

• It would be an interesting challenge to develop al-
gorithms for constructing synthetic, site-specific dic-
tionaries along with a priori probability distribu-

15

128  24th USENIX Security Symposium	 USENIX Association

tions. Existing work in this direction includes Marx’s
WordHound tool.7

• We identified several open questions in the discus-
sion of our simulation results, including the effect of
the choice of password data sets on success rates, and
the evaluation of different methods for recovering
the target password’s length.

Acknowledgements

We would like to thank Google, Dan Kaminsky at White
Ops and Ingo von Maurich at Ruhr Universität Bochum
for their generous donation of computing resources. Dan
gave us free rein on a 512-core system for the 4800 core-
days necessary to perform our double-byte keystream
distribution estimates, while resources from Google and
Ruhr Universität Bochum were used to conduct our attack
simulations. We would also like to thank Alexei Melnikov
for acting as our IMAP oracle.

Garman was funded by a generous grant from the
Mozilla Foundation and supported by the Office of Naval
Research under contract N00014-14-1-0333; Paterson
was supported by an EPSRC Leadership Fellowship,
EP/H005455/1; van der Merwe was supported by the
EPSRC as part of the Centre for Doctoral Training in
Cyber Security at Royal Holloway, University of London.

References
[1] ADAMS, A., AND SASSE, M. A. Users are not the enemy. Com-

mun. ACM 42, 12 (Dec. 1999), 40–46.

[2] ALFARDAN, N. J., BERNSTEIN, D. J., PATERSON, K. G., PO-
ETTERING, B., AND SCHULDT, J. C. N. On the Security of RC4
in TLS. In Proceedings of the 22nd USENIX Conference on Secu-
rity (Berkeley, CA, USA, 2013), SEC’13, USENIX Association,
pp. 305–320.

[3] BERNERS-LEE, T., FIELDING, R., AND FRYSTYK, H. The Hy-
pertext Transfer Protocol HTTP/1.0. RFC 1945 (Informational),
May 1996.

[4] BONNEAU, J. The science of guessing: Analyzing an anonymized
corpus of 70 million passwords. In IEEE Symposium on Security
and Privacy, SP 2012, 21-23 May 2012, San Francisco, California,
USA (2012), IEEE Computer Society, pp. 538–552.

[5] BONNEAU, J., AND PREIBUSCH, S. The password thicket: Tech-
nical and market failures in human authentication on the web. In
9th Annual Workshop on the Economics of Information Security,
WEIS 2010, Harvard University, Cambridge, MA, USA, June 7 - 8
(2010).

[6] DIERKS, T., AND ALLEN, C. The TLS Protocol Version 1.0.
RFC 2246, Internet Engineering Task Force, Jan. 1999.

[7] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) Protocol Version 1.1. RFC 4346, Internet Engineering Task
Force, Apr. 2006.

[8] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 5246, Internet Engineering Task
Force, Aug. 2008.

7https://bitbucket.org/mattinfosec/wordhound.

[9] FLORENCIO, D., AND HERLEY, C. A Large-scale Study of
Web Password Habits. In Proceedings of the 16th International
Conference on World Wide Web (New York, NY, USA, 2007),
WWW ’07, ACM, pp. 657–666.

[10] FLUHRER, S. R., AND MCGREW, D. Statistical analysis of the
alleged RC4 keystream generator. In FSE (2000), B. Schneier,
Ed., vol. 1978 of Lecture Notes in Computer Science, Springer,
pp. 19–30.

[11] FRANKS, J., HALLAM-BAKER, P., HOSTETLER, J., LAWRENCE,
S., LEACH, P., LUOTONEN, A., AND STEWART, L. HTTP
Authentication: Basic and Digest Access authentication. RFC
2617 (Informational), June 1999.

[12] GARMAN, C., PATERSON, K. G., AND VAN DER MERWE, T.
Attacks only get better: Password recovery attacks against RC4
in TLS. Full version of this paper. Available from http://www.

isg.rhul.ac.uk/tls/RC4mustdie.html.

[13] ISOBE, T., OHIGASHI, T., WATANABE, Y., AND MORII, M. Full
plaintext recovery attack on broadcast RC4. In Preproceedings of
FSE (2013).

[14] MANTIN, I. Predicting and distinguishing attacks on RC4
keystream generator. In EUROCRYPT (2005), R. Cramer, Ed.,
vol. 3494 of Lecture Notes in Computer Science, Springer, pp. 491–
506.

[15] MANTIN, I., AND SHAMIR, A. A practical attack on broadcast
RC4. In FSE (2001), M. Matsui, Ed., vol. 2355 of Lecture Notes
in Computer Science, Springer, pp. 152–164.

[16] OHIGASHI, T., ISOBE, T., WATANABE, Y., AND MORII, M.
How to recover any byte of plaintext on RC4. In Selected Areas in
Cryptography - SAC 2013 - 20th International Conference, Burn-
aby, BC, Canada, August 14-16, 2013, Revised Selected Papers
(2013), T. Lange, K. E. Lauter, and P. Lisonek, Eds., vol. 8282 of
Lecture Notes in Computer Science, Springer, pp. 155–173.

[17] SALOWEY, J., ZHOU, H., ERONEN, P., AND TSCHOFENIG,
H. Transport Layer Security (TLS) Session Resumption with-
out Server-Side State. RFC 5077 (Proposed Standard), Jan. 2008.

[18] SARKAR, S., SEN GUPTA, S., PAUL, G., AND MAITRA, S.
Proving TLS-attack related open biases of RC4. IACR Cryptology
ePrint Archive 2013 (2013), 502.

[19] SEN GUPTA, S., MAITRA, S., PAUL, G., AND SARKAR, S.
(Non-) random sequences from (non-) random permutations – anal-
ysis of RC4 stream cipher. Journal of Cryptology 27, 1 (2012),
67–108.

[20] WEIR, M., AGGARWAL, S., COLLINS, M. P., AND STERN,
H. Testing metrics for password creation policies by attacking
large sets of revealed passwords. In Proceedings of the 17th
ACM Conference on Computer and Communications Security,
CCS 2010, Chicago, Illinois, USA, October 4-8, 2010 (2010),
E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, Eds., ACM,
pp. 162–175.

[21] YAN, J., BLACKWELL, A., ANDERSON, R., AND GRANT, A.
Password Memorability and Security: Empirical Results. IEEE
Security and Privacy 2, 5 (Sept. 2004), 25–31.

[22] ZVIRAN, M., AND HAGA, W. J. Password Security: An Empiri-
cal Study. J. Manage. Inf. Syst. 15, 4 (Mar. 1999), 161–185.

16

