
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 150–156
July 5 - July 10, 2020. c©2020 Association for Computational Linguistics

150

OpusFilter: A Configurable Parallel Corpus Filtering Toolbox

Mikko Aulamo and Sami Virpioja and Jörg Tiedemann
Department of Digital Humanities

University of Helsinki, Helsinki / Finland
{mikko.aulamo, sami.virpioja, jorg.tiedemann}@helsinki.fi

Abstract
This paper introduces OpusFilter, a flexible
and modular toolbox for filtering parallel cor-
pora. It implements a number of components
based on heuristic filters, language identifica-
tion libraries, character-based language mod-
els, and word alignment tools, and it can eas-
ily be extended with custom filters. Bitext seg-
ments can be ranked according to their qual-
ity or domain match using single features or a
logistic regression model that can be trained
without manually labeled training data. We
demonstrate the effectiveness of OpusFilter on
the example of a Finnish-English news trans-
lation task based on noisy web-crawled train-
ing data. Applying our tool leads to improved
translation quality while significantly reducing
the size of the training data, also clearly out-
performing an alternative ranking given in the
crawled data set. Furthermore, we show the
ability of OpusFilter to perform data selection
for domain adaptation.

1 Introduction

Data filtering tools are important to reduce the
noise fed into machine learning algorithms such as
the ones used in neural machine translation. This is
especially true for data sets with suspicious sources
like unrestricted web crawls or data sets that are
automatically extracted from complex data formats
such as PDF or HTML with all their different fla-
vors and implementations. Cleaning parallel cor-
pora is a special case in which not only the raw data
but also the quality of alignment between source
and target language needs to checked. The aligned
translations drive the mapping from input to the
output language as a strong supervision during the
training steps, and the amount of noise will have a
decisive impact on the adequacy of the translations.
The effect is especially severe for low resource set-
tings, in which little data is available, and each
mistake might directly influence the end result.

The interest in automatic bitext (i.e. bilingual
parallel corpora) filtering is constantly growing
pushed by the advances in neural machine trans-
lation. Khayrallah and Koehn (2018) show that
noisy training data is often more harmful for neural
translation models than statistical translation mod-
els. As a consequence, international evaluation
campaigns like the ones organised by WMT now
feature shared tasks on data cleaning and ranking
(Koehn et al., 2018, 2019). Various approaches
have been proposed based on such challenges and
directly benefit the development of MT engines in
low-resource settings.

This paper presents a framework for bitext clean-
ing, OpusFilter, focusing on processing data col-
lected in OPUS (Tiedemann, 2012), the world’s
largest resource of openly available parallel cor-
pora. In contrast to tools such as bicleaner
(Sánchez-Cartagena et al., 2018) and Zipporah (Xu
and Koehn, 2017), that implement a single method
for parallel corpus filtering, OpusFilter is designed
as a toolbox that is useful for testing and using
many different approaches. Below we describe the
design of OpusFilter and present its application in
the test case of filtering Finnish-English parallel
data included in ParaCrawl.

2 OpusFilter Toolbox

The OpusFilter toolbox is implemented in Python
3 and is available at https://github.com/

Helsinki-NLP/OpusFilter under the permissive
MIT open-source license. The main script provided
by the package is opusfilter, which takes a
configuration file as an input. The configuration
files are written in YAML syntax.1 A configura-
tion contains common global options (currently
only the output directory) and a list of steps that
are run one by one. There are different step types

1See https://yaml.org/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/334430723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/Helsinki-NLP/OpusFilter
https://github.com/Helsinki-NLP/OpusFilter


151

(functions) for downloading parallel corpora from
the OPUS database, combining and taking subsets
of the corpora, filtering and scoring segment pairs
with a combination of different filters, and training
and using a classifier based on the scores. The con-
figuration files for all our experiments are included
in the GitHub repository.

The input and output files for the functions are
defined in the configuration, and it is simple to
also use external data files. In contrast to common
text file processing tools, the OpusFilter functions
support the processing of parallel files that have
corresponding data on the same lines. Special at-
tention has been paid to make the processing of
large files memory-efficient: Full corpora are never
loaded into memory, but the segment pairs and
scores are processed one at a time if possible, and
in fixed-size chunks otherwise.

In this section, we describe the current func-
tionality of the OpusFilter toolbox. In the future,
we plan to include more functions for common
monolingual and parallel data processing opera-
tions. The ultimate goal is that all pre-processing
steps could be defined in a single configuration file
making it easy to share them for reproducing MT
experiments.

2.1 Downloading and selecting data

The first steps typically refer to data selection and
their preparation. Relevant data sets can be down-
loaded, concatenated, and divided into subsets.

opus read uses the OpusTools2 library to down-
load a specified parallel corpus from the OPUS cor-
pus collection, and stores it into two files (source
and target segments, one segment per line). There
are options for selecting a specified version of the
corpus and whether to download pre-tokenized or
untokenized segments.

Multiple files can be concatenated by the con-
catenate function. The head, tail, and slice func-
tions can be used to the lines from the top, bottom
or middle of the parallel input files. Furthermore,
subset takes a random subset of the selected size
from a corpus. It has an option to shuffle the target
language segments to produce examples of poor
translation pairs that can be used as negative exam-
ples in training a segment pair classifier. Finally,
split divides parallel files into two parts when given
the approximate proportions as fractions. The split
is based on a hash function, making it deterministic

2https://github.com/Helsinki-NLP/OpusTools

on the content of the input lines.

2.2 Filtering and Scoring

All filter classes implemented in OpusFilter are
applicable both for direct filtering of the data and
for producing a quality score for each segment pair.
If a filtering method does not produce any sensible
score, it should output 1 for acceptable pairs and 0
for unacceptable pairs. Any method that produces
one or more scores provides options for selecting
filtering thresholds for the scores.

The current filters implemented in OpusFilter
include (a) simple length-based filters (maximum
and minimum length and segment length ratio in
words or characters), (b) script and language identi-
fication filters, (c) filters that consider special char-
acters such as numbers and punctuation marks, (d)
filters that use probabilities from n-gram language
models, and (e) filters that use word alignment prob-
abilities. For a complete list, see the documentation
of the software.

The filters can be used by two functions:
filter applies a specified list of filters to a parallel

corpus and outputs those segments that pass all the
filters (or optionally those that do not).

score produces scores for the segment pairs in a
parallel corpus from the specified list of filters. The
scores are written in JSON Lines format, which is
easy to process, and for example simple to load as
a pandas3 DataFrame object.

There are also methods for using and processing
the score files: join is a function to combine sep-
arate score files to a single file, and sort sorts the
given input files based on the scores. Reordering
the data makes it convenient to remove noisy pairs
from the end of the sentence files.

In addition, OpusFilter implements re-
move duplicates for filtering out duplicate lines
from parallel corpora. The matching can be based
on any combination of the lines in the input files,
so that it is possible, for example, to make sure that
each target sentence occurs only once in a bitext.

2.3 Classification

The scores calculated by different filters can be
used as features for a classifier that predicts
whether a given segment pair is clean enough to be
used, for example, for training machine translation
models. Moreover, the classification probability

3https://pandas.pydata.org/



152

can be applied for sorting the data according to
their expected cleanliness.

The classification approach currently supported
by OpusFilter is inspired by Vázquez et al. (2019).
First, we take a set of sentence pairs and score them
using features produced by filters. This set is then
split into clean and noisy examples in order to be
used as the training data for a logistic regression
classifier. To choose the positive and negative ex-
ample pairs, we set a percentage threshold value for
all filter scores. Each sentence pair has to obtain
scores that are above the threshold percentile for
all filters in order to be considered clean; otherwise,
they are labeled noisy.

Unlike Vázquez et al. (2019), who manually
placed the threshold between the two peaks of a
score distribution in cases where the distribution is
bimodal, we implemented an automatic selection of
the optimal threshold to ensure a more convenient
usage of the OpusFilter toolbox. Multiple models
with different training data splits using different
thresholds can be trained in order to find the best
performing model. The minimum, maximum, and
initial percentage thresholds can be specified for
each score in the configuration file, and optimized
with a search algorithm. The optimization criterion
can be cross-entropy of the classifier4 or the area
under the receiver operating characteristics curve
(ROC AUC) based on a development set of scores
labeled as noisy or clean by the user.

Finally, once the logistic regression model is
trained and selected, it can be applied to each seg-
ment pair in a larger set of data to produce a single
cleanness score, which is the probability prediction
from the model. For classification, the following
functions have been implemented:

train classifier optimizes a classifier to predict
the cleanliness of the segment pairs using the pro-
cedure described above. The inputs are training
scores, the criterion to be used in the model op-
timization, search algorithm details for the opti-
mization, and a development set if the ROC AUC
criterion is used. The optimized classifier is written
to the specified output file.

classify assigns either a cleanness score or label
to each sentence in a data set. The inputs are the

4Also, Akaike Information Criterion (AIC) or Bayes In-
formation Criterion (BIC) can be applied, similarly to how
Vázquez et al. (2019) operate in cases where the score distri-
bution is not bimodal. However, they differ from the cross-
entropy only in the case that a feature can be completely
removed.

classifier file and the sentence pairs to be classified,
and the resulting scores or labels are written line
by line into a specified output file.

2.4 Custom Filters

The toolbox is extendable with custom filter classes
defined in Python. The filter classes should be
based on the abstract base class FilterABC and
implement two methods: score and accept.
The score method takes an iterator over segment
pairs, and yields a score object for each pair. The
score may either be a single number, or if multiple
score values need to be yielded, a dictionary that
has the numbers as values. The accept method
takes a single output yielded by the scoremethod,
and returns whether the segment pair should be ac-
cepted based on the score.

2.5 Studying Filter Scores

In addition to the main opusfilter script, there
is a separate tool opusfilter-scores for cal-
culating and plotting statistics from scored seg-
ment pairs. The commands include describe
for printing the basic statistics of the scores, hist
for plotting score histograms (see the example in
Figure 1a), corr for plotting a correlation matrix
of the scores (Figure 1b), and scatter-matrix
for drawing a matrix of scatter plots between the
values of different scores.

3 Experiments

To demonstrate the usefulness of the OpusFilter
toolbox, we show results from two main experi-
ments on the Finnish-English news translation task
(in both directions): (i) Filtering noisy data, and (ii)
applying domain adaptation.

For training, we use data from version 4 of the
ParaCrawl corpus (Esplà-Gomis et al., 2019). The
data is taken from a general internet crawl and con-
tains segments that are noisy and potentially harm-
ful for machine translation models. We use the
subset of the corpus that is already filtered by the
bicleaner tool5 (Sánchez-Cartagena et al., 2018).
This data set contains 2,156,069 segment pairs and
is ordered by the score from bicleaner, which en-
ables us to directly compare it to our tool. We cre-
ate five versions of the training data by removing
10%, 20%, 30%, 40% and 50% of the pairs from
the noisy end of the collection and train translation
models with the full data and with the five reduced

5https://github.com/bitextor/bicleaner



153

(a) Histograms of the scores. (b) Correlations between the scores.

Figure 1: Histograms and correlations of the score values used for training classifiers in the Finnish-English noise
filtering. CharacterScoreFilters have been excluded from histograms as their values are almost always one.

training sets. Next, we reorder the data with our
toolkit and again create new data sets by removing
data with the same proportions as previously.

We then apply data provided for the WMT news
translation task6 for validation and testing. In par-
ticular, we use newstest2018 as the development set
and newstest2019 as our test set for both language
directions. The translation models are trained with
the OpenNMT toolkit (Klein et al., 2017) using
RNN encoders and decoders with LSTM gates. All
training sets are tokenized with the tokenizer from
the mosesdecoder toolkit (Koehn et al., 2007) and
segmented with BPE (Sennrich et al., 2016) using
subword-nmt7 before feeding them to OpenNMT.

3.1 Ranking
Following Vázquez et al. (2019), we first produce
an initial filtering of the ParaCrawl corpus. For
this, we use the following heuristic filters from the
OpusFilter toolbox:

• LengthFilter: The length of the segments have
to be between 1 and 100 words.

• LengthRatioFilter: The maximum ratio be-
tween the source and target segments has to
be below 3.

• LongWordFilter: Exclude segment pair if any
word is longer than 40 characters.

• HtmlTagFilter: Exclude segment pairs with
any HTML tags.

• CharacterScoreFilter: All alphabetic charac-
ters have to be in Latin script.

The initial filtering removed only 8,055 (0.4%)
of the Finnish to English segment pairs, proba-

6http://www.statmt.org/wmt19/translation-task.html
7https://github.com/rsennrich/subword-nmt

bly because similar filters are already applied in
bicleaner when preparing the original data set. Nev-
ertheless, these steps are useful for creating data
to train models used in the later filtering meth-
ods. First, we train word alignment priors for the
model 3 of the eflomal tool8 (Östling and Tiede-
mann, 2016) and variable-length character n-gram
models for the source and target languages using
the VariKN toolkit9 (Siivola et al., 2007). In addi-
tion, we train a background language model that
combines the source and target languages of the un-
filtered corpus. We interpolate it with the language-
specific models with coefficient 0.01 to ensure that
we cover all characters that appear in the data.

Next, we take a random subset of 100,000 seg-
ment pairs from the corpus for training a logistic
regression classifier. To extract features for the lo-
gistic regression to be trained on, we use another
set of filters from the OpusFilter toolbox:

• CharacterScoreFilter: The proportion of Latin
characters among all alphabetic characters

• LanguageIDFilter: Confidence score from the
CLD2 language identification library10 if the
correct language is identified, or 0 otherwise

• TerminalPunctuationFilter: The ”term-punct”
score from Vázquez et al. (2019)

• NonZeroNumeralsFilter: The ”non-zero”
score from Vázquez et al. (2019)

• CrossEntropyFilter: Word-based cross-
entropies of the source and target sentences
from the respective character n-gram models

• WordAlignFilter: Unnormalized source-to-
8https://github.com/robertostling/eflomal
9https://github.com/vsiivola/variKN

10https://github.com/CLD2Owners/cld2



154

target and target-to-source alignment proba-
bilities obtained by eflomal

Figure 1a shows histograms of the scores over
the 100,000 training segments pairs in the data, pro-
duced by the opusfilter-scores tool. The
distribution of the cross-entropy values is quite
unimodal, indicating that such a score alone does
not make a clear division of the segment pairs as
clean or noisy. Language identification scores are
mostly close to one, but zero for a small fraction of
the segments, indicating that they contain incorrect
languages. Also, non-zero numerals and terminal
punctuation scores show that a small number of
samples look problematic. Word alignment scores
have an interesting close-to-bimodal distribution.
Smaller values indicate better alignment, so the
lower peak is for more problematic segment pairs.

The correlations of the scores over the training
data are illustrated in Figure 1b. As excepted, the
same scores for source and target segments cor-
relate slightly for all scores and highly for the
cross-entropy and alignment scores. Also, non-
zero numerals and terminal punctuation filters cor-
relate slightly, indicating segment pairs that have
both different punctuation marks and numbers, thus
likely to be poor translations. Finally, cross-entropy
scores for the source language (Finnish) have a
moderate correlation with the alignment scores. As
it is likely that the English side has mostly been the
original text, problems in the fluency of the transla-
tion seem to also indicate issues in its adequacy.

3.2 Results

In this section, we compare the results of models
trained with data in the original (bicleaner) order
and in the order of our classifier using the differ-
ent data splits described above. We also test the
ROC AUC model for which we created a small
development set of 200 randomly selected segment
pairs that have manually been annotated as noisy
or clean (100 examples each). A pair was anno-
tated noisy only in the case of serious problems;
sentences with single translation errors or relatively
poor fluency were still considered clean.

Figure 2 provides an overview of the results for
Finnish to English. We can see that our filtering
method is very effective. Removing noisy data
according to the ranking produced by our tool im-
proves the BLEU score compared to the model that
applies the whole ParaCrawl data. In contrast, re-
moving data based on the original ParaCrawl order

Figure 2: BLEU scores for Finnish-English translation
models trained with data that is pruned based on differ-
ent ranking orders. The reported BLEU values show
the mean of six translation models. The 100-mark bar
shows the score when using the whole ParaCrawl cor-
pus for training.

degrades the BLEU score at all cutoff points. When
using cross-entropy based sorting of the data, cut-
ting off 40% of the lowest scoring training pairs
increased BLEU by 0.67 points when compared to
using the full training set. If more than 40% of the
data is removed, the BLEU score starts to decrease.
Surprisingly, ROC AUC based sorting, which re-
quires a manually annotated development set, pro-
duces worse results than cross-entropy. ROC AUC
reaches a maximum gain of 0.26 BLEU points over
using the whole data set when 20% of the data is
truncated from the noisy end.

Figure 3: BLEU scores for English-Finnish translation
models.

English to Finnish translations show similar re-
sults, as illustrated in figure 3, although the BLEU
scores are overall lower as it is common in systems
translating into morphologically rich languages.
Again, cross-entropy based models perform better
than ROC AUC based ones: at 80% cutoff cross-



155

entropy model has 0.18 point and ROC AUC model
has 0.12 point improvement over using the whole
data. The increases in scores are more modest in
English to Finnish translations than in Finnish to
English translations.

As seen in Table 1, the cross-entropy based lo-
gistic regression model sets the weights of the
cross-entropy language model filters and the word
alignment filters very close to zero, while setting
stronger weights for all other filters compared to
the ROC AUC model. Detecting the correct lan-
guage and having similar numerals in both sides of
the sentence pairs seem to be the most important
factors for the cleaning task, as their corresponding
filters have by far the highest weights.

CE ROC AUC
Intercept -4.63 -4.73
CharacterScoreFilter.src 1.75 0.77
CharacterScoreFilter.tgt 1.22 0.65
CrossEntropyFilter.src -0.12 0.40
CrossEntropyFilter.tgt -0.01 0.83
LanguageIDFilter.cld2.src 31.33 11.30
LanguageIDFilter.cld2.tgt 8.39 6.57
NonZeroNumeralsFilter 14.36 13.03
TerminalPunctuationFilter 2.57 0.82
WordAlignFilter.src -0.15 0.53
WordAlignFilter.tgt -0.04 0.87

Table 1: Logistic regression weights for models chosen
with cross-entropy and ROC AUC for each filter score
in the Finnish-English experiment. Positive weight is
for the pairs that are predicted as clean.

3.3 OpusFilter for Domain Adaptation

Besides of generally cleaning noisy training data,
OpusFilter can also be used to select training data
that is similar and appropriate for translation tasks
in specific domains. To demonstrate this, we con-
duct the following domain adaptation experiment.

We use, again, newstest2019 for testing and new-
stest2018 as development data. To adapt to the
news domain, we now take in-domain data from
previous years of the news translation task concate-
nating test sets from 2015, 2016 and 2017 for both
Finnish and English. In total, this gives us 7372 sen-
tence pairs that we apply to train n-gram language
models for the news domain for both languages
using the OpusFilter’s train ngram feature.

In Finnish to English translations, the best BLEU
score is achieved using 60% of the full training
data. To see whether we can reach a higher score
by removing training examples that do not fit the
news domain, we first select 70% of the cleanest

ParaCrawl data based on the order from our cross-
entropy optimized classifier. Next, we use our pre-
viously trained news domain language models to as-
sign a new score with CrossEntropyFilters for each
sentence in both languages in our 70% data. We
sort the data based on the language model scores
and remove data from the noisy end to create 60%
and 50% data sets that reflect the additional domain
adaptation. Note that these percentage cutoff points
refer to proportions from the full ParaCrawl data
set, so the absolute number of sentence pairs is the
same as in the other data sets used in the previous
experiments. Finally, we apply those news-domain-
adapted data sets to train translation models in the
same way as before.11

The results are included in Figures 2 and 3. In
all cases, the domain filtering leads to an improve-
ment compared to the corresponding noise-filtered
model. At the 70% mark, the results are very simi-
lar as the training sets are essentially the same. The
Finnish to English model improves the score by
0.23 BLEU points over the noise-filtered model at
the 60% mark. The English to Finnish model pro-
duces similar results but with lower scores. Those
results demonstrate the effectiveness of OpusFilter
to also perform data selection for domain adap-
tation without further annotation and additional
components.

4 Conclusions and Future Work

This paper introduces OpusFilter, a modular tool
for parallel data selection and ranking. OpusFilter
can easily be configured to work with OPUS data
and various filters to train effective classifiers in
order to rank bitext segments. We demonstrate its
use in a Finnish-English translation task based on
the noisy ParaCrawl data used for training. The
classifiers can be trained without human annota-
tion, and the automatic model selection methods
implemented in the toolbox lead to a similar per-
formance compared to classifiers based on small
manually labeled validation data. OpusFilter is
open source and distributed with a permissive li-
cense to make it widely applicable. In future work,
we would like to extend the toolbox with additional
filters and classification options. One option could
be the inclusion of sentence embedding based filter-
ing (Guo et al., 2018). Additionally, we would like
to explore OpusFilter’s use in different scenarios
and for other language pairs. Especially interesting

11The WMT testsets are not included in training the models.



156

would be the application in low-resource settings
and various levels of noise in the original data. Fur-
thermore, the use for domain adaptation and data
selection should be further explored.

Acknowledgments

This work is part of the FoTran project,
funded by the European Research
Council (ERC) under the European
Union’s Horizon 2020 research and
innovation programme (grant agree-

ment № 771113), as well as the MeMAD project,
funded by the European Union’s Horizon 2020
Research and Innovation Programme (grant agree-
ment № 780069).

References
Miquel Esplà-Gomis, Mikel L Forcada, Gema

Ramı́rez-Sánchez, and Hieu Hoang. 2019.
Paracrawl: Web-scale parallel corpora for the
languages of the eu. In Proceedings of Machine
Translation Summit XVII Volume 2: Translator,
Project and User Tracks, pages 118–119.

Mandy Guo, Qinlan Shen, Yinfei Yang, Heming
Ge, Daniel Cer, Gustavo Hernández Ábrego, Keith
Stevens, Noah Constant, Yun-Hsuan Sung, Brian
Strope, and Ray Kurzweil. 2018. Effective parallel
corpus mining using bilingual sentence embeddings.
CoRR, abs/1807.11906.

Huda Khayrallah and Philipp Koehn. 2018. On the
impact of various types of noise on neural machine
translation. In Proceedings of the 2nd Workshop on
Neural Machine Translation and Generation, pages
74–83, Melbourne, Australia. Association for Com-
putational Linguistics.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proc. ACL.

Philipp Koehn, Francisco Guzmán, Vishrav Chaud-
hary, and Juan Pino. 2019. Findings of the wmt
2019 shared task on parallel corpus filtering for
low-resource conditions. In Proceedings of the
Fourth Conference on Machine Translation (Volume
3: Shared Task Papers, Day 2), pages 56–74, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In

Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Philipp Koehn, Huda Khayrallah, Kenneth Heafield,
and Mikel L. Forcada. 2018. Findings of the wmt
2018 shared task on parallel corpus filtering. In Pro-
ceedings of the Third Conference on Machine Trans-
lation, Volume 2: Shared Task Papers, pages 739–
752, Belgium, Brussels. Association for Computa-
tional Linguistics.

Robert Östling and Jörg Tiedemann. 2016. Effi-
cient word alignment with Markov Chain Monte
Carlo. Prague Bulletin of Mathematical Linguistics,
106:125–146.

Vı́ctor M. Sánchez-Cartagena, Marta Bañón, Sergio
Ortiz-Rojas, and Gema Ramı́rez-Sánchez. 2018.
Prompsit’s submission to wmt 2018 parallel cor-
pus filtering shared task. In Proceedings of the
Third Conference on Machine Translation, Volume
2: Shared Task Papers, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers).

Vesa Siivola, Teemu Hirsimäki, and Sami Virpi-
oja. 2007. On growing and pruning Kneser-Ney
smoothed n-gram models. IEEE Transactions on Au-
dio, Speech and Language Processing, 15(5):1617–
1624.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the 8th Interna-
tional Conference on Language Resources and Eval-
uation (LREC’12), Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Raúl Vázquez, Umut Sulubacak, and Jörg Tiedemann.
2019. The university of Helsinki submission to the
WMT19 parallel corpus filtering task. In Proceed-
ings of the Fourth Conference on Machine Transla-
tion (Volume 3: Shared Task Papers, Day 2), pages
294–300, Florence, Italy. Association for Computa-
tional Linguistics.

Hainan Xu and Philipp Koehn. 2017. Zipporah: a
fast and scalable data cleaning system for noisy web-
crawled parallel corpora. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2945–2950, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

http://arxiv.org/abs/1807.11906
http://arxiv.org/abs/1807.11906
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
http://www.aclweb.org/anthology/W19-5404
http://www.aclweb.org/anthology/W19-5404
http://www.aclweb.org/anthology/W19-5404
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/P07-2045
http://www.aclweb.org/anthology/W18-6454
http://www.aclweb.org/anthology/W18-6454
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.18653/v1/W19-5441
https://doi.org/10.18653/v1/W19-5441
https://doi.org/10.18653/v1/D17-1319
https://doi.org/10.18653/v1/D17-1319
https://doi.org/10.18653/v1/D17-1319

