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ABSTRACT 

Cardiometabolic diseases such as metabolic syndrome and non-alcoholic fatty liver disease 
(NAFLD) are risk factors for cardiovascular disease and type 2 diabetes. NAFLD can be seen 
as the hepatic manifestation of the metabolic syndrome and obesity increases the disease risk, 
but also a genetic component plays a role in the development of NAFLD. The I148M variant 
of PNPLA3 (PNPLA3I148M) and E167K variant of TM6SF2 (TM6SF2E167K) have been 
strongly associated with NAFLD. However, these variants cause a fatty liver without systemic 
metabolic complications, and TM6SF2E167K has even been shown to protect from myocardial 
infarction. New treatment possibilities for cardiovascular diseases have risen from studies of 
loss-of-function (LOF) variants of ANGPTL3. Subjects lacking ANGPTL3 have increased 
activity of lipoprotein lipase (LPL), low plasma levels of VLDL, LDL and HDL as well as 
increased insulin sensitivity.  
 
In this thesis study we aimed to elucidate the function of PNPLA3 and TM6SF2 in lipid 
metabolism of human hepatocytes, and to clarify the mechanism underlying the association 
between the variants of these genes and increased hepatic lipid accumulation. We also 
investigated the function of ANGPTL3 in human hepatocytes and characterized the plasma 
lipoprotein lipidomes of subjects homozygous for ANGPTL3 LOF variants. In these studies, 
we utilized different lipidomics approaches as well as complementary methods such as 
microscopy and transcriptomics.  
 
We found using labelled lipid precursors that overexpression of PNPLA3I148M in hepatocytes 
leads to a net accumulation of unlabelled triacylglycerols (TAGs) when compared to PNPLA3 
wild type (PNPLA3WT) overexpressing or control cells, but the level of newly synthesized 
TAGs did not change. Closer examination of the lipid species profiles and further experiments 
led us to the conclusion that PNPLA3 is a remodelling protein that transfers fatty acids from 
TAG to phosphatidylcholine (PC) and that PNPLA3I148M performs this function less 
efficiently, which may lead to increased hepatic TAG levels. The noticed lipid accumulation 
could also be related to a more extensive association of PNPLA3I148M to lipid droplets 
compared to PNPLA3WT, which was also observed in our study.  
 
We mimicked the effect of TM6SF2E167K by knocking down TM6SF2 in hepatocytes. 
TM6SF2 depletion increased the level of TAGs and cholesterol esters (CEs) and changed the 
membrane lipid composition of the cells by reducing the amount of polyunsaturated fatty 
acids (PUFAs) and increasing the levels of saturated and monounsaturated fatty acids in the 
lipids. The size of the lipoprotein-like particles secreted by the TM6SF2 deficient cells was 
reduced, as was β-oxidation of fatty acids. Both of these observations could explain the 
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increased lipid accumulation caused by TM6SF2 depletion. In addition, TM6SF2 knock-
down increased lipid turnover and the amount of late endosomes/lysosomes in the cells. 
 
Depletion of ANGPTL3 in hepatocytes lead to PUFA enrichment in major membrane 
phospholipids and CEs, and the production of PUFA-derived lipid mediators was also 
increased. In addition, the total level of CEs as well as their synthesis was reduced in 
ANGPTL3 depleted cells. An examination of the lipidome of lipoproteins derived from 
ANGPTL3 deficient or control subjects revealed that, in addition to reducing the total levels 
of all lipid classes, ANGPTL3 deficiency modifies the species composition of the core and 
surface lipids of lipoproteins, which likely reflects the increased activity of LPL. 
 
These findings increase the knowledge on how genetic NAFDL caused by PNPLA3I148M or 
TM6SF2E167K variant develops and how ANGPTL3 depletion affects the liver and the secreted 
lipoproteins. This information provides tools for creating future prevention and treatment 
strategies for cardiometabolic diseases.   
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1 INTRODUCTION 

A global rise in the prevalence of obesity has led to the increase in cardiometabolic diseases 
such as metabolic syndrome and related non-alcoholic fatty liver disease (NAFLD) (James et 
al. 2004, Diehl et al. 2019), which are risk factors for cardiovascular disease and type 2 
diabetes (Wilson et al. 2005, Byrne and Targher 2015, Brouwers et al. 2020). The reasons 
behind the increasing rate of obesity are many and complex (Qasim et al. 2018), but 
undoubtedly the changes in lifestyle with less physical activity and diets high in saturated fat 
and sugar play an important role (James et al. 2004, Johns et al. 2015). Although in the last 
decades cardiovascular disease mortality has been falling in high-income countries, it has 
increased in low- and middle-income countries (Miranda et al. 2019), and the prevalence of 
NAFLD is still increasing worldwide (Younossi et al. 2016), as is the incidence of type 2 
diabetes (Chatterjee et al. 2017). Cardiometabolic diseases are not merely a problem of the 
adult population since NAFLD can develop already in the childhood (Chalasani et al. 2018) 
and the pathological processes behind cardiovascular diseases can be set off during the first 
two decades of life (McGill et al. 2000). Hence different treatment and prevention options for 
these diseases are urgently needed, and the development of these new strategies requires 
deeper understanding of the mechanisms behind the conditions. 
 
Genetic variants can both cause cardiometabolic diseases and prevent them from developing, 
thus providing possibilities for studying the mechanisms of disease development as well as 
prevention and treatment strategies. NAFLD is the most common cause of liver disease 
worldwide and it is considered as the hepatic manifestation of metabolic syndrome (Kotronen 
and Yki-Järvinen 2008). However, it is not a homogenous disease caused only by an 
unfavourable lifestyle, as genetics also plays a part in the disease risk. Variants of genes 
patatin-like phospholipase domain-containing 3 (PNPLA3) and transmembrane 6 superfamily 
member 2 (TM6SF2) cause a fatty liver disease that is in many ways different from the so 
called metabolic NAFLD that is associated with obesity (Romeo et al. 2008, Kozlitina et al. 
2014). Genetic NAFLD caused by the I148M variant of PNPLA3 (PNPLA3I148M) or the 
E167K variant of TM6SF2 (TM6SF2E167K) is not associated with insulin resistance but is 
histologically more severe than the obesity-associated form of the disease (Kantartzis et al. 
2009, Rotman et al. 2010, Liu, Y. L. et al. 2014, Zhou et al. 2015). Interestingly, TM6SF2E167K 
shows also cardioprotective effects as the lipids that would otherwise be secreted into 
circulation are retained in the liver (Holmen et al. 2014, Mahdessian et al. 2014). These 
variants of PNPLA3 and TM6SF2 were described in 2008 and 2014, respectively, and at the 
time of performing the studies described in publications I and II of this thesis, the functions 
of the wild type proteins as well as the mechanisms how their variants are causing NAFLD 
were not clear.  
 
Loss-of-function (LOF) variants of angiopoietin-like 3 (ANGPTL3) are examples of genetic 
mutations that have evident cardiometabolic benefits protecting from the development of 
atherosclerotic cardiovascular disease (Dewey et al. 2017, Stitziel et al. 2017). ANGPTL3 is 
an inhibitor of lipoprotein lipase (LPL) (Shimizugawa et al. 2002), which hydrolyses 
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circulating lipoproteins (Merkel et al. 2002). Studies of subjects having no circulating 
ANGPTL3 suggest that complete ANGPTL3 deficiency induces a favourable plasma lipid 
profile characterized by distinct reduction of all plasma lipids with no evident complications 
(Minicocci et al. 2012, Stitziel et al. 2017), and two different therapeutic approaches of 
ANGPTL3 inhibition are already being tested in clinical drug trials. The first approach is a 
monoclonal antibody against the circulating protein and the other drug is an antisense 
oligonucleotide targeting hepatic ANGPTL3 (Dewey et al. 2017, Graham et al. 2017). Until 
now, only a limited amount of data has been published on the consequences of hepatic 
ANGPTL3 inhibition, and the effects of ANGPTL3 deficiency on the lipid profile of 
circulating lipoproteins have not been studied in detail. 
 
The purpose of this thesis project was to clarify the functions of PNPLA3, TM6SF2 and 
ANGPTL3 in hepatic lipid metabolism (publications I, II and III, respectively). Also the 
mechanisms behind hepatic fat accumulation caused by the PNPLA3I148M and TM6SF2E167K 
variants were examined (publications I and II) and the detailed lipid profile of lipoproteins of 
ANGPTL3 deficient subjects was determined (publication III). Here, I first describe the 
physiological processes of hepatic lipid metabolism that were studied in publications I-III. 
Then I examine the aforementioned genetic variants in the context of cardiometabolic diseases 
and summarise the relevant literature on these variants. Finally, I present and discuss the 
findings of publications I-III.  
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2 REVIEW OF THE LITERATURE 

2.1 Different roles of lipids 
 
Lipids are classified based on their chemical structure, special focus being on their 
hydrophobic and hydrophilic components (Fahy et al. 2005). The chemistry of different lipids 
also defines their role in the cell; neutral lipids can be packed into lipid droplets and 
lipoproteins for storage and transport, respectively (Farese and Walther 2009, Tiwari and 
Siddiqi 2012), and amphipathic lipids are able to form membranes that allow the 
compartmentalization of a cell (van Meer et al. 2008) and provide precursors for signalling 
cascades (Wymann and Schneiter 2008). 
 

2.1.1 Lipids as energy storage 
 
All eukaryotic cells possess the ability to store lipids in specialized structures called lipid 
droplets (Ottaviani et al. 2011), which have a core of neutral lipids, namely cholesterol esters 
(CE) and triacylglycerols (TAG), surrounded by a phospholipid monolayer (Farese and 
Walther 2009). Vertebrates have also developed a dedicated cell type for storing lipids, the 
adipocytes (Ottaviani et al. 2011), which form the adipose tissue that is the most important 
long-term energy storage in mammals (Murphy and Vance 1999). During times of energy 
deprivation, lipid stores can be used for energy production; the hydrolysed acyl chains in β-
oxidation, acetyl-CoA subsequently in ketogenesis, and the glycerol backbone in 
gluconeogenesis (Rui 2014). In addition to adipocytes, also other cell types, like hepatocytes 
and enterocytes, are able to store fat, but usually this storage is short-term and followed by 
secretion of neutral lipids in lipoproteins (Murphy and Vance 1999, Tiwari and Siddiqi 2012). 
If this balance is disturbed for example due to excess lipid accumulation in the adipose tissue 
i.e. obesity, lipids can start to accumulate in the liver leading to the development of a fatty 
liver (Vanni et al. 2010, Ipsen et al. 2018).   
 

2.1.2 Lipids in membranes 
 
Amphipathic lipids, which have both a hydrophilic and a hydrophobic element, form the basic 
structure of all membranes (van Meer et al. 2008). In lipid bilayers, such as the plasma 
membrane, endoplasmic reticulum (ER) and membranes of the Golgi and mitochondria, the 
hydrophilic head groups of the lipids point towards the aqueous environment while the 
hydrocarbon tails form a hydrophobic core of the membrane (van Meer and de Kroon 2011, 
Kimura et al. 2016). Phosphatidylcholine (PC) is the most abundant lipid in most mammalian 
membranes contributing roughly 50 % of the total phospholipids, the other major lipids 
contributing to the structure of the membrane being phosphatidylethanolamine (PE), 
phosphatidylserine (PS) and phosphatidylinositol (PI) (van Meer et al. 2008). There are also 
specialized areas called lipid rafts in cell membranes, which are enriched in other important 
membrane lipids sphingomyelin (SM), glycosphingolipids and cholesterol (Simons and 
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Ikonen 1997). The lipid rafts are thought to play a role in intracellular signalling (Simons and 
Ikonen 1997, Foster et al. 2003). In addition to having different microdomains, membrane 
bilayers are asymmetric; PC and SM are mainly distributed to the outer leaflet, and the main 
part of PE, PS and PI are found in the inner leaflet of the membrane facing the cytosol 
(Zachowski 1993). Cholesterol, however, can move readily between the bilayer leaflets 
compared to phospholipids and appears to be relatively evenly distributed between the inner 
and outer leaflet, although the distribution of cholesterol in the plasma membrane remains a 
matter of debate.  (Bennett et al. 2009, Giang and Schick 2016, Steck and Lange 2018). 
 
The structural properties and shape of phospholipids affect the packing and curvature of 
membranes. PC has a relatively large headgroup that together with the fatty acid tails gives it 
a cylinder-like shape, whereas PE has a smaller headgroup taking less space than its usually 
unsaturated acyl chains making PE a cone-shaped lipid that introduces negative curvature to 
membranes (Marsh 2007, van Meer et al. 2008, Somerharju et al. 2009). The packing of a 
membrane is affected by both the headgroups of lipids (Somerharju et al. 2009) and their fatty 
acid tails, unsaturated fatty acids making the membrane more fluid (Stubbs and Smith 1984, 
Small 1984). The properties of membranes define the environment for proteins, and lipid-
protein interactions also affect the stability and function of integral and transmembrane 
proteins (Marsh 2007). 
 

2.1.3 Lipids in cellular signalling 
 
Membranes are important sites of cellular signalling, and especially lipid raft areas are 
enriched in proteins involved in signalling processes (Simons and Ikonen 1997, Foster et al. 
2003). Although individual lipid rafts are small, 10–200 nm in size,  they can compose a 
relatively large proportion of the plasma membrane (Hao et al. 2001, Pike 2003, Pike 2006). 
Rafts are not identical in their protein composition and they can gather together functional 
assemblies of proteins dedicated for specific tasks like cellular signalling (Pike 2003, Foster 
et al. 2003). Lipid rafts are thought to participate in controlling signal transduction in many 
ways. For example, rafts containing different signalling proteins can fuse thus activating 
signalling pathways, or quite the contrary, rafts can inactivate signalling by creating spatial 
segregation of interacting components (Pike 2003). 
 
Different types of phospholipases hydrolyse amphipathic lipids yielding both hydrophobic 
and hydrophilic molecules that can transmit a signal within the membrane and through the 
cytosol, respectively (Dennis et al. 1991, van Meer et al. 2008). Phospholipase A1 (PLA1) 
mediated hydrolysis releases a fatty acid from the first carbon or sn-1 position of the glycerol 
backbone of a phospholipid producing for example lysoPA, which is an active mediator of 
lipid signalling (Aoki et al. 2007, Meyer zu Heringdorf and Jakobs 2007). Similarly, different 
phospholipase A2 (PLA2) isoforms free a fatty acid from the sn-2 position of a phospholipid 
yielding also a corresponding lysolipid (Burke and Dennis 2009). The fatty acid in the sn-2 
position is usually a polyunsaturated fatty acid (PUFA) (MacDonald and Sprecher 1991), 
which can be used for the production of bioactive lipid mediators (Buckley et al. 2014, Dennis 
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and Norris 2015). These eicosanoids and docosanoids play a comprehensive role for example 
in the initiation and resolution of acute inflammation (Buckley et al. 2014, Dennis and Norris 
2015). 
 
Phospholipase C cleaves the bond between the glycerol backbone and the phosphate group of 
a phospholipid (Dennis et al. 1991). The function of phospholipase C on phosphorylated PI 
derivatives releases inositol phosphates and diacylglycerols (DAGs), which are both 
intracellular second messengers with a wide range of downstream effects (Berridge 2016). 
Sphingomyelinases remove the phosphocholine headgroup of SM releasing ceramide, which 
can again be metabolised into sphingosine, sphingosine-1-phosphate and ceramide-1-
phosphate, all of which possess signalling capacity (Futerman and Hannun 2004). 
Phospholipase D acts mainly on PC releasing choline and phosphatidic acid (PA), but it also 
hydrolyses other phospholipids (Dennis et al. 1991, Wang et al. 2006). PA is targeting for 
example proteins involved in vesicular trafficking, G protein regulation and 
phosphorylation/dephosphorylation of proteins and lipids (Wang et al. 2006). Disruption or 
imbalance of lipid signalling pathways can lead to many adverse effects, such as development 
of chronic inflammation, metabolic syndrome, atherosclerosis and cancer (Wymann and 
Schneiter 2008). 
 

2.2 Hepatic lipid metabolism 
 
The liver is a motor of human metabolism. It orchestrates important metabolic functions such 
as lipid synthesis and oxidation, which are also coupled to glucose metabolism (Rui 2014). 
The liver is able to shunt excess energy derived from carbohydrate and protein into de novo 
lipogenesis in the form of acetyl-CoA (Acheson et al. 1988, Charidemou et al. 2019), and is 
a crucial player in lipoprotein metabolism as it both takes up and secretes lipoproteins (Jones 
et al. 1984, Tiwari and Siddiqi 2012). 

 

2.2.1 Lipid synthesis 
 
In addition to the adipose tissue and intestine, the liver is a key site of lipid synthesis in humans 
(Rui 2014). The ER is the organelle where a majority of the reactions of lipid synthesis occur, 
but also Golgi, mitochondria and peroxisomes play a part in the process (Fagone and 
Jackowski 2009). Lipid synthesis is under both hormonal and transcriptional regulation 
(Wang and Viscarra et al. 2015). 
 

2.2.1.1   Fatty acid synthesis 
 

In mammals, fatty acid synthesis takes place mainly in the liver, adipose tissue and lactating 
mammary gland (Pearce 1983).  Acetyl-CoA, the starting substrate in the process, can be 
derived originally from either carbohydrate or protein sources (Acheson et al. 1988, 



 

6 
 

Charidemou et al. 2019). An enzyme complex named fatty acid synthase is responsible for a 
series of reactions in which acetyl-CoA, malonyl-CoA and NAPDH are utilized to yield 
mainly palmitate (16:0) (Jensen-Urstad and Semenkovich 2012).  Palmitate can be further 
elongated by elongases that add two-carbon units from acetyl-CoA into the carboxyl end of 
the fatty acid, and desaturated by the function of Δ9-desaturase (stearoyl-CoA desaturase-1, 
SCD1) (Figure 1) (Guillou et al. 2010). It should be noted that essential fatty acids linoleic 
acid (18:2n-6) and α-linolenic acid (18:3n-3) must be obtained from the diet since they cannot 
be synthesized de novo. These essential fatty acids can, however, be further elongated and 
desaturated by Δ6- and Δ5-desaturases (fatty acid desaturase, FADS1 and 2, respectively) to 
yield long-chain and very long-chain n-6 and n-3 series polyunsaturated fatty acids (Figure 
1) (Guillou et al. 2010).  
 
De novo fatty acid synthesis is under hormonal control of insulin and glucagon, and the 
activity of enzymes involved in the fatty acid synthesis is adjusted mainly by transcriptional 
control of glycolytic and lipogenic genes (Horton et al. 2002, Rui 2014, Wang and Viscarra 
et al. 2015). Glucose stimulates carbohydrate response element binding protein (ChREBP), 
which activates lipogenic genes such as fatty acid synthase and stearoyl-CoA desaturase-1 
(Iizuka 2017). Insulin induces and glucagon downregulates sterol regulatory element–binding 
proteins (SREBPs) that are also referred to as master regulators of lipid metabolism (Eberle 
et al. 2004, Rui 2014). In addition to activating fatty acid synthesis, SREBPs also increase the 
expression of the key genes of cholesterol synthesis (Eberle et al. 2004).  
 

 
 

16:0

De novo pathway

18:0
elongase

18:1n-9

18:2n-9

24:0
16:1n-7

elongase 18:1n-7

20:2n-9

20:3n-9

24:1n-9
Δ9-desaturase

elongase

Δ9-desaturase

Essential fatty acids
derived from diet

18:2n-6 18:3n-3

18:4n-318:3n-6

20:4 n-320:3n-6

20:5n-320:4n-6

22:5n-322:4n-6

Δ6-desaturase

elongase

Δ5-desaturase

22:6n-322:5n-6

Δ6-desaturase

elongase

Δ5-desaturase

elongase

elongase

Δ6-desaturase
peroxisomal
β-oxidation

elongase

n-6 and n-3 pathways
Precursor produced by

fatty acid synthase Glycerol-3-phosphate

Kennedy pathway

Lysophosphatidic acid

Phosphatidic acid

DAG Cytidine
diphospho-DAG

TAG PC
PE

PI 
PG
Cardiolipin

PS

GPAT

PAP

AGPAT (LPAAT)

DGAT

Figure 1. Simplified overview of fatty acid synthesis and de novo glycerophospholipid synthesis (Shindou 
and Shimizu 2009, Guillou et al. 2010). GPAT=glycerol-3-phosphate acyltransferase, 
AGPAT=acylglycerol-phosphate acyltransferase, LPAAT=lysophosphatidic acid acyltransferase, 
PAP=phosphatidic acid phosphatase, DGAT=diacylglycerol acyltransferase, DAG=diacylglycerol, 
TAG=triacylglycerol, PC=phosphatidylcholine, PE=phosphatidylethanolamine, PS=phosphatidylserine, 
PI=phosphatidylinositol, PG=phosphatidylglycerol. 
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2.2.1.2   TAG synthesis 
 
The main sites of de novo TAG synthesis are the liver and adipose tissue where TAG is 
produced via the glycerol-3-phosphate (i.e. Kennedy) pathway in the ER of the cells (Lehner 
and Kuksis 1996, Ameer et al. 2014). In the liver, the glycerol-3-phosphate needed for this 
pathway is derived from plasma glycerol by the action of glycerol kinase or by the reduction 
of a glycolytic intermediate dihydroxyacetone phosphate, and from glyceroneogenesis in 
which glycerol is produced de novo from pyruvate (Kalhan et al. 2001). Fatty acids used in 
TAG synthesis are either synthesized de novo or derived from dietary lipids or endogenous 
adipose tissue (Lehner and Kuksis 1996). Fatty acids are incorporated into to the glycerol-3-
phosphate backbone in a stepwise manner (Figure 1). First sn-1-glycerol-3-phosphate 
acyltransferase catalyses the formation of lysophosphatidic acid, which in turn is acylated into 
PA by sn-1-acylglycerol-3-phosphate acyltransferase (Lehner and Kuksis 1996, Coleman and 
Mashek 2011). Next PA phosphatase hydrolyses PA to form DAG, which is finally esterified 
into TAG by DAG acyltransferase (Lehner and Kuksis 1996, Kalhan et al. 2001, Coleman 
and Mashek 2011). TAG can also be produced from monoacylglycerol by the function of 
monoacylglycerol acyltransferase and DAG acyltransferase (Quiroga and Lehner 2012) and 
it has been suggested that glycerol could be directly acylated into monoacylglcerol in 
mammalian tissues through a direct acylation pathway (Lee et al. 2001). 
 

2.2.1.3   Phospholipid synthesis  
 
The first steps of de novo synthesis of glycerophospholipids are the same as described above 
for TAG synthesis and depending on the phospholipid class the pathways diverge once PA or 
DAG has been synthesized (Figure 1). A majority of the reactions of phospholipid synthesis 
take place in the ER, but also the Golgi, mitochondria and peroxisomes have their roles in the 
process (Fagone and Jackowski 2009). PI, phosphatidylglycerol, and cardiolipin are 
synthesized from cytidine diphospho-DAG, which is derived from PA (Shindou and Shimizu 
2009, Blunsom and Cockcroft 2020), while the two most abundant phospholipids of 
mammalian cells, PC and PE, are synthesized from DAG (Smith et al. 1957, Bleijerveld et al. 
2007). Ether PC and PE, which are defined by an ether bond at the sn-1 position of the glycerol 
backbone, are derived from an acylated form of dihydroxyacetone phosphate through the 
function of peroxisomal enzymes (van den Bosch and de Vet 1997).  In mammalian cells, 
phosphatidylserine (PS) is synthesized solely though exchanging the head-group of an 
existing phospholipid for L-serine (Kuge and Nishijima 1997), and inversely, PE can also be 
derived from decarboxylation of PS in the mitochondrial membrane (Vance 1990, Bleijerveld 
et al. 2007). 
 
SM is a sphingolipid analogue of PC since it has a phosphorylcholine headgroup attached to 
the sphingoid base component of a ceramide. SM is formed when SM synthase transfers a 
phosphorylcholine headgroup from PC to ceramide yielding SM and DAG (Gault et al. 2010). 
SM synthases are present in the Golgi and plasma membrane (Gault et al. 2010). 
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2.2.1.4   Cholesterol and cholesterol ester synthesis 
  
The liver and small intestine are the main sites of cholesterol synthesis in humans (Dietschy 
and Wilson 1970). The synthesis occurs through a so-called mevalonate or isoprenoid 
pathway and requires a complex series of enzymatic reactions (Bloch 1965, Goldstein and 
Brown 1990, Russell 1992). The process starts by condensation of two acetyl-CoAs into 
acetoacetyl-CoA, after which hydroxymethyl-glutaryl (HMG)-CoA is synthesized from the 
formed acetoacetyl-CoA and acetyl-CoA (Russell 1992, Cerqueira et al. 2016). The 
subsequent step yielding mevalonate by the action of HMG-CoA reductase is highly regulated 
and is considered as the rate-limiting step of the pathway (Goldstein and Brown 1990, Russell 
1992, Cerqueira et al. 2016). However, balancing the endogenous cholesterol synthesis and 
exogenous cholesterol uptake also requires the regulation of other enzymes of the pathway, 
especially HMG-CoA synthase and squalene monooxygenase, as well as the control of low 
density lipoprotein (LDL) receptors (Goldstein and Brown 1990, Russell 1992, Gill et al. 
2011, Cerqueira et al. 2016). The final product of the mevalonate pathway, cholest-5-en-3β-
ol or cholesterol, is a sterol having a tetracyclic structure and one side chain (Cerqueira et al. 
2016).  
 
CEs are synthesized from cholesterol and CoA esters of fatty acids in the ER of hepatocytes 
and most other mammalian cell types by two isoforms of acyl-CoA:cholesterol 
acyltransferase (ACAT) (Erickson and Cooper 1980, Anderson et al. 1998, Oelkers et al. 
1998, Korber et al. 2017). In human liver in vivo, ACAT2 is the major isoform (Parini et al. 
2004), and it is found only in the liver and intestine while ACAT1 is more widely expressed 
(Anderson et al. 1998, Oelkers et al. 1998). In plasma high density lipoproteins (HDL) and 
LDL, CEs are synthesized by the function of lecithin–cholesterol acyltransferase (LCAT), 
which transfers a fatty acid to cholesterol from the sn-2 position of PC, thus also yielding 
lysoPC (Glomset 1962, Chen and Albers 1982). 
 

2.2.1.5   Lipid mediator synthesis 
 
The synthesis of bioactive lipid mediators begins when a lipase, like cytosolic PLA2, releases 
PUFAs from glycerolipids (Murakami et al. 2011, Dichlberger et al. 2014, Batchu et al. 2016). 
Cyclooxygenases, lipoxygenases and cytochrome P450 enzymes then act upon these PUFA 
substrates, such as 20:4n-6, 22:4n-6, 20:5n-3, 22:5n-3 and 22:6n-3, to produce eicosanoids 
and docosanoids like prostaglandins, thromboxanes, leukotrienes, lipoxins, resolvins, 
protectins and maresins (Figure 2) (Buckley et al. 2014, Dennis and Norris 2015). The n-6 
series-derived lipid mediators are synthesized as a response to infection or tissue injury so 
most of them are pro-inflammatory and are needed for the onset of a normal inflammatory 
response (Ricciotti and FitzGerald 2011, Dennis and Norris 2015). In addition, prostaglandins 
are produced during the initiation of the resolution phase of inflammation (Levy et al. 2001), 
and lipoxins derived also from 20:4n-6 are classified as pro-resolving mediators (Pirault and 
Bäck 2018). The n-3 series derived specialized pro-resolving mediators resolvins, protectins 



 

9 
 

and maresins are synthesized after a lipid mediator class-switching stimulus of prostaglandins
(Figure 2) (Levy et al. 2001, Buckley et al. 2014, Serhan et al. 2014). 
 

 

 

2.2.2 Lipid remodelling 
 
Lipid remodelling is a process in which a fatty acid esterified to the backbone of the lipid is 
removed and replaced by another fatty acid without otherwise changing the structure of the 
lipid. The concept of glycerolipid remodelling was first introduced by Lands in 1958 (Lands 
1958). Today, three different enzyme systems are known to be responsible for remodelling of 
phospholipids: acyl-CoA:lysophospholipid acyltransferases, and CoA-dependent and CoA-
independent transacylation systems (Yamashita et al. 2013). Acyl-CoA:lysophospholipid 
acyltransferases function in a deacylation-reacylation reaction in which PLA1 or PLA2 first 
cleaves the fatty acid at the sn-1 or sn-2 position respectively, thus yielding a lysophospholipid 
which is then re-esterified with a different fatty acid by an acyl-CoA:lysophospholipid 
acyltransferase (MacDonald and Sprecher 1991, Yamashita et al. 2013). There are several 
different acyl-CoA:lysophospholipid acyltransferases involved in the remodelling pathways, 
some of them specific for a certain phospholipid class and others functioning more broadly 
(Shindou and Shimizu 2009, Yamashita et al. 2013). The function of this type of a remodeling 
enzyme can also be fatty acid selective; for example lysophosphatidylcholine acyltransferase 
3 enriches arachidonate in the sn-2 position of membrane phospholipids (Hashidate-Yoshida 
et al. 2015). 

 
Also CoA-dependent transacylation systems have been shown to possess fatty acid specificity 
in mammalian liver, transferring distinctively fatty acids 20:4n-6, 18:2n-6 and 18:0 (Sugiura 
et al. 1988, Sugiura et al. 1995). Yamashita et al. (2013) propose a mechanism for CoA-
dependent transacylation in which an acyl chain is removed from a donor phospholipid by the 
reverse reaction of an acyl-CoA:lysophospholipid acyltransferase and attached to CoA 
followed by reacylation to an acceptor lysophospholipid by a forward reaction of the same 
family of enzymes. The mechanism of function of CoA-independent transacylation is not well 
established, but it is possibly mediated by PLA2 (Yamashita et al. 2017). CoA-independent 

20:5n-3 22:5n-320:4n-6 22:6n-3
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Figure 2. Simplified overview of the synthesis of 20:4n-6, 20:5n-3, 22:5n-3 and 22:6n-3 derived pro-
inflammatory and pro-resolving lipid mediators (Dalli et al. 2013, Serhan et al. 2014, Lopez-Vicario et al. 
2016, Pistorius et al. 2018, Recchiuti et al. 2019). LOX=lipoxygenase, COX=cyclooxygenase, 
CYP450=cytochrome P450, DPA=Docosapentaenoic acid. 
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transacylases have been shown to catalyse the transfer of 20:4n-6 and 22:6n-3 to sn-2 position 
of phospholipids (Kramer and Deykin 1983, Sugiura et al. 1985), however this activity is low 
in mammalian liver (Sugiura et al. 1988). 
 
Fatty acids are also recycled in TAG (Lankester et al. 1998, Reshef et al. 2003, Quiroga and 
Lehner 2012). In mammals, fatty acids are circulated in a TAG/fatty acid cycle, in which fatty 
acids released from the adipose tissue are re-esterified into TAG in the tissue of origin or in 
the liver (Reshef et al. 2003). Approximately 60% of the fatty acids released from the adipose 
tissue are shunted into this cycle (Reshef et al. 2003). TAGs can also be hydrolysed for re-
esterification in hepatocytes by several lipases, the function of which is however not fully 
established (Quiroga and Lehner 2012). One of these enzymes is PNPLA3, whose role in 
TAG remodelling is examined in publication I of this thesis.   
 

2.2.3 Lipoprotein metabolism  
 
Lipoproteins transport dietary and endogenously synthesized lipids in the circulation. They 
carry their cargo in the hydrophobic core of the particle, which is surrounded by a monolayer 
of PC, lysoPC, SM and cholesterol and attached apolipoproteins (Francis 2016, McLeod and 
Yao 2016). Lipoproteins are modified in the circulation and their lipids hydrolysed in order 
to deliver fatty acids to tissues (Wang et al. 2013). Lipoprotein remnants are taken up by the 
liver, which again secretes new lipoproteins into the circulation (Jones et al. 1984, Tiwari and 
Siddiqi 2012). 
  

2.2.3.1   Chylomicrons 
 
Chylomicrons are synthesized in enterocytes and secreted from the intestine into the 
circulation via the lymphatic system (Hussain 2014). Most of dietary lipid is TAG so the lipids 
entering the enterocytes from the intestinal lumen are mainly fatty acids and 
monoacylglycerols yielded by the action of pancreatic lipase (Iqbal and Hussain 2009). They 
are reassembled in the ER, and thus also the secreted chylomicron particles contain mainly 
TAG (Iqbal and Hussain 2009). Also some cholesterol is packed into the chylomicrons as CEs 
by the function of ACAT2 (Buhman et al. 2000, Iqbal and Hussain 2009). Chylomicrons 
contain one apolipoprotein B48 (ApoB-48), which is an intestinal variant of apolipoprotein 
B100 (Apo-B100) found in very low density lipoproteins (VLDLs) and LDLs (Chen et al. 
1987). ApoB-48 is needed for the assembly and secretion of the chylomicron particles 
together with ApoA-IV and microsomal triglyceride transfer protein (Iqbal and Hussain 2009, 
Hussain 2014).  
 
In the circulation TAG carried in chylomicrons is hydrolysed by LPL attached to heparan 
sulphate proteoglycans of endothelial cells of vessel (Olivecrona 2016). The formed 
chylomicron remnants can be further hydrolysed by hepatic lipase (HL) (Santamarina-Fojo et 
al. 2004) or delivered directly to the liver for uptake (Jones et al. 1984). 
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2.2.3.2   VLDL and LDL 
 
VLDLs are secreted by the liver in a similar process as described for chylomicrons. VLDL 
secretion requires a supply of TAG in the ER, where the particle is assembled (Shelness and 
Sellers 2001, McLeod and Yao 2016), and a favourable membrane composition, 20:4n-6-
containing PCs being important membrane components (Rong et al. 2015). Also ApoB-100 
and microsomal triglyceride transfer protein are required for the formation of a VLDL 
particle, and ACAT2 is needed for secretion of cholesterol as CE in VLDL (Buhman et al. 
2000). The VLDL particle is smaller than a chylomicron, but the compositions of these 
lipoproteins show similarity, as TAG is the most abundant lipid also in VLDL (McLeod and 
Yao 2016). Hence, chylomicron and VLDL particles are often referred to as triglyceride-rich 
lipoproteins.  
 
Nascent VLDL particles are transported from the ER and through the Golgi where their 
apolipoproteins are modified, after which the mature VLDL is secreted to the plasma 
membrane by a vesicular system (Tiwari and Siddiqi 2012, Hossain et al. 2014). VLDL 
particles are hydrolysed in the circulation in the same way as chylomicrons by the function of 
LPL, yielding VLDL remnants (Khetarpal and Rader 2015, Olivecrona 2016). LDL is formed 
when these remnants are further processed by LPL, first into intermediate density lipoproteins, 
which are then hydrolysed by LPL and HL to form LDL (Nicoll and Lewis 1980). Since most 
of the TAG of the original VLDL particles has been hydrolysed, LDL particles have mainly 
CEs in their core. LDL has one apoB-100 attached to the surface, the same way as its parent 
particle VLDL (Hevonoja et al. 2000). 
 

2.2.3.3   HDL 
 
High density lipoproteins (HDLs) are secreted from the liver as discoidal nascent HDL in a 
process which requires ApoA-I binding to ATP-binding cassette transporter A1 (ABCA1) and 
budding of the plasma membrane (Phillips 2014, Francis 2016). ApoA-1 and ApoE, which 
are found on the surface of HDL, enable the detachment of the formed membrane structure 
(Francis 2016). The discoidal or pre-βHDL gathers CE through the function of LCAT, 
acquires a spherical shape and grows in size (Lund-Katz and Phillips 2010, Kuai et al. 2016). 
HDL can also receive cholesterol from the tissues though a scavenger receptor mediated 
uptake and exchange CE to TAG derived from other lipoproteins through the function of 
cholesterol ester transfer protein (CETP) (Bruce et al. 1998, Lund-Katz and Phillips 2010). 
Mature HDL can deliver its CE-rich cargo to the liver, and the whole process of HDL 
mediated CE delivery to the liver is termed reverse cholesterol transport (Lund-Katz and 
Phillips 2010). Importantly, HDL acts as an acceptor for cholesterol derived from 
macrophages in the walls of blood vessels, which promotes regression of atherosclerotic 
plaques thus inhibiting cardiovascular disease (Cuchel and Rader 2006). 
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2.2.3.4   Remodelling of lipoproteins 
 
The lipids of lipoprotein particles are remodelled in the circulation by CETP and also 
phospholipid transfer protein (PLTP) (Tall 1995). CETP mediates the bidirectional transfer 
of CE and TAG between lipoproteins in plasma. It promotes the net mass transfer of CE 
synthesized in HDL into chylomicron and VLDL remnants and to LDL, and at the same time 
a net transfer of TAG happens in the opposite direction (Tall 1995, Bruce et al. 1998). CETP 
can also exchange phospholipids between lipoproteins, however, the net mass transfer of 
phospholipids occurs through the function of PLTP (Tall 1995, Bruce et al. 1998). PLTP 
transfers phospholipids between different HDL particles and between HDL and apoB-
containing lipoproteins (Albers et al. 2012). When LPL hydrolyses lipoproteins, PLTP 
transfers the excess surface lipids to HDL (Albers et al. 2012).  
 
Also several of the apolipoproteins on the surface of the lipoproteins can be exchanged in the 
circulation (McLeod and Yao 2016). The exchangeable lipoprotein ApoE, which is found on 
the surface of chylomicrons, VLDL and HDL (Frayn 2010), also increases CETP-mediated 
lipid exchange between lipoproteins (Kinoshita et al. 1993).  
 

2.2.3.5   Lipoprotein uptake  
 
Fatty acids released to circulation through hydrolysis of lipoproteins are taken up into tissues 
by the action of different transport and binding proteins (Eaton 2002), and correspondingly, 
lipoproteins are removed from the circulation by several types of receptors located on the 
surface of hepatocytes (Williams and Chen 2010, Pieper-Furst and Lammert 2013, Rohrl and 
Stangl 2013, Schneider 2016). Chylomicron remnants, LDL and VLDL particles are taken up 
via receptor-mediated endocytosis (Cooper 1997, Williams and Chen 2010, Schneider 2016). 
Members of the LDL receptor family bind ApoB-100 and ApoE-containing particles 
(Williams and Chen 2010, Pieper-Furst and Lammert 2013). Lipoprotein remnants can also 
be endocytosed by syndecan-1 heparan sulfate proteoglycan receptors, which bind ApoE, HL 
and LPL (Williams and Chen 2010). A third type of receptors, termed scavenger receptors, 
binds lipoproteins and a variety of other types of ligands they transport into cells (Zani et al. 
2015). Scavenger receptor B1 is an HDL receptor, which has a crucial role in reverse 
cholesterol transport and cholesterol homeostasis as it transfers cholesterol esters from HDL 
into the liver (Rohrl and Stangl 2013). HDL can also be endocytosed and recycled upon 
scavenger receptor B1 mediated uptake (Silver et al. 2001). Scavenger receptors are expressed 
in several cell types and tissues, and many of them have been found to play a role in the 
development of atherosclerosis (Zani et al. 2015). Importantly, if LDL and chylomicron and 
VLDL remnants and are not removed from the circulation into the liver, they can be taken up 
into arterial walls causing atherosclerosis (Williams and Tabas 1995, Tabas et al. 2007, 
Khetarpal and Rader 2015). It has been shown that dietary 12-16 carbon-long saturated fatty 
acids reduce LDL receptor activity (Woollett et al. 1992), and diets rich in saturated fatty 
acids also increase the selective uptake of LDL CEs into the arterial wall (Seo et al. 2005). 
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Reversely, diets enriched in n-3 fatty acids decrease arterial LDL particle uptake and abolish 
the selective uptake of CE from LDL into the  arterial walls (Chang et al. 2009). 
 

2.2.4 β-oxidation 
 
β-oxidation is a process in which fatty acids are broken down in order to produce energy in 
the citric acid cycle (Schulz 1991).  In the liver, β-oxidation produces also ketone bodies, 
which are transported to other tissues via circulation to provide energy during fasting (Rui 
2014). The fatty acids used for oxidation are released to circulation from adipose tissue during 
fasting when catecholamines induce the G protein- and cAMP-mediated activation of protein 
kinase A (Ahmadian et al. 2009). This leads to phosphorylation of perilipin altering its 
configuration and exposing the surface of the lipid droplet, which allows TAG hydrolysis by 
hormone-sensitive lipase, adipose triglyceride lipase, and monoacylglycerol lipase 
(Ahmadian et al. 2009). The latter two of the lipases also hydrolyse lipid droplets destined for 
β-oxidation in human hepatocytes (Quiroga and Lehner 2012).  Moreover, fatty acids can be 
released for oxidation from lipoproteins by the action of LPL, HL as well as endothelial lipase 
(EL) (Schulz 1991, Wang et al. 2013, Olivecrona 2016). LPL hydrolyses mainly TAG, HL 
both TAG and phospholipids, and EL mainly phospholipids especially in HDL (Jaye et al. 
1999, Santamarina-Fojo et al. 2004, Olivecrona  2016).  
 
Fatty acids are taken up by the cells by three types of transport or binding proteins: fatty acid 
translocase (CD36; a B-type scavenger receptor), the plasma membrane fatty acid binding 
protein and the fatty acid transport proteins (Eaton 2002). This process is regulated at the 
transcriptional level by peroxisome proliferator-activated receptor (PPAR) γ (Rui 2014, Ipsen 
et al. 2018).  In order to be oxidised in the mitochondria, the fatty acids need to be first 
activated by acyl-CoA synthetase and subsequently bound to carnitine to enable transportation 
by carnitine acyltransferases (CPT) I and II to the mitochondrial matrix where the fatty acids 
are again activated by binding to CoA and finally oxidized through a sequential removal of 
two-carbon units (Schulz 1991, Eaton 2002). Peroxisomal β-oxidation is needed for the 
initiation of the oxidation of polyunsaturated and very long-chain fatty acids; however its 
contribution to the total β-oxidation flux of long-chain fatty acids is likely no more than 10%, 
also in liver where peroxisomes are abundant (Eaton 2002). Increased expression or activity 
of PPARα promotes fatty acid β-oxidation in both mitochondria and peroxisomes (Rui 2014, 
Ipsen et al. 2018). 
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2.3 Cardiometabolic diseases 
 
The term cardiometabolic diseases can be used for describing a group of conditions in which 
cardiovascular health is affected negatively by metabolic dysfunction.  Obesity is a common 
risk factor for cardiometabolic diseases like type II diabetes, metabolic syndrome and the 
related NAFLD (James et al. 2004, Younossi et al. 2016, Emdin et al. 2017). NAFLD can be 
seen as the hepatic manifestation of the metabolic syndrome (Kotronen and Yki-Järvinen 
2008, Vanni et al. 2010, Yki-Järvinen 2014). However, genetic NAFLD caused by 
PNPLA3I148M and TM6SF2E167K is not associated with the hallmarks of the metabolic 
syndrome like insulin resistance or dyslipidaemia, which is characterised by elevated plasma 
LDL and TAG-rich lipoproteins and reduced concentrations of HDL (Romeo et al. 2008, 
Speliotes et al. 2010, Kozlitina et al. 2014, Holmen et al. 2014). The TM6SF2E167K even 
lowers plasma TAG and cholesterol (Holmen et al. 2014, Kozlitina et al. 2014). Nonetheless, 
obesity amplifies the effect of the predisposing genetic variants, further increasing the risk of 
developing genetic NAFLD (Stender et al. 2017). Type 2 diabetes and metabolic syndrome 
are both risk factors for cardiovascular disease (Wilson et al. 2005, Einarson et al. 2018), 
whose main pathological process is the formation of a cholesterol-rich atherosclerotic plaque 
in the arterial wall (Bentzon et al. 2014). Naturally occurring LOF variants of ANGPTL3 
reduce the concentration of circulating cholesterol and TAG carried in lipoproteins 
(Musunuru et al. 2010, Minicocci et al. 2012, Stitziel et al. 2017), which has made ANGPTL3 
inhibition an attractive possibility for treatment of atherosclerosis (Dewey et al. 2017, Graham 
et al. 2017). Figure 3 shows the relation between cardiometabolic diseases and the genetic 
variants studied in this thesis project. 
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Figure 3. The adverse and protective effects of PNPLA3
I148M

, TM6SF2
E167K 

and ANGPTL3 loss-of-
function (LOF) on cardiometabolic diseases. Negative effects are depicted using red arrows and positive 
outcomes using green lines.  
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2.3.1 NAFLD 
 
NAFLD is defined by the presence of steatosis (i.e. TAG accumulation) in more than 5 % of 
hepatocytes, which is not due to secondary causes or excess alcohol consumption (Cohen et 
al. 2011, European Association for the Study of the Liver (EASL) et al. 2016). NAFLD is the 
most common liver disease in the world and its prevalence is currently 25 % in the adult 
population, varying between 32 % in the Middle East and 13 % in Africa (Younossi et al. 
2016). In severely obese individuals the prevalence of NAFLD is 90 % and in patients with 
type 2 diabetes 76 % (Younossi et al. 2016). However NAFLD has also been reported to affect 
more than 10 % of lean individuals in several Asian populations, India having the highest rate 
with 20 % (Wattacheril and Sanyal 2016). Up to 30 % of patients with simple hepatic steatosis 
develop non-alcoholic steatohepatitis (NASH) in which there is already clear hepatocyte 
injury, cell death, inflammation and fibrosis in the liver (Cohen et al. 2011, Younossi et al. 
2016). NASH in turn develops into advanced fibrosis in 40 % of patients (Younossi et al. 
2016), and the most severe outcome of the disease is hepatocellular carcinoma, the risk of 
which is higher in patients with obesity or type 2 diabetes (Yu et al. 2013). 
 
For hepatic steatosis to develop, there needs to be an imbalance between the storage and 
removal of fatty acids and TAG; that is the rate of TAG synthesis needs to be greater than the 
rate of β-oxidation and VLDL secretion (Cohen et al. 2011, Ipsen et al. 2018). It has been 
shown by stable isotope studies that increased fatty acid flux from the adipose tissue and fatty 
acid de novo synthesis are the main mechanisms contributing to hepatic fat accumulation in 
NAFLD patients (Donnelly et al. 2005). Obesity-related or metabolic NAFLD is associated 
with insulin resistance (Kotronen  and Yki-Järvinen 2008, Yki-Järvinen and Luukkonen 
2015), which in the adipose tissue leads to increased lipolysis and release of fatty acids into 
the circulation (Vanni et al. 2010). In a healthy liver, insulin inhibits glucose production 
between meals and normal blood glucose levels are maintained. When insulin resistance 
develops, this balance is disturbed leading to increased glucose production and subsequently 
increased insulin secretion (Vanni et al. 2010). Hepatic insulin resistance also leads to 
increased secretion of large VLDL particles and thereby generation of atherogenic small dense 
LDL particles through the function of CETP and hepatic lipase (Adiels et al. 2008, Tchernof 
and Despres 2013, Brouwers et al. 2019). This same process leads to formation of easily 
degraded small dense HDL particles thus lowering circulating HDL (Rashid et al. 2003). 
 
The mechanisms underlying the progression of NAFLD to NASH are yet to be elucidated, 
but also genetic predisposition is known to play a role in the process (Petta 2009, Rotman et 
al. 2010, Speliotes et al. 2010, Liu et al. 2014, Ioannou 2016, Pingitore et al. 2016). Free 
cholesterol and free fatty acid mediated lipotoxicity and subsequent pro-inflammatory 
cytokine production and oxidative stress have been suggested to be behind the inflammatory 
and fibrotic processes of NASH (Petta 2009, Vanni et al. 2010, Ioannou 2016). 
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2.3.2 Genetic NAFLD 
 
During the last decade genome-wide association studies have revealed several gene variants 
that increase the risk of developing NAFLD (Anstee and Day 2015, Eslam and George 2020). 
Two of these, PNPLA3I148M and TM6SF2E167K will be discussed in detail. 
 

2.3.2.1   PNPLA3 and its I148M variant 
  
In 2008 Romeo et al. (2008) described a single nucleotide polymorphism in the PNPLA3 gene 
(rs738409; C G at position 148 of the gene leading to substitution of isoleucine to 
methionine, I148M), which is strongly associated with NAFLD. In this original study the 
genetic background was found to affect the frequency of the variant allele, the two ends being 
African Americans, of whom 17 % were carrying at least one copy of the variant allele, and 
Hispanics, of whom 49 % had the variant allele. The association between PNPLA3I148M and 
NAFLD has since been shown in several different studies and in different ethnic groups (Chen 
et al. 2015). PNPLA3I148M is also significantly associated with the development of NASH, 
fibrogenesis and the severity of liver fibrosis in NAFLD patients (Rotman et al. 2010, Valenti 
et al. 2010, Speliotes et al. 2010, Krawczyk et al. 2011), also in pediatric NAFDL (Valenti 
and Alisi et al. 2010). The effect of PNPLA3I148M is dose dependent meaning that the 
individuals homozygous for the PNPLA3I148M variant have an even higher risk for developing 
NAFLD and for the progression of the disease compared to heterozygous subjects (Romeo et 
al. 2008, Valenti and Al-Serri et al. 2010).  
 
PNPLA3I148M is not associated with insulin resistance or dyslipidaemia (Romeo et al. 2008, 
Kantartzis et al. 2009, Speliotes et al. 2010) and it causes a more metabolically benign 
NAFLD. In a study by Kantartzis et al. (2009) insulin sensitivity was shown to be higher in 
NAFLD patients carrying the PNPLA3I148M allele than in NAFDL patients with no variant 
allele, and there was no statistically significant difference between the insulin sensitivity of 
healthy control subjects and NAFLD patients homozygous for PNPLA3I148M variant allele. In 
the same study, obese subjects carrying the variant allele had higher insulin sensitivity than 
control subjects, when adjusted for age, sex, total fat, visceral fat, and liver fat. In genetic 
screening studies using large cohorts, PNPLA3I148M variant allele has been shown to protect 
from coronary artery disease (Liu et al. 2017, Simons et al. 2017). 
 
Although the association of PNPLA3I148M with NAFLD is well established, the mechanism of 
PNPLA3 function has remained unclear. In humans, PNPLA3 is expressed mainly in the liver 
but also in the adipose tissue and skin (Huang et al. 2010). During fasting the expression level 
is low but is rapidly increased after a carbohydrate meal (Lake et al. 2005, Huang et al. 2010, 
Rae-Whitcombe et al. 2010), likely due to insulin mediated activation of SREBP (Huang et 
al. 2010, Qiao et al. 2011, Soronen et al. 2012) and also through insulin-independent 
activation of ChREBP (Dubuquoy et al. 2011, Perttilä et al. 2012). PNPLA3 localizes to lipid 
droplets, and overexpression of PNPLA3I148M increases their size (He et al. 2010, Chamoun 
et al. 2013). Chamoun et al. (2013) also suggested that PNPLA3 may play a role in lipid 
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droplet formation.  It has been shown in vitro that wild type PNPLA3 (PNPLA3WT) but not 
PNPLA3I148M hydrolyses emulsified TAG (Jenkins et al. 2004, Lake et al. 2005, He et al. 
2010). In addition, PNPLA3WT has acylglycerol transacylase activity (Jenkins et al. 2004). 
The preferred substrate of the protein is oleic acid (Huang et al. 2011), and it has been 
proposed that the amino acid substitution in PNPLA3I148M changes the catalytic triad of the 
protein thus abolishing its hydrolase activity (He et al. 2010). Kumari et al. (2012) claimed 
that PNPLA3 is a lysophosphatidic acid acyltransferase and PNPLA3I148M would function 
more efficently in this activity. Then again Pirazzi et al. (2012) suggested that the 
PNPLA3I148M related NAFLD would be a consequence of reduced VLDL lipidation and 
secretion. However, they also speculated that the role of PNPLA3 in this process could be 
related to intracellular TAG synthesis or the remodelling of lipid droplets. Studies using a 
PNPLA3I148M overexpressing mouse model support the remodelling theory, as both impaired 
hydrolysis of TAG and a relative depletion of long-chain PUFA-containing TAGs was noticed 
in these mice (Li et al. 2012). During the last two years, more evidence has emerged to support 
the remodelling function of PNPLA3 and its role related to lipid droplet hydrolysis (BasuRay 
et al. 2017, Mitsche et al. 2018, Wang et al. 2019, Negoita et al. 2019, Luukkonen et al. 2019). 
These findings will be addressed further in relation to publication I in the Results and 
discussion section. 

 

2.3.2.2   TM6SF2 and its E167K variant 
 
A genetic variant in the TM6SF2 gene (rs58542926, A G at position 167 leading to 
substitution of glutamic acid to lysine, E167K) was found to be associated with NAFLD in 
2014 in two separate studies (Kozlitina et al. 2014, Holmen et al. 2014). Based on the original 
study by Kozlitina et al. (2014) genetic background also affects the frequency of 
TM6SF2E167K, which is approximately 7 % in individuals of European ancestry and 3 % in 
African Americans. They also suggested that TM6SF2E167K is a misfolded protein and 
therefore readily degraded. This decreased stability caused by the amino acid substitution has 
later been confirmed by others (Ehrhardt et al. 2017).  
 
TM6SF2 is a membrane protein predominantly expressed in the liver and small intestine and 
it localizes to the ER and Golgi complex of hepatocytes (Mahdessian et al. 2014, Kozlitina et 
al. 2014, Smagris et al. 2016). Accordingly, TM6SF2 has been suggested to play a role in 
VLDL secretion (Mahdessian et al. 2014, Kozlitina et al. 2014, Ehrhardt et al. 2017) and 
lipidation (Smagris et al. 2016). This would also explain why reduced levels of TM6SF2 
caused by the destabilizing E167K variant would lead to hepatic lipid accumulation as neutral 
lipids are not secreted and remain in the liver. Mahdessian et al. (2014) saw clearly reduced 
TAG secretion but only a modest reduction in the secretion of ApoB due to TM6SF2 
inhibition in human hepatocytes.  Hepatic 3D spheroid and human data also point towards 
reduced ApoB secretion due to TM6SF2E167K (Kim et al. 2017, Prill et al. 2019). In contrast, 
in mice lacking Tm6sf2 a reduced secretion rate of VLDL TAG was noticed without reduction 
of secreted ApoB but with a reduction in secreted VLDL particle size and plasma cholesterol 
levels (Smagris et al. 2016). In another study also executed with Tm6sf2-knockout mice, 
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decreased levels of plasma total and LDL-cholesterol were noticed and it was also reported 
that liver-specific expression of TM6SF2 affects several genes regulating cholesterol 
metabolism, therefore making TM6SF2 a possible target for treating cardiovascular disease 
(Fan et al. 2016).  
 
Indeed, TM6SF2E167 seems to protect from myocardial infarction (Holmen et al. 2014, 
Dongiovanni et al. 2015, Simons  et al. 2017, Li et al. 2018), but at the same time it causes 
NAFLD with increased risk of progression into NASH and hepatic fibrosis or cirrhosis (Liu 
et al. 2014, Dongiovanni et al. 2015). However, NAFLD induced by TM6SF2E167 is not 
associated with insulin resistance or dyslipidaemia (Kozlitina et al. 2014, Zhou et al. 2015), 
and the more progression prone NAFLD may be explained by increased ER stress caused by 
TM6SF2E167 (O'Hare et al. 2017). In discordance with earlier findings, it has been reported 
that, in addition to the lack of TM6SF2 caused by the E167K variant, also increased 
expression of hepatic TM6SF2 could lead to the same anti-atherogenic and pro-NAFLD 
phenotype (Ehrhardt et al. 2017). Based on studies using cultured human enterocytes and 
larval zebrafish, TM6SF2 may also play a role in intestinal lipid and ER homeostasis (O'Hare 
et al. 2017). As the current knowledge on the function of TM6SF2 and its NAFLD causing 
variant is somewhat contradictory, more information on their mechanisms of function is still 
required. 
 

2.3.3 Atherosclerosis 
 
Atherosclerosis is a key pathological process in cardiovascular diseases. It is a condition in 
which an artery becomes narrowed due to the development of a cholesterol-enriched lesion, 
or atherosclerotic plaque, in the arterial intima (Williams and Tabas 1995, Tabas et al. 2007). 
Rupturing of the plaque and the resulting thrombus formation may cause occlusion of the 
artery leading to for example myocardial infarction or stroke (Bentzon et al. 2014). The 
development of an atherosclerotic plaque begins when ApoB-containing lipoproteins cross 
the endothelium and are retained in the arterial intima (Tabas et al. 2007, Bentzon et al. 2014). 
The retention is mediated by proteoglycans of the subendothelial extracellular matrix (Skalen 
et al. 2002) and the trapped lipoproteins are modified so that they aggregate and become 
oxidized (Pentikäinen et al. 2000, Steinberg 2009). This leads to an inflammatory process in 
which monocytes enter the intima, turn into macrophages that take up the modified 
lipoproteins mainly via scavenger receptors, and turn into foam cells (Steinberg 2009, Zani et 
al. 2015, Chistiakov et al. 2016). The inflammation process is intensified by the entry of other 
inflammatory cells and the retention of lipoproteins increases further (Pentikäinen et al. 2000, 
Tabas et al. 2007, Bäck et al. 2019). Smooth muscle cells form a fibrous cap over the lesion, 
but as the foam cells die and the core of the cholesterol-enriched lesion becomes necrotic, the 
plaque becomes more unstable and the fibrous cap more prone to rupture (Bentzon et al. 
2014). 
 
Although there are conditions like familial hypercholesterolemia, in which a substantially 
elevated concentration of circulating LDL is the primary reason for development of an 
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atherosclerotic lesion (Wiegman et al. 2015), atherosclerosis is considered as a multifactorial 
disease. Thus elevated LDL cholesterol or dyslipidaemia together with other risk factors like 
hypertension, obesity, metabolic syndrome and diabetes is in most cases causing the disease 
(Berenson et al. 1998, Fruchart et al. 2004). There are also more recently found factors such 
as elevated levels of circulating triglyceride-rich lipoprotein remnants, small dense LDL and 
lipoprotein(a), which contribute to the disease risk (Ridker et al. 2001, Fruchart et al. 2004, 
Khetarpal and Rader 2015). Lowering LDL levels by drugs such as statins, ezetimibe and 
proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors has been a successful 
strategy to combat atherosclerosis, however there is still a need for new approaches in order 
to reduce the residual risk (Shapiro and Fazio 2016, Kersten 2017, Gaudet et al. 2017, Hegele 
and Tsimikas 2019).  
 

2.3.3.1   ANGPTL3 and its loss-of-function variants 
 
ANGPTL3 is a protein synthesized and secreted mainly by the liver (Conklin et al. 1999), and 
it circulates in plasma inhibiting LPL and EL activity (Shimizugawa et al. 2002, Shimamura 
et al. 2007). ANGPTL3, like most of the members of the ANGPTL family, possesses a signal 
sequence in the amino-terminus, a coiled-coil domain and a fibrinogen-like domain (Zhang 
and Abou-Samra 2013). In addition, ANGPLT3 has a specific region binding to LPL and it 
mediates LPL inactivation by enhancing the cleavage of the lipase by proprotein convertases 
(Liu et al. 2010, Zhang and Abou-Samra 2013). During this process, LPL also dissociates 
from the cell surface (Liu  et al. 2010). A heparin-binding site located in the amino-terminal 
domain of ANGPTL3 most probably mediates the inhibition of EL by ANGPLT3 (Shimamura 
et al. 2007). ANGPTL3 seems to work in concert with ANGPTL8, which is lacking the 
fibrinogen-like domain (Zhang and Abou-Samra 2013). ANGTL3 may be more potent in the 
presence of ANGPTL8, and ANGPTL8 likely needs ANGPTL3 to be able to inhibit LPL 
(Quagliarini et al. 2012, Haller et al. 2017). In mice, ANGPTL3 has also been shown to 
activate lipolysis and to stimulate the release of free fatty acids and glycerol from adipocytes 
(Shimamura et al. 2003), but also to promote the uptake of VLDL-TAG derived fatty acids 
into white adipose tissue after feeding (Wang and McNutt et al. 2015). In the liver, 
hepatocytes are solely responsible for the production of ANGPTL3 (Kersten 2017). Mouse 
studies suggest that ANGPTL3 expression does not change significantly after a meal or during 
fasting (Ge et al. 2005), however, in human hepatocytes insulin decreases ANGPTL3 
expression and secretion (Nidhina Haridas et al. 2015). ANGPTL8 expression levels are 
reduced during fasting but restored after a meal in the liver and adipose tissue of both humans 
and mice (Quagliarini et al. 2012). On the contrary, ANGPTL4, another inhibitor of LPL 
belonging to the same protein family, is induced by fasting in both the liver and adipose tissue 
(Ge et al. 2005). 
 
ANGPTL3 LOF was first described in mice in 2002 (Koishi et al. 2002), and later in human 
subjects with extremely low plasma levels of TAG and LDL and HDL cholesterol, a condition 
termed familial combined hypolipidaemia (Musunuru et al. 2010). Several different 
ANGPLT3 LOF mutations have been found in humans (Arca et al. 2013, Kersten 2017, 
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Dewey et al. 2017). Individuals homozygous for ANGPLT3 LOF lack circulating ANGPTL3 
and have increased LPL activity, low plasma levels of VLDL, LDL and HDL, increased 
insulin sensitivity and decreased serum free fatty acids (Minicocci et al. 2012, Robciuc et al. 
2013, Arca et al. 2013). A recent study showed that ANGPTL3 deficiency leads to reduction 
of the proportion of cholesterol in triglyceride-rich lipoproteins and their remnants (Tikkanen 
et al. 2019). ANGPTL3 LOF carriers may also have enhanced hepatic fatty acid β-oxidation 
as hinted by an elevated ketone body production (Tikkanen et al. 2019).  In mice, inactivating 
or silencing ANGPTL3 reduces hepatic VLDL-TAG secretion and enhances the uptake of 
ApoB-containing lipoproteins by the liver (Wang and Gusarova et al. 2015, Xu et al. 2018).  

 
No adverse effects have been reported of ANGPTL3 LOF in humans, and importantly, 
ANGPLT3 deficiency has been found to protect from atherosclerotic cardiovascular disease 
(Minicocci et al. 2012, Minicocci et al. 2013, Dewey et al. 2017, Stitziel et al. 2017). Also 
subjects heterozygous for ANGPTL3 LOF have a reduced risk of coronary artery disease, 
even though there is only a modest drop in their plasma TAG and LDL-cholesterol compared 
to homozygous subjects (Dewey et al. 2017, Stitziel et al. 2017). For these reasons, ANGPTL3 
is a promising target for treating cardiovascular disease and clinical trials are already ongoing. 
Evinacumab, a monoclonal antibody against ANGPTL3, reduced fasting plasma TAG levels 
up to 80 % and LDL-cholesterol up to 23 % in a dose-dependent manner (Dewey et al. 2017, 
Ahmad et al. 2019). The LDL-cholesterol lowering mechanism of evinacumab is independent 
of the LDL receptor and thus also patients with familial hypercholesterolemia have been 
shown to substantially benefit from the treatment as their LDL-cholesterol has been reduced 
by one half (Gaudet et al. 2017, Banerjee et al. 2019). In dyslipideamic mice, evinacumab 
reduced plasma levels of TAG and LDL- and HDL-cholesterol without changing the TAG-
content of the liver, adipose tissue, or heart (Gusarova et al. 2015). Also the area of 
atherosclerotic lesions and their necrotic content was shown to be reduced by the antibody 
treatment in mice having dyslipidaemia (Dewey et al. 2017). Another ANGPLT3 lowering 
treatment with antisense oligonucleotides that inhibit hepatic ANGPLT3 production has 
yielded similar results to those seen with the monoclonal antibody approach. In humans, the 
antisense oligonucleotide treatment reduced the levels of atherogenic lipoproteins, and in mice 
it also slowed the progression of atherosclerosis (Graham et al. 2017). Even though these 
clinical trials have had successful outcomes, the function of hepatic ANGPTL3 and how its 
depletion may affect hepatocytes remains unclear. Also the effect of ANGPTL3 deficiency 
on the detailed lipid composition of lipoproteins and the possible contribution of the altered 
lipid profile to the protection from cardiovascular disease has not been studied until now.  
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3 AIMS OF THE STUDY 

 
1. To elucidate the role of PNPLA3 in the lipid metabolism of human hepatocytes and 

the connection between the PNPLA3 I148M variant and increased liver fat content. 
(I) 

 
2. To investigate the function of TM6SF2 in hepatic lipid metabolism and how 

TM6SF2 deficiency causes fat accumulation in the liver. (II) 
 
3. To study how ANGPTL3 depletion affects hepatic lipid metabolism and how it is 

reflected in the circulating lipoproteins. (III) 
  



 

22 
 

4 MATERIALS AND METHODS 

Methods performed by the author to complete the thesis work are listed in Table 1, and the 
workflows of lipidomics experiments are depicted in Figure 4. Further descriptions and a full 
listing of the materials and methods used in the thesis project can be found in publications I-
III.  
 
 
Table 1. Summary of methods used by the author. 
 
 Method                                                                                       Publication 

Cell culture I-III 
Gene overexpression (transfection) I 
ShRNA lentiviral transduction II-III 
Labelling studies  
- stable isotopes (  ESI-MS/MS) I-II 
- radioactive isotopes (  liquid scintillation counting) II-III 

BCA protein assay total protein quantification I-III 
Folch lipid extraction  I-III 
Bligh and Dyer lipid extraction 
Fatty acid methyl ester preparation  

I 
I-III 

Mass spectrometry   
- ESI-MS I 
- ESI-MS/MS I-III 

Gas chromatography   
- GC-FID  I-III 
- GC-MSD II-III 

RNA extraction II-III 
Gene expression analysis (qPCR) II-III 
Mitochondrial oxygen consumption rate measurement 
(Seahorse extracellular flux analysis) 

II 

ELISA II 
One-way ANOVA & Newman-Keuls test of means I 
Two-tailed Student's t-test II-III 
Principal component analysis (PCA) & soft 
independent modeling of class analogy (SIMCA) 
 
 

I-III 
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Figure 4. Workflow of the performed lipidomics experiments. GC-MSD, GC-FID=gas chromatography 
coupled to mass spectrometry/flame ionization detector; ESI-MS, ESI-MS/MS= electrospray ionization 
mass spectrometry/triple quadrupole mass spectrometry; LIMSA=Lipid Mass Spectrum Analysis 
software (Haimi et al. 2006); ANOVA=analysis of variance; PCA=Principal component analysis; 
SIMCA=soft independent modeling of class analogy. 



 

24 
 

5 RESULTS AND DISCUSSION 

5.1  PNPLA3 functions as a remodelling protein and the I148M variant 
shows reduced remodelling activity (I) 

5.1.1 PNPLA3I148M overexpression causes net accumulation of TAG in hepatocytes 

 
The function of PNPLA3WT and the effect of PNPLA3I148M were studied in HuH7 human 
hepatoma cells overexpressing either form of the protein. These were compared with control 
cells transfected with an empty plasmid vector, and the expression was confirmed by Western 
blot analysis (I, Fig 1A). We used [13C]glycerol labelling of the cells followed by electrospray 
ionization mass spectrometry (ESI-MS) to get a detailed view of the lipid metabolism. When 
looking at the total amount of TAG after a 24-hour labelling period, there was a statistically 
significant difference between the cells; PNPLA3I148M overexpressing cells had an increased 
level of TAG when compared to PNPLA3WT and control cells (Figure 5A). However, the 
difference was due to increased amount of unlabelled TAG and there was no difference 
between the groups in the total amount of newly synthesized [13C]glycerol labelled TAG 
(Figure 5B,C). If PNPLA3 would function primarily as a TAG lipase (He et al. 2010, Huang 
et al. 2011), one should expect to see a drop in the level of TAG upon PNPLA3WT 
overexpression. Thus our data does not support the view of PNPLA3 being a mere lipase, nor 
does it point towards a simple lipogenic function of PNPLA3 (Kumari et al. 2012), since de 
novo synthesis of TAG was not increased (Figure 5C). This is consistent with a previous 
finding in the same cell model and setting, where de novo lipogenesis was not significantly 
affected in PNPLA3WT or PNPLA3I148M overexpressing cells when compared to control cells 
in normal cell culture conditions as measured by [3H]acetic acid labelling (Perttilä et al. 2012).  
In addition, we did not observe any difference between the groups in the total amount of TAG 
precursors PA and DAG, nor in the amount of PC (I, Fig. 2 B-D, inserts). These results 
regarding the lipid levels are also consistent with human data on PNPLA3I148M variant and 
PNPLA3WT carriers (Peter et al. 2014). In line with earlier findings (He et al. 2010, Perttilä et 
al. 2012), we saw a delay in TAG hydrolysis in the PNPLA3I148M overexpressing cells when 
the transfected cells were cultured for 6 or 24 hours in a medium supplemented with 5 % 
foetal bovine serum and Triacsin C, which is a long chain fatty acyl-CoA synthetase inhibitor 
(Omura et al. 1986, Igal et al. 1997).  
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5.1.2 PNPLA3WT participates in TAG remodelling more efficiently than PNPLA3I148M 
 
To get a more precise picture of the effect of PNPLA3WT and PNPLA3I148M on hepatic lipid 
metabolism, we subjected the lipid species profiles of the [13C]glycerol labelled cells to 
principal component analysis (PCA). The PCA of the TAG composition of the cells showed 
a clear and also statistically significant (p<0.05 in soft independent modelling of class analogy 
(SIMCA) analysis) separation of all groups (Figure 6A). The principal component axes PC1 
and PC2 appeared to separate the groups based on the degree of fatty acid unsaturation and 
the presence of the [13C]glycerol label, respectively. The control cells contained relatively 
more TAG species whose acyl chains had several double bonds, whereas the PNPLA3WT and 
PNPLA3I148M overexpressing cells contained TAG enriched in saturated and monounsaturated 
fatty acids (SFAs and MUFAs). In PNPLA3WT cells the SFA- and MUFA-containing TAGs 
were largely [13C]glycerol labelled while the PNPLA3I148M cells were enriched in equivalent 
unlabelled TAGs. PCA of the species profile of unlabelled DAGs showed similarity to the 
TAG biplot in that the control cells were enriched in PUFA-containing DAGs and 
PNPLA3I148M overexpressing cells possessed more DAGs having SFA and MUFA moieties 
(I, Fig 2B). These cells also differed from each other statistically significantly in SIMCA 
analysis. The PNPLA3WT cells did not differ from the control cells according to SIMCA and 
in the PCA they showed an intermediate profile between the other two groups.  Furthermore, 
when examining a PCA biplot of the composition of unlabelled PC species, the patterns of 
the groups were the opposite than found for TAG; the control cells were enriched in SFA- and 
MUFA-containing PCs and the PNPLA3WT and PNPLA3I148M overexpressing cells contained 
more PCs with PUFA moieties, and especially 20:4n-6 (for example in species 36:4, 38:4 and 
38:5) (Figure 6B). Importantly, this finding was more prominent in the PNPLA3WT cells. 
Both the PNPLA3WT and PNPLA3I148M differed from the control cells according to SIMCA 
(p<0.05). In human data, relative depletion of fatty acids 20:3n-6, 20:4n-6, 22:4n-6 and 22:5n-
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Figure 5. Overexpression of PNPLA3148M in HuH7 cells induces net TAG accumulation but does not 
affect newly synthesized TAGs. (A) Total TAGs after 24-hour [13C]glycerol labelling analysed by 
electrospray ionization mass spectrometry (ESI-MS) (B) Unlabelled TAGs after 24-hour [13C]glycerol 
labelling. (C) Newly synthesized [13C]glycerol labelled TAGs after 24-hour labelling. Values from two 
separate experiments were normalized by setting PNPLA3WT to 1. The means with no common letter 
differ at p<0.05 level (one-way ANOVA followed by Newman-Keuls test of means). Error bars, SD; n=7. 
Ctrl=control, WT=wild type PNPLA3; I148M=PNPLA3 I148M variant. Adapted from Publication I, 
Ruhanen et al. 2014.  
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6 in the elevated liver TAGs of PNPLA3I148M carriers has been reported (Peter et al. 2014), 
but on the other hand PUFA-containing TAGs have been shown to accumulate in the livers 
of PNPLA3I148M carriers compared to noncarriers (Luukkonen et al. 2016). In human 
PNPLAI148M overexpressing mice, there was a relative depletion of PUFAs in hepatic TAGs 
(Li et al. 2012). Similarly, in PNPLA3I148M knock-in mice, very long chain PUFAs were 
depleted from TAG and enriched in phospholipids, but conversely, in mice completely lacking 
Pnpla3 or having a catalytically inactive version of the protein, very long chain PUFAs were 
enriched in TAG and depleted from phospholipids (Mitsche et al. 2018).  
 
Our findings are compatible with a TAG remodelling activity of PNPLA3, according to which 
PNPLA3 would participate in transferring fatty acids, from TAG to membrane phospholipids 
like PC, and that the PNPLA3I148M amino acid substitution leads to a LOF hindering this 
remodelling activity. We confirmed our remodelling hypothesis in an experiment in which we 
applied stable isotope [D17]18:1n-9 labelling to our cell model. During 24-hour labelling 
PNPLA3WT overexpressing cells incorporated more label into their TAGs compared to control 
and PNPLA3I148M cells (I, Fig. 3). During the following 48 hours the relative amount of label 
also decreased faster in the PNPLA3WT cells. Thus, PNPLA3WT overexpression enhanced both 
the incorporation into and removal of fatty acids from TAGs, whereas PNPLA3I148M 
overexpressing cells behaved similarly to control cells. The noticed TAG remodelling activity 
of PNPLA3 could be mediated though a TAG lipase or transacylase activity of the protein 
(Jenkins et al. 2004, Lake et al. 2005, He et al. 2010). PNPLA3 has been reported to have a 
strong preference for oleic acid (Huang et al. 2011), and thus we tested the remodelling 
activity using a labelled form of this fatty acid. However, recent studies have suggested that 
PUFAs may be more relevant in the context of the remodelling activity of PNPLA3 (Mitsche 
et al. 2018, Luukkonen et al. 2019). Our PCA data are compatible with a PUFA-specific 
remodelling activity of PNPLA3, since PCs of the PNPLA3WT cells showed a more prominent 
enrichment of PUFAs than PNPLA3I148M (Figure 6B).  
 
We were the first to report the remodelling activity of PNPLA3, and others have later 
confirmed this finding. Mitsche (2018) used both knock-in and knock-out mouse models to 
show that PNPLA3 transfers very long-chain PUFAs from TAGs to phospholipids in lipid 
droplets. Luukkonen et al. (2019) utilized labelled PUFAs and SFAs to study the processing 
of fatty acids in human subjects homozygous for PNPLA3WT or PNPLA3I148M and also in cells 
homozygous for PNPLA3WT, PNPLA3I148M or PNPLA3 deletion. They came to a conclusion 
that PNPLA3I148M would be a LOF allele defective in remodelling hepatic TAGs. They 
suggested that PNPLA3 is a PUFA-specific transacylase or a PUFA-specific lipase and that 
PNPLA3 would promote the transfer of PUFAs from DAGs to generate PCs enriched in 
PUFA. This remodelling model also explains their previous finding of TAGs being enriched 
in PUFAs in carriers of the PNPLA3I148M variant compared with noncarriers (Luukkonen et 
al. 2016). In the same study they showed that in the metabolic NAFLD, which is associated 
with insulin resistance, the hepatic lipid profile is the opposite, that is, SFAs are enriched in 
TAGs (Luukkonen et al. 2016). They further contemplated that retention of PUFA-containing 
TAGs in the liver could provide an explanation why PNPLA3I148M carriers are protected 
against cardiovascular disease despite having a fatty liver (Liu et al. 2017, Simons et al. 2017). 
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Figure 6. PCA shows differences in the lipid composition of PNPLA3WT or PNPLA3I148M overexpressing 
HuH7 cells when compared to control cells. The arrows represent the directions of the two principal 
components (PC1 and PC2) and the percentages show the proportion of the data variation each axis 
explains. The origin of the PCA biplot is marked with + and samples located furthest from it on one side 
contain relatively more of the lipid species furthest on that same side. (A) PCA of TAG species after 24-
hour [13C]glycerol labeling. Species present at >0.5 mol% were used as variables. Lipid species 
markings: 56:3H=56 carbons and 3 double bonds in the acyl chains, H=heavier i.e. [13C]glycerol labelled 
species; Ctrl=control, WT=wild type PNPLA3; I148M=PNPLA3 I148M variant. (B) PCA of PC species. 
Species present with >0.5 mol% were used as variables; a=alkyl-acyl species (instead of diacyl species). 
Adapted from Publication I, Ruhanen et al. 2014. 
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When TAGs are hydrolysed to DAGs and then re-esterified, some released fatty acids are 
utilized in other processes such as oxidation, phospholipid synthesis and VLDL secretion 
(Lankester et al. 1998). Thus a remodelling defect of PNPLA3I148M could lead to a gradual 
TAG accumulation as the remodelling cycle is slowed down. There is also evidence that 
PNPLA3I148M impairs lipid droplet hydrolysis. We showed that PNPLA3I148M localizes more 
extensively to the surface of a lipid droplet than PNPLA3WT, and that fatty acid loading 
leading to enlarged lipid droplets increases the association of both forms of the protein with 
the lipid droplet (I, Fig. 4). It has been since shown in PNPLA3I148M knock-in mice that 
increased liver fat is associated with PNPLA3I148M accumulation on hepatic lipid droplets 
(Smagris et al. 2015). It was later proposed that PNPLA3I148M disrupts ubiquitylation and 
proteasomal degradation of the protein, leading to accumulation of PNPLA3I148M and 
impaired mobilization of TAG from lipid droplets (BasuRay et al. 2017). It was also recently 
suggested that PNPLA3I148M could promote hepatic lipid accumulation by restricting the 
access of CGI‐58, an activator of triglyceride hydrolases (Oberer et al. 2011), to adipose 
triglyceride lipase (Wang et al. 2019).  In addition, PNPLA3I148M has been shown to localize 
on lipid droplets that resist starvation‐mediated degradation possibly by inhibiting 
autophagosome formation (Negoita et al. 2019). Thereby the reduced autophagy of hepatic 
lipid droplets caused by the PNPLA3I148M presents another conceivable mechanism leading 
to hepatic steatosis in the variant carriers.  
 
The n-3 PUFAs, especially 22:6n-3 and 20:5n-3, have been shown to be effective in treatment 
of NAFLD (Scorletti et al. 2014). However, n-3 PUFA treatment does not appear to be equally 
successful in all patient groups. In fact, NAFLD patients homozygous for PNPLA3I148M had 
higher liver fat percentage after taking a 4 g daily 22:6n-3+20:5n-3 supplement for 15–18 
months than before the trial (Scorletti et al. 2015). They also displayed decreased 22:6n-3 
enrichment in erythrocyte membranes, which is an important finding since erythrocyte 22:6n-
3 enrichment after n-3 PUFA supplementation has been shown to be linearly associated with 
decreased liver fat percentage (Scorletti et al. 2014). These findings concerning the treatment 
response of PNPLA3I148M carriers homozygous for the allele are plausible in the light of the 
remodelling function of PNPLA3. PNPLA3 transfers PUFAs from TAGs to PCs in hepatic 
lipid droplets, and since the PNPLA3I148M LOF variant carriers show accumulation of PUFAs 
in hepatic TAGs (Luukkonen et al. 2016) liver fat accumulation after dietary supplementation 
of PUFAs is not surprising. In addition, the dietary n-6/n-3 PUFA ratio seems to play a part 
in defining the strength of effect of PNPLA3I148M in NAFLD patients, since in a paediatric 
obese population, an association between a high dietary n-6/n-3 PUFA ratio and liver fat 
content as well as liver damage was seen in subjects homozygous for PNPLA3I148M (Santoro 
et al. 2012). Therefore the effects of different fatty acids on PNPLA3I148M-associated NAFLD 
should be further looked into in detail. 
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5.2 Lack of TM6SF2 leads to reduced PUFA content of the membranes 
and altered lipid secretion (II) 

5.2.1 TM6SF2 depletion increases concentrations of neutral and membrane lipids, 
enhances their turnover, and leads to PUFA depletion in hepatocytes 

 
The amino acid change in TM6SF2E167K leads to destabilization and degradation of the 
protein. Therefore we used an shRNA expressing lentivirus to generate hepatocytes in which 
TM6SF2 is stably knocked down (II, Fig. 1A) to study the function of the protein and the 
effect of its variant on hepatic lipid metabolism. Consistent with earlier findings by others 
(Mahdessian et al. 2014, Kozlitina et al. 2014), the TAG and CE concentrations measured by 
ESI-MS/MS were increased in TM6SF2 knock-down hepatocytes compared with control cells 
treated with non-targeting shRNA lentivirus (II, Fig. 1B-C). Interestingly, also the 
concentrations of the two major membrane phospholipids PC and PE were increased in our 
cell model (II, Fig. 2 C-D, inserts). When the relative lipid species profiles of TAG, CE, PC 
and PE were analysed using PCA, the TM6SF2 knock-down and control cells were separated 
from each other in all of these classes based on the principal component 1, which clearly 
represented the degree of unsaturation and explained 60, 64, 88 and 93 % of the observed 
variation in these classes, respectively (II, Fig. 2 A-D). The separation of the two groups was 
also statistically significant in all the lipid classes except CE (SIMCA analysis, p<0.05). In 
all the classes knock-down cells were enriched in the lipid species containing SFAs and 
MUFAs (II, Fig. 2, on the right) whereas the control cells had relatively more PUFA-
containing lipids (II, Fig. 2, on the left). In PC and PE classes, the knock-down cells contained 
the relatively smallest amount of the species with 20:4n-6 moieties, such as PC/PE 36:4, 38:4 
and 38:5. This relative depletion of 20:4n-6 was statistically significant (p<0.01) in the total 
fatty acid profile of the cells as well (II, Table S7). We also determined the absolute levels 
of the PC species that according to ESI-MS/MS fragmentation contained 20:4n-6, and there 
was a reduction in their concentrations after a 24-hour culture and especially after elongated 
one week-long culture (II, Fig. 3 A-B).  
 
In addition to the relative increase in the SFA- and MUFA-containing lipid species in the 
TM6SF2 knock-down cells compared to controls, there was an increase in the absolute levels 
of major PC species containing SFA and MUFAs in the TM6SF2 knock-down cells (II, Fig 
3. A-B). MUFAs and especially SFAs have been shown to induce steatosis related 
mitochondrial dysfunction and apoptosis of hepatocytes (Malhi et al. 2006). SFAs can be 
converted to MUFAs by the function of SCD1, the activity of which has been found to be 
increased in NAFLD patients (Kotronen et al. 2009). MUFAs are major substrates for the 
synthesis of TAG, CE and phospholipids (Ntambi and Miyazaki 2004), and accordingly SCD1 
activity has been suggested to protect the liver from lipotoxicity of SFAs in hepatic steatosis 
(Li et al. 2009). We studied the synthesis and turnover of lipids in our cell model by 
[13C]glycerol and [3H]acetic acid labelling. During a 24-hour [13C]glycerol labelling 
significantly higher (p<0.001) amounts of labelled TAG as well as PC, PE and PI accumulated 
in the TM6SF2 knock-down cells compared to control cells. In addition, during a 24-hour 
chase period the turnover of these lipids was also higher in the TM6SF2 knock-down cells 
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(II, Fig. 4 A-D). At the end of the chase period the levels of TAG, PC and PE still remained 
statistically significantly higher in the TM6SF2 knock-down cells. Furthermore, [3H]acetic 
acid labelling of the cells revealed increased incorporation of the label into TAG and CE thus 
confirming increased de novo lipogenesis of these lipids in the TM6SF2 knock-down cells 
(II, Fig S1). However, there was no difference between the two groups in glucose uptake or 
glycogen synthesis (II, Fig. S2 A-B), suggesting that the main function of TM6SF2 is related 
to lipid metabolism. The reasons behind the increased de novo lipogenesis could include 
increased ER stress, a phenomenon reported to exist in TM6FS2 deficiency and to induce 
several lipogenic activators and enzymes (Lee et al. 2012, O'Hare et al. 2017). 
 

5.2.2   TM6SF2 depletion decreases the size of secreted lipoprotein-like particles  
 

The finding of decreased 20:4n-6 in the TM6SF2 knock-down cells is especially interesting 
in the light of studies pointing to the importance of having this fatty acid in the membrane 
phospholipids to enable successful VLDL secretion (Rong et al. 2015, Hashidate-Yoshida et 
al. 2015). Importantly, mice lacking hepatic lysophosphatidylcholine acyltransferase 3 and 
thus having lower levels of phospholipids containing 20:4n-6 have hepatic steatosis and 
secrete lipid-poor VLDL deficient in 20:4n-6-containing PCs (Rong et al. 2015). In addition, 
patients with NASH were reported to have low hepatic PUFA levels and also specifically 
lower levels of 20:4n-6 in PC (Puri et al. 2007, Arendt et al. 2015). Prompted by these reports, 
we examined the lipoprotein-like particles secreted by the cells using electron microscopy (II, 
Fig. 5A).  The size distribution of the particles showed a clear difference between the two 
groups; the TM6SF2 knock-down cells were almost completely lacking the largest particles 
(>20 nm in diameter) and secreted relatively more of the smaller particles (<15 nm) compared 
to the control cells (II, Fig. 5B). In contradiction with human and hepatic 3D spheroid data 
(Kim et al. 2017, Prill et al. 2019), we did not see a reduction in ApoB secretion but rather an 
increase in ApoB secreted by the TM6SF2 knock-down cells (II, Fig. 5C), most likely 
reflecting the difference between a complete physiological system and an isolated cell model. 
However, Luukkonen et al. (2017), showed that humans carriers of TM6SF2E167K have 
decreased amounts of PUFAs in liver TAGs and PCs compared to non-carriers, and that the 
incorporation of 20:4n-6 into TAGs and PCs of TM6SF2 knock-down hepatocytes is 
decreased. They hypothesized, in line with our findings, that hepatic synthesis of PUFA-
containing lipids is reduced in TM6SF2E167K carriers resulting in deficiency of 
polyunsaturated PCs in the human liver and thus impairing VLDL lipidation.  

 

5.2.3 TM6SF2 depleted hepatocytes show impaired mitochondrial β-oxidation and 
have an amplified late endosomal/lysosomal compartment 

 
In addition to impaired VLDL secretion and imbalanced lipid synthesis and turnover, the 
hepatic lipid accumulation associated with TM6SF2 deficiency could be due to reduced β-
oxidation of fatty acids. Moreover, mitochondrial dysfunction has been reported to occur in 
NAFLD (Caldwell et al. 1999, Ibdah et al. 2005, Peng et al. 2018). We measured the 
mitochondrial β-oxidation capacity of the control and TM6SF2 knock-down cells using fatty 
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acid 16:0 as substrate. An experiment to measure mitochondrial stress was performed using a 
Seahorse® metabolic flux analyser (II, Fig. 6A). During an oxygen consumption rate (OCR) 
measurement, a basal OCR was first recorded; then, by adding oligomycin, ATP production 
was inhibited leaving only the proton leak to be measured. By injecting carbonyl cyanide p-
trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial uncoupling agent, an uninhibited 
electron flow through the electron transfer chain was enabled and maximal oxygen 
consumption of complex IV recorded. Finally, non-mitochondrial respiration was measured 
by adding rotenone and antimycin A to inhibit the respiratory chain. Based on these 
measurements, the basal and maximal OCRs were calculated. These results revealed that 
when exogenous fatty acids were utilized, the basal OCR was decreased in the TM6SF2 
knock-down cells compared to control cells (II, Fig. 6B). However, the mechanisms that 
couple oxygen consumption and ATP production were not affected pointing towards TM6SF2 
deficiency affecting only the processes required for β-oxidation. Increase of 20:4n-6 and 
22:6n-3 in the mitochondrial membrane phospholipids has been shown to improve 
mitochondrial function (Khairallah et al. 2012), and it is possible that the mitochondria of 
TM6SF2 knock-down cells are affected by the altered cellular lipid profile and lack of PUFAs. 
In addition, altered ER lipid composition could disrupt the ER-mitochondrial contact sites 
thus reducing the flux of fatty acids into mitochondria as well as the Ca2+ flux between these 
organelles (Csordas et al. 2010). 
 
Due to the observed membrane lipid accumulation in TM6SF2 knock-down cells, we 
performed electron microscopy to investigate the organelle structure of the cells. We found 
that the TM6SF2 knock-down cells have more late endosomes/lysosomes than the control 
cells (II, Fig. 7A), a finding that had not been reported previously. This result was confirmed 
using immunofluorescence microscopy and antibodies against lysosomal-associated 
membrane protein 1, a known lysosome marker (II, Fig 7B). Endosomal/lysosomal pathways 
are important for normal liver function and provide a means to dispose of excess lipids 
(Schroeder and McNiven 2014, Jaishy and Abel 2016). Thus, the noticed amplification of the 
late endosome/lysosome compartment may be a response to the increased lipid load of the 
cells. 

 
Based on our findings, we propose the following model to explain lipid accumulation in 
hepatocytes due to TM6SF2 deficiency (Figure 7): TM6SF2 depletion leads to a decreased 
amount of PUFAs and especially 20:4n-6 in the ER membrane therefore disrupting lipoprotein 
secretion and reducing the size and lipid content of the secreted particles. This is accompanied 
by reduced β-oxidation of fatty acids as well as elevated membrane lipid content, increased 
lipid turnover and enlarged late endosome/lysosome compartment. 
 
Since TM6SF2 deficiency leads to reduced hepatic secretion of TAG and cholesterol 
(Mahdessian et al. 2014, Smagris et al. 2016, Fan et al. 2016), it has been suggested that 
TM6SF2 could be a therapeutic target for reducing plasma lipids and the risk of cardiovascular 
disease (Fan et al. 2016, Li et al. 2018). Our results show that TM6SF2 depletion has many 
different effects on hepatocytes and on their lipid metabolism. There is also evidence on 
TM6SF2E167 variant being associated with NAFLD that is more likely to progress into NASH 
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and hepatic fibrosis or cirrhosis (Liu et al. 2014, Dongiovanni et al. 2015), the reason for 
which is yet to be elucidated. For these reasons deeper understanding of the function of 
TM6SF2 in the liver is still required before TM6SF2 depletion could be implemented in a 
therapeutic setting. 
 

 

 

5.3 ANGPTL3 depletion alters the lipidome of hepatocytes (III) 

5.3.1 Depleting ANGPTL3 in hepatocytes alters many lipid metabolism-related 
pathways  

 
The role of ANGPTL3 in circulation is well established but its intracellular function in 
hepatocytes has remained unknown. Nonetheless, liver-specific inhibition of the production 
of ANGPTL3 is a promising approach for treating cardiovascular disease (Graham et al. 
2017). We knocked down ANGPTL3 in immortalized human hepatocytes (III, Fig. 1A-C), 
and performed a differential gene expression analysis followed by gene set enrichment 
analysis and gene set over-representation analysis to gain understanding of the pathways that 
ANGPTL3 depletion might affect. Both Kyoto encyclopedia of genes and genomes (KEGG) 
pathway analysis and Reactome overrepresentation analysis, which was performed using only 
statistically significantly (p<0.05) up/downregulated genes, highlighted several pathways 
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related to lipid metabolism that are altered upon ANGPTL3 depletion (III, Table 1 and 
Supplementary Figure 1). According to these analyses, depleting ANGPTL3 changes lipid 
metabolism widely, affecting glycerophospholipid, sphingolipid, cholesterol and fatty acid 
metabolism as well as lipid signalling. Also two pathways related to longevity and three 
pathways related to insulin (insulin sensitivity/resistance, insulin signalling and insulin 
secretion) were raised by the KEGG analysis (III, Supplementary table 3). These are 
relevant findings in the light of reports showing that ANGPTL3 deficient subjects are likely 
to exceed the average life expectancy and have increased insulin sensitivity (Minicocci et al. 
2012, Robciuc et al. 2013). In addition, it has previously been reported using the same cell 
model as in our studies that ANGPTL3 depletion enhances glucose uptake and down-regulates 
gluconeogenic genes in hepatocytes, suggesting that ANGPTL3 deficiency improves hepatic 
insulin sensitivity (Tikka et al. 2014). 
 

5.3.2 ANGPTL3 depletion reduces cholesterol ester synthesis of hepatocytes 
 
We utilized several different lipidomics approaches to study the lipid metabolism of 
ANGPLT3 depleted immortalized human hepatocytes (IHHs) and control cells transduced 
with non-targeting shRNA. There were no changes in the total levels of major membrane 
phospholipids PC, PE, PI or SM, analysed by ESI-MS/MS and normalised to total cellular 
protein. But importantly, there was a marked drop (p<0.001) in the total level of CEs (III, 
Fig. 4A). When the cells were labelled with [3H]acetic acid or [3H]oleic acid, the incorporation 
of both labels into CE was  significantly lower (p<0.001) in the ANGPLT3 knock-down cells 
compared to control IHH cells (III, Fig. 4E-F), revealing that ANGPTL3 depletion reduces 
CE synthesis. Based on the same labelling experiments, the synthesis of unesterified 
cholesterol is not affected by ANGPTL3 depletion. The observed defect in CE synthesis may 
be explained by a reduced amount of ACAT1 in the ANGPTL3 knock-down cells, noticed 
both at mRNA and protein levels in our cell model (III, Fig. 4 B-D). The relevance of this 
finding in the liver in vivo is not clear, as ACAT2 is the major isoform needed for CE synthesis 
in human liver (Parini et al. 2004). In rat hepatoma cells, however, increased levels of either 
ACAT isoform increased CE synthesis, cellular accumulation of CEs as well as its secretion 
in VLDL (Liang et al. 2004), and consistently, inhibition of ACAT was shown to decrease 
VLDL apoB secretion in pigs (Burnett et al. 1999). ANGPLT3 LOF carriers have a reduced 
CE/apoB ratio of plasma VLDL and LDL when compared to non-carriers (Robciuc et al. 
2013), and based on the above findings it is possible that this observation could be explained 
by reduced level of ACAT1. 
 

5.3.3 ANGPTL3 deficiency causes enrichment of polyunsaturated fatty acids and 
depletion of monounsaturated fatty acids in hepatocytes 

 
Even though there were no differences in the total levels of major membrane phospholipids 
PC, PE and PI between the control and ANGPTL3 knock-down cells, the species 
compositions of these lipids showed some highly interesting differences between the groups 
(III, Supplementary tables 5-7). PCA illustrated that in all these lipid classes the ANGPTL3 
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knock-down cells were enriched in lipid species containing PUFAs, whereas the control cells 
had relatively more lipid species with MUFA and SFA moieties (III, Supplementary Figure 
2A-C). There was a similar difference between the groups also in the species composition of 
CE (III, Supplementary table 8); the relative level of the largest individual component 
CE18:1 was decreased (p<0.001) and the proportion of the most abundant PUFA-containing 
CE (CE22:6) was increased (p<0.001) in ANGPTL3 knock-down cells. Effects of ANGPTL3 
depletion on hepatic phospholipid or CE profiles have not been reported before, but relative 
enrichment of PUFA-containing long-chain TAGs has previously been seen in livers of 
ANGPTL3 deficient mice (Xu et al. 2018). Unfortunately, due to the very low amounts of 
TAGs in IHH cells and technical limitations, we were not able to analyse the TAGs in our cell 
model. 
 
The observed PUFA-enrichment and MUFA-depletion in ANGPTL3 depleted cells was 
evident also in the total fatty acid profile of the cells determined by gas chromatography (III, 
Supplementary table 4). The sum of MUFAs was decreased and the sums of both n-6 and 
n-3 PUFAs were increased in the ANGPTL3 knock-down cells compared to controls (III, 
Fig. 2A). However, the n-6/n-3 ratio was not affected by ANGPTL3 depletion. PCA of the 
relative fatty acid composition of the cells revealed that the fatty acids most responsible for 
the separation between the groups in the direction of principal component 2 were 20:5n-3 and 
20:4n-6, which were enriched in the ANGPTL3 knock-down cells, and 20:3n-9, which was 
enriched in the control cells (III, Fig. 2B). Fatty acid 20:3n-9 is synthesized from the non-
essential 18:1n-9, and it is an indicator of essential fatty acid deficiency (Ichi et al. 2014). 
According to the differential gene expression analysis, fatty acid translocase CD36 and 
several fatty acid binding proteins, which mediate the uptake of long-chain fatty acids and 
PUFAs into cells (Kane et al. 1996, Murphy  et al. 2005, Ehehalt et al. 2008, Islam et al. 
2014), are upregulated in the ANGPTL3 knock-down cells. This, together with the fatty acid 
data, suggests that fatty acid uptake may be enhanced upon ANGPTL3 depletion.  
 

5.3.4 ANGPTL3 depletion alters the lipid mediator profile of hepatocytes 
 
Since n-6 and n-3 PUFAs, like 20:4n-6 and 20:5n-3, which were enriched in the ANGPTL3 
depleted cells, are precursors of bioactive lipid mediators (Buckley et al. 2014, Dennis and 
Norris 2015), we utilized an LC-MS/MS approach to study the lipid mediators produced by 
the ANGPTL3 knock-down and control cells (III, Supplementary table 9; results represent 
the sums of intracellular and secreted lipid mediators). Due to the limited number of samples 
(n=3) the differences between the groups were not statistically significant. Even so, a partial 
least squares discriminant analysis (PLS-DA) separated the groups from each other (III, Fig. 
3A). Variable importance in projection (VIP) score showed the importance of each variable 
in separating the two groups in the PLA-DA model. All of the 15 lipid mediators with the 
highest VIP scores were more abundant in the ANGPTL3 knock-down cells than in the 
controls (III, Fig. 3B). There were both pro-inflammatory and pro-resolving lipid mediators 
among the ones with the highest VIP scores.  Resolvin D6 (RvD6) had the highest VIP score 
of all the analysed lipid mediators. It is a specialized pro-resolving mediator (SPM), which 
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has been shown to induce the uptake of blood clots by macrophages, and the level of which 
could be raised in coronary artery disease patients by n-3 supplementation (Elajami et al. 
2016). Maresin 2 (MaR2) and 22-OH-MaR1, which is a metabolite of maresin 1, are also 
SPMs, which have been described in macrophages and neutrophils, respectively (Deng et al. 
2014, Colas et al. 2016). The SPMs 10S,17S-diHDPA and 10S,17S-diHDHA, produced from 
22:5n-3 and 22:6n-3, respectively, also showed high VIP scores. The former is a protectin 
pathway marker (Gobbetti et al. 2017), and the latter, also known as protectin DX, has been 
reported to inhibit ER stress and thus attenuate hepatic steatosis in mice and insulin resistance 
in hepatocytes (Jung et al. 2018, Jung et al. 2019). The SPMs 13,14-dehydro,15-oxo-LXA4 
and 15-epi-LXA4 also having high VIP scores in the data are produced from 20:4n-6 via the 
lipoxygenase pathway (Chandrasekharan and Sharma-Walia 2015, Pirault and Bäck 2018), 
and the latter of these lipid mediators is known to participate in activating the resolution phase 
of inflammation by down-regulating pro-inflammatory eicosanoids and by inducing the 
release of SPMs (Kain et al. 2017, Dakin et al. 2019). The pro-inflammatory eicosanoids, such 
as prostaglandins (PGs), act in the initiation phase of acute inflammation (Ricciotti and 
FitzGerald 2011), and prostaglandin E2 (PGE2) also plays a role in lipid mediator class 
switching as it initiates the resolution phase by decreasing the production of pro-inflammatory 
leukotriene B4 (LTB4)(Levy et al. 2001). PGD2, PGF2a, PGE2 and LTB4 as well as another 
20:4n-6-derived pro-inflammatory lipid mediator thromboxane B2 were among the top 15 
mediators with the highest VIP scores in the ANGPTL3 knock-down cells. 
 
Lipid mediators were also analysed by grouping them based on their FA precursor. The sums 
of lipid mediators derived from 22:6n-3, 22:5n-3, and 20:4n-6 all showed an increasing trend 
in the ANGPTL3 knock-down cells (Figure 8A). In fact, only 20:5n-3-derived lipid mediators 
showed a decreasing trend in the ANGPTL3 depleted cells when compared to controls, 
however, resolvin E2 (RvE2) was the only species representing this group. PCA performed 
using sums of mass % converted values revealed that ANGPTL3 knock-down cells were 
relatively more enriched in 20:4n-6-derived thromboxanes and prostaglandins as well as 
22:6n-3-derived protectins, maresins and resolvins (Figure 8B). The observed increased 
production of lipid mediators upon ANGPTL3 depletion is consistent with a previous report 
showing increased production of lipid mediators after PUFA (20:4n-6, 20:5n-3 and 22:6n-3) 
supplementation and enrichment in membrane phospholipids (Holopainen et al. 2019). In our 
cell model, two isoforms of cytosolic PLA2 were upregulated based on the differential gene 
expression analysis. This enzyme, which releases fatty acids from glycerophospholipids, is 
reported to show substrate specificity for 20-22-carbon PUFAs (Shikano et al. 1994, Batchu 
et al. 2016). Thus, increased substrate availability likely potentiates lipid mediator production 
in the ANGPTL3 depleted cells.  In addition, it has been shown that when cells have increased 
amounts of bioactive PUFAs, these fatty acids can be elongated to a less active form (Akiba 
et al. 2000, Zou et al. 2012, Dong et al. 2016, Tigistu-Sahle et al. 2017, Holopainen et al. 
2019). Fatty acid 20:4n-6 can be elongated to adrenic acid 22:4n-6, which is a less potent 
activator of cyclooxygenase, the key enzyme needed in prostaglandin biosynthesis (Zou et al. 
2012, Dong et al. 2016). Similarly, 20:5n-3 can be elongated to 22:5n-3 (Akiba et al. 2000), 
which, however, is also a precursor for pro-resolving lipid mediators (Dalli et al. 2013, Dalli 
et al. 2015). The relative amount of both 22:4n-6 and 22:5n-3 was significantly increased in 
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the ANGPTL3 knock-down cells when compared to controls, possibly reflecting a response 
evoked in order to attenuate the synthesis of 20:4n-6 and 20:5:n-3 -derived lipid mediators. 
 

 

 

 

5.4 Lack of ANGPTL3 leads to changes in the core and surface lipids of 
lipoproteins (III) 

5.4.1 ANGPTL3 deficiency changes the fatty acid profile of lipoproteins 
 

To gain understanding on how lipoproteins secreted by the liver are affected by ANGPTL3 
deficiency, we analysed VLDL, LDL and HDL lipoprotein fractions derived from plasma of 
subjects who were either homozygous for an ANGPTL3 LOF variant or did not carry the 
variant at all. The subjects selected for this study present a subpopulation of a larger study 
cohort (Minicocci et al. 2016, Tikkanen et al. 2019), and there is no difference between the 
two groups in dietary intake, physical activity, smoking prevalence, or use of anti-
inflammatory medications. Fatty acid profiles of the lipoproteins were determined by gas 
chromatography (III, Supplementary table 10).  When examining molar percentages of 
individual fatty acids, the most pronounced difference between the groups was the elevated 
amount of 18:2n-6 in the ANGPTL3 deficient subjects. This change was most prominent in 
the VLDL fraction (p<0.001) but remained statistically significant also in LDL (p<0.01) and 
HDL (p<0.05) fractions. The molar percentage values were then standardised in order to 
evaluate also the effect of the smaller components in the data and a PCA was performed using 
all the lipoprotein fractions in the same analysis. A PCA biplot separated the groups from 
each other, principal component 1 according to the lipoprotein fraction (VLDL on the right, 
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LDL in the middle, and HDL on the left) and principal component 2 according to the sample 
group (ANGPTL3 LOF homozygotes higher up and control subjects in the bottom) (III, Fig. 
5). The fatty acids on the right and enriched in the VLDL fractions were mainly saturated or 
monounsaturated and 14-18 carbon-long, whereas the fatty acids enriched in the HDL 
fractions had 20 carbons or more and many of them were also polyunsaturated. In addition, 
plasmalogen-derived dimethyl acetals were enriched in the HDL fraction of the control 
subjects. LPL hydrolyses lipoproteins in the circulation, and its hydrolysis efficiency 
decreases with increasing chain length and unsaturation (Wang et al. 1993, Sato et al. 1999). 
In addition to hydrolysing TAG, LPL has PLA1 activity (McLeanBest et al. 1986), but it 
hydrolyses only ester bonds and not ether bonds (McLeanDemel et al. 1986, Olivecrona and 
Bengtsson-Olivecrona 1987, Griffon et al. 2006). Thus the function of LPL would seem to 
explain the change in fatty acid quality in the direction of principal component 1. Principal 
component 2 separated the ANGPTL3 LOF carriers and control subjects, and thus reflected 
the presence/absence of ANGPTL3 in the circulation of the subjects. Accordingly, ANGPTL3 
deficient subjects have increased LPL activity (Robciuc et al. 2013), but there is no significant 
difference in the activities of EL, CETP or PLTP between the ANGPTL3 LOF carriers and 
control subjects (Robciuc et al. 2013, Minicocci et al. 2016). 
 

5.4.2 ANGPTL3 deficiency changes the quality of surface and core lipids of 
lipoproteins 

 
We determined the detailed profile of the core and surface lipids of the lipoprotein fractions 
by ESI-MS/MS. The total amounts of lipids at the class level were lower in the lipoprotein 
particles of the ANGPTL3 LOF carriers when compared to controls (III, Supplementary 
table 11). This finding is consistent with previous reports and highly relevant in terms of the 
reduced cardiovascular risk mediated by ANGPTL3 deficiency (Musunuru et al. 2010, 
Robciuc et al. 2013, Stitziel et al. 2017). At the lipid species level ANGPLT3 deficiency lead 
to compositional changes in all the lipoprotein classes analysed (III, Supplementary tables 
12-16), and the changes in TAG, PC and lysoPC species likely reflect the increased LPL 
activity observed in the plasma of these subjects (Robciuc et al. 2013). TAGs and lysoPCs of 
the ANGLPTL3 LOF carriers were enriched in PUFA-containing species (III, Fig. 6, 7C; 
Supplementary tables 12, 15). LPL hydrolyses the fatty acids with the least number of 
carbons and double-bonds most efficiently, leaving the long-chain PUFAs to be hydrolysed 
last (Wang et al. 1993, Sato et al. 1999). Moreover, the PLA1 activity of the enzyme depends 
on the structure of the fatty acid in the sn-2 position. The longer the fatty acid in the sn-2 
position the more efficiently LPL hydrolyses the ester bond in the sn-1 position of the 
phospholipid (McLean and Best et al. 1986). In PCs of all the lipoprotein fractions of the 
ANGPTL3 LOF carriers, there was a clear enrichment of alkyl-ether species (III, 
Supplementary table 16), which could be explained by the ester bond-specificity of LPL 
(McLean and Demel et al. 1986, Olivecrona and Bengtsson-Olivecrona 1987, Griffon et al. 
2006). Another plausible explanation could be related to the function of peroxisomes as ether 
lipids are synthesized in these organelles (van den Bosch et al. 1993). However, there are no 
reports on altered peroxisomal function of ANGPTL3 deficent subjects.  
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CEs of the lipoproteins derived from ANGPTL3 LOF carriers had an elevated level of species 
with 16:1 and 18:1 fatty acid moieties when compared to control subjects (III, 
Supplementary table 13). CEs are not hydrolysed by LPL since the enzyme is specific for 
ester bonds on the glycerol backbone (McLean and Demel et al. 1986, Olivecrona and 
Bengtsson-Olivecrona 1987, Griffon et al. 2006). The observed compositional change could 
be related to the function of LCAT as it transfers fatty acids from the sn-2 potion of PC to 
cholesterol in lipoproteins (Glomset 1962, Chen and Albers 1982), but the mechanism is 
poorly studied and would require further investigation. The compositional differences seen in 
the lipids of circulating lipoproteins of ANGPTL3 LOF carriers and control subjects could 
also, at least in part, originate from the lipid composition of the liver. At the moment, there 
are no reports on liver lipid composition of ANGPTL3 deficient subjects, so this question 
remains open.  
 
Also the composition of SM and its ratio to PC were altered in the ANGPTL3 LOF carriers. 
The SM/PC ratio of lipoproteins derived from the ANGPTL3 LOF carriers was statistically 
significantly increased when compared to control subjects (III, Fig. 7A). PLTP transfers SM 
efficiently (Huuskonen et al. 1996), and thus it is possible that the increased SM/PC ratio is 
present already in nascent VLDL particles, which are then hydrolysed by LPL in the 
circulation, after which PLTP could transfer the extra surface lipids to HDL and further to 
LDL (Albers et al. 2012). An increased SM/PC ratio has been shown to increase the capacity 
of HDL to collect cholesterol from cells (Horter et al. 2002). However, SM enrichment in 
HDL also inhibits esterification of cholesterol by LCAT (Subbaiah and Liu 1993), and thus 
the effect of increased SM/PC ratio on reverse cholesterol transport is not clear. The 
proportion of long-chain SMs 24:1 and 24:2 was increased and the relative amount of short 
saturated SMs was decreased in the lipoproteins of ANGPTL3 LOF carriers when compared 
to control subjects (III, Fig. 7B). It has been reported that saturated SM species as well as SM 
16:1 increase LDL aggregation and the risk of cardiovascular death (Ruuth et al. 2018). The 
lipoproteins of ANGPTL3 LOF carriers could thus be less prone to aggregate even though 
SM is enriched in the surface of these particles. This could provide further protection against 
cardiovascular disease on top of the low levels of CEs and TAGs in circulating lipoproteins 
of the ANGPTL3 deficient subjects. 
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6 CONCLUSIONS AND FUTURE PERSPECTIVES 

The work presented in this thesis provides new knowledge of the function of proteins 
PNPLA3 and TM6SF2 as well as of the mechanisms how their variants affect hepatic lipid 
accumulation. In addition, detailed analysis of the effects of ANGPTL3 depletion on the 
lipidome of hepatocytes and secreted lipoprotein particles is reported for the first time. The 
main findings of the thesis are summarised in Figure 9. In the first study of this thesis, we 
demonstrated that PNPLA3 is a TAG remodelling protein and that PNPLA3I148M is a LOF 
variant that is also more extensively associated with lipid droplets. Hepatic TAG 
accumulation could be related to the ineffective remodelling of TAGs by PNPLA3I148M, or 
accumulation of PNPLA3I148M on lipid droplets may lead to more hydrolysis-resistant lipid 
droplets thus causing hepatic lipid accumulation (BasuRay et al. 2017, Negoita et al. 2019, 
Wang et al. 2019).  In the second study, we mimicked the effect of TM6SF2E167K by knocking 
down TM6SF2 in hepatocytes and showed that TM6SF2 depletion changes the lipid 
composition of membranes by reducing the amount of PUFAs and increasing the levels of 
SFAs and MUFAs. The lack of PUFAs in membranes leads to secretion of smaller 
lipoprotein-like particles and accumulation of TAG and CE in the cells. We also observed 
reduced β-oxidation in the TM6SF2 depleted cells, which can additionally lead to hepatic 
lipid accumulation.  In the third part of this thesis, we showed that ANGPLT3 depletion has 
extensive effects on the lipid metabolism of hepatocytes. PUFAs were enriched in lipids of 
ANGPTL3 depleted cells, coinciding with enhanced lipid mediator production. In addition, 
cholesterol ester synthesis was reduced in ANGPTL3 knock-down hepatocytes. The changes 
in core and surface lipids of lipoproteins caused by ANGPTL3 deficiency most likely 
reflected the increased activity of LPL, the activity of which decreases with increasing chain 
length and unsaturation (Wang et al. 1993, Sato et al. 1999). 
 
Many of the treatment options currently available for NAFLD are targeting obesity and related 
metabolic disorders (European Association for the Study of the Liver (EASL) et al. 2016, 
Romero-Gomez et al. 2017, Ganguli et al. 2019). Since obesity further increases the risk of 
developing NAFLD due to the PNPLA3I148M and TM6SF2E167K variants, the carriers of these 
risk alleles are expected to benefit most from weight-loss interventions (Stender et al. 2017, 
Wang et al. 2018). However, understanding the mechanisms of the hepatic lipid accumulation 
in NAFLD associated with these genetic variants may provide further treatment options and 
improve therapeutic approaches. For example, n-3 supplementation, which is currently used 
in treating NAFLD, can be harmful in terms of hepatic lipid accumulation in patients 
homozygous for PNPLA3I148M (Scorletti et al. 2015).  
 
In line with our findings of the effects of TM6SF2 depletion, decreased amounts of PUFAs 
have been observed in liver TAGs and PCs of human subjects carrying the TM6SF2 E167K 
allele, and the incorporation of 20:4n-6 into TAGs and PCs has been shown to be decreased 
in TM6SF2 knock-down hepatocytes (Luukkonen et al. 2017). Thus in the case on TM6SF2, 
different strategies using fatty acid supplementations or other manipulations to increase the 
levels of PUFAs in the livers of these subjects could provide means for prevention and 
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treatment of TM6SF2 E167K-associated NAFLD. Due to the plasma lipid lowering effects of 
TM6SF2 depletion and TM6SF2 E167K variant, TM6SF2 reduction has been proposed to be a 
possible strategy for treating cardiovascular disease (Fan et al. 2016, Li et al. 2018). However, 
the mechanisms of hepatic lipid accumulation related to TM6SF2 deficiency should be 
understood in more detail before considering such approaches. 
 
There is accumulating evidence on the roles of PUFA-derived lipid mediators in the resolution 
of inflammation in atherosclerosis (Akagi et al. 2015, Fredman et al. 2016, Gerlach et al. 
2019, Bäck et al. 2019). We saw an elevation of PUFA-derived lipid mediators in the 
ANGPTL3 depleted hepatocytes, and many of these lipid mediators have roles in resolution 
of inflammation, recovery from cardiovascular events, and also in attenuating hepatic 
steatosis and insulin resistance (Kain et al. 2017, Jung et al. 2018, Jung et al. 2019, Dakin et 
al. 2019). ANGPTL3 deficient subjects have increased insulin sensitivity (Robciuc et al. 
2013), and liver-specific mechanisms have been suggested to be involved this phenotype 
(Tikka et al. 2014). Interestingly, NASH patients have been reported to have elevated levels 
of circulating ANGPTL3  (Yilmaz et al. 2009), and ANGPTL3 deficient subjects are not 
known to have increased liver fat or suffer from other adverse clinical outcomes  (Minicocci 
et al. 2012). Thus, ANGPTL3 deficiency would seem to result in favourable outcomes in the 
liver. However, further studies on hepatic depletion of ANGPTL3 are needed. In the future, 
an analysis of the lipid mediators derived from the plasma of ANGPTL3 deficient subjects 
could provide further clues of the mechanisms behind the cardioprotective effects of 
ANGPTL3 deficiency beyond the decreased levels of plasma lipids.  
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