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Cardiovascular disease (CVD) is the leading cause of death globally. It is well-established

based on evidence accrued during the last three decades that high plasma

concentrations of cholesterol-rich atherogenic lipoproteins are causatively linked to CVD,

and that lowering these reduces atherosclerotic cardiovascular events in humans (1–9).

Historically, most attention has been on low-density lipoproteins (LDL) since these are

the most abundant atherogenic lipoproteins in the circulation, and thus the main carrier

of cholesterol into the artery wall. However, with the rise of obesity and insulin resistance

in many populations, there is increasing interest in the role of triglyceride-rich lipoproteins

(TRLs) and their metabolic remnants, with accumulating evidence showing they too

are causatively linked to CVD. Plasma triglyceride, measured either in the fasting or

non-fasting state, is a useful index of the abundance of TRLs and recent research

into the biology and genetics of triglyceride heritability has provided new insight into

the causal relationship of TRLs with CVD. Of the genetic factors known to influence

plasma triglyceride levels variation in APOC3 - the gene for apolipoprotein (apo) C-III - has

emerged as being particularly important as a regulator of triglyceride transport and a novel

therapeutic target to reduce dyslipidaemia and CVD risk (10).
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STRUCTURE AND REGULATION OF APOC-III

APOC3 is expressed in hepatocytes and, to a lesser extent in enterocytes (11). It encodes apoC-III,
a smaller apolipoprotein of 79 amino acid residues (12). In the circulation, apoC-III is mainly
present on TRLs and high density lipoprotein (HDL), and to a lesser extent also on LDL particles
(13–16). The distribution of apoC-III between these lipoproteins depends on the metabolic status
of individuals, varying between the fasting and postprandial state, and between subjects with
normal plasma triglyceride levels and those with hypertriglyceridemia (17–20). Despite the fact
that apoC-III was discovered more than 50 years ago (21), we still lack a detailed molecular
understanding on how it interacts with lipoprotein particles, enzymes, and cell surface receptors
(12, 22–24). However, the two amphipathic helices, and the aromatic tryptophan residues in the
carboxyl-terminal half of apoC-III seem to be important for its ability to interact with TRLs (25).
Once synthesized, apoC-III can undergo posttranslational modification on threonine-74 resulting
in three different glycoforms; unsialylated apoC-III0, monosialylated apoC-III1 and disialylated
apoC-III2 (26). The impact of this posttranslational modification has for long been unclear, but
recent results indicate that the glycoforms are cleared differently by liver receptors (27).
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The transcription rate of APOC3 is decreased by insulin
(28, 29), peroxisome proliferator-activated receptor-α (PPARα)
(30), and farnesoid X receptor (FXR) (Figure 1) (32). In contrast,
glucose stimulates expression of APOC3 via hepatic nuclear
factor-4 (HNF4) and carbohydrate-responsive element binding
protein (ChREBP) (41). It has been proposed that glucose-
mediated regulation of APOC3 expression promotes a shift in
the energy source for peripheral tissues from fatty acids released
by lipolysis of TRLs to increased utilization of blood glucose (28,
31, 41, 42). APOC3 expression is therefore upregulated in states
of insulin resistance (characterized by insulin resistance and
hyperglycemia), and recent results demonstrate that glycaemic
control is a major determinant of apoC-III secretion rate in
vivo (as measured by stable isotope technology) and thus
plasma apoC-III levels (43). In these studies it was reported
also that apoC-III metabolism is significantly perturbed in
subjects with type 2 diabetes; the apoC-III secretion rate was

FIGURE 1 | ApoC-III is an important mediator of an atherogenic dyslipidaemia and increased CVD risk. The hepatic APOC3 expression is induced by carbohydrates

(glucose and fructose) and saturated fatty acid (SFA), and reduced by insulin and insulin and polyunsaturated fatty acid (PUFA) (18, 19, 31). Pharmacological

intervention by FXR (28, 32, 33) and PPAR (30, 33–36) agonists and APOC3 antisense oligonucleotides (ASO) reduces hepatic APOC3 expression (19). Statins

(37–39), niacin (40), and ezetimide (40) have been shown to lower plasma apoC-III levels. Increased apoC-III levels induce increase plasma levels of triglycerides and

remnant cholesterol, and increased CVD risk. The mechanisms involve impaired lipolysis of TRLs and impaired hepatic clearance of TRL remnants. ApoC-III also

facilitates subendothelial accumulation of atherogenic lipoproteins in the artery wall by increasing affinity of atherogenic lipoproteins to artery wall proteoglycans,

promoting proinflammatory responses and increasing susceptibility to thrombotic events.

markedly higher than that seen in BMI-matched non-diabetic
controls. Improved glycaemic control with the glucagon-like
peptide (GLP)−1 analog liraglutide for 16 weeks reduced
the apoC-III secretion rate and as a consequence plasma
apoC-III levels (43). These findings demonstrate that glucose
homeostasis is an important regulator of apoC-III metabolism,
and that the secretion rate of apoC-III is an important
driver for the elevation of TRLs in subjects with type 2
diabetes (43).

The regulation of hepatic apoC-III expression is now
reasonably well-understood, but much less is known of the
control of apoC-III synthesis and secretion in the intestine.
Intriguingly, overexpression of apoC-III has been shown to
decrease intestinal secretion of dietary triglycerides into lymph
due to impaired lipid uptake into enterocytes, and impaired
esterification capacity to form triglyceride in the mucosa (44).
Likewise, intestinal apoC-III overexpression has been reported
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to result in the secretion of smaller chylomicrons and a reduced
triglyceride secretion from the intestine (45).

There is a low concentration of free (i.e., non-lipoprotein
associated) apoC-III in the circulation. This form of the protein
is chiefly excreted by the kidney (46). It is of note, therefore,
that subjects with moderate chronic kidney disease (CKD) which
is associated with mild hypertriglyceridemia display increased
plasma apoC-III levels due to delayed apoC-III catabolism (47).

HOW DOES APOC-III INDUCE
HYPERTRIGLYCERIDEMIA AND
INCREASED PLASMA LEVELS OF
ATHEROGENIC REMNANT PARTICLES?

Human kinetic studies have demonstrated that about 20% of the
variation in plasma triglycerides can be explained by increased
hepatic production of large triglyceride-rich VLDL1 particles,
but that impaired removal of TRLs is the main cause explaining
about 55% of the variation of plasma triglyceride levels (Table 1)
(48). Furthermore, reduced clearance rates of TRLs in turn are
closely associated with increased plasma apoC-III levels (48).
Thus, apoC-III is a key regulator of triglyceride metabolism
(Table 1). Further, metabolic studies in hypertriglyceridemic
subjects have shown that the removal of TRL particles from the
circulation is impaired if they are enriched in apoC-III (49).
As noted above, an increased plasma level of apoC-III in states
associated with insulin resistance has been implicated as a key
driver of the hypertriglyceridemia commonly found in people
with this condition. However, somewhat surprisingly, despite
increased plasma apoC-III levels in type 2 diabetic subjects, the
concentration of VLDL-apoCIII does not increase in line with
that of VLDL-triglyceride. That is, VLDL particles do not seem
to be enriched with apoC-III (50, 51), (although it has been
reported that there is an increased concentration of LDL particles
carrying apoCIII in subjects with type 2 diabetes) (52). This
finding requires further investigation and raises the possibility
that it is the free form of apoC-III that is the key modulator
of plasma triglyceride levels. Interestingly, Kanter et al. recently
reported that plasma apoC-III levels predicted future CVD events
in type 1 diabetic subjects with normal triglyceride levels. Also,
using two mouse models of T1DM, the authors observed that
slowly catabolized lipoproteins, enriched in apoC-III and apoE,
may be particularly atherogenic (53, 54). Suppressing APOC3
expression with anti-sense oligonucleotides (ASO) lowered both
plasma apoC-III levels and atherosclerosis (54). Thus, apoC-
III seems to drive accelerate the CVD risk both in T2DM and
T1DM (54).

The metabolic and clinical relevance of the three glycoforms
of apoC-III has been unclear, but recent studies have shown that
the monosialylated apoC-III1 correlates stronger with elevated
plasma triglyceride levels than the disialylated apoC-III2 (55,
56), and that a higher apoC-III2/apoC-III1 ratio associated
with lower triglyceride levels (55). It has also been shown that
the relative abundances of apoC-III0 and apoC-III1, but not
apoC-III2, are associated with lower triglyceride levels after
weight loss or diet intervention (57). In accordance with this

TABLE 1 | Key predictors of plasma triglycerides.

Key predictors of plasma triglycerides

Synthesis pathway Liver fat (r = 0.46, p < 0.01)

Fat mass (r = 0.32, p < 0.05)

Clearance pathway Plasma apoC-III concentration (r = 0.84, p < 0.001)

Plasma apoC-II concentration (r = 0.60, p < 0.001)

Plasma apoE concentration (r = 0.60, p < 0.001)

In a stepwise multivariate regression analysis, liver fat content (P< 0.01) and total fat mass

(P < 0.05) were identified as independent predictors of VLDL1-triglyceride secretion rate

(SR) (48). It was also shown that VLDL1-triglyceride SR explained 76% of the variation

in total plasma triglycerides. The effects of apoC-III on plasma triglycerides is mainly

dependent on lipoprotein-lipase independent pathways of triglyceride metabolism (48).

Pearson correlations (r–values) between metabolic characteristics, apolipoproteins, and

plasma triglycerides. The synthesis explains ≈ 20% of variation in plasma triglycerides,

and the clearance pathway ≈ 55% of variation in plasma triglycerides (48).

concept, apoC-III2 inhibits LPL-mediated hydrolysis of TRLs
less efficiently than apoCIII1 (46), despite having greater affinity
for TRLs (58). Interestingly, Kegulian et al. recently reported
that the apoC-III glycoforms are differentially cleared by hepatic
receptors. Heparan sulfate proteoglycans (HSPGs), in particular
syndecan, seem to preferentially clear apoC-III2, whereas
apoC-III1 is preferentially cleared by low-density lipoprotein
receptors (LDLR) and LDLR-related protein 1 receptor (LRP1).
Interestingly, volanesorsen (a pharmaceutical ASO for APOC3)
treatment increased the apoC-III2/apoC-III1 ratio, by increasing
the relative abundance of apoC-III2 (by 40%) and decreasing that
of apoC-III1 (by 15%). Thus, the increased apoC-III2/apoC-III1
ratio seem to reflect faster clearance of apoC-III1.

ApoC-III has also been proposed to increase secretion of
VLDL in mice overexpressing apoC-III (59–61). However,
suppression of apoC3 expression in mice using an ASO did not
influence VLDL secretion (62), and results from kinetic studies
in humans are still lacking.

Inhibition of LPL-Mediated Lipolysis of
TRLs
Clearance of plasma triglycerides is directly linked to the lipolysis
of TRLs by lipoprotein lipase (LPL) which is attached to the
capillary endothelium in adipose tissue, skeletal muscle and the
heart (63). ApoC-III is a potent inhibitor of LPL, explaining why
increased levels of plasma apoC-III levels correlate with impaired
lipolysis of TRLs (Figure 1). The mechanisms involved are not
fully elucidated but seem to include weakened binding of TRLs
to the capillary endothelium where LPL is present (64), as well as
displacement of the LPL activator apoC-II from the surface of the
TRLs (15, 65–68).

Impaired Hepatic Clearance of TRL
Remnants
In addition to directly impairing the lipolytic process apoC-
III has a wide range of LPL-independent actions on lipid
metabolism (19, 60). For example, apoC-III ASOs were shown
to greatly reduce serum triglycerides in subjects with familial
chylomicronemia syndrome where there is a genetic deficiency
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of LPL. It appears that apoC-III can inhibit hepatic clearance of
remnants by LPL-independent pathways (Figure 1) (69), possibly
by interfering with the binding of apoB and apoE to hepatic
lipoprotein receptors including HSPG, LDLR and LRPl (31,
70). Recent results indicate that LDLR and LRPl are involved,
since apoC-III ASO treatment in LDLR/LRP1 deficient mice did
not lower plasma TG levels (65). The principal ligand on the
remnant particles is apoE, and by displacing this protein from the
lipoprotein particle surface (66), apoC-III effectively impairs the
clearance of remnants (71). As apoC-III displaces both apoC-II
and apoE from the lipoproteins, it has been proposed that the
apoC-III/apoE ratio on remnant particles predicts the hepatic
clearance rate of these lipoproteins (66). Interestingly, Ramms
et al. recently proposed a model in which apoE determines the
metabolic impact of apoC-III on the metabolism of triglycerides
by shifting apoC-III’s action from supressing hepatic clearance
of TRL to inhibition of LPL (72). The model is based on studies
showing that suppressing APOC3 expression in the absence
of apoE did not improve clearance of TRLs, yet significantly
decreased plasma triglyceride levels in vivo (72). This model is
supported by previous clinical studies (66) and by studies using
genetically modified Apoc3−/−Apoe−/− mice (73). Ramms et al.
also showed that the triglyceride-lowering effect induced by
apoC-III suppression in the absence of apoE, is mainly due
to increased LPL activity in white adipose tissue (WAT) (72).
Importantly, the study also demonstrated that the efficiency of
volanesorsen to lower plasma triglycerides is not dependent on
apoE genotype (72). This is important since apoE3 and apoE4
can bind to LDLR and LRP1, whereas apoE2 does not (72).

DIRECT EFFECTS OF APOC-III ON
ATHEROGENESIS

Atherogenesis is initiated by subendothelial accumulation of
atherogenic lipoproteins. This is mediated by ionic interactions
between positively charged domains in apoB100 (74), and
negatively charged artery wall proteoglycans (75). ApoC-III
facilitates this interaction by increasing the affinity of LDL for the
artery wall proteoglycans (Figure 1) (52, 76–80). LDL enriched
with apoC-III also displays markedly altered lipid composition,
with significantly reduced amount of sphingomyelin, unesterified
cholesterol, and ceramides (52). The loss of these lipids, but
not of phosphatidylcholine, likely affects the surface fluidity of
the lipoprotein particle (81). Thus, the altered lipid composition
in apoCIII-enriched LDL may induce conformational changes
in apoB100 that are more favorable for proteoglycan binding
(52, 82, 83). In line, also apoCIII-enriched HDL display altered
lipid composition, with changes in triglycerides, unesterified
cholesterol, free cholesterol, phospholipid and apoAI (84).

Following subendothelial retention, LDL are modified by
several enzymes, including sphingomyelinases (SMase). This
modification promotes both fusion and aggregation of the
retained LDL (85, 86), as well as release of proinflammatory
metabolites including arachidonic acid (87). The aggregation of
LDL may also drive an inflammatory response as aggregated
LDL is a potent inducer of macrophage foam cell formation (88).

Interestingly, apoC-III acts as a SMase activator. Thus, apoC-III
may promote proatherogenicmodification of retained LDL in the
artery wall, and induce inflammatory responses (86, 89). ApoC-
III has also been shown to directly activate adhesion molecules
and proinflammatory responses in monocytes and endothelial
cells (Figure 1) (90, 91). In addition, apoC-III levels have also
been shown to strongly correlate with plasma levels of activated
factor VII-anti-thrombin (FVIIa-AT) complex, a biomarker for
increased predisposition to thrombotic events (Figure 1); a
strong association was found in both sexes, regardless of whether
or not there had been a prior CAD event (92). Thus, apoC-III
seems to link lipid metabolism and coagulation. Finally, under
conditions of islet insulin resistance, local islet production of
apoC-III has been identified as a diabetogenic factor involved in
impairment of β-cell function. Thus, apoC-III synthesized in the
pancreas seems to link insulin resistance and β-cell failure in T2
DM (93).

Capoulade et al. recently reported that apoC-III is present on
lipoprotein (a) (Lp(a) particles in the circulation and in the aortic
valve leaflets (94). Their results indicate that increased plasma
levels of apoCIII-Lp(a) complexes in combination with Lp(a)-
OxPL may be used to predict aortic stenosis and aortic valve
replacement (94).

WHAT HAVE WE LEARNED FROM
EPIDEMIOLOGY AND GENETIC STUDIES?

Epidemiological studies have revealed that plasma levels of apoC-
III and apoB independently predict coronary heart disease (1–
4). ApoC-III levels even predict coronary events independent of
LDL cholesterol values (2–4). In diabetic subjects, those with LDL
with the highest apoC-III content have a six-fold higher relative
risk of new coronary events compared to those with LDL with
lowest apoC-III content (3). Furthermore, Olivieri et al. recently
reported that high plasma apoC-III levels predict an increased
risk of ischemic stroke/transient ischemic attack (TIA) events in
cardiovascular patients (95).

Large genetic studies have demonstrated that elevated plasma
triglyceride is causally linked to coronary artery disease (CAD)
(5–9). For example, both the Exome Sequencing Project (n =

1,10,970) and the Copenhagen Study (n = 75,725) reported that
APOC3 LOFmutations had about 40% lower plasma triglycerides
and about 40% lower CVD risk. These results suggest that 1mg/dl
decrease in plasma apoC-III concentration translates to a 4%
decrease in CVD incidence (8).

Genetic studies have also shown that carriers of the APOC3
null mutation R19X have 50% lower plasma apoC-III levels,
35% lower plasma triglycerides, markedly lower postprandial
triglycerides and significantly lower coronary artery calcification
(CAC) scores than non-carriers (96, 97). Thus, lifelong deficiency
of apoC-III is cardioprotective. Carriers of the R19X null
mutation display both lower apoC-III production rate and
increased apoC-III clearance rate, leading to increased lipolysis of
TRLs (96). As expected, the lower plasma apoC-III levels did not
influence direct VLDL clearance (i.e., removal of VLDL particles)
(96). Carriers of the APOC3 null mutation R19X variant are rare
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[0.08% in Americans (98) and 0.05% in Europeans (99)], but
the R19X variant is enriched in the Amish population and in an
isolated cohort on the island of Crete (100). Heterozygote LOF
mutations in APOC3 have also been shown to associate with high
HDL-cholesterol in addition to low plasma triglycerides (101,
102). The heterozygote APOC3 LOF mutation Ala43Thr variant
has also been associated with impaired lipidation of nascent
VLDL particles during their hepatic assembly (103). Thus, some
APOC3 genetic variants may modulate plasma triglyceride levels
by mechanisms other than enhanced lipolysis.

Plasma triglyceride levels closely correlate with remnant
cholesterol, and genetic studies in apoC-III LOF carriers have
made it possible to analyse if remnant cholesterol independently
predict ischemic heart disease (IHD) risk (104). Heterozygotes
for APOC3 LOF mutations had 43% lower remnant cholesterol,
minor changes in LDL-cholesterol (mean of −4%), and a 13%
lower apoB compared to non-carriers (104). Mediation analysis
indicated that about half of the lower risk of IHD in LOF carriers
was attributable to the difference in remnant cholesterol and
only about 2% to the difference in LDL cholesterol. This result
adds to the Mendelian randomization studies by Ference et al.
showing that reductions in triglyceride levels do not reduce CVD
risk unless there was an accompanying reduction in circulating
apoB levels, and that the reduction in risk was proportional to
the decrement in apoB (105). The 36% lower IHD risk for a 14
mg/dl lower apoB in the Copenhagen studies (104) is in line with
the 23% lower risk per 10 mg/dl decrement in plasma apoB seen
by Ference et al. (105). What the former investigation seems to
indicate is that is does not matter if the apoB difference is in
remnant particles or LDL. This is in line with the notion that
any apoB-containing lipoproteins able to penetrate into the artery
wall are atherogenic.

As the allele frequency of APOC3 LOF mutations is low,
very few homozygous carriers have been identified. However,
four homozygotes carriers (Arg19Thr) were recently identified
in Pakistan (106). In addition, a family with nine children, all
homozygous carriers (Arg19Thr) was recently identified (106).
As expected, the homozygotes APOC3 LOF carriers had low
very plasma apoC-III levels and markedly blunted postprandial
triglyceride responses (106).

CAN DIETS MODULATE PLASMA APOC-III
LEVELS?

Genetic studies clearly show that low plasma levels of apoC-
III are cardioprotective. So how can we lower apoC-III? The
first option is with dietary intervention. As APOC3 expression
is induced by glucose, it’s not surprising that the carbohydrate-
content of the diet correlates with plasma apoC-III levels (57,
107–110). For example, fructose-enriched diets have been shown
to induce several cardiometabolic risk factors including increased
apoC-III plasma levels (111–113) and fructose restriction has
been shown to lower plasma apoC-III (112, 114). In line, a
two-week intervention using an isocaloric low-carbohydrate diet
(<30 g carbohydrates/day) induced an almost 50% reduction of
plasma apoC-III levels in obese subjects with non-alcoholic fatty
liver disease (NAFLD) (115). Interestingly, fructose seems to

have particularly adverse effects on apoC-III levels since it has
been observed that subjects consuming fructose for 10 weeks had
higher plasma apoC-III levels and postprandial TRL-triglycerides
than subjects consuming an equivalent amount of glucose (116).
Interestingly, Hieronimus and Stanhope have recently proposed
that apoC-III might be causal for fructose-induced dyslipidaemia
since suppression ofAPOCIII expression in non-human primates
prevented fructose-induced dyslipidemia (117).

Fructose induced not only increased expression of APOC3
(111, 113), but also increased hepatic de novo lipogenesis
of fatty acids that is an important initiator of NAFLD and
overproduction of triglyceride-rich VLDL1 particles (43, 61, 118–
122). The relative importance of increased liver fat vs. increased
secretion of apoC-III for fructose-induced hypertriglyceridemia,
remains to clarified. Consumption of saturated fat has been
reported to increase plasma apoC-III levels (42, 123), whereas
intake of mono- and poly-unsaturated fat associate with
reduced plasma apoC-III levels (Figure 1) (123). Also, omega-
3 polyunsaturated fatty acids have been reported to decrease
plasma apoC-III levels (124, 125). Whether this mechanism
is relevant for their triglyceride-lowering effects remains to be
clarified (126).

PHARMACOLOGICAL INTERVENTIONS
FOR REDUCING PLASMA APOC-III
LEVELS AND HYPERTRIGLYCERIDEMIA

Earlier studies have reported that PPARα agonists reduce APOC3
and plasma apoC-III levels (30, 33, 127). However, the ability of
fibrates to reduce APOC3 expression is highly variable ranging
from 10 to 40% (37, 128–131). Even less has been reported on
how PPARγ agonists (pioglitazone, rosiglitazone) affect apoC-
III metabolism (34, 132). Also, nicotinic acid (niacin) (133)
and statin therapy have been shown to reduce hepatic APOC3
expression through largely unknown mechanisms (38). Meta-
analyses have revealed that statins reduce plasma apoC-III levels
(134) and Ooi et al. reported that that the statin rosuvastatin both
decreased the production rate of apoC-III, and simultaneously
increased its catabolism (38). Omega-3 carboxylic acids (OM3-
CA) and polyunsaturated fatty acids have also been shown to
reduce plasma apoC-III by 20–30% (125, 135, 136). However,
compared to the actions of ASOs, these interventions reduce
apoC-III levels only to a moderate degree.

Development of novel technologies including ASOs, siRNAs
and monoclonal antibodies (137, 138), as well as improved
targeting methods (139, 140), including use of N-acetyl
galactosamine-conjugated (GalNAc) adducts (i.e., the ligand
of the hepatic asialoglycoprotein receptor), have enabled
unprecendented fast translation of basic science to clinical
intervention (141). For example, volanesorsen (IONIS-APOCIII
Rx) represents a second-generation 2′-O-methoxyethyl (2′-
MOE) chimeric antisense therapeutic oligonucleotide that
efficiently reduce APOC3 expression (62).

Results from the recent APPROACH trial, a 52-week
randomized, double-blind, phase 3 trial of volanesorsen-
mediated inhibition of APOC3 expression in 66 patients with
familial chylomicronemia syndrome, showed that volanesorsen
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induced a 77% decrease in mean triglyceride levels (mean
decrease of 19.3 mmol/l), whereas patients receiving placebo had
an 18% increase in mean triglyceride levels. Common adverse
events were mild thrombocytopenia and injection-site reactions.
These results validate earlier studies showing that apoC-III
inhibits not only LPL-dependent but also LPL-independent
pathway(s) of TRL clearance (69).

Volanesorsen has in an earlier randomized, double-blind
phase 2 trial been shown to markedly lower plasma apoC-
III and triglycerides levels in adult patients (n = 46) with
severe or uncontrolled hypertriglyceridemia (from 4.0 to 22.6
mmol/l) (142). The results showed dose-dependent decreases
of both plasma apoC-III and triglyceride levels (about 80 and
71% decreases, respectively). Similar results were reported from
the COMPASS study which recruited 113 subjects with severe
hypertriglyceridemia (5.7 to 14.8 mmol/l) (137). A critical reason
for treating severe hypertriglyceridemia is to reduce the risk of
acute pancreatitis. It is therefore promising that acute pancreatitis
were markedly less in hypertriglyceridemic patients treated with
volanesorsen than in the placebo group (143).

Volanesorsen has also been shown to successfully improved
diabetic dyslipidaemia by reducing both apoC-III (−88%) and
plasma TG (−69%) in 15 overweight or obese subjects with type
2 diabetes (144). Interestingly, the agent not only improved the
dyslipidemia, but also improved whole-body insulin sensitivity
(by 57%) as compared to placebo. Thus, results from the
novel antisense therapeutic approach seem promising, but data
from large-scale and cardiovascular outcome clinical trials are
still missing.

The safety, tolerability, and efficacy of AKCEA-APOCIII-LRx,
a next generation GalNAc ASO that is targeted to the liver where
it suppresses hepatic APOC3 expression, was recently tested.
Results showed 89% in reduction in apoC-III levels, and 66%
reduction in plasma triglycerides (145).

Another novel strategy to lower plasma triglycerides was
recently reported by Wolska et al. (146). They developed a
dual apoC-II mimetic and apoC-III antagonist (called D6PV)
that activates LPL. The peptide was designed by combining
biophysical techniques and advanced molecular simulation of
apoC-II. D6PV was shown to be more efficient in activating
LPL than full-length apoC-III, and was shown to markedly lower
plasma triglycerides (>80%) in both apoC-II–deficient mice and
hAPOC3-transgenic mice. The peptide reduced plasma apoC-III

levels by 80% and apoB levels by 65%. The peptide remains in the
circulation for to 50 h in non-human primates, as it binds to HDL
particles. Thus, the results are encouraging but the project is still
in early development (147).

CONCLUDING REMARKS AND
REMAINING QUESTIONS

Interest in apoC-III as a novel intervention target has been
driven by epidemiological studies demonstrating that plasma
apoC-III levels predict coronary events independent of LDL
cholesterol values (2–4), and genetic studies demonstrating that
APOC3 LOF mutations associate with lower plasma triglycerides
and about 40% lower CVD risk. Recent studies have shown
that glucose is an important regulator of apoC-III metabolism
(19, 43), and that increased hepatic secretion of apoC-III is an
important driver for the hypertriglyceridemia commonly seen
in subjects with impaired glucose homeostasis (43). The lower
CVD risk associated with APOC3 LOF mutations is likely not
related to lower plasma triglycerides per se, but may depend on
lower plasma concentrations of atherogenic remnant particles.
Thus, suppression of hepatic APOC3 expression has become an
interesting novel treatment for reducing hypertriglyceridemia
and accumulation of atherogenic remnant particles. However,
there are some concerns as the treatment has shown less marked
response on apoB reduction, than for example suppression
of ANGPTL3 that seems to reduce plasma apoB levels more
efficiently (148). Long-term clinical studies will be critical for
clarifying the protective potential of APOC3 ASO. It will also be
interesting to see if this treatment has direct effects on hepatic
VLDL secretion, and markers of arterial wall inflammation.
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