

Pro gradu -thesis
Department of Physics

Master’s Programme in Materials Research

PERFORMANCE BENEFITS OF COLLECTIVE VARIABLE-DRIVEN HYPERDYNAMICS
METHOD ON THE SIMULATION OF DIFFUSION

Mika Kurki

16.9.2020

Supervisor: Antti Kuronen, University Lecturer

Approver: Kai Nordlund, professor

University of Helsinki
Faculty of Science

PL 64 (Gustaf Hällströmin katu 2)

00014 Helsingin yliopisto

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/334430751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tiedekunta – Fakultet – Faculty

Faculty of Science

Koulutusohjelma – Utbildningsprogram – Degree programme

Master’s Programme in Materials Research

Tekijä – Författare – Author

Mika Kurki
Työn nimi – Arbetets titel – Title

Performance benefits of collective variable-driven hyperdynamics method on the simulation of
diffusion
Työn laji – Arbetets art – Level

Pro Gradu -thesis

Aika – Datum – Month and year

September 2020

Sivumäärä – Sidoantal – Number of pages

76
Tiivistelmä – Referat – Abstract

The purpose of this study is to analyze performance benefits of Collective Variable-driven
Hyperdynamics (CVHD) method over standard molecular dynamics (MD) simulation. Theory of CVHD is
an implementation of the hyperdynamics method with some beneficial features of metadynamics. The
original implementation of CVHD was modified to work as an addon for COLVARS package of the
LAMMPS simulation software with current software versions. About 70 simulations were run and
analyzed to verify functionality of CVHD and compare results with CVHD to those without CVHD. The
simulated system was the adatom self-diffusion on Copper 001 surface.

It was found out that CVHD provides a significant performance boost (several order of magnitudes)
over standard MD while preserving physical accuracy for simulation of the diffusion, but only in limited
temperature range. With high temperatures CVHD doesn’t speed up the simulation at all compared to
standard MD. With low temperatures, it is possible to achieve statistically meaningful number of
diffusion events in temperatures where the same with standard MD would require unreasonable long
simulations. But also, CVHD slows down at low enough temperatures so that it is impractical.

It was also found out that the collective variable used in this context is suitable for counting number of
adatom diffusion events, which helps analysis of adatom trajectories.

It would be interesting to investigate CVHD more by trying different parametrization and by applying it
to also other phenomenon than surface diffusion. The code of CVHD provides possibilities for
performance optimizations, for example by utilizing parallel computation.

Avainsanat – Nyckelord – Keywords

Accelerated molecular dynamics, COLVARS, CVHD, Hyperdynamics, LAMMPS, Metadynamics, MD
Säilytyspaikka – Förvaringställe – Where deposited

Muita tietoja – Övriga uppgifter – Additional information

Table of Contents

1 Introduction ... 1

2 Background ... 2

2.1 Diffusion .. 2

2.2 Simulating diffusion on metals with classical molecular dynamics (MD) 7

3 Theory of the CVHD methodology .. 11

3.1 BondBreak - Collective variable for CVHD in simulation of the diffusion 14

3.2 Biasing algorithm .. 19

3.3 Boost achieved with CVHD .. 22

3.4 Applicability and efficiency of CVHD ... 24

4 Implementation of CVHD in LAMMPS .. 26

4.1 LAMMPS software ... 26

4.2 COLVARS module ... 27

4.3 CVHD implementation.. 29

4.3.1 bondBreak class ... 29

4.3.2 colvarbias_cvhd class ... 34

4.3.3 FixTimeboost class .. 38

4.3.4 Colvars trajectory file... 40

4.3.5 Communicating biasing force to atoms ... 42

4.3.6 Programmatic considerations ... 44

5 Setup of simulations ... 50

5.1 Tools .. 54

5.2 Lattice constant.. 57

6 Results... 60

6.1 Accuracy of CVHD ... 61

6.2 Boost achieved with CVHD .. 66

7 Conclusions... 72

8 Summary ... 73

References .. 75

Appendix A Table of simulation runs ... A-1

Appendix B Output of kCount.pl .. B-1

1

1 Introduction

The purpose of this thesis is to implement an accelerated MD (Molecular Dynamics) method called

CVHD (Collective variable-driven hyperdynamics) and analyze the suitability of this method for

accelerating simulation of the surface diffusion on copper surface. The CVHD method is first

introduced in an article “Merging Metadynamics into Hyperdynamics: Accelerated Molecular

Simulations Reaching Time Scales from Microseconds to Seconds” by Kristof M. Bal and Erik C.

Neyts at 2015 (Bal & Neyts 2015a). CVHD is an implementation of the hyperdynamics method

with some beneficial features of metadynamics. The CVHD method works by shortening waiting

time of infrequent events by adding a bias potential energy to the energy minima in the system. The

CVHD method resets the biasing potential after every event, this follows hyperdynamics

methodology but is just opposite to what is used in metadynamics. CVHD belongs to a family of

accelerated MD methods. CVHD consist of two parts; CV is a measure for the state of the system

and HD is implementation of hyperdynamics force intended to accelerate simulations.

The timeframe of the diffusion can be long compared to the timeframe of classical MD and thus a

lot of computer time might be needed when doing the simulation of the diffusion. Therefore,

accelerating the simulation of the diffusion could make the research more efficient by shortening

computer time needed for the simulations.

The CVHD implementation used in this thesis is based on a code from Bal & Neyts (Bal & Neyts

2015b). The basis of the implementation is COLVARS (COLLective VARiables) package (Fiorin

& Klein & Hénin 2013) of the LAMMPS (Large-scale Atomic/Molecular Massively Parallel

Simulator) simulation software (Sandia National Laboratories). CVHD is an extension to the

COLVARS package.

Both acceleration and accuracy of the CVHD method were analyzed. Acceleration achieved by

CVHD was measured by comparing the number of adatom diffusion events on the surface of the

copper during the simulation runs of the same length with and without CVHD. The accuracy of

CVHD was measured by comparing activation energy 𝐸𝐴 and pre-exponential factor Γ0 obtained

from CVHD simulations to those available in literature for the adatom surface diffusion process.

The purpose of this thesis is not to obtain new physical results but to achieve known simulation

results faster using the CVHD method. The CVHD implementation has several parameters for fine-

2

tuning the algorithm. In this thesis the effect of different parameter combinations for the

acceleration of the simulation was not analyzed. According to the work of Bal & Neyts (Bal &

Neyts 2015a) the difference in acceleration between different parametrizations of CVHD is minimal

compared to acceleration that CVHD provides in general. In this thesis, CVHD was only applied to

the simulation of adatom diffusion process on copper surface, however by following the guidelines

presented, it is easy to apply CVHD also to the simulation of other processes.

The background of diffusion phenomena and simulation of it is given in chapter 2. After that the

theory of CVHD method is explained in chapter 3. Chapter 4 describes the computational

implementation of CVHD and its components. Setup of simulations and tools used to run and

analyze the simulations are described in chapter 5. Results obtained are in chapter 6. It is pointed

out that with CVHD it is possible to achieve significant acceleration in limited temperature range

while preserving physical accuracy. Chapters 7 and 8 are conclusion and summary of this study.

The source code of CVHD implementation as well as various auxiliary scripts and results

referenced in this study are stored in the version management system of University of Helsinki,

https://version.helsinki.fi/kurkmika/cvhd-for-lammps.

Computer runs for this thesis were done using University of Helsinki’s computing facilities in

Finnish Grid and Cloud Infrastructure, persistent identifier urn:nbn:fi:research-infras-2016072533

(CSC). The clusters used were Kale, Ukko2 and Alcyone. During the course of this thesis the file

system of Kale was changed to Lustre which caused a partial rewrite of scripts used to run the

simulations.

2 Background

2.1 Diffusion

The diffusion is a phenomenon of material transport by atomic motion (Callister & Rethwisch

2014). One typical example of the diffusion is putting two plates of metal (for example copper and

nickel) in contact with each other. Then some of copper atoms will move to nickel plate. The

concentration of copper on nickel is not constant, concentration is higher the closer to the contact

surface we are. In fluid an example of the diffusion is an ink drop in the water. The ink will spread

gradually to the larger volume in the water and the concentration of the ink will smoothen. The

https://version.helsinki.fi/kurkmika/cvhd-for-lammps

3

diffusion can also happen from gas to solid. For example, it is possible to harden surfaces of steel

particles by putting steel in contact with carbon-rich gas. Then carbon atoms will diffuse between

surface atoms of the steel, resulting in a more wear-resistant material. It is also possible to think that

temperature diffuses from warmer location to colder location. One special case of diffusion is self-

diffusion where diffusing atoms are the same species as the material where the diffusion happens. In

solid metals self-diffusion means that the atoms in the lattice are changing places with each other

due to internal kinetic energy.

From an atomic (and molecular) perspective, diffusion is a stepwise migration of atoms from one

place to another. This is what happens in examples above. In solid, atoms are located in lattice sites,

and thus in solid the diffusion means that an atom moves from one lattice site to another. For an

atom to move to another lattice site, there must be an empty adjacent site and sufficient energy to

break bonds with current neighbor atoms. The energy needed to break bonds is the kinetic energy of

the atom and thus related to thermal vibration. At a specific temperature, some small fraction of the

total number of atoms have enough kinetic energy for diffusive motion. This fraction increases with

rising temperature. Thermal vibration energy of an atom varies in time, the average kinetic energy

of the atom is related to the temperature of the system, but at an arbitrary moment of time the

kinetic energy of the atom can be higher or lower than the average. The longer the time, the greater

is the probability that some atom has enough kinetic energy to break bonds with its current

neighbors. Thus, diffusion is dependent both from temperature and time. (Callister & Rethwisch

2014).

The diffusion can be viewed also from the point of transition state theory, TST. In TST there is a

potential energy surface that consists of potential energy minima (basins) and barriers or saddle

points between them (Voter 1997). Also, the term dividing surface can be used for the saddle

points. Potential energy minima are states and an atom can move from one state to another by

crossing the saddle point and landing to another minima. In the diffusion in solid states potential

energy minima are locations in lattice points. TST is applicable for infrequent events, the time

between successive events must be long enough that after each transition a Boltzmann distribution

of energies can be reached. Diffusion is typically such a slow process that this requirement of TST

is fulfilled. TST view of diffusion can be visualized using one-dimensional potential.

4

Figure 1:Illustration of one-dimensional potential with one minimum (basin) in the middle and saddle points

separating the middle minimum from two other minima in right and left. Saddle points are marked with

vertical lines. In this illustration a diffusion event would be the movement of an atom from the minimum in

the middle to another minimum in left or right over the saddle point. The dashed line is a bias potential that

acceleration methods, like CVHD, produce in order to lower the barrier between minima. The illustration is

from article “A method for accelerating the molecular dynamics simulation of infrequent events” (Voter

1997).

The basic measure of diffusion is the diffusion flux 𝐽. In a macroscopic sense 𝐽 is the amout of mass

diffusing through and perpendicular to a unit cross-sectional area of solid per unit of time. In

microscopic sense 𝐽 is the number of atoms diffusing. The units of 𝐽 are
𝑘𝑔

𝑚2𝑠
 or

𝑎𝑡𝑜𝑚𝑠

𝑚2𝑠
. In a simple

case of the diffusion in one direction with constant rate, the 𝐽 can be expressed by Fick’s first law

𝐽 = −𝐷
𝑑𝐶
𝑑𝑥

 (1)

where 𝐷 is the diffusion coefficient and 𝐶 is the concentration of diffused atoms. The diffusion

coefficient 𝐷 and the exact format of the equation for the diffusion flux 𝐽 are dependent on the type

of the diffusion process. Equation 1 applies to a process where gas is diffusing through a thin metal

plate, so that the pressure of the gas is constant on both sides of the plate. (Callister & Rethwisch

2014).

5

The smaller the 𝐷 coefficient is, the slower is the diffusion, i.e., the less mass/atoms are transporter

per time unit. 𝐷 is dependent on temperature according to equation (Callister & Rethwisch 2014)

𝐷= 𝐷0𝑒
−
𝐸𝐴
𝑘𝐵𝑇 (2)

where 𝐷0 is a temperature-independent pre-exponential factor, 𝐸𝐴 is the activation energy of the

diffusion process, kB is Boltzmann constant and 𝑇 is the absolute temperature. The activation

engery 𝐸𝐴 can be thought as an energy required to produce the diffusive motion of one

mole/kilogram/piece of atoms. A large activation energy results in a small diffusion coefficient.

Pre-exponential factor 𝐷0 can be thought as number/mole of atoms that are in a position to be able

to do diffusive motion. The exponential term 𝑒
−
𝐸𝐴
kB𝑇 term gets value from 0 to 1 and it can be

thought as a probability of atoms to do diffusive motion.

Figure 2: A plot for self-diffusion in chromium (Mundy 1981)

6

The way to explore diffusion coefficient 𝐷 is to take a logarithm of equation 2.

𝑙𝑛𝐷 = 𝑙𝑛𝐷0−
𝐸𝐴
𝑘𝐵

(
1
𝑇
) (3)

This is the form of a straight line 𝑦 = 𝑏 +𝑚𝑥.

The figure 2 is an example of measurements following equation 3. The figure plots diffusion

coefficient of self-diffusion in chromium in different temperatures. The curve in the figure is a

straight line. The slope of the line is −
𝐸𝐴

𝑘𝐵
 providing a way to determine activation energy. The

intercept of the line and 𝑦 -axis tells logarithm of the pre-exponential factor log 𝐷0. This is the

manner in which the values of 𝐸𝐴 and 𝐷0 are determined experimentally (Callister & Rethwisch

2014). When simulating diffusion coefficient, the results should form a similar straight line if the

simulation works properly.

The type of diffusion studied in this thesis is surface diffusion. In surface diffusion there is an

adatom on the top of the lattice surface changing place due to energy of thermal vibration. Like

atoms in solids, also an adatom locates in coordinates defined by the lattice parameters. The adatom

locates in one of the places where atoms of the next layer of lattice above the surface would locate.

These lattice locations are energetically favored and there is the energy barrier between adjacent

lattice locations. The adatom needs to have sufficient energy in order to overcome the energy

barrier and move to the neighboring lattice location on the surface. Compared to the diffusion inside

the solid, the surface diffusion is faster, for the surface diffusion there are always multiple, empty,

adjacent neighboring sites for the adatom. With diffusion inside solid the diffusing atom needs to

find space between other atoms or exchange place with other atoms.

Surface diffusion will follow the same temperature dependency as other types of diffusions. But

because the surface diffusion is studied on the level of individual adatom it is more meaningful to

write equation 2 based on reaction rate than based on diffusion coefficient, which is based on the

amount of mass transported in the diffusion. Temperature dependency of reaction rate can be

written as

𝛤 = 𝛤0𝑒
−
𝐸𝐴
𝑘𝐵𝑇 (4)

7

This is the Arrhenius equation (Britannica Academic 2020). Here Γ is the reaction rate expressed in

Hertz (1 𝑠)⁄ , Γ0 is pre-exponential factor, 𝐸𝐴 is activation energy, 𝑘𝐵 is Boltzmann’s constant and 𝑇

is absolute temperature. The temperature dependency is exactly the same format than with diffusion

coefficient. Also, in case of reaction rate, it is possible to draw a plot like the one showing

dependency between temperature and diffusion coefficient (figure 2). With the reaction rate this

plot is called Arrhenius plot. Arrhenius plot shows the logarithm of reaction rate against inverse of

the temperature.

The surface diffusion can occur in several ways. For adatoms the main diffusion mechanism are

hopping and exchange. In hopping mechanism an adatom jumps over the saddle point of the

potential barrier between two adjacent sites and migrates to the next one. In exchange mechanism

an adatom moves to the position of a surface atom which becomes adatom at the next-nearest

binding site. G. A. Evangelakis and N. I. Papanicolaou have simulated the surface diffusion of Cu

adatoms on Cu(001) surface in a temperature range from 700 K to 1 100 K. They found out that in

addition to hopping and exchange processes there were multiple hopping events (an adatom moves

directly a distance more than one binding site) and complicated multi-particle exchange processes.

According to their simulations the duration of hopping event is about 0.5 ps and the duration of

simple exchange process about 1.0 ps. (Evangelakis & Papanicolaou 1996).

Also this thesis focuses on surface diffusion of Cu adatoms on Cu(001) surface.

2.2 Simulating diffusion on metals with classical molecular dynamics (MD)

Classical molecular dynamics (MD) is a well-established simulation method used in many physical

applications. A good definition of MD is given by Steve Plimpton: “Classical molecular dynamics

(MD) is a commonly used computational tool for simulating the properties of liquids, solids and

molecules. Each of the 𝑁 atoms or molecules in the simulation is treated as a point mass and

Newton’s equations are integrated to compute their motion. From the motion of the ensemble of

atoms a variety of useful microscopic and macroscopic information can be extracted such as

transport coefficients, phase diagrams and structural or conformational properties. The physics of

the model is contained in a potential energy functional for the system from which individual force

equations for each atom are derived.” (Plimpton 1995).

8

As shown by Arrhenius equation 4 the diffusion slows down rapidly when temperature decreases.

The lower the temperature the smaller is the portion of velocity distribution that exceeds kinetic

energy needed to overcome the potential barrier between adjacent lattice locations. In order to see

diffusion events in MD simulation the simulation needs to have so many simulation steps that some

of them are in the area of velocity distribution where the diffusion can happen. More timesteps are

covered when the simulation runs longer, which means more computer time is needed. Same

requirement for long computer runs, as for the diffusion, applies in MD simulation also to other

infrequent processes where interesting events happen beyond the microsecond time scale.

When simulating infrequent events, like the diffusion in low temperatures, results could be gotten

faster if the rate of interesting event could be accelerated. In this thesis one that kind of method,

CVHD, is presented. Using acceleration, it is possible to get more interesting events with same

amount of computer time. The acceleration used in CVHD modifies the potential energy surface

derived from the potential energy functional used in the simulation by adding a boost potential in

regions close to the local minima, such that all transition rates are increased while relative rates are

preserved (Miron 2003).

A commonly used potential model for metals used in MD simulations is the embedded-atom model

(EAM) potential. Also, in this thesis EAM is used when simulating diffusion on copper surface.

Theoretical background for EAM potential energy model comes from quantum mechanical density

functional theory. (LeSar 2013).

The generalized form of EAM potential energy function is

𝑈 = ∑𝐹𝑖 [∑𝑓𝑖𝑗(𝑟𝑖𝑗)

𝑗≠𝑖

] +

𝑖

1

2
∑ ∑ Φ𝑖𝑗(𝑟𝑖𝑗)

𝑁

𝑗=1,𝑗≠𝑖

𝑁

𝑖=1

(5)

here 𝑓 is some function of interatomic distance representing an approximation of the electron

density and Φ is a pair potential. Function 𝐹 has its arguments as a sum over functions 𝑓𝑖𝑗 that

depend on local positions of the atoms.

It is possible to write EAM potential energy function using local electron density �̅�𝑖, which is

evaluated at the site of atom 𝑖 and is approximated as a sum of contributions of the electron

densities �̅�𝑖(𝑟𝑖𝑗) from atoms that neighbor atom 𝑖

9

�̅�𝑖 = ∑�̅�𝑖(𝑟𝑖𝑗)

𝑗≠𝑖

(6)

then functional 𝐹 can be chosen to represent the energy to embed an atom 𝑖 in a uniform electron

gas of density �̅�𝑖. EAM potential energy function can then be written as

𝑈 = ∑𝐹𝑖(�̅�𝑖) +

𝑖

1

2
∑ ∑ Φ𝑖𝑗(𝑟𝑖𝑗)

𝑁

𝑗=1,𝑗≠𝑖

𝑁

𝑖=1

(7)

The task of fitting EAM parameters is then to find the forms of 𝐹, �̅�𝑖 and Φ that correspond to

experimental results. This is done iteratively, first selecting some set of 𝐹, �̅�𝑖 and Φ, executing MD

simulation, comparing results to experiments and adjusting parameters until calculated parameters

fit the experimental values as closely as possible. In practice, it is not possible to present 𝐹, �̅�𝑖 and

Φ as analytical functions but they are tabulated numerically as a parameter of 𝑟𝑖𝑗 until to some cut-

off distance. Thus, the EAM potential energy function is in practice a table of values for 𝐹, �̅�𝑖 and Φ

with different 𝑟𝑖𝑗.

In MD there are two well-known method for calculating diffusion coefficient 𝐷. The first method is

based on mean squared displacement and the second method is based on the velocity

autocorrelation function. The relation between mean squared displacement and the diffusion

coefficient was first derived by Einstein. It can be written as follows (Frenkel & Smit 2002).

𝜕〈𝑟2(𝑡)〉

𝜕𝑡
= 2𝑑𝐷 (8)

where 𝑑 is the dimensionality of the system. 〈𝑟2(𝑡)〉 is the mean squared distance that atoms have

moved since time origin. If 𝒓𝒊(𝑡) is a position of particle 𝑖 at time 𝑡 and 𝒓𝒊(0) is a position of the

same particle at time 𝑡 = 0 then mean square displacement for MD simulation of N particles can be

written as

〈𝑟2(𝑡)〉 = 〈|𝒓(𝑡) − 𝒓(0)|2〉 =
1

𝑁
∑(𝒓𝒊(𝑡) − 𝒓𝒊(0))

2
𝑁

𝑖=1

=
1

𝑁
∑Δ𝑟𝑖(𝑡)

2

𝑁

𝑖=1

(9)

The displacement of the particle 𝑖 at time 𝑡, Δ𝑟𝑖(𝑡), can be written using time integral of the velocity

of the particle

10

Δ𝑟𝑖(𝑡) = ∫ 𝑑𝑡′ 𝑣𝑖(𝑡
′)

𝑡

0

(10)

In one dimension equation 8 can be written as

2𝐷 = lim
𝑡→∞

𝜕〈𝑥2(𝑡)〉

𝜕𝑡
(11)

where 𝑥(𝑡)can be written as a time integral of the 𝑥 component of the velocity 𝑣𝑥

〈𝑥2(𝑡)〉 = ⟨(∫ 𝑑𝑡′ 𝑣𝑥(𝑡
′)

𝑡

0

)

2

⟩

= ∫ ∫ 𝑑𝑡′
𝑡

0

𝑡

0

𝑑𝑡′′ 〈𝑣𝑥(𝑡
′)𝑣𝑥(𝑡

′′)〉

= 2∫ ∫ 𝑑𝑡′
𝑡′

0

𝑡

0

𝑑𝑡′′ 〈𝑣𝑥(𝑡
′)𝑣𝑥(𝑡

′′)〉 (12)

where 〈𝑣𝑥(𝑡
′)𝑣𝑥(𝑡

′′)〉 is the velocity autocorrelation function. The velocity autocorrelation function

measures the correlation between the velocity of a particle at times 𝑡′ and 𝑡′′. In other words, it

describes correlations between velocities at different times along an equilibrium trajectory.

Therefore, the velocity autocorrelation function is an equilibrium property of the system. As an

equilibrium property the velocity autocorrelation function is invariant under a change of the time

origin and depends only on the difference of 𝑡′ and 𝑡′′. By defining 𝜏 ≡ 𝑡′ − 𝑡′′ it can be written

〈𝑣𝑥(𝑡
′)𝑣𝑥(𝑡

′′)〉 = 〈𝑣𝑥(𝑡
′ − 𝑡′′)𝑣𝑥(0)〉 = 〈𝑣𝑥(𝜏)𝑣𝑥(0)〉 (13)

combining equations 11, 12 and 13 give

2𝐷 = lim
𝑡→∞

2∫ 𝑑𝑡′′
𝑡

0

〈𝑣𝑥(𝑡
′ − 𝑡′′)𝑣𝑥(0)〉

𝐷 = ∫ 𝑑𝜏
∞

0

〈𝑣𝑥(𝜏)𝑣𝑥(0)〉 (14)

Equation 14 is the second well-known method in MD for calculating diffusion coefficient, this

method is based on velocity autocorrelation function and is equivalent with the first, mean squared

11

displacement based method (Frenkel & Smit 2002). Most MD simulation software have built-in

capabilities for calculating both mean squared displacement and velocity autocorrelation function.

The reaction rate can be obtained from MD simulation by analyzing trajectories of simulated

particles. For the trajectory of the particles MD simulation software needs to write the location of a

particle to a file (dump file) with suitable intervals. Using the dump file, it is possible to follow the

trajectory of a single particle. For adatom diffusion, it is possible to follow the trajectory of the

adatom and count how many times the adatom “hops” to another lattice site. If the adatom

participates in an exchange event, then the trajectory analysis needs to be continued with the new

adatom.

3 Theory of the CVHD methodology

Collective variable-driven hyperdynamics (CVHD) is a methodology that is aimed to accelerate

MD simulation of slow processes, like diffusion. CVHD works by changing, boosting, potential

energy function used in MD simulation so that events under the interest happen more frequently

than with the original potential energy function. The boost is implemented by adding a suitable bias

to the potential energy function, which fills potential energy minima and thus shortens waiting time

between minima-to-minima transitions. The construction of an optimal biased potential energy

function is not a trivial task. CVHD borrows concepts from hyperdynamics and metadynamics in

order to construct well working biased potential. (Bal & Neyts 2015a).

When CVHD is used, the events under the interest happen with a smaller number of simulation

timesteps than without CVHD. Because physical interpretation of reaction rates for accelerated and

non-accelerated simulation should be the same, it can be thought, that in CVHD simulation times

goes faster so that increased number of events divided by accelerated time gives correct reaction

rate. The faster moving time means that CVHD covers longer timespan with same number of

simulation steps than normal MD. In that sense CVHD extends timescale of the simulation. The

idea is to model long-time evolution while still accounting for the underlying short-time processes

as accurately as possible. Time scales between short-time processes and long-time evolution may be

separated by several orders of magnitude, from fast atomic vibrations to slow structural changes

(Miron 2003).

12

Hyperdynamics in MD is a methodology that is based on the idea of adding a bias, ∆𝑉, to the

potential energy function when the system is far from the transition state and ensuring that ∆𝑉 goes

to zero in the transition state region. The condition ∆𝑉 = 0 in the transition state region preserves

the correct relative dynamics. In the context of this thesis, the transition state is the state of the

system where an atom diffuses from one location to another. Hyperdynamics adds potential energy

when the atom to be diffused is near the bottom of the potential energy well and thus increase the

probability that the atom moves up in the well. When the atom is near the edge of the potential

energy well and is about to move to another location then original potential energy function is used

which ensures the correct relative dynamics. (Voter 1997).

Metadynamics is a method that was designed to explore reaction pathways and calculate free energy

surfaces. Metadynamics uses history-dependent bias for the potential energy. A key concept in

metadynamics is a collective variable (CV) which is formed from the quantities describing the

properties of the system. Number of CVs in a system should be small and it should be possible to

distinguish between all the relevant states of the system using CV(s). Number of CVs is very much

less than number of atomic positions in the simulated system and thus few CVs can be sampled

extensively to calculate statistical quantities accurately. Also, low number of CVs might ease

comparison with experiments or construction of empirical models. (Fiorin & Klein & Hénin 2013).

In metadynamics the bias to be added to the potential energy function is constructed as a function of

CVs. This keeps calculation of the bias simple. The bias additions should be sufficiently slow, so

that those degrees of freedom, that are not included in CV, would have enough time to equilibrate

and this need to be taken into account in the form of bias construction function. Unlike in

hyperdynamics, in metadynamics, the bias is applied also in the transition state region. CVs

introduced in metadynamics are used in CVHD but following hyperdynamics, CVHD doesn’t apply

the bias near the transition state.

When metadynamics is used to calculate free energy surfaces then metadynamics potential 𝑉𝑚𝑒𝑡𝑎 is

constructed as a sum of repulsive Gaussian hills. The dimensionality of the hills corresponds to

number of CVs. The hills are centered around values of CVs in each timestep of the simulation.

This way the metadynamics potential is history-dependent, at time 𝑡 the metadynamics potential

𝑉𝑚𝑒𝑡𝑎 is a sum of previous values of 𝑉𝑚𝑒𝑡𝑎. (Laio & Parrinello 2002).

13

In metadynamics simulation the effective potential 𝑉𝑒𝑓𝑓 is the sum of the real underlying potential

𝑉, which is derived from potential energy functional used in MD simulation, and 𝑉𝑚𝑒𝑡𝑎. These

potentials can be written as a function of collective variable 𝜂.

𝑉𝑒𝑓𝑓(𝜂) = 𝑉(𝜂) + 𝑉𝑚𝑒𝑡𝑎(𝜂) (15)

During the simulation, the system evolves towards the nearest minimum of 𝑉𝑒𝑓𝑓(𝜂) and at same

time new Gaussian hills are added centered at value of CV, 𝜂, corresponding to that minimum.

When the simulation proceeds, potential wells are filled with Gaussian hills. After sufficient time

each minimum is cancelled out and at that stage 𝑉𝑒𝑓𝑓 is constant. The free energy surface can then

be obtained from equation 15.

𝑉(𝜂) ≅ − 𝑉𝑚𝑒𝑡𝑎(𝜂) + 𝐾

where 𝐾 is an additive constant and 𝑉𝑚𝑒𝑡𝑎 consist of Gaussian hills calculated during the

simulation.

CVHD has a modular structure. The CVs, on which bias is based, can be selected independently

from the biasing algorithm itself. Thus, one biasing algorithm can be used with several different

CVs and vice versa. This makes it possible to select the most suitable CVs and biasing algorithm

for each system. This modularity makes the CVHD very versatile. Based on the type of biasing

algorithm, the CVHD methodology can be divided to statically biased CVHD (sCVHD) and to

dynamically biased CVHD (dCVHD). In sCVHD the biasing algorithm is a static, analytical,

function of CVs and the function doesn’t change during the simulation run. In dCVHD a suitable

history-dependent bias is calculated on-the-fly during the simulation run. The history-dependent

bias is borrowed from metadynamics into dCHVD. Because the bias evolves in dCVHD it can be

thought that dCVHD is one type of self-learning method. (Bal & Neyts 2015a).

In hyperdynamics, and thus in CVHD, the simulations are performed on the modified potential

energy surface, 𝑉∗(𝑹), not on the true potential energy surface 𝑉(𝑹). 𝑹 represents here the

coordinates of all particles in the simulated system. (Bal & Neyts 2015a).

𝑉∗(𝑹)= 𝑉(𝑹)+∆𝑉(𝑹) (16)

14

where ∆𝑉(𝑹) is the bias potential energy function. In CVHD the bias potential ∆𝑉(𝑹) is reduced to

a function of only one parameter, collective variable 𝜂. It can be thought that 𝜂 is a global reaction

coordinate. In CVHD 𝜂 can have continuous values between 0 and 1. The fact that ∆𝑉(𝑹) can be

written as ∆𝑉(𝜂) is the key simplification of CVHD (Bal & Neyts 2015a). The equation 16 can

then be written as

𝑉∗(𝑹) = 𝑉(𝑹) + ∆𝑉(𝜂) (17)

3.1 BondBreak - Collective variable for CVHD in simulation of the diffusion

For CVHD a collective variable, CV, based on local system properties, is developed so that the CV

is dependent on how much each property contributes on the actual transition under the interest. The

idea is not to treat all properties equally, but to strongly emphasize those properties that are

involved in the actual transaction. The bias can then be adjusted based on how close to the transition

state the CV is. The closer to transition value the CV is, the stronger bias is driven to zero.

In the case of the diffusion, as in this thesis, the relevant local system property is the bond length,

the distance between atoms in pair 𝑖, 𝑟𝑖. For an atom to diffuse, it must first break the bonds with

neighboring atoms, then move to a new position and create new bonds with new neighboring atoms.

The bond is broken between two atoms when the distance between them is large enough and

similarly a new bond is created when atoms are close enough to each other. Thus, bond length can

be used as a measure, if there exist a bond between atoms in atom pair 𝑖. Using bond length, i.e. 𝑟𝑖,

as a collective variable the bond is broken when 𝑟𝑖 exceeds the distance after which atoms in pair 𝑖

has no effect on each other. In case of the simulation in solids, the suitable fraction of lattice

constant can be used as a maximum distance for the bond. In the implementation of CVHD used in

this thesis, the CV based on interatomic distances and bond breaks is called BondBreak CV.

In order to be physically meaningful, the CV should be invariant under global translations and

rotations (Fiorin & Klein & Hénin 2013), this is true for BondBreak CV. Interatomic distances are

independent of translations and rotations of coordinate system.

With other processes, the relevant system property to be used as a CV, can be for example dihedral

angle between bonds, coordination number CN, root mean square displacement from reference

positions, angle of rotation around a given axis or change in the internal structure of a group of

atoms. (Fiorin & Klein & Hénin 2013).

15

With the bond length as a CV, the length can be divided into 4 different regions using

simulation/system specific limits 𝑟𝑖
𝑚𝑖𝑛, 𝑟𝑖

𝑚𝑎𝑥 and 𝑟𝑖
𝑐𝑢𝑡 (Bal & Neyts 2015a). 𝑟𝑖

𝑚𝑖𝑛and 𝑟𝑖
𝑚𝑎𝑥 mark

the shortest and the longest distance on which the bond is breaking. At the beginning of the

simulation and after a bond break happens, 𝑟𝑖
𝑐𝑢𝑡 is used to select atom pairs having so short mutual

distance that there exists a bond, that could break, between the atoms. 𝑟𝑖
𝑚𝑖𝑛, 𝑟𝑖

𝑚𝑎𝑥 and 𝑟𝑖
𝑐𝑢𝑡 are

given as input parameters of BondBreak CV and the logical relation between them is 𝑟𝑖
𝑚𝑖𝑛 ≤ 𝑟𝑖

𝑐𝑢𝑡 ≤

𝑟𝑖
𝑚𝑎𝑥.

1. If the length 𝑟𝑖 is greater than a cutoff 𝑟𝑖
𝑐𝑢𝑡 then a stable bond between atoms does not exist

and this atom pair is not followed. This criterion is applied only on relaxation periods, when

the simulation starts and a bond break has happened. Based on this criterion, a list of bonds

is created from all atomic pairs that are in a shorter distance from each other than 𝑟𝑖
𝑐𝑢𝑡. Later

in the simulation following 3 criteria are applied only to that list of bonds.

2. If 𝑟𝑖 ≥ 𝑟𝑖
𝑚𝑎𝑥 then the bond is dissociated or just about to dissociate. The diffusing atom is

then very likely moving to a new position and thus the system is in a transition state region.

According to principles of hyperdynamics the bias potential energy, ∆𝑉, should then be

zero.

3. If 𝑟𝑖
𝑚𝑎𝑥 > 𝑟𝑖 ≥ 𝑟𝑖

𝑚𝑖𝑛 then the system is between the stable region, where the bond is not

likely to dissociate soon, and transition state region. In this region ∆𝑉 is to be decreased the

closer 𝑟𝑖 is to transition region, 𝑟𝑖
𝑚𝑎𝑥.

4. If 𝑟𝑖
𝑚𝑖𝑛 > 𝑟𝑖 then atoms are so close to each other that the bond between them is very

unlikely to dissociate soon.

Based on the classification above it is possible to define a local distortion 𝜒𝑖 as follows for all

atomic pairs 𝑖 where atoms are a shorter distance from each other than 𝑟𝑖
𝑐𝑢𝑡 (Bal & Neyts 2015a)

𝜒𝑖 =

{

 0, 𝑟𝑖 ≤ 𝑟𝑖

𝑚𝑖𝑛

𝑟𝑖 − 𝑟𝑖
𝑚𝑖𝑛

𝑟𝑖
𝑚𝑎𝑥 − 𝑟𝑖

𝑚𝑖𝑛
, 𝑟𝑖

𝑚𝑖𝑛 < 𝑟𝑖 < 𝑟𝑖
𝑚𝑎𝑥

1, 𝑟𝑖 ≥ 𝑟𝑖
𝑚𝑎𝑥

(18)

16

This local distortion, 𝜒𝑖, gets a value of 0 when the bond in atom pair 𝑖 is not to dissociate, value of

1 when the likelihood for the dissociation is large and a linear interpolation from 0 to 1 when the

distance between atoms is between 𝑟𝑖
𝑚𝑖𝑛 and 𝑟𝑖

𝑚𝑎𝑥.

Local distortion is calculated only for atom pairs that are in the list of bonds, this list is created at

the beginning of the simulation and recreated each time when a bond break happens. The list of

bonds saves computation time when it is not necessary to calculate the local distortion for all atom

pairs. Initially the list of bonds contains atom pairs where atoms are a shorter distance from each

other than 𝑟𝑖
𝑐𝑢𝑡 at the beginning of the simulation. When a bond break happens all atom pairs are

checked in this new state in order to find atom pairs where atoms are in a shorter distance from each

other than 𝑟𝑖
𝑐𝑢𝑡 and these atom pairs are placed in the recreated list of bonds. The calculation of the

local distortion continues then again only for atom pairs in the newly created list of bonds, until a

new bond break happens, and the list of bonds is recreated again.

The selection of 𝑟𝑖
𝑚𝑖𝑛 and 𝑟𝑖

𝑚𝑎𝑥 affects speed and the quality of CVHD simulation. The larger 𝑟𝑖
𝑚𝑖𝑛

and 𝑟𝑖
𝑚𝑎𝑥 are, the more bias, Δ𝑉, is introduced on the system and the faster simulation proceeds.

But on the other hand, if 𝑟𝑖
𝑚𝑎𝑥 is too large, then Δ𝑉 might be applied in the transition state region

violating the requirement of hyperdynamics. And similarly, if 𝑟𝑖
𝑚𝑖𝑛 is too large, it might be that Δ𝑉

is not decreased when it should be. So, although large values of 𝑟𝑖
𝑚𝑖𝑛 and 𝑟𝑖

𝑚𝑎𝑥 speed up the

simulation, too large values lead to incorrect dynamics, and thus some safety margin need to be

applied when selecting 𝑟𝑖
𝑚𝑖𝑛 and 𝑟𝑖

𝑚𝑎𝑥.

Using local distortion, 𝜒𝑖, it is possible to define global distortion, 𝜒𝑇, using the formula (Bal &

Neyts 2015a)

𝜒𝑇 = (∑𝜒𝑖
𝑝

𝑁

𝑖

)

1
𝑝⁄

(19)

Global distortion describes how close to the transition state region the system is. The greater the

value of 𝜒𝑇 is the closer to the transition state region the system is. Because local distortions have

values between 0 and 1 (including), it means that global distortion is a positive real number. 𝑁 is

here number of atom pairs having a mutual distance shorter than 𝑟𝑖
𝑐𝑢𝑡, not the total number of atoms

in the simulation.

17

The parameter 𝑝 in equation 19 ensures that large distortions make a larger contribution to 𝜒𝑇 than

small ones. The parameter has a restriction 𝑝 > 1. The greater 𝑝 is, the smaller the contribution of

small local distortions to 𝜒𝑇 are. Because 𝜒𝑇 is used to determine bias of the potential energy, the

large value of 𝑝 then means that bias is controlled by large local distortions leading to more

localized bias than a small value of 𝑝. In other words, 𝑝 controls how bias energy is distributed

across the system. According to (Bal & Neyts 2015a) 𝑝 is not a critical parameter for the CVHD

method and its effect was found to be rather small for values between 4 and 12.

In principle equation 19 approaches the max function when 𝑝 → ∞. This would mean that when

CV is the distance between atom pairs, then with max function, only the longest distance between

atoms among all atom pairs would have a contribution to CV. So, with very large value of p, the

longest inter-atomic distance would dominate the CV. However also in the case of large 𝑝, it is

necessary to count CV using all atom pairs, because it cannot be said beforehand which atom pair

has the longest distance and also the pair having the longest interatomic distance might change

during the simulation. Using max(𝑟𝑖) as CV wouldn’t save computing time by decreasing the

number of atom pairs that need to be checked but would save some computing time because

calculating max(𝑟𝑖) is computationally faster than calculating equation 19. The derivatives of

collective variables calculated in CVHD should be continuous and this is not necessary the case for

max(𝑟𝑖) and therefore more elaborate forms should be used for BondBreak CV despite of appealing

simplicity of max(𝑟𝑖) (Bal 2018).

As a side note, the equation 19 can be generalized to a case where one wants to follow 𝑛 bond to

break instead of 1. This can be done by dividing 𝜒𝑖 by number of bondbreaks, 𝑛, we are interested

in. Equation 19 has then form

𝜒𝑇 = (∑
𝜒𝑖
𝑝

𝑛

𝑁

𝑖

)

1
𝑝⁄

(20)

and 𝜒𝑇will become to 1 if 𝑛 of local distortions, 𝜒𝑖, are 1 (which is the case we are interested in) or

if plenty enough of local distortions differ from 0.

In CVHD the CV is required to have values in a range [0,1]. Hyperdynamics requires CV to have

continuous and vanishing derivatives when CV goes to 0 or 1, because CV is used to calculate bias

18

potential ∆𝑉(𝑹), and the negative gradient of ∆𝑉(𝑹) is the biasing force applied to the atoms in

simulations and in hyperdynamics the biasing force should vanish in transition region (Miron

2003). The global distortion 𝜒𝑇 does not fulfill these requirements and therefore the actual CV, 𝜂, is

calculated from 𝜒𝑇 according to (Bal & Neyts 2015a)

𝜂 = {

1

2
(1 − cos(𝜋𝜒𝑇

2)), 0 ≤ 𝜒𝑡 ≤ 1

1, 𝜒𝑇 > 1
(21)

𝜂 is limited in the range [0,1]. Value 𝜂 = 1 (and 𝜒𝑇 ≥ 1) means that the system is in a transition

state range and biasing force is not applied to the system. From figure 3 it can be seen that 𝜂

smoothens both near 0 and near 1. This means that biasing force deduced from the derivative of 𝜂

goes to zero near 0 and 1 as it should do. (Bal & Neyts 2015a).

Figure 3: A plot of η

19

This format of 𝜂 allows to describe transitions involving multiple local distortions in addition to

describing a transition involving a single distortion - 𝜒𝑇 ≥ 1 if one 𝜒𝑖 = 1 or if all 𝑁 𝜒𝑖s are at least

(1 𝑁⁄)1 𝑝⁄ . This also means that a single value of 𝜒𝑇 (and thus 𝜂) correspond to more than one state

of the system. Therefore, in CVHD it is necessary to drop the requirement of metadynamics to

distinguish the different states of the system by the value of CV. CVHD, however, works without

fulfilling this requirement. (Bal & Neyts 2015a).

For other processes than diffusion it is quite easy to modify equation 18 to use properties specific

for the process in interest, for example dihedral angles instead of bond length. The formulation of 𝜂

used in CVHD is thus rather generic.

3.2 Biasing algorithm

In statically biased CVHD, sCVHD, the biasing algorithm is a static, analytical, function of 𝜂. The

simplest way to build bias potential in sCVHD is to use a linear function of 𝜂

Δ𝑉(𝜂) = Δ𝑉𝑚𝑎𝑥(1 − 𝜂), (22)

where Δ𝑉𝑚𝑎𝑥 is the maximal bias strength. When inserted in equation 16 this leads to

V∗(𝐑) = V(𝐑) + Δ𝑉𝑚𝑎𝑥(1 − 𝜂) (23)

Δ𝑉𝑚𝑎𝑥 must be chosen appropriately. It needs to be large enough to make a substantial change in

the potential energy but not larger than the barrier of interest. Also 𝑟𝑖
𝑚𝑎𝑥 in equation 18 needs to be

selected carefully so that 𝜂 goes to 1 and Δ𝑉𝑚𝑎𝑥 to zero in the transition state range. This is also a

main limitation of sCVHD, some a priori knowledge of the possible events in the system is needed,

in order to define suitable Δ𝑉𝑚𝑎𝑥.

In dynamically biased CVHD, dCVHD, the biasing algorithm used is borrowed from

metadynamics. The algorithm will grow ∆𝑉(𝜂) at intervals 𝜏𝐺 in the form of Gaussian functions

with width 𝜎 and height 𝑤 (Bal & Neyts 2015a). The computational solution is to store 𝜂, 𝜎 and 𝑤

in memory at intervals 𝜏𝐺. ∆𝑉(𝜂) is then computed by adding together value of each previously

stored Gaussian function at point 𝜂.

20

∆𝑉(𝜂) = ∑ 𝑤𝑘 exp [−
(𝜂 − 𝜂(𝑘𝜏𝑔))

2

2𝜎2
]

𝑘<𝑛𝑔

(24)

where 𝑛𝑔 is a number of times the growing step has been applied. The resulting biasing potential is

thus a sum of repulsive Gaussian functions (Fiorin & Klein & Hénin 2013). Because ∆𝑉(𝜂) is

constructed by summing together all previous additions to ∆𝑉(𝜂) the bias potential is history

dependent. Because the bias is repulsive, it will drive particles farther from each other, and thus in

the case of diffusion the diffusion phenomenon is accelerated. It is possible, that during the

simulation, the system has same value for 𝜂 at two different point of time. Due to

history-dependency ∆𝑉(𝜂) might however be different for the same value of 𝜂 at different times, so

to be exact ∆𝑉 should be written as a function of both 𝜂 and 𝑛𝑔, ∆𝑉(𝜂, 𝑛𝑔).

This algorithm will, by default, keep adding the bias at any time therefore it might be necessary to

restrict the algorithm from adding the bias at large 𝜂 values, for example at 𝜂 > 0.9.

Essentially, both in sCVHD and dCVHD, the binding energy of the system at equilibrium is

lowered by adding a small repulsive potential to bonds like in bond-boost method (Miron 2003).

In order to be able to describe multiple consecutive events the biasing algorithm needs to reset ∆𝑉

after each transition. The way CVHD recognizes a transition is to follow during a waiting time 𝑡𝑤

that 𝜂 remains equal to 1. This ensures that the transition is stable, situations where the system

moves near to or little over a saddle point and returns to earlier state are not recorded as transitions.

After the transition system will be thermalized in its new state, a new 𝜂 is calculated and CVHD

procedure is resumed. With dCVHD this means that all accumulated Gaussian hills are deleted. (Bal

& Neyts 2015a). CVHD lets the system to stabilize time 𝑡𝑤 after the transition. This means that

after transition there is a period of 2𝑡𝑤 when bias is not applied. The waiting time 𝑡𝑤 is a parameter

for CVHD. The suitable value of 𝑡𝑤 relates to the duration of the simulated event and sufficient

safety margin for not counting back and forth movements as transitions.

This “reset” functionality makes a difference between dCVHD and metadynamics. In dCVHD the

accumulated bias potential is not stored from one state to another like in metadynamics. In dCVHD

when the system moves to a new state all accumulated bias potential is deleted and the bias

21

calculation is restarted from zero. In metadynamics the bias in a new state is accumulated on the top

of the bias accumulated in the earlier states so that bias eventually fills all local minima.

sCVHD requires an analytical function for calculation of the bias potential and thus a priori

knowledge of the processes in the system is needed. dCVHD builds the bias on-the-fly and thus

dCVHD can adapt to processes with unknown activation barrier as long as system dynamics can be

presented by 𝜂. sCVHD will build up the bias faster in the beginning than dCVHD that first needs

to learn how to build the bias. sCVHD is also easier to parametrize because it doesn’t require

Gaussian parameters like dCVHD. The Gaussian algorithm of dCVHD will use dynamically larger

bias if the waiting time between successive events is long. For these reasons sCVHD could be more

suitable if the studied system is well-characterized or in a case of relatively fast successive events.

On the contrary dCVHD, could be more suitable if the studied system is not well known or in a case

of long waiting time between successive events.

In MD simulation the force is derived as a gradient of the potential energy. CVHD uses a biased

potential energy V∗(𝐑) from equation 17 and by differentiating it the force is

𝐹(𝑹) = −∇𝑉∗(𝑹) = −∇[V(𝐑) + ∆V(η)] = −∇V(𝐑) −
𝜕∆V(η)

𝜕η
∇η (25)

For the sCVHD the gradient of ∆V(η) is simply Δ𝑉𝑚𝑎𝑥 as can be seen from equation 22. For

dCVHD the gradient of ∆V(η) can be calculated as sum of gradients of individual Gaussian

functions in equation 24. The gradient of CV, ∇η, can be calculated for each atom using derivatives

of functions 18, 19 and 21 for local distortion, 𝜒𝑖, in range [0,1]. Outside of range [0,1] 𝜒𝑖 is

constant, its gradient is 0 and there is no biasing force. The gradient per atom pair 𝑖, ∇η𝑖, in range

[0,1] is

∇η𝑖 =
𝜋𝜒𝑇 sin(𝜋𝜒𝑇

2)(∑ 𝜒𝑖
𝑝𝑁

𝑖)
1
𝑝⁄ −1

𝜒𝑖
𝑝−1

𝑟𝑖
𝑚𝑎𝑥 − 𝑟𝑖

𝑚𝑖𝑛
�̂�𝒊 (26)

where �̂�𝒊 is a unit vector along the distance between atoms in atom pair 𝑖. The total gradient for a

single atom is sum of gradients of all atom pairs where the atom belongs to.

When parametrizing the bias potential (Δ𝑉𝑚𝑎𝑥, 𝜎, 𝑤, 𝜏𝐺 and 𝑡𝑤), the same restriction and safety

measures should be considered as with the bond-boost method. For preserving the accuracy of the

22

numerical integration, the biasing forces (gradients of the bias potential) should be on the same

scale as the natural forces in the system. This implies that the magnitude of the bias potential should

be comparable to the natural energy barriers in the system. Numerical integration inaccuracies may

appear if the boost potential induces too high derivatives because of including too steep curves. Too

large bias potential might induce local peaks within the local potential basin. These peaks could

create a repulsive region close to the original local minimum, and the system only infrequently

penetrates the high-boost region, which decreases the efficiency of boosting. (Miron 2003).

3.3 Boost achieved with CVHD

Using transition-state theory, TST, formalism, the TST rate 𝑘𝑖→𝑗
𝑇𝑆𝑇 of a particular transition (an

adatom diffusion event in the context of this thesis) is given by the flux through the dividing

hypersurface that separates states 𝑖 and 𝑗 (Miron 2003), (Voter 1997)

𝑘𝑖→𝑗
𝑇𝑆𝑇 =

1

2

∬𝑑𝒓𝑑𝒑𝛿𝑖𝑗
⊥𝚯𝑖|𝑣⊥| exp (−

𝐾 + 𝑉
𝑘𝐵𝑇

)

∬𝑑𝒓𝑑𝒑𝚯𝑖 exp (−
𝐾 + 𝑉
𝑘𝐵𝑇

)
(27)

where 𝑘𝐵, 𝑇, 𝐾 and 𝑉 are respectively Boltzmann constant, temperature, kinetic and potential

energies. 𝚯𝑖 is the occupation function which is 1 if the system is in state 𝑖 and zero otherwise. 𝛿𝑖𝑗
⊥

is the delta function defining the location of the dividing hypersurface, and |𝑣⊥| is the velocity

component orthogonal to the hypersurface.

TST assumes that the system equilibrates in each local minimum before jumping away. The

transition rates out of each minimum are then equilibrium quantities. MD follows the short-time-

scale Newtonian dynamics of the system, thus the TST rates arise naturally, albeit they may be too

slow for any significant process to happen over the time probed in a typical simulation without

acceleration like CVHD (Miron 2003). When a surface diffusion event (adatom hop or exchange)

happens, the adatom is equilibrated in a new location in the lattice surface before the next diffusion

event occurs. The TST formalism is thus suitable for describing reaction rates of surface diffusion

events covered in this thesis.

CVHD uses the biased potential energy V∗(𝐑) from equation 17. In this biased potential the bias

potential ∆V(η) goes to zero on the dividing hypersurface states 𝑖 and 𝑗. By substituting equation 17

23

in equation 27 and taking in to account that ∆V(η) goes to zero on the dividing hypersurface only

the denominator changes. The boosted transition rate 𝑘𝑖→𝑗
𝑏 is thus (Miron 2003)

𝑘𝑖→𝑗
𝑏 =

1

2

∬𝑑𝒓𝑑𝒑𝛿𝑖𝑗
⊥𝚯𝑖|𝑣⊥| exp (−

𝐾 + 𝑉
𝑘𝐵𝑇

)

∬𝑑𝒓𝑑𝒑𝚯𝑖 exp (−
𝐾 + 𝑉 + ∆V(η)

𝑘𝐵𝑇
)

(28)

The denominator is smaller and 𝑘𝑖→𝑗
𝑏 is greater than 𝑘𝑖→𝑗

𝑇𝑆𝑇 if ∆V(η) is positive, which is guaranteed

by the construction of ∆V(η) both in sCVHD and dCVHD.

𝑘𝑖→𝑗
𝑏

𝑘𝑖→𝑗
𝑇𝑆𝑇 = ⟨exp(

∆𝑉(𝜂)

𝑘𝐵𝑇
)⟩

𝑏

(29)

where 〈… 〉𝑏 represents a canonical ensemble average done on the boosted potential surface (Miron

2003). The average time between events leading from state 𝑖 to state 𝑗, 𝜏𝑖→𝑗, is the inverse of the

corresponding reaction rate

𝜏𝑖→𝑗
𝑇𝑆𝑇 = 𝜏𝑖→𝑗

𝑏 ⟨exp (
∆𝑉(𝜂)

𝑘𝐵𝑇
)⟩

𝑏

(30)

So, the TST based physical time-span 𝜏𝑖→𝑗
𝑇𝑆𝑇 covered by boosted simulation time 𝜏𝑖→𝑗

𝑏 becomes a

statistical average. The ratio between 𝜏𝑖→𝑗
𝑇𝑆𝑇 and 𝜏𝑖→𝑗

𝑏 is the boost achieved by CVHD. Thus the

acceleration achieved with CVHD is an ensemble average of the biased potential energy surface

(Bal & Neyts 2015a)

𝐵𝑜𝑜𝑠𝑡 = ⟨𝑒
∆𝑉(𝜂)
𝑘𝐵𝑇 ⟩ (31)

𝐵𝑜𝑜𝑠𝑡 is the acceleration factor relative to standard MD. The effective simulated time, hypertime, is

calculated by multiplying the MD time with 𝐵𝑜𝑜𝑠𝑡 (Voter 1997). For example, if 𝐵𝑜𝑜𝑠𝑡 is 106 then

MD simulation of 1 ns will correspond to a hypertime of 1 ms. Because ∆𝑉 is zeroed in CVHD

when the system moves from one state to another and ∆𝑉 is built independently in each state, the

𝐵𝑜𝑜𝑠𝑡 can be different in the different states of the simulation. With CVHD constant 𝐵𝑜𝑜𝑠𝑡 cannot

be ensured in a long simulation which involves many state transitions. The total Boost in CVHD

24

simulation is obtained by calculating Boost separately for each timestep and then adding Boost of

each timestep together.

As can be seen from equation 31, the 𝐵𝑜𝑜𝑠𝑡 will decrease when temperature increases. This sets the

temperature limit for the efficiency of CVHD. At a high enough temperature Boost becomes

negligible.

There is a difference between sCVHD and dCVHD regarding the accuracy of the calculated

hypertime. Accurate hypertime calculation requires good sampling of the regions with large bias

potential energy. In the case of dCVHD, the large amount of the bias is accumulated with values of

𝜂 that occur frequently during the simulation. The more often the simulated system visits certain

range of 𝜂 the more ∆𝑉 is accumulated on that region. So, with dCVHD good sampling of 𝜂 space

corresponds to large amount of the bias accumulated on that region of 𝜂 leading to accurate

hypertime calculation. With sCVHD there is no correlation of amount of the bias and the amount of

time the simulated system spends on the different parts of 𝜂 space. In sCVHD, ∆𝑉 is just a function

of 𝜂, not the function of how often different values of 𝜂 appears during the simulation. This limits

some of the benefits of the sCVHD, because it does not produce as accurate hypertime calculation

as dCVHD does. (Bal & Neyts 2015a).

3.4 Applicability and efficiency of CVHD

The CVHD algorithm will be efficient as long as slow events lead to a significant distortion of a

small subset in a large collection of local parameters. On the contrary, if a process of interest only

makes a small contribution to the CV, then CVHD would not be accurate and efficient. (Bal &

Neyts 2015a). In the scope of this thesis, a diffusion event will lead to significant change of bond

lengths associated with the diffusing atom and the changes in the bond lengths will then change

collective variable 𝜂 so that it reaches the value one. 𝜂 based on bond length should therefore work

well when using CVHD in the simulation of the diffusion.

CVHD utilizes concepts of metadynamics but there are differences between CVHD and

metadynamics. Metadynamics is used to define dynamical pathways and to calculate free energy

profiles by connecting a limited number of pre-known states when CVHD (and other accelerated

MD methods) aims to find natural, unconstrained state-to-state dynamics over long time scales.

Metadynamics is thus limited on a smaller part of phase space, which is sampled extensively, when

25

CVHD examines in the principle the full phase space. Technically this means that in CVHD it is not

required that the different states of the system would be fully distinguished from each other using

CV. (Bal & Neyts 2015a).

Because CVHD utilizes the hyperdynamics paradigm to set the bias potential energy ∆𝑉 to zero

near the transition state region, there is a fundamental difference how the bias potential energy is

accumulated in metadynamics and in CVHD. In metadynamics, the bias is accumulated during the

whole simulation run and also in the transition state region. On the contrary in CVHD, the bias is

set to zero in the transition state region and reset after the completed transition. In other words,

CVHD accumulates bias independently for each period between successive transitions. The

requirement to set ∆𝑉 to zero near the transition state region sets also a quality requirement for the

CV and for the underlying local properties and distortions. The local distortions, 𝜒𝑖, need to be

defined so that they certainly go to 1 near the transition state. In the scope of this thesis, this means

that 𝑟𝑖
𝑚𝑎𝑥 in equation 18 needs to be selected with a reasonable safety margin. This requires some

prior knowledge of transitions, obtained for example, from earlier simulations.

The strength and the limitation of the CVHD method is that all relevant local system properties

must be included in CV. When it is possible to describe the full dynamics by a simple CV, like

chemical reactions including bond breaking and described by a CV based on the local distortion of

the bond length, the CVHD methodology is suitable. On the other hand, if it is not possible to

define a CV based on simple local system properties, like in a case of complex biological processes

including various types of nonbonded interactions, then CVHD is impractical. The ability to build

CV from local system properties and their distortion is thus a key to a successful use of CVHD.

An important disadvantage of CVHD is poor scaling with the system size. In the large system,

events will occur more frequently, leading to additional overhead in resetting the bias and

thermalizing the system. In large system, it is possible that 𝜂 is close to 1 not because transition is

about to happen in one part of the system, but because for many local distortions 𝜒𝑖 > (1 𝑁⁄)1 𝑝⁄ .

This leads 𝜂 to go to 1 and the bias to disappear too far from the transition state leading to

inefficient acceleration. In large enough system also, parallel events are possible and CVHD, that

represents the dynamics by a single CV, does not allow parallel treatment of events. (Bal & Neyts

2015a)

26

Because CVHD adds potential energy to the system, it might introduce some unphysical heating

when the added potential energy transforms to kinetic energy. Therefore, it is necessary to

thermostat the simulated system. (Bal & Neyts 2015a).

As explained in chapter 3.3 the Boost achieved by CVHD is temperature dependent. The higher the

temperature the smaller is Boost. This sets an upper limit for temperature, above which CVHD is

not useful.

4 Implementation of CVHD in LAMMPS

4.1 LAMMPS software

The software framework selected for this thesis to run diffusion simulation is LAMMPS. LAMMPS

is popular and well-known particle simulation code, developed and maintained at Sandia National

Laboratories, USA. LAMMPS is based on the work of Plimpton (Plimpton 1995). LAMMPS stand

for Large-scale Atomic/Molecular Massively Parallel Simulator. While LAMMPS is primarily

aimed at Molecular Dynamics simulations of atomistic systems, it also provides a general, fully

parallelized, framework for particle simulations governed by Newton's equations of motion.

LAMMPS is customizable and there exist lot of add-on modules for LAMMPS. With suitable

customization, it is possible to run CVHD simulations with LAMMPS.

LAMMPS works by reading in an input script, building the simulation model according to the input

script and then running the simulation. LAMMPS input script has its own command language with

variables and control structures (if, loop) which enables quite complex simulation scenarios. The

LAMMPS command language is documented in LAMMPS manual. The structure of typical

LAMMPS input script is as follows (Plimpton 2014)

• Definition of units used in input script

• Definition of simulation domain. LAMMPS has commands for creating atoms/particles,

reading data from a file and creating simulation box with different boundary conditions. The

particles can be joined in groups to form molecules or other structures

• Definition of properties of atoms; mass, velocity, charge and so on

• Definition of the potential energy functional used to simulate interactions between particles

27

• Applying constraints (most typically temperature and pressure but also more complex

constraints are possible) and advancing to next time step (time integration). Constraints and

time integration are defined using command fix. Therefore, applying constraints and doing

time integration is called fixing in LAMMPS terminology.

• Definition of diagnostic calculations

• Definition of output

• Definition of the actual simulation run. Previous steps define the simulation model and only

run command starts the actual simulation. For example, time integration, defined above, is

executed only after the run command has introduced. While executing, the simulation run

can be modified using LAMMPS control structures

The similar structure of the input script is also used when running diffusion simulations related to

this thesis.

One key term in LAMMPS is style. Style defines the way a LAMMPS command works and what

additional parameters are allowed. Styles are different for the different commands. For example,

atom_style command defines what attributes atoms have. There are about 20 different styles for

atoms defining whether charge, dipole moment, angles, density and other physical attributes are

stored for atoms during the simulation. Similarly, there exist over 100 styles for different potential

energy functionals to describe the different interactions between particles. These styles and the

potential energy functional to be used are defined by command pair_style. Good examples of

pair style are lj/cut, which is the basic Lennard-Jones potential with cutoff used in all

introductory texts for MD, and eam, which is the potential energy functional used in this thesis to

model interaction between copper atoms.

4.2 COLVARS module

The LAMMPS’ distribution includes an optional module, named COLVARS, for using collective

variables. A detailed explanation of its design is provided by Fiorin, Klein and Hénin (Fiorin &

Klein & Hénin 2013). When building the LAMMPS executable, the COLVARS module must be

compiled separately as a library and linked to the LAMMPS executable. The module includes more

than 25 different types of CVs. In typical simulations the computational overhead of COLVARS

module is negligible (Fiorin & Klein & Hénin 2013).

28

The processing of collective variables is based on a separate configuration file which is read by

COLVARS module using the following line in LAMMPS input script

fix ID all colvars configfile keyword value pairs …,

where ID is a string that uniquely identifies this fix from others. Only requirement for ID is that it

must be different than ID of any other fix command but of course it helps to use some meaningful

ID like CVfix1. According to the general LAMMPS formalism, the second parameter for the fix

command is name of group of atoms for which the fix is applied. The COLVARS module applies

all its operations to the entire system and therefore the COLVARS module ignores the second

parameter of fix command. For the sake of clarity, it is good to use built-in group all as a second

parameter for fix command when using the COLVARS module. The third parameter in the fix

command above is the style of the fix. In order to use the COLVARS module the style must be

colvars. If the COLVARS module is not linked in the LAMMPS executable, then colvars is

not recognized as an applicable fix style. The fourth parameter, configfile, is the name of the

COLVARS configuration file. The rest of parameters for this fix command are optional keyword

value pairs, that define some general properties of the COLVARS module: input and output files or

their prefixes, thermostating method used, seed for random number generator and information how

to take into account periodic boundaries in atom positions when calculating collective variables and

the resulting forces. The colvars fix computes a global scalar which can be accessed by various

output commands. The scalar is the cumulative energy change due to this fix.

The configuration file for the COLVARS module has three parts. The first part defines some

general parameters that are used with all collective variables. These parameters define for example

how often CV information is output and if symmetric multiprocessing (SMP) is used or not. The

second part of the configuration file defines collective variables. One configuration file can contain

definitions for the multiple collective variables. Each definition starts with keyword colvar and is

enclosed in curly braces {}. The third and last part of the configuration file defines biasing and

analysis methods that utilizes collective variables defined.

The biasing methods modify the simulated potential energy functional in order to make the

simulation more effective. The biasing and analysis methods recognized by the COLVARS module

included in LAMMPS distribution “LAMMPS 64-bit 16Mar2018” are adaptive biasing force (abf),

29

harmonic, histogram and metadynamics. In the configuration file, the definition of each of these

methods is started with the name of method and definitions are enclosed in curly brackets {}.

Definitions for collective variables and biasing and analyzing methods are multiline. The definitions

in these three parts of the configuration file consist of keyword value pairs and might contain

subdefinitions in the blocks enclosed in curly brackets {}.

In keyword value pairs, the keyword and its value are separated by any white space. Keywords are

case-insensitive but string-based values are not. The COLVARS configuration file has same format

even if the COLVARS module is linked to some other MD software than LAMMPS.

The basic output of COLVARS module is a “trajectory” of collective variable which lists values of

collective variable at different steps of simulation. Additional output, for example for velocity and

force, can be defined in the definitions of collective variables. Also biasing and analyzing methods

can be configured to provide their own, method-specific, output files.

4.3 CVHD implementation

CVHD is built as an extension to the COLVARS module that itself is an optional addon module to

LAMMPS. CVHD extension is written by Kristof M. Bal and Erik C. Neyts. The source code for

CVHD extension is available free of charge (Bal & Neyts 2015b). The extension consists of C++

source and header files and instructions how to include them in build process of LAMMPS

executable. The extension brings two new CV types in LAMMPS, bondbreak and

angleswitch, one new biasing method cvhd and one new diagnostic calculation timeboost.

Both bondbreak and angleswitch implement equation 21. The CV of type bondbreak is

used in this thesis for simulating the diffusion. With bondbreak local distortions used to calculate

𝜂 are based on distance between atoms. With angleswitch local distortions are instead based

on dihedral angles inside quadruples of atoms.

4.3.1 bondBreak class

The main functionality of bondbreak CV is implemented in a source file

colvarcomp_bondbreak.cpp as a class colvar::bondbreak. The constructor

colvar::bondbreak is called if inside colvar block in the configuration file for the

30

COLVARS module there is a sub-block named bondBreak. An example of the colvar block

containing bondBreak sub-block is given below

colvar {

 name coord

 width 0.01 # CV width, default = 1.0

 bondBreak {

 group1 {

 atomNumbersRange 1 - 721 # Group of first bond partners

 }

 group2 {

 atomNumbersRange 1 - 721 # Group of second bond partners,

 # can be same as first

 }

 rmin 2.57531780694319 # rmin

 rmax 3.30 # rmax

 rcut 3.00 # rcut

 waitTime 2500 # t_w

 power 8 # p

 }

}

Keywords name and width are general colvar keywords. Name is used to identify this CV later

in COLVARS configuration file. Width is used for those biasing and analysis methods and CVs

where bins or grids are used or for scaling if several CVs are combined. Width should generally be

no larger than the standard deviation of the CV in an unbiased simulation. Values for bondbreak

CV lies naturally in a range [0,1] and thus value 0.01 is better suited for CVHD than the default

value of 1.0. In the context of dCVHD width is used to scale value of 𝑤𝑘 in equation 24.

Keywords group1 and group2 specifies atoms between which length of bonds are calculated for

local distortions, 𝜒𝑖. Atom groups can be specified using syntax described in COLVARS manual

(Bernardin, et al. 2020), in this example both groups consist of atoms having id between 1 - 721 in

LAMMPS, but it is also possible to specify group1 and group2 so that they are not identical, but

contain different atoms. Atom groups are stored in the member variables of base class of

colvar::bondbreak as type cvm::atom_group. As a general rule, the size of atom groups

should be kept relatively small (up to a few thousands of atoms, depending on the size of the entire

system in comparison).

Keyword power refers to parameter 𝑝 in equation 19. Keyword waitTime is the number of

timesteps after which the system is assumed to have undergone a transition if 𝜂 remain equal to 1

31

during all those timesteps. waitTime is also a number of timesteps the system equilibrates after

the transition before bias force is started to apply again. This is parameter 𝑡𝑤in chapter 3.2. The

exact logic regarding waitTime is explained later in this chapter.

Keywords rmin and rmax refer to parameters with the same name in equation 18. Units of rmin

and rmax are Ångströms in configuration file, they are converted to the internal units of the

simulation in the constructor of colvar::bondbreak. When simulating lattice material, rmin

and rmax relate to lattice constant.

A suitable value for rmin is the distance to the nearest neighbor in the lattice. In the context of this

thesis, the simulated material is copper which has the fcc (face-centered-cubic) lattice structure. In

fcc the distance to the nearest neighbor is the lattice constant divided by √2, which can be used as a

value for keyword rmin. It is also possible to specify a negative value for rmin. Then the code

will calculate rmin as an average during waitTime timesteps. The average is calculated

separately for each atom pair leading to individual rmin per atom pair when a positive value of

keyword rmin lead to same rmin for each atom pair.

rmax should reflect the distance after which a bond between atoms is most likely broken. In the

case of adatom diffusion at 001 fcc surface, the locations where the adatom can relax are located at

distance of lattice constant with each other. Therefore, a working value for keyword rmax is

somewhat less than lattice constant. Depending on a temperature the lattice constant for copper is

around 3.6 Å. Value 3.3 Å, as in an example above, is thus suitable value for rmax. If rmax would

be too close to the lattice constant, then 𝜒𝑖 could differ from 1 in the transition region and CVHD

could apply bias force and break the requirement of hyperdynamics that biasing force is zero on

transition region. If an adatom has moved the distance of the lattice constant, then the adatom is

relaxing to a new location and transition has clearly happened. Value 3.3 Å has enough security

margin for the lattice constant.

Keyword rcut defines the minimum distance between atoms that are counted as atom pairs in

equation 19, rcut affect thus on parameter 𝑁 of equation 19. Unit of rcut is also Ångström like

rmin and rmax. Suitable values for rcut are [rmin,rmax], if rcut is missing from the

configuration or is negative then value of rmax is used as rcut.

32

The main internal data structure of bondbreak class is a group of 3 vectors; pairlist1,

pairlist2 and pairlist3. These vectors contain atom pairs for which 𝜒𝑖 is calculated.

Pairlist1 contains the index of the first atom in the atom pair, pairlist2 contains the index

of the second atom in the atom pair and pairlist3 contains rmin for this atom pair. The atom

pair 𝑖 consists of atoms having ids pairlist1[i] and pairlist2[i]. This bondlist, which is

constructed from pairlist vectors, is totally independent concept of neighbor list, which is an

essential part of MD implementation and relates to applying potential energy function to simulated

atoms. The neighbor list is maintained in the LAMMPS core modules and it is not used by any

CVHD module. Parameters rmin, rmax and rcut are not used for the neighbor list, and,

respectively, neighbor list related parameters are not used by CVHD.

The main logic for calculating 𝜂 of equation 21 is in function

colvar::bondbreak::calc_value(). As Explained earlier, 𝜂 varies naturally in range

[0,1] and in order to be able to describe multiple consecutive events the biasing algorithm needs to

reset ∆𝑉 if 𝜂 remains equal to 1 during waitTime timesteps. To achieve this the bondbreak

class uses variable offset to count how many times ∆𝑉 has reset meaning also how many

transitions the system has undergone. In the context of this thesis offset counts number of

adatom diffusion events. The variable offset is initialized to zero in the constructor of

bondbreak class. The CV reported by this CVHD implementation is a combination of offset

and 𝜂.

The function colvar::bondbreak::calc_value()works in 3 different states; cleanlist,

calculate and transition.

In the cleanlist state, the algorithm loops through atom pairs in pairlist variables and removes

all pairs where mutual distance is greater than specified by the keyword rcut. This is done for

waitTime timesteps. The atom pair is removed from the list of atom pairs if the mutual distance

of atoms is greater than rcut even once during waitTime timesteps. After waitTime timesteps

the algorithm moves to state calculate. In this state a fictious value of -0.5 is used for 𝜂.

In calculate state, the algorithm simply follows the equation 21. The algorithm loops through all

atom pairs in pairlist variables, defines mutual distances between atoms in atom pair,

calculates local distortion 𝜒𝑖 and combines local distortions to 𝜂. When defining mutual distances

33

between atoms the algorithm doesn’t need to take periodic boundary conditions into account

because core LAMMPS and COLVARS module are taking care of them. The algorithm moves

from calculate state to transition state when 𝜂 is 1, or to be exact when 𝜂 > 0.9999. Because of

computational safety floating point number η is not directly compared to 1 but a small tolerance is

allowed. During calculate state η has values [0,1[.

In transition state, η is almost equal to 1 and the algorithm follows if η has this value for

waitTime timesteps. If η drops smaller than 1 (− the allowed computational safety tolerance)

then the algorithm resumes back to calculate state and it is assumed that transition has not

happened. This corresponds to a situation where an atom is in the transition region but falls back to

the original location just before going over the potential barrier. If, on the other hand, η has a value

close enough to 1 for waitTime timesteps, then it is assumed that a transition has happened. In the

context of this thesis, the mutual distance of atoms in atom pair has increased longer than rmax Å.

This means most likely adatom diffusion event because atoms in lattice are very unlikely to change

places. When the algorithm finds that a transition has happened, then variable offset is increased

by one, the list of atom pairs having mutual distance less than rcut is regenerated and the

algorithm moves to state cleanlist. The regeneration of the list of atom pairs means that pairlist

vector variables are emptied and mutual distances between all atoms are run through and those atom

pairs where mutual distance is shorter than rcut are added to pairlist variables. During

transition state η is 1 (or very close to 1) all the time.

As mentioned, the actual CV reported by bondbreak class is a combination of offset and 𝜂.

The formula to for reported CV is

𝐶𝑉 = 2 ∗ offset + η (32)

In the beginning of the simulation, offset is 0 and the algorithm is in the cleanlist state, thus η =

−0.5, which results to a CV of −0.5. When the algorithm moves first time to calculate state then

CV = [0,1[and when the algorithm is first time in the transition state, then CV = 1. After the first

transition offset = 1 and in cleanlist state CV = 1.5, in calculate state [2,3[and in transition state

3. Thus CV increases by 2 after every transition and CV values of even number minus 0.5 (-0.5, 1.5,

3.5, …) indicate cleanlist state, CV values between even and odd number ([0,1[, [2,3[, [4,5[, …)

indicate calculate state and CV values of odd number (1, 3, 5, …) indicate transition state. It is

34

possible to obtain offset and η from CV using floor function which returns the nearest integer

which is not greater than the argument of floor function.

offset = floor (
𝐶𝑉 + 0.5

2
) (33)

η = CV − (2 ∗ offset) (34)

By knowing CV, it is thus possible to know how many transitions the system has undergone, this is

directly value of offset, and in which state the algorithm is. This way CVHD provides different

range of values for each transition and for states preceding this transition. In this sense CV in

CVHD differentiates relevant states of system as required by metadynamics (Fiorin & Klein &

Hénin 2013). CV values related to the first transition and states before that are in range [-0.5, 1], for

second transition [1.5, 3] and so on. However, as earlier mentioned, 𝜂 doesn’t fully differentiate all

possible combinations of atom locations and it might be that same value of 𝜂 is obtained for two

different states of the system, which leads to same value of CV for two different states. The same

value of CV, for two different states, is however not a problem, because in CVHD interest is in

transitions and for each transition CV is different.

4.3.2 colvarbias_cvhd class

The main functionality of applying biased CVHD potential is implemented in a source file

colvarbias_cvhd.cpp as a class colvarbias_cvhd. The constructor

colvarbias_cvhd:: colvarbias_cvhd and initialization function

colvarbias_cvhd::init is called if in the configuration file there exists a block named

cvhd. The configuration for colvarbias_cvhd contains some common settings and some

settings related the variation of CVHD (sCVHD or dCVHD) to be applied. An example of the

common settings for cvhd sub-block is given below

cvhd {

 name hd # Something descriptive (or not)

 outputEnergy on # Communicate energy to calling program

 colvars coord # The CV (ONLY ONE ALLOWED!)

All these keywords are general keywords for the biasing and analysis method of Colvars module.

Keyword name defines the name of the cvhd instance. The keyword outputEnergy defines if

35

the current value of the biasing energy will be written to the trajectory file, which is described in

chapter 4.3.4, during the simulation.

Keyword colvars selects by name all the CV variables to which this bias or analysis will be

applied, for colvarbias_cvhd only one CV is allowed. The function

colvarbias_cvhd::init returns error if multiple CVs are tried to be defined. This example

relates to the example in chapter 4.3.1 where a colvar named coord is defined. The reference to

the CV object defined by keyword colvar is provided for colvarbias_cvhd class by base

classes in 0th element of array named colvars; colvars[0].

The biasing energy is calculated in a function colvarbias_cvhd::update. This function

updates variables bias_energy and colvar_forces[0].real_value which are used to

communicate biasing potential and force to other parts of COLVARS module. bias_energy is

defined in base class colvarbias of colvarbias_cvhd class.

colvar_forces[0].real_value refers to member variable of CV object defined by

keyword colvars. First this function defines the current value of CV by calling

colvars[0]->value() and divides CV to offset and 𝜂 using equations 33 and 34. Then

variables bias_energy and colvar_forces[0].real_value are zeroed. After that bias

energy and force is calculated based on variation of CVHD to be used and updated to

bias_energy and colvar_forces[0].real_value.

For static CVHD only two keywords are needed

 dynamicBias off # Toggle dynamic/static bias

 maxBias 0.3 # Maximal bias in the static case

The value off for the keyword dynamicBias tells colvarbias_cvhd class to use static cvhd

(sCVHD). The keyword maxBias correspond to parameter Δ𝑉𝑚𝑎𝑥 in equation 22. Units of

maxBias are units of energy in MD simulation. As mentioned earlier, maxBias should be

comparable to the natural energy barriers in the system. In the context of this thesis, when a metal is

simulated, units of maxBias are electron volts. With sCVHD colvarbias_cvhd::update

checks if 𝜂 < 1 and if yes bias_energy is set according to equation 22 and

colvar_forces[0].real_value is added by Δ𝑉𝑚𝑎𝑥, that is, added by a value specified by

36

keyword maxBias. If 𝜂 ≥ 1 then bias_energy and colvar_forces[0].real_value

are left to zero. sCVHD is not used in this thesis.

For dynamic CVHD the following keywords can be used

 dynamicBias on # Toggle dynamic/static bias

 hillWidth 1.0 # Width of Gaussian

 hillWeight 0.005 # Height of Gaussian

 newHillFrequency 1000 # Frequency of Gaussian

The value on for the keyword dynamicBias tells colvarbias_cvhd class to use dynamic

cvhd (dCVHD). For dCVHD colvarbias_cvhd class has member variable hills, which is a

vector containing gaussian hills that are added as biasing potentials. Keywords hillWidth,

hillWeight and newHillFrequency correspond to parameters 𝜎, 𝑤𝑘 and 𝜏𝐺 in equation 24.

𝜎 is obtained by multiplying value of keyword hillWidth with value of the keyword width in

the block colvar. Units of hillWidth and hillWeight correspond to the units of CV, in

case of colvar::bondbreak units are Ångtroms. The unit of newHillFrequency is

number of timesteps.

With dCVHD the function colvarbias_cvhd::update first divides the value of CV

(obtained from colvars[0]->value()) to offset and 𝜂 according to equations 33 and 34.

If offset has changed, then vector hills is cleared, and this way bias energy will be zeroed

after the transition.

Next the function colvarbias_cvhd::update checks if a new hill needs to be added on

vector hills. The new hill is added if newHillFrequency timesteps has elapsed since the last

addition of a hill and if 𝜂 < 0.9. Upper limit of 𝜂 for adding a new hill restrict adding bias on large

𝜂 values. For the new hill following values are stored in vector hills:

• Center, the parameter 𝜂(𝑘𝜏𝑔) in equation 24. The current value of CV obtained from

colvars[0]->value(),

• Weight, the parameter 𝑤𝑘 in equation 24. This is specified by hillWeight,

• Width, the parameter 𝜎 in equation 24. This is obtained by multiplying value of keyword

hillWidth with value of the keyword width in the block colvar.

37

Regardless of if the new hill is added or not, the function colvarbias_cvhd::update

updates next the variable bias_energy. This is done by looping through all hills stored in vector

hills and applying equation 24 on all of them. The part 𝜂 − 𝜂(𝑘𝜏𝑔) of equation 24 is obtained by

decreasing the stored value of the center of the current hill from the current value of CV. Other

parameters of equation 24 are obtained from stored values of weight and width of the current hill.

If, for some hill, the exponential part of equation 24 is less than −23 then the value of this hill is

considered as zero in order to avoid computationally too small numbers. This loop accomplishes the

sum in equation 24. This total sum over all stored hills is then set as bias_energy.

The same kind of loop over the hills vector, as for bias_energy is run in order to update

colvar_forces[0].real_value, the biasing force, except that instead of calculating ∆𝑉(𝜂)

from equation 24 a negative gradient of it is calculated for each stored hill. The terms for individual

hill 𝑘 are format

𝑓𝑘 = 𝑤𝑘
𝜂 − 𝜂(𝑘𝜏𝑔)

2𝜎2
∆𝑉𝑘(𝜂) (35)

Where ∆𝑉𝑘(𝜂) is a contribution of 𝑘th hill in the sum of equation 24. ∆𝑉𝑘(𝜂) is already calculated

for each hill when updating bias_energy. This way it is not necessary to calculate ∆𝑉𝑘(𝜂) again

in this phase. The loop summarizes 𝑓𝑘values of all hills together in the variable

colvar_forces[0].real_value.

It is possible to modify dCVHD to use well-tempered metadynamics (Barducci & Bussi &

Parrinello 2008). In well-tempered metadynamics, parameter 𝑤𝑘 of the equation 24 is modified

with history-dependent potential and parameter ∆𝑇. Well-tempered metadynamics increases the

barrier crossing and thus rate of the transitions and facilitates the more efficient exploration in the

CVs space than standard metadynamics. In standard metadynamics, values of 𝜂 that are frequently

visited will be disfavored in the long run, because many bias hills are stored near those values of 𝜂,

well-tempered metadynamics overcomes this limitation by controlling weight of the hills, 𝑤𝑘. In

this implementation of dCVHD the metadynamics effect is defined as

𝑤𝑘+1 = 𝑤0 exp (−
∆𝑉(𝜂)

𝑘𝐵∆𝑇
) (36)

38

where 𝑤𝑘+1 is the weight of the new hill added by the function colvarbias_cvhd::update,

𝑤0 is the “base” weight of a hill defined by keyword hillWeight, ∆𝑉(𝜂) is the bias potential

cumulated according to the equation 24 before adding a new hill, and ∆𝑇 is scaling parameter in

units of Kelvin. It should be noted that ∆𝑇 has no physical interpretation, it is a parameter, telling

how much normal metadynamics algorithm is modified. On the limit ∆𝑇 → 0 also 𝑤𝑘+1 → 0, no

hills are added and well-tempered metadynamics return to standard MD. On the other hand, at limit

∆𝑇 → ∞ the exponent function approach to 1 leading to 𝑤𝑘+1 = 𝑤0, which is standard

metadynamics. (Barducci & Bussi & Parrinello 2008).

To use well-tempered metadynamics with dCVHD, the following keywords are needed

 wellTempered on # Use Well-Tempered Metadynamics

 biasTemperature 2000 # Well-Tempered Metadynamics bias temperature

The keyword wellTempered with value on turns on well-tempered metadynamics and keyword

biasTemperature corresponds to parameter ∆𝑇 in equation 36. These keywords modifies the

execution of the function colvarbias_cvhd::update so that before adding a new hill, value

of ∆𝑉(𝜂) with existing hills is calculated, then equation 36 is applied and a new hill with weight

𝑤𝑘+1 is added. Finally, ∆𝑉(𝜂) including also the new hill is calculated and bias_energy and

colvar_forces[0].real_value are updated like without well-tempered metadynamics.

With keyword adaptiveEta it is possible to modify the function

colvarbias_cvhd::update so that the upper limit of 𝜂 for adding a new hill is not fixed to

0.9, but varies. With adaptiveEta a new hill is added after transition only if 𝜂 < 0.1 after that

the limit for adding new hills is gradually increased when 𝜂 grows. This way hills are first deposited

on low values of 𝜂, far from the transition state and the hills for larger values of 𝜂 are added later.

The keyword adaptiveEta has values on/off and missing keyword corresponds setting this

keyword to off. adaptiveEta feature was not used in this thesis.

4.3.3 FixTimeboost class

The logic for calculating hypertime is implemented in a source file fix_timeboost.cpp as a

class FixTimeboost. This fix has 5 parameters

39

fix boost all timeboost 550 cvfix

Like with all fix commands in LAMMPS, also with the timeboost fix, the first parameter is the

name of the fix, the second parameter is the name of the atoms group for which the fix is applied

and the third parameter is the type of the fix, timeboost in this case. timeboost ignores the

second parameter of fix command but for the sake of clarity, it is good to use built-in group all

as a second parameter. The fourth parameter is simulation temperature, parameter 𝑇 in equation 31,

this is a temperature in canonical NPT ensemble and constant throughout the simulation, not

calculated from kinetic energy. The fifth parameter is the name of colvars fix.

The logic of the FixTimeboost class is quite simple. The upper classes provides variables

update and modify that are used to access other parts of the LAMMPS simulation engine. With

the modify variable FixTimeboost accesses colvars fix named by the fifth parameter and

requests energy related to that fix. This energy is then used as parameter ∆𝑉(𝜂) in the equation 31.

After each timestep FixTimeboost calculates the boost according to the equation 31.

The current simulation time is hold in variable update->atime. After boost is calculated this

time is increased by a following line of code

update->atime += (boost-1.0)*dt;

dt in a code above is simulation timestep of LAMMPS. In this thesis value of a 1 fs was used as a

size of timestep in all simulations. FixTimeboost obtains dt through the variable update.

Hypertime elapsed during one timestep is boost*dt, but because LAMMPS updates

update>atime by dt only the part of hypertime, which exceeds dt, is added to

update->atime. As a result, update->atime contains total hypertime.

It is possible to output update->atime to LAMMPS output file using thermo_style

custom command and keyword time in LAMMPS configuration file. If the fix timeboost is

used, then output contains hypertime, otherwise output contains normal simulation time which is

number of timesteps times dt. In this thesis metal units are used, and with metal units time is

expressed in picoseconds.

40

4.3.4 Colvars trajectory file

If the keyword outputEnergy has value on, then the current value of the biasing energy will be

written to the colvars trajectory file. Keyword outputEnergy is defined in COLVARS

configuration file and the name of the colvars trajectory file can be defined by optional parameters

of colvars fix command in LAMMPS configuration file. They layout of colvars trajectory file is

simple, it has 3 columns; number of simulation step, value of CV (with the name of CV as header)

and biasing energy. Following is a sample of typical colvars trajectory file from CVHD simulation

at 350 K with one adatom at the top of copper slab. This sample shows the first transition in the

simulation.

step coord E_hd

.

 1591500 4.17027906024275e-01 5.65883923415798e-02

 1592000 7.23314331677679e-01 1.33706348223600e-01

 1592500 7.13483925793328e-01 1.21748505975718e-01

 1593000 7.83538212985108e-01 9.85693530710990e-02

 1593500 7.93162237137970e-01 9.36349683844025e-02

 1594000 1.00000000000000e+00 0.00000000000000e+00

 1594500 1.00000000000000e+00 0.00000000000000e+00

 1595000 9.82914545805961e-01 0.00000000000000e+00

 1595500 4.72200114042248e-01 1.11189589205285e-01

 1596000 3.95400106620365e-01 3.27248661065285e-02

 1596500 6.90362015628532e-01 1.26960043362092e-01

 1597000 8.96935738860761e-01 6.33254388274207e-02

 1597500 1.00000000000000e+00 0.00000000000000e+00

 1598000 9.87559068481485e-01 0.00000000000000e+00

 1598500 7.99613305576896e-01 9.29695230523765e-02

 1599000 1.00000000000000e+00 0.00000000000000e+00

 1599500 1.00000000000000e+00 0.00000000000000e+00

 1600000 1.00000000000000e+00 0.00000000000000e+00

 1600500 1.00000000000000e+00 0.00000000000000e+00

 1601000 1.00000000000000e+00 0.00000000000000e+00

 1601500 1.50000000000000e+00 0.00000000000000e+00

 1602000 1.50000000000000e+00 0.00000000000000e+00

 1602500 1.50000000000000e+00 0.00000000000000e+00

 1603000 1.50000000000000e+00 0.00000000000000e+00

 1603500 1.50000000000000e+00 0.00000000000000e+00

 1604000 2.63250933724711e+00 5.00000000000000e-03

 1604500 2.53838094877505e+00 0.00000000000000e+00

 1605000 2.68891798334518e+00 5.00000000000000e-03

 1605500 2.70378432944920e+00 6.01612382310323e-05

 1606000 2.57509525364900e+00 5.00000000000000e-03

 1606500 2.70054290811794e+00 3.35095535568371e-04

 1607000 2.58064350811467e+00 7.62365363459779e-03

41

In the sample above, the value of CV named coord varies between [0, 1[during simulation steps

1591500 – 1593500. Based on equation 33, this value of CV tells that offset = 0 and no

transition has happened yet. Bondbreak algorithm is during these steps in calculate state and bias

energy is applied as seen on column E_hd. During simulation steps 1594000 – 1594500 CV has

value 1 and bondbreak algorithm is in transition state waiting to see if there is a persistent

transition. In this simulation keyword waitTime had value 2500 and because CV returned to a

value below 1 before 2500 steps has been elapsed, the bondbreak algorithm returned to the

calculate state. It can be seen from the column E_hd that bias is not deposited while the algorithm

is in transition state.

The same alternation between calculate and transition state happens during steps 1595000 –

1598500. At step 1599000 the simulation enters once again transition state, CV is 1 and E_hd = 0.

This time the transition is persistent, CV remains on value 1 for 2500 steps, until step 1601000.

Then the bondbreak algorithm increases offset from 0 to 1 and moves to cleanlist state. In the

cleanlist state the reported CV is 2 x offset – 0.5 which is 1.5 when offset = 1. This value is

seen from step 1601500 to 1603500 when the bondbreak algorithm checks for 2500 step which

bonds in bondlist are persistent. Also, during this time E_hd = 0. At step 1604000 the bondbreak

algorithm moves to the calculate state with offset = 1 and thus reported CV values are in a range

[2, 3[and E_hd > 0 telling that bias potential is deposited. The occurrence of the next transition can

be seen in the colvars trajectory file when CV stays in value 3 for 2500 timesteps.

This is a very typical output of CVHD simulation. The bondbreak algorithm moves between

calculate and transition states when the simulation approaches transition range but doesn’t quite

exceed the potential barrier between two different simulation states and falls back to the previous

simulation state. After several attempts, the transition occurs and the bondbreak algorithm stays

in transition state for waitTime simulation steps. Then, after cleanlist state, an evolution towards

next transition starts.

In this sample, CV (coord) and E_hd were reported every 500 steps. Thus, the description above

is inaccurate in a sense that the change of state of the bondbreak algorithm doesn’t occur exactly

at the step shown in the colvars trajectory file. For example, when changing from state calculate to

42

the state transition, the step 1594000 is the first step divisible by 500 after the state change. The

state could have been changed in any step between 1593501 and 1594000.

The frequency of reporting CV and E_hd can be controlled by keyword

colvarsTrajFrequency in COLVARS configuration file. colvarsTrajFrequency is

located outside of any blocks in COLVARS configuration file. If the value is 0, then Colvars

trajectory file is not written. Otherwise CV values are written to the file by intervals specified by

this keyword. If one is interested in following how the bondbreak algorithm works, then

colvarsTrajFrequency should be less than waitTime. For other purposes

colvarsTrajFrequency can be larger resulting in smaller COLVARS trajectory file.

4.3.5 Communicating biasing force to atoms

All classes and algorithms are tied together when a biasing force is communicated to atoms. As an

example, we study how biasing force is applied to atom with id 721 during simulation step 5000 in

a surface diffusion simulation at 300K. From colvars trajectory file CV and E_hd for this step can

be seen.

5000 4.09724896084701e-01 5.04451401836426e-03

The first CVHD related action during this simulation step is when COLVARS module calls the

function colvar::bondbreak::calc_value(), which calculates the value of CV

0.409724896084701.

Then COLVARS module calls the function colvar::bondbreak::calc_gradients(),

which calculates and stores the gradient for each atoms. First this function checks if 𝜂 < 1.0 and if

not, then heavy calculation, related to gradients, is not done because the simulation is in transition

state and no biasing potential or force is applied. If 𝜂 < 1.0 then function calculates first that part of

equation 26, which is same for each bond

𝜋𝜒𝑇 sin(𝜋𝜒𝑇
2) (∑𝜒𝑖

𝑝

𝑁

𝑖

)

1
𝑝⁄ −1

(37)

43

Then colvar::bondbreak::calc_gradients()calls auxiliary

switching_function<true> function for each bond. switching_function<true>

calculates bond specific part of equation 26

(
𝑟𝑖 − 𝑟𝑖

𝑚𝑖𝑛

𝑟𝑖
𝑚𝑎𝑥 − 𝑟𝑖

𝑚𝑖𝑛)

𝑝−1

𝑟𝑖
𝑚𝑎𝑥 − 𝑟𝑖

𝑚𝑖𝑛
�̂�𝒊 (38)

The total gradient for one bond is obtained by multiplying equations 37 and 38 together.

COLVARS module implements vector arithmetics so the gradient can be manipulated as 3-

dimensional vector. All variables needed in equations 37 and 38 are available in the class

colvar::bondbreak and its bondlist variables. The gradient is added to grad member

variable of both atoms of bond 𝑖 but with opposite signs, because the force along the bond goes on

opposite direction when looking from opposite ends of the bond. The gradient is added to grad

member variable because the same atom might exist in multiple bonds and by adding the effect of

each bond the total gradient for one atom is obtained. The atom-specific gradient stored in grad

member variable is used later during this simulation step. In this case gradient for the atom with id

721 is (-8.10841e-10, 9.83435e-09, 1.08626e-08).

Next COLVARS module calls all biasing and analysis methods defined for the simulation. In this

case, only the CVHD biasing method is defined and COLVARS module calls the function

colvarbias_cvhd::update which calculates biasing potential 0.00504451 and

force -0.0280868 as explained earlier. The force, that colvarbias_cvhd::update stores on

colvar_forces[0].real_value, is passed to member variable fb of the class colvar

through several steps; colvarmodule::update_colvar_forces(),

colvarbias::communicate_forces() and colvar::add_bias_force. The class

colvar is one of base classes of colvar::bondbreak and thus the member variable fb is

accessible in the colvar::bondbreak class. This is a general method how COLVARS module

communicates the force from a biasing method to CV.

When the biasing force is communicated from the biasing method to CV, the COLVARS module

directs CV to communicate forces to atoms belonging to CV. This process starts in

colvarmodule::update_colvar_forces(), which calls

44

colvar::communicate_forces()and which calls

colvar::bondbreak::apply_force. colvar::bondbreak::apply_force then

calls cvm::atom_group::apply_colvar_force for atom group in member variable

group1 and calls the same function also for member variable group2 if it differs from group1.

In the function cvm::atom_group::apply_colvar_force the next function,

colvarmodule::atom::apply_force, is called for each atom in a group with value

biasing force multiplied by gradient. The gradient is earlier stored in member variable grad of

atom class and is utilized here. This is the step where the biasing force calculated by

colvarbias_cvhd class and the gradient calculated by colvar::bondbreak class are

combined and applied to atom level. In this example the applied force is (2.2774e-11, -2.76216e-10,

-3.05097e-10).

colvarmodule::atom::apply_force finalizes the job by calling

colvarproxy_atoms::apply_atom_force, which simply adds the new force to an atom-

specific array of forces. From this array biasing forces are communicated to the main LAMMPS

simulation engine to be added to forces derived from the potential energy functional used in the

simulation.

This process of passing biasing force from CVHD algorithm to individual atoms is done in every

simulation step. The process is quite complex but, the reason for this complexity is that there are

several flags and options how the force is communicated to atoms in detail. The process shown here

is only one option and adjusted for CVHD. With different CV or with different biasing/analysis

method, the COLVARS module can be fine-tuned to use force communication process specific to

the current setup.

4.3.6 Programmatic considerations

In order to include CVHD in LAMMPS, the CVHD related new source files need to be added and

some modifications need to be done to existing source files. Then COLVARS module need to be

compiled resulting in library file which is linked with LAMMPS core. These steps are explained in

more detail next.

The instructions for obtaining LAMMPS source code are available in LAMMPS website

https://lammps.sandia.gov/ (Sandia National Laboratories). The LAMMPS distribution includes

https://lammps.sandia.gov/

45

source code both LAMMPS core, in src –directory, and source code for various additional

modules in module-specific subdirectories in lib –directory. Source files for COLVARS module

are in the directory lib/colvars. The src –directory of LAMMPS distribution also includes

Makefile, which is quite versatile and highly automated tool for controlling how LAMMPS is built.

All options for using Makefile of LAMMPS can be seen by writing make help or just make in

command line in the src directory.

CVHD source files are available as a supporting material of Bal’s & Nyets’ article (Bal & Neyts

2015b). This CVHD package contains a directory named LAMMPS containing two files

fix_timeboost.cpp and fix_timeboost.h. These two files implement FixTimeboost

class described in chapter 4.3.3. Due to automated nature of Makefile it is enough just to copy these

two files into the src –directory of LAMMPS and they will be part of compiling and linking

LAMMPS.

The other essential part of the CVHD package is the directory named colvars. The colvars

directory of the CVHD package contains files colvarbias_cvhd.cpp,

colvarbias_cvhd.h, colvarcomp_bondbreak.cpp, colvarcomp.h and

README.txt.

Files colvarbias_cvhd.cpp and colvarbias_cvhd.h implement the class

colvarbias_cvhd described in chapter 4.3.2, these two files can be directly placed in the

directory lib/colvars. Files colvarbias_cvhd.cpp and colvarbias_cvhd.h

implement the class colvar::bondbreak described in chapter 4.3.1. The file

colvarcomp_bondbreak.cpp can be directly placed in the directory lib/colvars. The

class colvar::bondbreak has not its own header file, but the declaration of this class is in the

file colvarcomp.h together with declarations of several other CV classes. Therefore the

content of colvarcomp.h, which relates to colvar::bondbreak, need to be merged with the

content of colvarcomp.h which comes as a part of LAMMPS distribution. The same applies

when updating LAMMPS. There might be changes in other parts of colvarcomp.h than those

related to colvar::bondbreak and therefore it is better to merge colvarcomp.h with the

new instance of this file instead of copying modified colvarcomp.h from the older version of

LAMMPS which has CVHD already implemented. Together files

46

colvarcomp_bondbreak.cpp and colvarcomp.h implement the class

colvar::bondbreak described in chapter 4.3.1. The declaration of the class

colvar::bondbreak was modified in the context of this thesis by commenting out distance

functions dist2, dist2_lgrad and dist2_rgrad in order to avoid compilation errors. As a

result, instead of colvar::bondbreak specific distance functions the corresponding distance

functions of the base class are used.

The file readme.txt contains instructions how to modify various files in lib/colvars

directory for adding CVHD as a part of COLVARS module.

Source files for CVHD addon required some modifications, because the LAMMPS version (and

thus COLVARS module) has changed since 2015 when the CVHD was firstly published. Also,

instructions in the file readme.txt requires modifications.

In addition to adding new source files in lib/colvars directory and embedding the declaration

of the class colvar::bondbreak in the file colvarcomp.h, it is necessary to embed

colvar::bondbreak and colvarbias_cvhd related code snippets to various other files so

that COLVARS module will compile and utilize CVHD.

In readme.txt it is instructed to add a variable in a file colvarmodule.h for counting

number of activated CVHD biases. Since the publication of the CVHD package, the COLVARS

module has been changed so that counting of number of instances of bias classes is not done

anymore. Therefore, this modification of colvarmodule.h is not necessary anymore. For the

same reason, the change to file colvarbias.cpp, instructed also in the file readme.txt, is

not needed anymore.

The file colvarmodule.cpp needs to be modified by including file colvarbias_cvhd.h

and adding “cvhd” as one string that is recognized when parsing the COLVARS configuration file

for biasing methods. As mentioned earlier, COLVARS doesn’t count number of instances of bias

classes anymore and therefore it is not necessary to add initialization of the variable containing

number of colvarbias_cvhd instances in colvarmodule.cpp even if readme.txt

suggest doing this. As a part of this thesis, the check for the return of possible error code from the

init function of any of bias classes was added to colvarmodule.cpp.

47

Files colvar.h and colvar.cpp need to be modified to take into account the new bondbreak

CV. The forward declaration of the class bondbreak needs to be added inside the declaration of

the class colvar in the file colvar.h. The initialization of class colvar::bondbreak needs

to be added inside the function colvar::init_components in the file colvar.cpp. This is

the function where also other CV classes are initialized. These modifications are as described in

readme.txt.

Also the base implementation of classes colvar::bondbreak and colvarbias_cvhd

requires changes in order to work with the current version of COLVARS module. Class diagrams of

these two classes are presented in figures figure 4 and figure 5.

These class diagrams are generated from source files using the Doxygen tool. The class

colvardeps contains a set of features that control how COLVARS module works and passes

biasing potential and energy between different classes. The other base classes than colvardeps

provides common functionality for CV and bias classes. In the code features provided by the

colvardeps class are controlled using functions enable and disable like in a following

sample.

Figure 4: Class diagram of
colvar::bondbreak

Figure 5: Class diagram of
colvarbias_cvhd

48

enable(f_cvb_apply_force);

The class colvardeps has different flags for CVs (that is classed derived from colvar:cvc)

and for biases (classes derived from colvarbias) as well as for other types of objects. Names of

features for CVs start with f_cv_ and for biases with f_cvb_. The use of colvardeps is one

of the fundamental changes of COLVARS module between the time when the CVHD package was

published and when this thesis was written. When the CVHD package was published different

features were controlled by member variables of respective classes.

The feature that needs to be enabled for colvar::bondbreak is f_cv_gradient and the

feature that needs to be enabled for colvarbias_cvhd is f_cvb_apply_force. The version

of COLVARS, that was used when the CVHD package was published, has no options for these

features, they were always set. For the current version of the COLVARS module, these features

need to be actively enabled for the biasing force to be communicated to the atoms as described in

chapter 4.3.5. f_cv_gradient instructs COLVARS module to call

colvar::bondbreak::calc_gradients(). Without enabling f_cvb_apply_force

the function colvarbias::communicate_forces()does nothing, the COLVARS module then

assumes that instead of biasing method an analysis method, which doesn’t generate biasing force, is

used.

The other CV classes in the current implementation of COLVARS use iterators for accessing atom

groups but this change was not done in the colvar::bondbreak class because it would

have caused major re-write of code. Iterators are a more modern way to handle vectors than

accessing with indices like in the published CVHD package and thus it would be feasible to

modernize code from this point. But from the performance point of view, accessing vectors with

iterators or indices does not make a significant difference.

Makefile logic for COLVARS module is built so that there are Makefiles with different extension

for different configurations, for example Makefile.serial for LAMMPS without distributed

memory parallelization or Makefile.mpi with Message Passing Interface (mpi) library for

distributed memory parallelization. All these different makefiles include the file

Makefile.common, which contains common build and link options for the different

configurations of COLVARS module. Makefile.common in turn includes automatically built

Makefile.deps that contains build targets of different source files. In order to include CVHD in

49

COLVARS build prosess it is first necessary to add filenames colvarbias_cvhd.cpp and

colvarcomp_bondbreak.cpp to a variable COLVARS_SRCS in the file

Makefile.common. Then existing Makefile.deps can be removed and the following

command entered to generate a new Makefile.deps file including CVHD build targets.

make -f Makefile.common Makefile.deps

This is somewhat simpler way than adding CVHD build targets directly to configuration specific

makefile as suggested in readme.txt.

The CVHD implementation used in the context of this thesis was built with mpi configuration. The

MPI library used was OpenMPI, an open source MPI-3 implementation (Gabriel, et al. 2004). The

used computer environment in the University of Helsinki requires first issuing module command

to load necessary path, environment variables and other settings for OpenMPI and compiler. After

that, the following command can be entered in order to actually build COLVARS module

make -f Makefile.mpi

This produces, if there are no errors, a library file named libcolvars.a. So far the build process

has taken place in the directory lib/colvars. The rest of build process happens in src -

directory of LAMMPS.

The makefile of LAMMPS core module is a versatile tool for controlling many aspects of building

LAMMPS executable. The instructions on how to use LAMMPS makefile can be obtained by

command make | more. The first task in building LAMMPS is to add necessary modules in the

build process. This can be done with command make yes-package, where package is the

name of module to be included in the build. In order to use CVHD the COLVARS module needs to

be included with command make yes- user-colvars. In order to keep LAMMPS executable

as light as possible, without unnecessary modules, only manybody module was included in

LAMMPS build, used with this thesis, in addition to COLVARS module. The manybody module is

needed for EAM potential used with this thesis.

Makefile of LAMMPS uses a concept “machine” for different target configurations. “Machine” will

be given as a parameter for make command. The mpi “machine” was used in the context of this

50

thesis and so command make mpi was used to build LAMMPS executable. With these setting the

resulting executable has name lmp_mpi. By typing command lmp_mpi -h it can be checked

that all necessary components are in place. Output for installed packages should contain manybody

and user-colvars, and output for fix styles should contain colvars and timeboost.

All CVHD related new and modified files are available from GitLab of the University of Helsinki

(https://version.helsinki.fi/) under the project “Mika Kurki / CVHD for LAMMPS”. The

modifications in files are marked with string MKu. The files in GitLab contains also some small,

technical, modifications that are not described above and that are not relevant for understanding the

implementation of CVHD.

5 Setup of simulations

The physical phenomenon simulated in this thesis was adatom diffusion on the Cu(001) surface.

The diffusion was simulated in different temperatures with slightly different CVHD parameters.

The LAMMPS input script was almost the same for all the simulations, expect for the temperature.

The simulated temperatures were between 150 K and 600 K. The simulations were run in NVT

ensemble using Nose-Hoover thermostat for keeping constant temperature. In this chapter typical

LAMMPS input script and COLVARS configuration file used with this thesis are presented.

The basic properties of copper that are relevant for these simulations are atomic mass 63.546(3) u,

face-centered-cubic (fcc) crystal structure with lattice constant around 360 pm depending on

temperature and melting point 1357.77 K. EAM potential was used for the simulations. The exact

potential used was Cu_u3.eam provided as a part of standard LAMMPS distribution (Foiles &

Baskes & Daw 1986).

For the simulations in this thesis metal units were used. Key metal units used by LAMMPS are

mass = grams/mole

distance = Angstroms

time = picoseconds

energy = electron volt

velocity = Angstroms/picosecond

force = eV/Ångström

https://version.helsinki.fi/

51

temperature = Kelvin

Timestep parameter dt is 0.001 psec (= 1 fs) by default with metal units in LAMMPS.

A geometry for the diffusion simulation was a slab which had one adatom on top of it. The slab had

periodic boundary conditions in 𝑥 and 𝑦 directions and fixed boundary conditions in 𝑧 -direction.

Above and below of the slab there was plenty of empty space, otherwise an atom could be lost, if it

would bypass the fixed z-boundary and cause an error in the simulation. If there are no lost atoms,

the slab has not too tight boundaries. This setup is specified in LAMMPS input script as follows

#---------- Initialize Simulation ---------------------

units metal

atom_modify map yes #Fix colvars requires an atom map

atom_style atomic #default

boundary p p f #fixed z boundary

The slab was created by first creating a bulk lattice by create_atoms command and then

enlarging the simulation box in z -direction by command change_box which created empty space

above and below of the bulk copper. After that, an adatom was added at the top of the slab.

LAMMPS handles fcc lattice so that the topmost unit cell has atoms only in the lower corner of unit

cell, and in the faces of unit cell at height of the half of unit cell. Therefore, in order to maintain fcc

structure the adatom above the slab, needs to be placed in one of the top corners of the unit cell. If

lattice units are used with LAMMPS, this means that coordinates of the adatom need to be given as

whole numbers. On the contrary, if the adatom is placed below the slab then coordinates of the

adatom need to be given as half numbers because the bottom layer of atoms in the slab consist of

atoms located at lower corners of the unit cell. The adatom below the slab is then located at one of

the faces of the unit cell at height of the half of the unit cell.

The sample below shows how this geometry is achieved with the LAMMPS input script. In the

sample fcc lattice is defined with lattice constant 3.62967287704169 for 250 K (more about lattice

constants in chapter 5.2). In this sample a block of 6 x 6 x 5 unit cells is created and filled with

atoms. Then z -direction of the simulation box is enlarged by 15 lattice units both up and down, so

that z -coordinate is [-15, 20] in lattice units. This generates a slab that is 6 x 6 unit cells in x and y

direction 5 unit cells thick and have 15 unit cells of empty space above and below the slab. The last

step is to add a single adatom at top of the slab and middle in x/y -direction, that is in coordinates

(3, 3, 5).

52

---------- Create Atoms ---------------------

lattice fcc 3.62967287704169 # Lattice constant in 250 K

region mycube block 0 6 0 6 0 5 # units = lattice by default

create_box 1 mycube

create_atoms 1 box

---------- Create Slab and add add possible atom(s) on top of it

change_box all z final -15 20

The topmost box is only halfly filled and line goes by whole numbers

create_atoms 1 single 3 3 5

After defining the simulation geometry, the LAMMPS input script defines EAM potential, used in

simulations related to this thesis, and other settings for integrating forces. In the context of this

thesis, the most of these settings work with their default values.

---------- Define Interatomic Potential ---------------------

pair_style eam

pair_coeff 1 1 Cu_u3.eam

It is not necessary to specify mass, the EAM potential files list

atomic masses. In this case 63.550 amu

It is not necessary to specify cutoffs; they are specified in the EAM

potential files themselves.

In this case 4.9499999999999886e+00 Å

neighbor 1.0 bin # 2.0 Å is default for metal units

neigh_modify every 1 delay 10 check yes

Defaults delay = 10, every = 1, check = yes, once = no, cluster = no

Next the LAMMPS input script contains definitions of fixes to use. In this case colvars and

timeboost fix are used as described in chapters 4.2 and 4.3.3. Also, initial velocity and Nose-

Hoover thermostat are defined here. Number 250 present in fix and velocity commands is the

simulation temperature 250 K used with this sample of the LAMMPS input script.

---------- Fix ---------------------

fix cvfix all colvars colvar.LAMMPS output out250

fix boost all timeboost 250 cvfix

velocity all create 250 123456

fix myfix all nvt temp 250 250 0.2

Nose-Hoover termostat for 250 K and relaxation time of 0.2 ps

The final part of LAMMPS input script defines output and starts the actual simulation run. In this

sample output is generated by every 1 000 simulation step with command thermo 1000. The

command thermo_style defines what output will be written. The interesting point here is output

53

of time variable. If fix timeboost is called earlier, then time variable will contain hypertime

and boost achieved by CVHD can be calculated by dividing hypertime with simulation time. If fix

timeboost is not called, then time variable contains value of dt (length of timestep) multiplied

by number of simulation steps executed. Time is expressed in time units of the current simulation,

that is in picoseconds, when metal units are used. For the purposes of this thesis location of atoms

was dumped to the file every 500 steps so that it would be possible to follow the trajectory of an

adatom and identify adatom related hop and exchange events.

---------- Compute & Output ---------------------

thermo 1000

Time is step x dt if fix timeboost is not called and

hypertime if fix timeboost is used

thermo_style custom step cpuremain time temp press etotal pe vol

f_cvfix

dump mydump all atom 500 atom.250K.dump

---------- Run (or minimize) ---------------------

run 300000000

The COLVARS configuration file was in practice identical for all simulations run as a part of this

thesis. Below is a sample of a complete COLVARS configuration file used with the same

simulation in 250 K than parts of LAMMPS input scripts presented earlier. The most changing

parameter in the COLVARS configuration file was the value of rmin. Its value was set to

minimum distance between atoms in the current simulation temperature in the perfect fcc lattice,

that is

𝑟𝑚𝑖𝑛 =
𝑎

√2
(39)

where 𝑎 is a temperature dependent lattice constant. For some simulations, the parameter 𝑝 was

modified. The hyperdynamics part of CVHD was not used in all simulations and in these cases

cvhd block was not present in the COLVARS configuration file. When hyperdynamics was used,

it was always used utilizing well-tempered metadynamics with bias temperature of 2 000 K

(Barducci & Bussi & Parrinello 2008).

collective variable test: CVHD

colvarsTrajFrequency 500 # output every 500 steps

54

colvarsRestartFrequency 10000

colvar {

 name coord

 width 0.01 # CV width,default = 1.0

 bondBreak {

 group1 {

 atomNumbersRange 1 - 721 # Group of first bond partners

 }

 group2 {

 atomNumbersRange 1 - 721 # Group of second bond partners, can be

same as first

 }

 rmin 2.56656630484506 # rmin

 rmax 3.30 # rmax

 rcut 3.00 # rcut

 waitTime 2500 # t_w

 power 8 # p

 }

}

cvhd {

 name hd # Something descriptive (or not)

 colvars coord # The CV (ONLY ONE ALLOWED!)

 outputEnergy on # Communicate energy to calling program

 dynamicBias on # Toggle dynamic/static bias

 hillWidth 1.0 # Width of Gaussian

 hillWeight 0.005 # Height of Gaussian

 newHillFrequency 1000 # Frequency of Guassian addition

 wellTempered on # Use Well-Tempered Metadynamics

 biasTemperature 2000 # Well-Tempered Metadynamics bias temperature

}

5.1 Tools

As a part of this thesis, few tools were developed to help run and analyze simulations. These tools

were developed using Perl and Python programming languages.

submit.pl is the main tool for running simulations. It is a Perl script which has variables for

different simulation parameters. The script will be modified for a specific simulation run by setting

these variables appropriately. When the script is then run it prints a summary of simulation

parameters, generates the LAMMPS input script and the COLVARS configuration file, starts the

actuals simulation and extracts simulation data from LAMMPS log file to a format that is easier to

handle with other programs. Because submit.pl generates the LAMMPS input script and the

55

COLVARS configuration file, then only this script is needed in order to rerun some specific

simulation run.

When submit.pl generates the LAMMPS input script and the COLVARS configuration file, it

uses simulation parameters to define various parts of these input files. The simulation temperature is

used to select value for lattice constant and the simulation temperature itself is substituted in many

places in the input files. Parameters control if hyperdynamics part of CVHD is applied, in other

words if a cvhd block is included in the COLVARS configuration file or not. The simulation

geometry is controlled by several parameters that tell the xy -size of the slab, thickness of the slab,

free space above and below of the slab and existence of top and/or bottom adatom. Using

submit.pl help, when several simulations, that differed from each other only slightly, were run.

With submit.pl it was enough to change the value of simulation parameter only in one place,

even if the changed parameter appears in multiple places in the LAMMPS input script and the

COLVARS configuration file.

A LAMMPS log file contains both simulation data printed with thermo_style command and

textual information concerning progress of the simulation. This is difficult to process with data

processing tools like Matlab or Excel. Therefore submit.pl calls an auxiliary Perl script

log2dat.pl which extracts from the LAMMPS log file only data lines and their headers and then

writes them to .dat file.

Data files produced by log2dat.pl can be further analyzed with a Perl script

runAnalyzeDatFiles.pl. This script scans a directory for the files matching file name

pattern “*K.dat”, counts average and standard deviation for each variable in the data file and

prints averages and standard deviations in a summary file ordered by simulation temperature. The

script has also on option to print figures of time evolution of the variables. The other option for the

script is the number of time steps to skip before starting to calculate average and standard deviation.

This can be used to skip those time steps, from the beginning of the simulation, when the simulation

has not equilibrated yet.

Internally runAnalyzeDatFiles.pl uses one of two Python scripts analyzeDat.py or

analyzeLCDat.py to calculate averages and standard deviations and to print figures. Especially

printing figures is easier with Python than with Perl. The difference between analyzeDat.py

56

and analyzeLCDat.py is that analyzeLCDat.py combines the LAMMPS thermo_style

variables relating to simulation box length (lx, ly and lz) into one variable for the purpose of

calculating lattice constant. analyzeLCDat.py is used in chapter 5.2.

The Perl script kCount.pl is used to find adatom exchange and hop events. This script uses two

sources for finding adatom events. The first source is the LAMMPS dump file which contains the

locations of atoms during different simulation steps. The script first finds an atom with the highest z

-coordinate and assumes this to be an adatom. Then the script follows, if the adatom moves more

than 0.9 times the lattice constant from the original location or if the atom id of the atom with the

highest z -coordinate changes. The second source is the COLVARS trajectory file (chapter 4.3.4).

The script analyzes from the CV value in the COLVARS trajectory file in which state of the

bondbreak CV algorithm (chapter 4.3.1) the simulation is. The script will notify adatom event when

the change of value of CV indicates a transition, that is when CV changes from a whole odd number

(for example 3.0) to an even number minus 0.5 (for example to 3.5).

In practice it was found out that kCount.pl doesn’t identify adatom events reliable enough from

the LAMMPS dump file. The problem is probably that the script doesn’t take into account back and

forth movement; that is the adatom might return to the original places even when it is almost in the

new place. This might work better if the script would analyze few next simulation steps to see if the

adatom stays in a new location after finding the possible adatom event from the LAMMPS dump

file. The analysis of the COLVARS trajectory file works reasonably well as shown in chapter 6.1.

The bondbreak CV algorithm has a concept of waitTime, which ensures that the adatom event is

registered from the COLVARS trajectory file only if the transition to a new state is permanent.

The kCount.pl script produces three output files. One starting with the string “step1”, the

other one starting with string “step2” and summary file without fixed prefix. The “step1” file

contains the adatom event analysis of the COLVARS trajectory file. The “step2” file contains

respectively adatom event analysis of the LAMMPS dump file. The summary files combine adatom

events from both sources in one file with less detail and in more readable format. It is interesting to

notice that kCount.pl tells 𝜂 to be in transition state tens, hundreds or even more than a thousand

times before a permanent transition occurs.

57

5.2 Lattice constant

Because the lattice constant will vary according to the temperature, a series of simulation was run in

order to define the lattice constant in different temperatures. Lattice constant was defined by

running a simulation of a bulk of 6 x 6 x 6 unit cells of copper, that is 864 atoms of copper when

each unit cell has 4 atoms. The simulation was done in NPT ensemble using Nose-Hoover thermo-

and barostat with periodic boundary conditions in all directions. Lattice constant was derived from

Lx, Ly and Lz variables of LAMMPS. Lx, Ly and Lz variables in LAMMPS are dimensions of the

simulation box. In NPT ensemble, the size of the simulation box changes until it starts to vibrate

around the equilibrium state. The lattice constant can be defined by dividing the average of Lx, Ly

and Lz in equilibrium state by number of unit cells in each direction.

In order to define when the equilibrium state has been reached, a series of simulation runs with

different temperatures from 150 K to 2 100 K were run. It was found out that well before 250 000

steps (250 psec when 1 timestep is 0.001 psec), the system has equilibrated in all the simulated

temperatures with respect to potential energy, total energy and temperature. Average of pressure

was between -182 (at 2 100 K) and 666 (at 1 650 K) bars depending on the temperature and there

was quite large variation of pressure around the average values. The parametrized value for pressure

was 1 bar. It is a known limitation of this type of simulation, that the variation of pressure is large

and only the magnitude of the average of the simulated pressure is relevant. In that sense it can be

said that the system has equilibrated after 250 000 steps.

The figures figure 6 and figure 7 show the development of total energy at 300K. As can be seen the

value stabilize well before 250 000 steps, in fact already during the first few thousands simulation

steps.

58

Figure 6: Total energy of the bulk simulation at 300 K. The average for total energy is -2990.61 eV and

standard deviation 1,55 eV (0.052 %). The dotted, black, line is a moving average of total energy.

Figure 7: Total energy of the first 250 000 simulation steps of bulk simulation at 300 K. The dotted, black,

line is a moving average of total energy. The value of total energy stabilizes already during the first few

thousands simulation steps.

59

The figure for all variables (potential energy, total energy and temperature) is highly similar in all

the simulated temperatures. Therefore, assuming that the system has equilibrated after 250 000

simulation steps, contains fair enough safety margin.

After the number of timesteps needed for equilibration was determined a series of bulk simulations

was run in different temperatures from 150 K to 600 K with 10 K intervals. The temperature range

was smaller than in equilibrium runs because the final adatom simulations were executed in the

temperature range 150 K – 600 K and so lattice constants were needed only for this temperature

range. The bulk simulation was run for 2 000 000 steps in each temperature and then the script

runAnalyzeDatFiles.pl was used to calculate averages and standard deviations of lattice

constant based on simulation steps from the step 250 000 to the last step of the simulation. This way

the following values for lattice constants and their standard deviations were obtained.

Temp Average of LC [Å] Std. dev of LC Std. dev of LC %

150 3.62376672724157 0.00149708867 0.0413 %

200 3.62672252975442 0.00175879055 0.0485 %

250 3.62967287704169 0.00195567671 0.0539 %

300 3.63269911690462 0.00363428112 0.1000 %

350 3.63571422073101 0.00398212467 0.1095 %

400 3.63892418972016 0.00416799627 0.1145 %

450 3.64204626818960 0.00453373570 0.1245 %

500 3.64529846499143 0.00476699060 0.1308 %

550 3.64858847401484 0.00504194647 0.1382 %

600 3.65190780148486 0.00522543841 0.1431 %
Table 1: Lattice constant in Ångsröms in different temperatures

When these lattice constants are plotted against temperature, figure 8, it can be seen that the lattice

constant increases linearly as temperature grows. This is expected because lattice constant should

change according to the linear thermal expansion coefficient.

Using the least squares method, it can be estimated that the slope for the lattice constant in figure 8

is 6.25815E-05 ± 1.97385E-07. The formula for the linear thermal expansion coefficient, 𝛼, is

𝛼 =
ΔL

Δ𝑇𝐿0
=

𝐿1 − 𝐿0
(𝑇1 − 𝑇0)𝐿0

(40)

where 𝐿0 and 𝐿1 are initial and final length and 𝑇0 and 𝑇1 are respectively initial and final

temperature. By substituting values for 150 K and 600 K from the table 1 into the equation (40) a

60

value of 1.72571E-05 is obtained for 𝛼. The same value is obtained also by dividing the slope

(6.25815E-05) with 𝐿0 (3.62377). This corresponds well with S. J. Bennett’s experimental values

where 𝛼 varies from 1.696E-05 at 327 K to 1,976 E-05 at 675 K (Bennett 1978). At least in this

sense the simulation and used EAM potential corresponds with experimental results.

Figure 8: Value of the lattice constant (in Å) versus temperature (in K)

The lattice constants obtained were used inside the script submit.pl as a table from which the

correct lattice constant was selected based on the parametrized simulation temperature of the

current simulation run.

6 Results

Several simulations with and without CVHD was run using setup and tools described earlier. The

simulations were run with varying parameters and temperatures. The parameters and result of these

runs are listed in appendix A . Each run is identified with Run Id, so that it is easier to refer which

simulation(s) are used to derive which result. Most of the initial runs were used to get the technical

implementation of CVHD to work and they are not contributing to results. Only later runs are

included in derivation of the results.

61

6.1 Accuracy of CVHD

The accuracy of CVHD method was verified in three different ways; analyzing number of adatom

events indicated by bondbreak CV, analyzing Arrhenius plots and comparing deviations of system

properties (temperature, total energy) during the simulations.

Run047 was used to follow the trajectory of the adatom. This run was a simulation of an adatom on

top of 6 x 6 x 5 slab at 500 K for 100 000 000 simulation steps. The locations of atoms were

dumped to a file after every 100 simulation step. It can be seen from the COLVARS trajectory file,

that the final value of 𝜂 is 26.995. So, there should be 13 adatom events. Output of kCount.pl

script shows timesteps when the bondbreak algorithm has increased offset, number of observed

bond breaks and how many times the simulation has been in transition state before a permanent

transition.

 Step CV Offset Progress Message

6708000 1.5 1 -0.5 Bondbreak 1, after 2498 attempts

7402500 3.5 2 -0.5 Bondbreak 2, after 215 attempts

7750000 5.5 3 -0.5 Bondbreak 3, after 113 attempts

22091000 7.5 4 -0.5 Bondbreak 4, after 4016 attempts

24388000 9.5 5 -0.5 Bondbreak 5, after 694 attempts

27912000 11.5 6 -0.5 Bondbreak 6, after 971 attempts

The listing above shows 6 first timesteps when offset has increased. The Ovito tool (Stukowski

2009) was used to visually analyze dump file around these timesteps. With visual analysis each

increase of offset was associated with adatom events. As predicted by Evangelakis and

Papanicolaou (Evangelakis & Papanicolaou 1996) there were different type of adatom events in this

run047; hops (10 pieces), exchanges (2 pieces) and even one complex event including 3 atoms. The

complex adatom event happened around timestep 52925100. The listing above shows also how

many times the bondbreak algorithm has been in transition state before offset has increased, in

other words how often 𝜂 ≅ 1 less than waitTime time steps. This is written as number of attempts

in the listing. As can be seen there are hundreds or thousands attempts before offset is increased.

Physically this tells that system is in a transition region, but falls back to a previous state just before

moving permanently to a new state.

Similar analysis as above was done also for time steps that the kCount.pl script indicated as

possible adatom events based on the LAMMPS dump file. With Ovito, it was seen that these time

62

steps were not associated with adatom events except when an event identified from the LAMMPS

dump file was correlated with the time step when the event was identified from COLVARS

trajectory file. In its current format kCount.pl cannot be used to identify adatom events from the

LAMMPS dump file.

With long simulations, the LAMMPS dump file grows large and it is difficult to find interesting

moments with Ovito without help of kCount.pl or similar tool that identifies interesting points in

the simulation. When analyzing run047 it was validated with Ovito that the adatom was at the same

place and with same atom Id after an adatom event identified from the COLVARS trajectory file

and before the next adatom event. This is an evidence that there has been no adatom events that

wouldn’t have increased offset.

The conclusion is that offset value, extracted from bondbreak CV with equation 33, tells reliably

the number of adatom events in the simulation. When offset is increased, there is always an

adatom event and there are no adatom events where offset would not have been increased. The

whole analysis of output of kCount.pl for run 047 is in an appendix B .

The second way to estimate, if CVHD has effect on the results of the simulation, is to analyze how

close simulations follow Arrhenius’ equation 4 with and without CVHD. This is done by drawing

Arrhenius plot from simulations with and without CVHD in different temperatures.

The figure 9 follows equation 3, x-axis is inverse of the temperature and y-axis is logarithm of

number of adatom events. The figure shows that the Arrhenius plot is in practice identical with and

without CVHD, the blue line (without CVHD) and the orange line (with CVHD) are on top of each

other with values 0.00167 ≤ 1 𝑇⁄ ≤ 0,0025 (temperature range 400 K – 600 K). Both plots also

follow closely a straight line (dotted line in the figure). It was not possible to get CV values without

CVHD in a reasonable time for 1 𝑇⁄ > 0.333, which corresponds to temperature 300 K, and

therefore blue line ends at that point. The run043, used to simulate adatom events in 300 K,

terminated after 7 days and 12 hours with zero adatom events, CV was 0.587 when simulation

ended. With lower temperatures and greater 1 𝑇⁄ the simulations without CVHD would have taken

even longer time before the first adatom event. This also explains why Arrhenius plot without

CVHD differs from Arrhenius plot with CVHD at 300 K, there are statistically not enough adatom

events for the simulation without CVHD for the result to be accurate.

63

Figure 9: Arrhenius plot of simulations with and without CVHD

Data for figure 9 was collected from several simulations at different temperatures. These

simulations were executed with a slab of size 6 x 6 x 5 and an adatom at the top of the slab.

Between different simulations temperature and usage of CVHD was changed, but all other

parameters were kept unchanged.

T 1/T = β Run Steps (*106) CV k (1/s) ln k

600 0,00167 run045 300 1457 2428333333 21,61047

550 0,00182 run042 300 485 808333333 20,51049

500 0,00200 run046 300 133 221666667 19,21669

450 0,00222 run041 300 48,98 81633333,3 18,21775

400 0,00250 run044 289,499 4,662532 8052759,43 15,90153

300 0,00333 run043 182,89 0,586918 1604566,36 14,28836

Table 2: Simulation results without CVHD used for Arrhenius plot

T 1/T = β Run Steps (*106) CV k (1/s) ln k

600 0,00167 run056 300,0 1437 2,39E+09 21,59663

550 0,00182 run057 301,5 441 7,31E+08 20,41028

500 0,00200 run054 342,1 194,9588 2,85E+08 19,46778

450 0,00222 run053 708,4 78,97538 55739842 17,83621

400 0,00250 run050 4 057,9 50,91503 6273635 15,65187

350 0,00286 run051 148 945,1 62,90333 211162,8 12,26038

64

300 0,00333
run049
(retry) 821 443,3 72,41116 44075,57 10,69366

250 0,00400 run059 4 948 860,0 132,9571 13433,11 9,505478

200 0,00500 run060 43 461 747,0 190,2123 2188,273 7,690868

150 0,00667 run062 2 752 213 300,0 252,2269 45,82255 3,824776
Table 3: Simulation results with CVHD used for Arrhenius plot

In tables table 2 and table 3 column Run refers to Run Id in the appendix A that lists executed

simulation runs.

For the simulations without CVHD, the column Steps is the number of millions of time steps that

the simulation run. With used units one time step is femtosecond, and so a million timestep is 1 ns

and column Steps is directly simulation time in nanoseconds. The target was to run all simulations

without CVHD for 300 ns but with low temperatures the simulations were terminated by timeout

after the simulation time specified in Steps column. For the simulations with CVHD the column

Steps is hypertime calculated by fix timeboost and extracted from the LAMMPS output file after

the simulation. As explained in chapter 4.3.3, hypertime is expressed in this context in picoseconds.

For easier comparison hypertime in picoseconds is converted to nanoseconds in table 3. Also,

simulations with CVHD were run for 300 million timesteps but due to acceleration provided by

CVHD the effective simulation time (hypertime) correspond to much greater number of simulation

steps.

The value in the column CV is obtained from COLVARS trajectory file, chapter 4.3.4, for the last

time step of the simulation. Event frequency (column k) is obtained by dividing CV value with 2,

which gives number of adatom events per number of nanoseconds specified in Steps column, and

then scaling to a full second by dividing with a time corresponding to Steps column.

Using least squares method, it is possible to obtain slope and y-intersect presented in the table 4

from the data in tables table 2 and table 3.

 Slope, 𝑠 Y-intercept, 𝑦

no CVHD -4413.1159 ± 638.591597 28.25011 ± 1.483562

CVHD -3539.3 ± 422.942 25.24227 ± 1.501239
Table 4: Slope and Y -intersect of Arrhenius Plot

From 𝑠 and 𝑦 it is easy to derive parameters 𝛤0 and 𝐸𝐴 of equation 4.

𝛤0 = 𝑒𝑦 (41)

65

𝐸𝐴 = −𝑘𝐵𝑠 (42)

 𝛤0 𝐸𝐴
no CVHD 𝑒28.25 ± 1.48 = 421.28 – 8187.84 GHz

 mean 1857.233 GHz
0.380293 ± 0.055 eV

CVHD 𝑒25.24 ± 1.50 = 20.45 – 411.68 GHz

 mean 91.744 GHz
0.304993 ± 0.036 eV

Table 5: Pre-exponential factor and activation energy with and without CVHD

By substituting 𝑠 and 𝑦 from table 4 to equations 41 and 42 values in table 5 are obtained for pre-

exponential factor, 𝛤0, and for activation energy, 𝐸𝐴

Although the pre-exponential factor and activation energy with and without CVHD differ from each

other, they have, however, similar magnitude. These simulated pre-exponential factors and

activation energies don’t correspond to values in literature because different types of adatom events

are not differentiated from each other and because the size of the simulation system is not taken into

account. In their paper, Bal and Neyts obtained values 𝛤0 = 54 𝑇𝐻𝑧 and 𝐸𝐴 = 0.53 eV for adatom

hop, and values 𝛤0 = 430 𝑇𝐻𝑧 and 𝐸𝐴 = 0.76 eV for adatom exchange (Bal & Neyts 2015a).

The effect of the size of the simulated system can be seen from the figure 10, which shows

Arrhenius plot when the adatom diffusion simulation was run with CVHD on a slab with size of 10

x 10 x 6.

Figure 10: Arrhenius plot for CVHD simulation on a slab with size of 10 x 10 x6

66

The format of the curve is same in figures figure 9 and figure 10. With this bigger slab, the 𝛤0 =

13.78 𝐺𝐻𝑧 and 𝐸𝐴 = 0.297 ± 0.023 eV. The activation energy corresponds to one in the table 5.

With pre-exponential factor, there is a bigger difference between 6 x 6 x 5 and 10 x 10 x 6 slab, but

this is due to exponential factor of this value, the difference in y-intersect is quite small. Y-intersect

is 25.242 ± 1,50 for the smaller slab and 23.348 ±1.15 for the bigger slab. This shows that CVHD

method gives the same result independent of the size of the simulated system.

A classical measure for the stability of the MD simulation is preservation and fluctuation of energy.

This was measured by calculating standard deviation of temperature and total energy in percentage.

 Run
Std. Dev of

Temperature [%]
Std. Dev of

total energy [%]

Temp no CVHD CVHD no CVHD CVHD no CVHD CVHD

150 run062 3.058 % 0.027 %

200 run060 3.062 % 0.036 %

250 run059 3.046 % 0.045 %

300 run043 run049 (retry) 3.043 % 3.048 % 0.051 % 0.053 %

350 run051 3.039 % 0.062 %

400 run044 run050 3.046 % 3.038 % 0.068 % 0.070 %

450 run041 run053 3.040 % 3.042 % 0.077 % 0.078 %

500 run046 run054 3.041 % 3.043 % 0.087 % 0.086 %

550 run042 run057 3.048 % 3.045 % 0.096 % 0.096 %

600 run045 run056 3.044 % 3.049 % 0.106 % 0.106 %

Table 6: Standard deviation of temperature and total energy with and without CVHD

As seen from table 6, standard deviations both with and without CVHD are small and values with

and without CVHD are close to each other. This ensures that simulations with CVHD preserves

physical quantities as well as simulations without CVHD.

To summarize it, the CVHD method doesn’t change physical accuracy of the simulation. The

bondbreak CV is a reliable measure for the number of adatom events. Simulations with CVHD

produces similar Arrhenius plot as simulations without CVHD. The fluctuation of observed

physical quantities are at same level in simulations with and without CVHD.

6.2 Boost achieved with CVHD

The acceleration achieved by CVHD method is measured with boost as described in chapter 3.3.

The computational implementation for measuring boost is fix timeboost described in chapter

67

4.3.3. The fix timeboost writes hypertime to the LAMPPS log file. The boost can be calculated

from there by dividing hypertime with classical simulation time (= number of time steps multiplied

by length of the time step, dt). For example, run052 was run for 300 million timesteps, which

correspond to 300 ns in this context and the run reported 148 945 070 ps as a value of hypertime. In

this example boost is thus 148 945.070 ns / 300 ns = 496,5.

Run Temperature (K) Boost

run062 150 9174044.333

run060 200 144872.490

run059 250 16496.200

run049 (retry) 300 2738.144

run052 350 496.484

run050 400 13.526

run053 450 2.361

run054 500 1.140

run057 550 1.005

run056 600 1.000

Table 7: Boost of CVHD simulation for the slab of size 6 x 6 x 5

With CVHD quite substantial boost can be achieved at low temperatures, but at higher temperatures

boost is so close to 1 that in practice there is no acceleration at all. Boost on table 7 were measured

with CVHD simulation for the slab of size 6 x 6 x 5 and in this case CVHD provides real benefits

only for temperatures lower than 400 K.

It can be seen from equation 31, that logarithm of the boost is proportional to the inverse of

temperature. The figure 11 shows data from table 7 plotted this way.

With the bond boost method the logarithm of boost is directly proportional to inverse of

temperature (Miron 2003). From the figure 11 it can be seen that also with CVHD the logarithm of

boost is directly proportional to inverse of temperature when 1 𝑇⁄ ≥ 0.002857 which corresponds

to temperatures lower than 350 K. With higher temperatures, in this configuration, boost decreases

faster than linear part of the plot.

68

Figure 11: Logarithm of the boost versus inverse of temperature

Run Temperature (K) Boost Γ (1/s)
Steps for 100
events

Boost 100
events

run062 150 9174044.333 0.310159 3.22416E+17 35 144 325 284

run060 200 144872.49 485.1819 2.06108E+14 1 422 687 484

run059 250 16496.2 40040.26 2.49749E+12 151 397 658

run049
(retry) 300 2738.144267 758971 1.31757E+11 48 119 211

run052 350 496.4835667 6207092 16110602976 32 449 418

run050 400 13.52619033 30018257 3331305960 246 285 604

run053 450 2.3614281 1.02E+08 977749840.2 414 050 227

run054 500 1.140363 2.73E+08 366706272.9 321 569 775

run057 550 1.005118167 6.08E+08 164379252 163 542 216

run056 600 1.000017233 1.19E+09 84227559.53 84 226 108
Table 8: Estimated number of simulation steps needed for 100 adatom events

When values from table 5 are inserted in equation 4, it is possible to calculate reaction rate Γ for

different temperatures. In table 8 this is done using “no CVHD” values (𝛤0 = 1857.23 GHz and

𝐸𝐴 = 0,380293 eV) from table 5. The inverse of Γ is an average time between successive adatom

events and multiplying this average time with 100, it is possible to get estimate of simulated time

needed for 100 adatom events. From this it is possible to calculate number of time steps of size of 1

fs needed to achieve this simulated time. This is column “Steps for 100 events” in table 8. And by

69

dividing number of 1 fs time steps with boost an estimate of number of simulation steps needed to

achieve 100 adatom events with CVHD can be obtained, this is column “Boost 100 events” in table

8. By plotting number of needed simulation steps to achieve 100 adatom events in different

temperatures with and without CVHD it is possible to see efficiency of CVHD method.

From figure 12 it can be seen that CVHD doesn’t provide any benefits for temperatures higher than

500 K, which can be seen also from table 7. But figure 12 shows, that there is also a lower limit for

the usability of CVHD. With temperatures below 250 K the reaction rate, Γ, slows down faster than

boost increases and thus number of simulation steps needed for 100 adatom events increases

rapidly. With this configuration the usable range for CVHD method is from 250 K to 500 K.

Figure 12: Comparison of number of needed simulation steps for 100 adatom events with and without CVHD

The effective use of CVHD method has thus a temperature range with upper and lower limit. This is

the same phenomenon that Radu A. Miron and Kristen A. Fichthorn has described for the bond-

70

boost method (Miron 2003). It is evident from equation 31 that the boost declines with increasing

temperature. Additionally, the average displacement of the atoms from equilibrium grows with

increasing temperature and sampling of high-boost regions (around the local minimum) of the

potential surface is reduced. On the other hand, at very low temperatures, transition times may

increase faster than the boost factor and no transitions are observed over the simulation time scale.

The method thus achieves peak efficiency in the midrange between the high-temperature domain of

standard MD and very low temperatures, where kinetic Monte Carlo, kMC, is most efficient.

(Miron 2003).

When the number of simulation steps needed for 100 adatom events with and without CVHD was

compared the computer time use in simulation was not taken into account. CVHD is clearly slower

than classical MD simulation, but this doesn’t affect the magnitude of boost. According to

LAMMPS log files, the simulation speed was over 5 000 time steps per second when simulations

for lattice constant was run. When running CVHD simulation speed varied between 200 and 2 500

time steps per second. Even if CVHD simulation would be 25 times slower than classical MD, this

is easily overcome by boost that can be from tens to millions.

All results so far in this chapter are based on simulations on the slab of size 6 x 6 x 5. To see the

effect of the size of the slab simulations was also run on 10 x 10 x 6 slab. The first run with the

bigger slab, run058, at 400 K show almost no boost with parameters used for the smaller slab. With

bigger slab there are more atom pairs and thus 𝜒𝑇, global distortion, goes near 1 easier even if none

of bonds is broking but many of them are on mid-way 𝑟𝑖
𝑚𝑖𝑛 and 𝑟𝑖

𝑚𝑎𝑥. It was possible to eliminate

this effect by increasing parameter power. With value 20 of power it was possible to get similar

result from the simulation of bigger slab than from the simulation of smaller slab.

Run Temperature (K) Boost

run068 150 156 920 384

run067 200 255 269

run066 250 38 952

run065 300 1 435

run064 350 234

run061 400 29.39

Table 9: CVHD boost for the slab of size 10 x 10 x 5

71

Figure 13: Boost of CVHD simulation of 10 x 10 x 6 slab

When the logarithm of the boost in table 9 is plotted against inverse of temperature in figure 13, it

can be seen that the boost follows a straight line like with the smaller slab.

The conclusion is that boost achieved with CVHD is strongly dependent on temperature and there is

both upper and lower limit for the temperature where CVHD is useful. Exact temperature limits and

boost achieved depends on many parameters; physical system to be simulated, size of the system,

computational resources used and so on.

 6 x 6 x 5 slab 10 x 10 x 6 slab

Temperature (K) Run CV Run CV

150 run062 252.227 run068 22.9389

200 run060 190.212 run067 26.0945

250 run059 132.957 run066 14.9767

300 run049 (retry) 72.411 run065 15.000

350 run052 62.903 run064 13.000

400 run050 50.915 run061 18.9121
Table 10: Comparison of CV for different size of slabs at low temperatures

With low temperatures CV, which tells number of adatom events, increases, as shown by table 10.

In this table each simulation was run for 300 million time steps for the smaller slab and 50 million

time steps for the bigger slab.

Increasing CV with decreasing temperature doesn’t fully align with earlier calculation in this

chapter. According to table 8 number of time steps needed for a constant number of adatom events

72

should increase when temperature decreases which in other words means that CV should decrease

with constant number of simulation step when temperature decreases. The estimated number of

simulation steps needed for 100 adatom events corresponded better to the simulated CV when pre-

exponential factor and activation energy were calculated from lower part of Arrhenius plot. In the

context of this thesis, it was not possible to analyze in detail what causes this difference between

estimated number of simulated steps and simulated CV.

7 Conclusions

With CVHD method it is possible to accelerate classical MD simulation by several order of

magnitudes. However, there are both upper and lower limit for the temperature when CVHD is

useful. In this thesis CVHD was used only to simulate adatom diffusion on copper (001) surface but

theoretically CVHD should be suitable also for simulating other types of system. With other type of

systems, the feasible temperature range will vary from that for the adatom diffusion.

For adatom diffusion simulations the bondbreak CV also provides a handy way to calculate number

of adatom events.

The main restriction with CVHD method is earlier mentioned temperature range. Also, the size of

atom groups used to calculate bondbreak CV afftects to the efficiency of CVHD, the computation

time increases, when number of atoms in atom groups grows. The maximum size of the system used

in simulations with this thesis was 2 401 atoms.

The current implementation of CVHD doesn’t utilize parallelism: both CV in the

colvar::bondbreak class and biasing force in the colvarbias_cvhd class are calculated

serially in one thread. This can be seen by analyzing simulation speed (timestep/s) and time spent in

modify tasks with different number of nodes used for simulation. This performance data is available

from LAMMPS log file.

Run Nodes Timestep/s
Modify
%

Modify
ms/timestep

perf/n04 4 713.4703196 68.47 % 0.95967552

perf/n08 8 771.1527191 76.48 % 0.991762048

perf/n16 16 665.5485451 79.51 % 1.194653652
Table 11: Performance of CVHD with different number of nodes

73

As can be seen from table 11, the percentage of total time of simulation spent in modify tasks

increases, when number of nodes increases, keeping milliseconds used for modifying at same level

independent of number of nodes. The modify tasks include fixes, specifically fix colvars and

fix timeboost in this context. This confirms what can be seen from source code, the current

implementation of CVHD doesn’t utilize parallel computing.

This is mentioned also in chapter 5.4 of Colvars manual “In simulations performed with message-

passing programs (such as NAMD or LAMMPS), the calculation of energy and forces is distributed

(i.e., parallelized) across multiple nodes, as well as over the processor cores of each node. When

Colvars is enabled, certain atomic coordinates are collected on a single node, where the calculation

of collective variables and of their biases is executed. This means that for simulations over large

numbers of nodes, a Colvars calculation may produce a significant overhead, coming from the costs

of transmitting atomic coordinates to one node and of processing them”. (Bernardin, et al. 2020).

In this thesis CVHD was applied only with one setup, dynamic CVHD with well-tempered

metadynamics. It would be interesting to see CVHD works both from the point of accuracy and

efficiency with different setup/parameters, although the expectation is that different parametrization

has only minor effect on CVHD.

Diffusion events can be considered as rare events. Rare events are also the idea behind transition

state theory. In this sense it is understandable that simulations related to this thesis took

considerable time to execute. Of the simulations that run 300 million timesteps with CVHD enabled

the fastest was run054 (2 days 14 hours and 43 minutes corresponding to 1 328 time steps per

second) at 500 K and the slowest was run052 (5 days 3 hours and 15 minutes corresponding to 676

time steps per second) at 350 K. The run length of over hundred million timesteps were needed in

order to get statistically meaningful number of adatom events. This kind of simulations require thus

quite a lot of time to complete.

8 Summary

The purpose of this thesis was to implement accelerated MD (Molecular Dynamics) method called

CVHD (Collective variable-driven hyperdynamics) and analyze the suitability of this method for

accelerating simulation of the surface diffusion on Cu(001) surface.

74

The original implementation of CVHD (Bal & Neyts 2015b) needed to be modified considerably to

work with current (3 Mar 2020) version of LAMMPS. This modified version of CVHD is stored in

version management system of University of Helsinki https://version.helsinki.fi/kurkmika/cvhd-for-

lammps. With this modified version of LAMMPS it was possible to get similar results compared to

the original version of CVHD (Bal & Neyts 2015a). It was validated that in the suitable temperature

range CVHD provides significant acceleration compared to standard MD simulation while

preserving physical accuracy.

CVHD uses collective variable, CV, to describe system’s dynamics. The CV can be thought to be a

generalized reaction coordinate. The acceleration provided by CVHD is based adding the bias

potential energy, which in turn is based on the CV. CVHD has a modular design. Both CV and the

biasing method based on CV can be chosen independently to be optimal for the system studied. In

the context of this thesis only one CV, bondbreak CV, and one biasing method, dCVHD with well-

tempered metadynamics, were used.

The CVHD method will be a valuable tool in the study of slow processes and rare events. (Bal &

Neyts 2015a).

https://version.helsinki.fi/kurkmika/cvhd-for-lammps
https://version.helsinki.fi/kurkmika/cvhd-for-lammps

75

References

Bal, Kristof M. (2018). E-Mail: Problems on Implementing CVHD. .

Bal, Kristof M. & Neyts, Erik C. 2015a. Merging Metadynamics into Hyperdynamics: Accelerated

Molecular Simulations Reaching Time Scales from Microseconds to Seconds. Journal of

Chemical Theory and Computation 11: 4545-4554.

Bal, Kristof M. & Neyts, Erik C. 2015b. Source code of the CVHD implementation.

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00597/suppl_file/ct5b00597_si_001.zip

Referenced Mar 21, 2020.

Barducci, Alessandro, Bussi, Giovanni & Parrinello, Michele. 2008. Well-Tempered

Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Physical Review

Letters 100: 020603.

Bennett, S. J. 1978. The Thermal Expansion of Copper between 300 and 700k. Journal of Physics

D: Applied Physics 11: 777-780.

Bernardin, Alejandro, Chen, Haochuan, Comer, ComerJeffrey R., et al. 2020. COLLECTIVE

VARIABLES MODULE

Reference manual for LAMMPS

Code version: 2020-02-25. https://lammps.sandia.gov/doc/PDF/colvars-refman-lammps.pdf

Referenced May 25, 2020.

Britannica Academic. 2020. Arrhenius equation. https://academic-eb-

com.libproxy.helsinki.fi/levels/collegiate/article/Arrhenius-equation/9619# Referenced 27 Mar

2020.

Callister, William D. Jr & Rethwisch, David G. 2014. Materials Science and Engineering : An

Introduction. United States of America: Wiley.

CSC. FGCI - Finnish Grid and Cloud Infrastructure. https://research.csc.fi/fgci Referenced May 23,

2020.

Evangelakis, G. A. & Papanicolaou, N. I. (1996). Adatom Self-Diffusion Processes on (001) Copper

Surface by Molecular Dynamics.

Fiorin, Giacomo, Klein, Michael L. & Hénin, Jérôme. 2013. Using Collective Variables to Drive

Molecular Dynamics Simulations. Molecular Physics 111: 3345-3362.

Foiles, S. M., Baskes, M. I. & Daw, M. S. 1986. Embedded-Atom-Method Functions for the Fcc

Metals Cu, Ag, Au, Ni, Pd, Pt, and their Alloys. Phys.Rev.B: Condens.Matter; (United States)

33: .

Frenkel, Daan & Smit, Berend. 2002. Understanding Molecular Simulation : From Algorithms to

Applications. Computational Science (San Diego, Calif.). San Diego: Academic Press.

Gabriel, Edgar, Fagg, Graham E., Bosilca, George, et al. 2004. Open MPI: Goals, Concept, and

Design of a Next Generation MPI Implementation.

76

Laio, Alessandro & Parrinello, Michele. 2002. Escaping Free-Energy Minima. Proceedings of the

National Academy of Sciences of the United States of America 99: 12562-12566.

LeSar, Richard. 2013. Introduction to Computational Materials Science : Fundamentals to

Applications. Cambridge ; New York: Cambridge University Press.

Miron, Radu A. 2003. Accelerated Molecular Dynamics with the Bond-Boost Method. The Journal

of Chemical Physics 119: 6210-6216.

Mundy, J. N. 1981. Self-Diffusion in Chromium. Phys.Rev.B: Condens.Matter; (United States) 24: .

Plimpton, Steve. 1995. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of

Computational Physics 117: 1-19.

Plimpton, Steve. 2014. LAMMPS Features and Capabilities.

http://lammps.sandia.gov/tutorials/italy14/italy_overview_Mar14.pdf Referenced Jun 25 2018.

Sandia National Laboratories. LAMMPS Molecular Dynamics Simulator.

https://lammps.sandia.gov/index.html Referenced Mar 21, 2020.

Stukowski, Alexander. 2009. Visualization and Analysis of Atomistic Simulation Data with

Ovitothe Open Visualization Tool. Modelling and Simulation in Materials Science and

Engineering 18: 015012.

Voter, Arthur F. 1997. A Method for Accelerating the Molecular Dynamics Simulation of

Infrequent Events. The Journal of Chemical Physics 106: 4665-4677.

A-1

Appendix A Table of simulation runs

The table below shows simulation runs for which this thesis is based on. For each run parameters used and results obtained are listed. The initial

runs were used to get CVHD to work and later runs were used more systematically for measuring accuracy and efficiency of CVHD. The

purpose of each run is commented after the parameter table.

Run Id Cluster Start date Temp Adatom Dimensions CV CV
HD in
effect Steps Wall time timestep/s Hypertime Boost

run001 Alcyone 22.8.2018 300 bot 6 x 6 x 5 <1 on 50 000 0-02:10:55 6,3654 N/A

run002 Alcyone 21.8.2018 300 top 6 x 6 x 5 <1 on 50 000 0-00:00:40 1250,0000 N/A

run003 Alcyone 20.8.2018 600 top 6 x 6 x 5
81,5, non-
broken bonds on 50 000 0-00:00:36 1388,8889 N/A

run004 Alcyone 22.8.2018 300 top 6 x 6 x 5 <1 on 150 000 0-09:00:00 4,6296 N/A

run005 Kale 7.8.2018 600 top 4 x 4 x 3
242, no info
about bonds on 20 000 000 0-01:28:21 3772,8730 N/A

run006 Kale 8.8.2018 600 top 4 x 4 x 3
242, no info
about bonds off 20 000 000 0-01:30:48 3671,0720 N/A

run007 Alcyone 23.8.2018 300 top 6 x 6 x 5 <1 on 20 000 000 0-06:52:25 808,2441 N/A

run008 Alcyone 24.8.2018 300 top 6 x 6 x 5 <1 off 20 000 000 0-04:36:11 1206,9278 N/A

run009 Alcyone 24.8.2018 300 top 6 x 6 x 5 <1 on 20 000 000 0-12:04:04 460,3628 N/A

run010 Kale 26.8.2018 300 top 6 x 6 x 5 <1 on 20 000 000 0-15:35:28 356,3284 N/A

run011 Alcyone 28.8.2018 300 top 6 x 6 x 5

12, few
indications of
broken bond md 20 000 000 0-12:46:08 435,0853 N/A

run012 Alcyone 9.9.2018 300 top 6 x 6 x 5 < 1 on 20 000 000 0-06:52:09 808,7670 N/A

run013 Alcyone 8.9.2018 300 top 6 x 6 x 5
4,94 no info
about bonds on 20 000 000 0-07:00:24 792,8957 N/A

run014 Kale 15.12.2018 300 top 10 x 10 x 5 <1 on 20 000 000 0-13:43:27 404,8009 N/A

A-2

run015 Alcyone 15.12.2018 300 top 10 x 10 x 5 on 20 000 000 >36:00:00 #VALUE! N/A

run016 Kale 16.12.2018 300 top 6 x 6 x 5
4,67 no info
about bonds on 20 000 000 0-06:18:50 879,8944 N/A

run017 Kale 19.12.2018 300 top 6 x 6 x 5 <1 off 20 000 000 0-05:08:54 1079,0979 N/A

run018 Kale 25.12.2018 600 top 6 x 6 x 5 87 off 20 000 000 0-02:59:54 1852,8812 N/A

run019 Kale 27.12.2018 600 top 6 x 6 x 5 99 on 20 000 000 0-04:16:01 1301,9986 N/A

run020 Kale 13.1.2019 600 top 6 x 6 x 5 99 on 20 000 000 0-04:21:20 1275,5102 0,423 0

run021 Kale 14.1.2019 600 top 6 x 6 x 5 7999 on 20 000 000 0-03:39:53 1515,9554 0,207 0

run022 Kale 14.1.2019 300 top 6 x 6 x 5 7999 on 20 000 000 0-04:11:52 1323,4516 0,446 0

run023 Kale 21.1.2019 300 top 6 x 6 x 5 7999 on 20 000 000 0-04:09:56 1333,6890 0,446 0

run024 Kale 22.1.2019 600 top 6 x 6 x 5 87 off 20 000 000 0-03:01:07 1840,4343 N/A

run025 Kale 23.1.2019 600 top 6 x 6 x 5 9 on 20 000 000 0-01:47:27 3102,2181 59523,614 3

run026 Kale 24.1.2019 900 top 6 x 6 x 5 7337 off 20 000 000 0-02:02:11 2728,1408 N/A

run027 Kale 25.1.2019 1200 top 6 x 6 x 5 6365 off 20 000 000 0-01:50:31 3016,1363 N/A

run028 Kale 10.2.2019 600 top 6 x 6 x 5 87 off 20 000 000 0-03:02:43 1824,3182

run029 Kale 24.2.2019 600 top 6 x 6 x 5 87 on 20 000 000 0-03:03:07 1820,3331 0,387 0

run030 Kale 6.3.2019 600 top 6 x 6 x 5 on 20 000 000

run032 Kale 14.8.2019 600 top 6 x 6 x 5 87 on 20 000 000 0-03:08:48 1765,5367

run033 Kale 16.1.2020 600 top 6 x 6 x 5 49,9 on 10 000 000 0-02:10:50 1273,8854 0,352 0

run034 Kale 17.1.2020 900 top 6 x 6 x 5 3661,5 on 10 000 000 0-01:54:14 1459,0020

run035 Kale 20.1.2020 300 top 6 x 6 x 5 <1 on 20 000 000 #TIMEOUT #VALUE!

run036 Kale 20.1.2020 300 top 6 x 6 x 5 <1 off 20 000 000 #TIMEOUT #VALUE!

run037 Kale 20.1.2020 300 top 6 x 6 x 5 <1 on 20 000 000 0-08:52:55 625,4887 6,75E+13 3 374 907 950

run038 Kale 21.1.2020 300 top 6 x 6 x 5 <1 off 20 000 000 0-06:20:49 875,3118 20000,000 1

run039 Kale 21.1.2020 450 top 6 x 6 x 5 9,88E-01 on 20 000 000 0-03:42:19 1499,3628 7 043 191 600 352 160

run040 Kale 22.1.2020 450 top 6 x 6 x 5 48,98 on 300 000 000 2-18:06:48 1260,4618
817 861 960

000 2 726 207

run041 Kale 26.1.2020 450 top 6 x 6 x 5 48,98 off 300 000 000 5-05:27:12 664,2576 300 000 1

A-3

run042 Kale 4.2.2020 550 top 6 x 6 x 5 485 on 300 000 000 2-00:10:33 1729,7746 304 344 1

run043 Kale 7.2.2020 300 top 6 x 6 x 5 0,586918284 on 182 890 000 7-12:05:18 282,0992

run044 Kale 11.2.2020 400 top 6 x 6 x 5 4,662531603 on 289 499 000 7-12:05:02 446,5496

run045 Kale 22.2.2020 600 top 6 x 6 x 5 1457 on 300 000 000 1-11:30:53 2346,4447 4,230 0

run046 Kale 25.2.2020 500 top 6 x 6 x 5 133 on 300 000 000 1-13:55:00 2197,8022 278 814 550 929

run047 Kale 1.3.2020 500 top 6 x 6 x 5 26,995 on 100 000 000 0-14:51:50 1868,8096 234 430 790 2 344

run048 Kale 13.3.2020 550 top 6 x 6 x 5 155 on 100 000 000 0-13:42:55 2025,3165 100 992 1

Test/450K Kale 15.3.2020 450 top 6 x 6 x 5 8,950356791 on on 20 000 000 0-06:26:03 863,4460 42 097,604 2

run049 Kale 18.3.2020 300 top 6 x 6 x 5 20,7258303 on on 93 519 000 1-14:08:04 681,2083 185 005 510 1 978

run050 Kale 19.3.2020 400 top 6 x 6 x 5 50,91503134 on on 300 000 000 4-06:22:09 814,0472 4 057 857 14

run051 Kale 24.3.2020 350 top 6 x 6 x 5 62,90332746 on on 300 000 000 3-11:16:44 1000,6538 148 945 070 496

run052 Ukko2 31.3.2020 350 top 6 x 6 x 5 62,90332746 on on 300 000 000 5-03:15:36 676,0777 148 945 070 496

run049
(retry) Kale 31.3.2020 300 top 6 x 6 x 5 72,41116248 on on 300 000 000 4-19:32:27 721,2457 821 443 280 2 738

run053 Ukko2 5.4.2020 450 top 6 x 6 x 5 78,97537795 on on 300 000 000 4-06:28:39 813,1866 708 428 2,36

run054 Kale 6.4.2020 500 top 6 x 6 x 5 194,9588178 on on 300 000 000 2-14:43:34 1328,5270 342 109 1,14

run055 Kale 17.4.2020 550 top 6 x 6 x 5 Canceled on on 300 000 000 Canceled #VALUE! Canceled

run056 Ukko2 10.4.2020 600 top 6 x 6 x 5 1437 on on 300 000 000 3-17:55:54 926,6295 300005,170 1

run057 Ukko2 15.4.2020 550 top 6 x 6 x 5 441 on on 300 000 000 3-23:47:29 869,9460 301535,450 1,01

run058 Kale 20.4.2020 400 top 10 x10 x 6 8,987657441 on on 225 217 000 9-12:05:22 274,2796 227574,150 1,01

run059 Ukko2 24.4.2020 250 top 6 x 6 x 5 132,9571376 on on 300 000 000 4-22:14:29 704,7730 4 948 860 000 16 496

run060 Ukko2 29.4.2020 200 top 6 x 6 x 5 190,2123161 on on 300 000 000 4-14:01:09 757,4438 43 461 747 000 144 872

run061 Kale 1.5.2020 400 top 10 x10 x 6 18,91198669 on on 50 000 000 2-00:47:38 284,6440 1 469 518 29

run062 Ukko2 6.5.2020 150 top 6 x 6 x 5 252,2268571 on on 300 000 000 4-13:47:54 758,9672
2 752 213 300

000 9 174 044

run063 Kale 6.5.2020 400 top 10 x10 x 6 2,980685437 on on 50 000 000 2-07:30:05 250,2440 50920,163 1,02

run064 Kale 9.5.2020 350 top 10 x10 x 6 13 on on 50 000 000 2-03:33:01 269,4241 11 725 575 235

run065 Kale 11.5.2020 300 top 10 x10 x 6 15 on on 50 000 000 4-02:19:20 141,2589 71 785 144 1 436

A-4

run066 Ukko2 11.5.2020 250 top 10 x10 x 6 14,97578081 on on 50 000 000 2-11:47:04 232,3161 1 947 622 100 38 952

run067 Ukko2 14.5.2020 200 top 10 x10 x 6 26,09357228 on on 50 000 000 2-09:06:55 243,1729 12 763 483 000 255 270

run068 Kale 15.5.2020 150 top 10 x10 x 6 22,93794495 on on 50 000 000 3-01:03:42 190,0982
7 846 019 200

000 156 920 384

perf/n04 Ukko2 17.5.2020 350 top 6 x 6 x 5 7 on on 25 000 000 0-09:44:00 713,4703 1 911 373 76

perf/n08 Ukko2 17.5.2020 350 top 6 x 6 x 5 8,404046676 on on 25 000 000 0-09:00:19 771,1527 2 387 825 96

perf/n16 Ukko2 18.5.2020 350 top 6 x 6 x 5 8,599176844 on on 25 000 000 0-10:26:03 665,5485 2 911 720 116

Run Id Notes

run001
run002
run003
run004 Partial run, terminated by timeout. Wall time is estimate

run005
run006 Why CV is identical to run005. CVHD seem to have no effect

run007
run008 Why CV is identical to run007. CVHD seem to have no effect

run009 Special run with lmp_serial. No parallelisation

run010 hillWeight 0,005 --> 5,000 no effect on CV, E_hd multiplied by 1000

run011 Test run with metadynamics instead of CVHD

run012 Test run using option unwrap no. Performance seem to be same than run_007

run013 Test run with lmp_mpi_kr. Run ended with segmentation fault, results still OK. Wall time not written in log.lammps

run014 Test to compare speed between kale and alcyone

run015 Test to compare speed between kale and alcyone. Cancelled due time limit

run016

A-5

run017 Run to get comparison value of diffusion constant for run016

run018 Run018 and Run019 to get comparison between CVHD on/off at 600 K

run019 With CVHD the CV was 10 % larger than without it

run020
Test to see how hypertime calculation works. Hypertime boos smaller than expected and so msd[4] plot against hypertime didn't differ
from plot against time

run021 Test with rmin = 0

run022 MSD plot is a horizontal line. It looks like no diffusion would happen. Out.colvars.traj is identical to run022 even if it should not be

run023 Added dump in order to get a video from the simulation. The video didn't show any adatom diffusion

run024 Test to see if diffusion constant can be calculated without CVHD. MSD plot was quite close to a line. Top adatom wouldn't move at all

run025
Test to see how CVHD works if only topatom is included in CVHD calculation and rmin = 0. Adatom didn't diffuse still but hypertime was
huge

run026 Test to see if diffusion constant can be calculated without CVHD and if adatom would move

run027 Test to see if diffusion constant can be calculated without CVHD and if adatom would move

run028 Comparison to see if result is same than with run024 - the result was same. A new version (12Dec2018) of lmp_mpi was used

run029
Comparison to see if result is same than with run020 - it was not CVHD has no effect, but hypertime was advanced. A new version
(12Dec2018) of lmp_mpi was used

run030
Comparison to see if result is same than with run020. A new version (12Dec2018) of lmp_mpi was used with older version of
compbias_cvhd.cpp

run032 Performance comparison with run 029, when $WRKDIR is used instead of /tmp, no real difference on performance

run033 Added dump in order to get a video from the simulation and to see what happens when the value of CV changes

run034 Added dump in order to get a video from the simulation and to see what happens when the value of CV changes

run035 Comparison of CV value with and without CVHD. Simulation timed out in 6 hours and 14x10^6 steps

run036 Comparison of CV value with and without CVHD. Simulation timed out in 6 hours and 19x10^6 steps

run037 Rerun of run035 with longer run time and hypertime calculation enabled. CV of this run should be compared to CV of rerun of run 036

run038 Rerun of run036 in order to compare with run037

run039 A trial to compare CVHD and non-CVHD run in 450 K. This is not a good for comparison because CV < 1

run040 A trial to emulate results of Bal & Nyets. Extended the length of the run to 3x108 (Bal & Nyets used value 2x108)

A-6

run041
No difference in CV between runs 040 an 041 even if CVHD was used with run040. Strangely run041 was slower even if CVHD was not
used with it

run042 A run to get more data for Arrhenius' graph

run043 #TIMEOUT: Terminated due to timelimit after 182 890 000 step, target was to run 300 000 000 steps

run044 #TIMEOUT: Terminated due to timelimit after 289 499 000 step, target was to run 300 000 000 steps

run045 Rerun of run 32 in order to CV value from a longer run for 600 K

run046
run047 Run in 500 K with more trace to more exactly follow adatom trajectories

run048
Rerun of run 42 with different random seed (123456 --> 896520) and log in every 100 step. As expected the change of seed of the random
number generator has not a big effect on results

Test/450K
First run after adding enable(f_cvb_apply_force); in init of CVHD bias. CVHD seems finally to work. CV is greater than Arrhenius' equation
estimates for number of simulation timesteps. Arrhenius' estimation based on hypertime is CV = 5

run049
Run was interrupted by disk error, original setting was to run for 300 000 000 steps. CVHD Works. CV value is greater than in the run043
and is close to value 27,2 estimated by Arrhenius' equation

run050 CV is clearly bigger than in run 044

run051
run052
run049
(retry)

Rerun of run049 in order to get full simulation of 300 000 000 steps. After results were collecte they were accidentally overwritten by
restarting this run again.

run053
run054

run055
This run was submitted already 9.4.2020, but due to Kale hardware problems the run was not started until 17.4.2020 and the run
proceeded so slowly that it was canceled

run056
run057

run058
Test to see how the size of the slab affect to CV. Run was cancelled due to time limit. The target was to run simulation for 300 000 000
steps

run059
run060

A-7

run061 New test with big slab with p = 20 which favored large distortions better and boost was greater than with run 058

run062
run063 Test to see what is boost when rMin = -1.0 and average bond length is used as rMin. Result, boost is almost same than with run058

run064 p = 20

run065 p = 20

run066 p = 20

run067 p = 20

run068 p = 20

perf/n04 Performance test to see what is timestep/s value when 4 nodes is used

perf/n08 Comparison value for run perf/n04 with 8 nodes

perf/n16 Comparison value for run perf/n04 with 16 nodes

B-1

Appendix B Output of kCount.pl

The analysis of the output of kCount.pl script for run047

Analysis of file atom.500K.dump and out500.colvars.traj at Tue Mar 3 16:52:18 2020

 Step AdId LatX LatY LatZ Message

 Step CV Offset Progress Message

 0 0 0 0 Bondbreak 0, offset increased after 0

stabilization Attempts - cleanlist initiated

 0 721 3 3 5.00001 AdAtom exchange 0: -1 --> 721

 6705300 721 AdAtom hop !!

 6707800 1.5 1 -0.5 Bondbreak 1, offset increased after 11588

stabilization Attempts - cleanlist initiated

 Ovito confirmed

 7399700 721 3.23804 3.83147 4.91472 AdAtom hop 1

 7402200 3.5 2 -0.5 Bondbreak 2, offset increased after 999

stabilization Attempts - cleanlist initiated

 7747500 Ovito adatom hop

 7749600 5.5 3 -0.5 Bondbreak 3, offset increased after 517

stabilization Attempts - cleanlist initiated

 Partial hop

 7965600 721 2.60228 4.78156 4.93152 AdAtom hop 2

 False positive

 9232700 721 2.57173 4.20722 4.99413 AdAtom hop 3

B-2

 False positive

 13479100 721 2.52057 4.75169 5.03165 AdAtom hop 4

 Partial hop

 13925900 721 2.46713 4.2295 5.01069 AdAtom hop 5

 Partial hop

 19044200 721 2.42203 4.75735 4.9564 AdAtom hop 6

 22088400 Ovito adatom hop

 22091000 7.5 4 -0.5 Bondbreak 4, offset increased after 19570

stabilization Attempts - cleanlist initiated

 Ovito Adatom Exchange 721 --> 360

 24385900 360 2.2247 5.72294 4.69786 AdAtom exchange 1: 721 --> 360

 24386000 721 1.676 5.40382 4.64501 AdAtom exchange 2: 360 --> 721

 24386100 155 2.6941 0.107311 4.71756 AdAtom exchange 3: 721 --> 155

 24386200 721 1.72321 5.37009 4.60686 AdAtom exchange 4: 155 --> 721

 24386300 155 2.72449 0.174282 4.65957 AdAtom exchange 5: 721 --> 155

 24386500 721 1.84739 5.34121 4.64578 AdAtom exchange 6: 155 --> 721

 24386700 360 2.22512 5.74689 4.58278 AdAtom exchange 7: 721 --> 360

 24386800 721 1.8347 5.25021 4.63836 AdAtom exchange 8: 360 --> 721

 24386900 344 0.900486 4.37181 4.63853 AdAtom exchange 9: 721 --> 344

 24387000 721 1.7637 5.27935 4.62807 AdAtom exchange 10: 344 --> 721

 24387100 355 1.31804 4.79634 4.62264 AdAtom exchange 11: 721 --> 355

 24387300 360 2.31618 5.67754 4.62751 AdAtom exchange 12: 355 --> 360

 24387400 155 2.78086 0.140702 4.63514 AdAtom exchange 13: 360 --> 155

 24387600 721 1.7656 5.29111 4.62352 AdAtom exchange 14: 155 --> 721

 24387800 355 1.42669 4.80304 4.66261 AdAtom exchange 15: 721 --> 355

 24387900 360 2.37186 5.56264 4.67703 AdAtom exchange 16: 355 --> 360

 24388000 9.5 5 -0.5 Bondbreak 5, offset increased after 3333

stabilization Attempts - cleanlist initiated

 Partial hop

B-3

 26338400 360 2.5266 5.77317 4.99102 AdAtom hop 7

 26338500 360 2.53634 5.65142 4.9374 AdAtom hop 8

 Partial hop

 27659900 360 2.50824 5.76985 4.97114 AdAtom hop 9

 27660000 360 2.3488 5.72157 5.00369 AdAtom hop 10

 27909500 Ovito adatom hop

 27909500 360 2.72245 5.80181 4.92102 AdAtom hop 11

 27912000 11.5 6 -0.5 Bondbreak 6, offset increased after 4582

stabilization Attempts - cleanlist initiated

 Partial hop

 29295900 360 2.96177 5.73346 4.99984 AdAtom hop 12

 29296000 360 2.99219 5.92086 4.90509 AdAtom hop 13

 Partial hop

 30155900 360 3.05125 5.72354 4.99004 AdAtom hop 14

 30156100 360 3.09707 5.93104 4.8884 AdAtom hop 15

 False positive

 31144100 360 3.03202 5.71508 4.98703 AdAtom hop 16

 31144200 360 2.92904 5.84779 4.91416 AdAtom hop 17

 False positive

 42859000 360 3.04886 5.72306 4.91062 AdAtom hop 18

 42859100 360 3.067 5.79358 4.91255 AdAtom hop 19

 False positive

 42941100 360 3.01938 5.70331 4.95364 AdAtom hop 20

 42941200 360 3.05552 5.86378 4.91598 AdAtom hop 21

 False positive

 46065900 360 2.97064 5.73081 4.87968 AdAtom hop 22

B-4

 46066000 360 2.99321 5.9147 4.90751 AdAtom hop 23

 False positive

 46881800 360 2.88805 5.74766 4.97824 AdAtom hop 24

 46882000 360 3.00325 5.86089 4.98731 AdAtom hop 25

 A complex event, visible also in Ovito

 52923000 507 3.64294 0.124562 4.65057 AdAtom exchange 17: 360 --> 507

 52923100 348 1.80587 4.40398 4.5965 AdAtom exchange 18: 507 --> 348

 52925100 13.5 7 -0.5 Bondbreak 7, offset increased after 36439

stabilization Attempts - cleanlist initiated

 Partial hop

 54258800 348 1.24301 4.39706 4.91066 AdAtom hop 26

 Partial hop

 57129100 348 1.77599 4.53515 4.99151 AdAtom hop 27

 Ovito Adatom Exchange 348 --> 355

 59043800 355 1.56937 5.28382 4.71711 AdAtom exchange 19: 348 --> 355

 59046600 15.5 8 -0.5 Bondbreak 8, offset increased after 8944

stabilization Attempts - cleanlist initiated

 Partial hop

 62042600 355 1.60237 5.75926 4.93523 AdAtom hop 28

 62042700 355 1.5561 5.66689 4.92021 AdAtom hop 29

 Partial hop

 65909600 355 1.55984 5.75041 4.92886 AdAtom hop 30

 65909700 355 1.62341 5.67187 4.93768 AdAtom hop 31

 66899800 Ovito AdAtom hop

 66902400 17.5 9 -0.5 Bondbreak 9, offset increased after 11242

stabilization Attempts - cleanlist initiated

B-5

 Partial hop

 67765200 355 0.743838 5.07257 4.94482 AdAtom hop 32

 Ovito AdAtom hop

 68524100 355 1.40745 5.43453 4.97359 AdAtom hop 33

 68526500 19.5 10 -0.5 Bondbreak 10, offset increased after 2330

stabilization Attempts - cleanlist initiated

 Ovito AdAtom hop or possible even double hop

 68698300 355 1.03073 5.95028 4.87233 AdAtom hop 34

 68700600 21.5 11 -0.5 Bondbreak 11, offset increased after 247

stabilization Attempts - cleanlist initiated

 Partial hop

 70821300 355 0.230689 0.593425 4.98846 AdAtom hop 35

 Partial hop

 70851300 355 0.800046 0.63666 4.95903 AdAtom hop 36

 Partial hop

 73472800 355 0.249506 0.551 4.88941 AdAtom hop 37

 Ovito AdAtom hop

 74252000 355 0.764472 0.699414 4.9193 AdAtom hop 38

 74254600 23.5 12 -0.5 Bondbreak 12, offset increased after 8001

stabilization Attempts - cleanlist initiated

 Ovito AdAtom hop

 78092800 355 1.28783 1.25162 4.97152 AdAtom hop 39

 78095200 25.5 13 -0.5 Bondbreak 13, offset increased after 5615

stabilization Attempts - cleanlist initiated

With visual analysis the adatom didn't move after that

B-6

Number of adatom hops is 39

Number of adatom exchanges is 19

Number of bond breaks is 13

Total number of adatom events is 58

Visual analysis with Ovito

10 adatom hops

2 adatom exchanges

1 complex event

13 in total

