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Maailmanlaajuisissa vuosikeskilämpötiloissa on havaittu lämpenevä kehityssuuntaus esiteolliselta ajalta lähtien. 

Vuosikeskilämpötilojen muutos Norjan Huippuvuorilla on maailmanlaajuista keskiarvoa voimakkaampaa. 

Huippuvuorten läntisissä osissa jäätikköjen vetäytyminen on jatkunut jo useita vuosikymmeniä, ja viime 

vuosikymmeninä biologiset prosessit ovat kiihtyneet. Nämä muutokset ovat todennäköisesti vaikuttaneet 

Huippuvuorten pääosin sammalpeitteisten tundra-alueiden hiilidynamiikkaan. Alueella on toteutettu vain rajallinen 

määrä paleoekologisia tutkimuksia, eikä varsinkaan korkeiden leveysasteisten sammalpeitteisten tundra-alueiden 

vastetta ilmastonmuutokseen vielä täysin ymmärretä. 

 

Tämän tutkimuksen tavoitteena oli tutkia maaperän orgaanisen aineksen ja hiilen kertymisnopeuksien viimeaikaisia 

muutoksia sammalpeitteisillä tundra-alueilla Huippuvuorilla. Maaperän kairausprofiilit kerättiin neljältä koealalta 

Spitsbergen -saaren läntisistä osista. Radiohiili (14C) ja lyijyajoitusmenetelmiä (210Pb) käytettiin yhdessä ikä-syvyys 

-mallien ja maaperän ominaisuusanalyysien kanssa hiilen kertymishistorian rekonstruoimiseksi vuodesta 1900 jKr 

vuoteen 2018 jKr asti. Päätelmiä tukivat meteorologiset mittaukset alueelta. Lisäksi Landsat-satelliittiaineistosta 

johdettiin vuosittaisia normalisoituja kasvillisuusindeksejä vuodesta 1985 jKr vuoteen 2018 jKr, kasvillisuuden 

muutosten tutkimiseksi viime vuosikymmeninä. Kasvillisuusindeksien kykyä ennustaa maaperän hiilen kertymisen 

alueellista ja ajallista vaihtelua arvioitiin erikseen. 

 

Kehityssuuntaus pääasiallisesti mineraalipitoisista maaperistä orgaanisiksi maaperiksi havaittiin useissa näytteissä, 

tämä voi merkitä, että alueilla on käynnistynyt soistumisprosessi. Viimeaikaiset hiilen kertymisnopeudet kasvoivat 

jokaisella koealalla. Alueen meteorologinen aineisto yhdessä kirjallisuuden kanssa viittasi alueen abioottisten ja 

bioottisten ympäristötekijöiden yhdessä ilmasto- ja sääolosuhteiden kanssa ohjaavan kertymisprosesseja. 

Kasvillisuusindeksit osoittivat merkittäviä muutoksia kasvillisuuden rakenteessa ja tuottavuudessa. Viimeaikaisten 

hiilen kertymisnopeuksien ja kasvillisuusindeksien välisen suhteen arviointi, ei tuottanut luotettavia tuloksia. 

Maaperän ja ilmakehän välisten hiilivoiden alueellinen ja ajallinen heterogeenisyys tuottaa suuria haasteita 

tämänhetkisille mallintamismenetelmille. Maaperänäytteiden ja kaukokartoitusaineistojen yhteiskäyttöä tulisi 

edistää, jotta tulevia muutoksia kyettäisiin mallintamaan tarkemmin. 
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Tiivistelmä – Referat – Abstract 

 

A warming trend of annual average surface temperatures since pre-industrial times has been observed globally. High-

arctic area of Svalbard, Norway is undergoing amplified change of annual average temperatures when compared to 

the global average. Decline of glaciers in western Svalbard has been ongoing for several decades, and in the recent 

past, rapid biological successions have taken place.  These changes have likely had effect on regional scale carbon 

dynamics at Svalbard’s moss tundra areas. Possibly indicating onset of paludification process of these areas. However, 

palaeoecological studies from the area are scarce, and the response of high-latitude moss tundra areas to past or 

ongoing climate change, are still not fully understood. 

 

This thesis aimed to bring forward information of changes in recent organic matter and carbon accumulation rates at 

Svalbard, Norway. Soil profiles were collected from four moss tundra sites, located on coastal areas and fjords 

descending towards Isfjorden, on the western side of Spitsbergen island. Radiocarbon (14C) and lead (210Pb) dating 

methods with novel age-depth modelling and soil property analyses, were used to reconstruct recent organic matter 

and carbon accumulation histories from 1900 AD to 2018 AD. Accumulation histories were supported by 

meteorological measurements from the area. In addition, annual maximum value Normalized Difference Vegetation 

Indices for 1985 AD till 2018 AD period were produced, to study vegetation succession in the recent past. Lastly, 

possibility to predict spatiotemporal variation of soil carbon accumulation with satellite derived vegetation indices 

was assessed.      

 

Development from predominantly mineral soils to organic soils was distinguishable within multiple soil profiles, 

pointing to potential paludification. Recent apparent carbon accumulation rates showed an increasing trend. 

Supporting meteorological data and literature suggest that regional abiotic and biotic factors in synergy with weather 

and climate are contributing to this observed trend. Vegetation indices pointed to major changes in vegetation 

composition and productivity. However, investigation of relationship between recent carbon accumulation rates and 

vegetation indices did not produce reliable results. Spatiotemporal heterogeneity of carbon soil-atmosphere fluxes 

presently imposes large challenges for such modelling. To alleviate this problem, efforts for more efficient synergetic 

use of field sampling and remote sensing -based material should be undertaken, to improve modelling results. 
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1. Introduction 

Peatlands form significant terrestrial carbon (C) stocks, containing ~20% to ~30% of global soil C 

pool located within a few meters of soil-atmosphere interface (Loisel et al., 2014; Swindles et al., 

2019; Z. Yu et al., 2011). Gross portion of these peatlands lie north of latitude 45°N. Globally a 

warming trend of mean surface temperatures since pre-industrial times has been observed (Field et 

al., 2014). Global mean surface temperature, for the years 2006–2015 was 0.87°C higher than the 

average over the 1850–1900 period (Intergovernmental Panel on Climate Change, 2018). At arctic 

areas warming is two to three times higher than the global average. Recently, it was proposed that if 

global mean warming approaches 2°C, respectively, the Arctic (64°N to 90°N) may reach 4°C 

warming of annual average temperature, and 7°C winter warming (Post et al., 2019). The response of 

high-latitude organic soils to the climate warming is still unclear. At Svalbard, Norway rapid 

succession of plant species has taken place in recent past (Nakatsubo et al., 2005; van der Knaap, 

W.O, 1988; Yoshitake et al., 2011). These changes can be expected to affect C dynamics at Svalbard’s 

moss tundra areas.  

 

United nations set a goal in Paris agreement to limit the global average temperature increase to 1,5ºC 

above pre-industrial levels, recognizing that this would significantly reduce impacts of climate change 

(United nations, 2015). Concurrently, France put forth initiative called 4 per 1000 (“4 per 1000” 

Initiative, 2018). Initiative suggests that annual 0.4% increase in soil C stocks would be enough to 

stop the rise of carbon dioxide (CO2) concentration in the atmosphere. It has been estimated that total 

C stock of northern peatlands is 500 ± 100 Gt (Z. C. Yu, 2012). The greatest source of uncertainty 

for modern C-stock estimates, is the lack of data, including depth, bulk density, and C accumulation 

information (Tarnocai et al., 2009). In addition, peat depth and accumulation rates can largely vary 

within small area; inside individual peatland (Zhang et al., 2018).  

 

Balance of soil organic C stocks are controlled by two principal fluxes (Lund et al., 2010). First, the 

fixation of C through vegetation photosynthesis, known as gross primary production (GPP). 

Secondly, the loss of C through ecosystem respiration (ER), that consists of the vegetation and soil 

respiration. Difference between GPP and ER constitutes net primary production (NPP). Warming 

climate lengthens the growing season, and likely accelerates organic matter accumulation rates and 

increases NPP (Gallego-Sala et al., 2018). On the other hand, rising temperature could affect 

microbial acclimation and the rate of CO2 and methane (CH4) production, or advance development 
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of drier conditions, which could increase of oxidation organic matter (Sihi et al., 2018; Swindles et 

al., 2019). Thus, imposing contradictory effects to accumulation rates. 

 

Large uncertainties in predictions of climate-induced changes in C dynamics of organic soils still 

exists (Lara et al., 2018; McLaughlin & Webster, 2014). Estimates can be attained through climate 

models that simulate atmospheric CO2 changes (Charman et al., 2013). However, most of these 

models do not take into consideration climate-related variations in the soil C sequestration rates. 

Better understanding of factors controlling these soil C fluxes and the role of organic soils in the 

global C cycle of the past, can be achieved through palaeoenvironmental, palaeoecological and 

palaeogeochemical studies, relying on stratigraphic sub-sampling of soil profile samples and varying 

dating methods (Vleeschouwer et al., 2010). Present alteration of peatland C sequestration rates is 

commonly measured using gas flux chambers and eddy covariance flux towers (McLaughlin & 

Webster, 2014). These measurements are often used in combination with supporting data sources, to 

evaluate the C balance of certain area (Alm et al., 2007). When studying vast and remote areas field 

sampling and measuring methods become laborious quickly and depict circumstances at certain 

location at a certain point of time (de Paul Obade, 2013). Due to lack of spatially continuous 

measurements, demand for supporting data sources increases. 

 

In the late 1970’s use of photographic infrared and red linear combinations for monitoring vegetation 

biomass and physiological status were studied (Rouse et al., 1974; Tucker, 1979). It was observed 

that infrared/red ratio -vegetation indices, were sensitive to photosynthetically active biomass. Best 

known of those indices, is normalized difference vegetation index (NDVI). NDVI is seen as indicator 

for fraction of photosynthetically active radiation absorbed by vegetation (fPAR) and is widely used 

as a proxy for plant biomass and vegetation productivity (Santin-Janin et al., 2009). Changes in NDVI 

values recorded by satellite platforms from arctic and boreal areas indicate that northern ecosystems 

are experiencing rapid ecological change in response to climate warming (McPartland et al., 2019). 

These observations have been linked with changes in community composition and leaf area indices. 

 

Landsat satellite-mission image archive provides record with unmatched value for monitoring global 

land cover and ecological change (Wulder et al., 2012). However, at high-latitude areas, large portion 

of Landsat record imagery does not meet the quality criteria to support time-series analysis (Dwyer, 

2019). These images fall back to lower processing level categories. Thus, ruling out direct use of 

Landsat record in timeseries studies at these areas. This factor complicates monitoring of long-term 

land cover changes at Svalbard. 
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2. Theoretical Background 

2.1 Organic soils, peat formation and carbon dynamics 

Soil can be defined as a mixture of minerals, living organisms, and decaying organic matter, located 

between base rock, atmosphere, and vegetation (Kutsch et al., 2010). Soils store substances that are 

essential to ecosystem processes and enable multitude of biogeochemical transformation and transfer 

processes. C content is often especially high in soils with high organic matter content, located in wet 

and cold environments (Jobbágy & Jackson, 2000). These terrestrial C pools interact with 

atmospheric composition, climate, and land cover change. Thus, ability to assess and predict climate 

changes influence on these C pools, calls for better understanding of the distributions and controls of 

these soil C pools, and how they relate to changes in surface vegetation composition. 

 

United States Department of Agriculture’s definition of organic soil material relies on the period of 

annual water saturation (Soil Survey Staff, 1999). Soils saturated for less than 30 days (cumulative) 

per year in normal years, must contain more than 20 percent (by weight) organic C. If soil is saturated 

for 30 days or more cumulative in normal years, a three-class definition is used. If mineral fraction 

contains over 60% clay, over 18% must be of organic matter. Secondly, if mineral fraction contains 

no clay, over 12 % must be of organic matter. Thirdly, if mineral fraction contains less than 60 % of 

clay, over 12 + (clay percentage multiplied by 0.1) percentage must be of organic matter. Although 

peat is formed by organic matter, it also contains small amount of mineral matter (Rydin et al., 2006). 

Minerals are present as bound components in the organic matter and as free minerals in the peat 

matrix. Current classification systems regarding peat, often use percentage of organic matter as the 

only parameter (Joosten & Clarke, 2002; Andrejko et al., 1983; Landva et al., 1983). Geological 

definition requires 30-centimetre thick profile of accumulated organic matter before the soil is 

classified as peat (Herranen, 2009).  

 

Despite classification standards, required environmental conditions and elementary processes for peat 

formation, have been extensively studied for decades. Peat formation requires anaerobic conditions 

resulting from near continuous soil saturation, where ecosystems GPP exceeds ER (Moore, 1987). 

Hence, occurrence of peatlands is often geographically associated to areas with fresh water and cool 

climate (Z. Yu et al., 2011). ER consists the efflux of C from the ecosystem as CO2 and CH4 to the 

atmosphere, including the aboveground plant respiration and soil respiration (Barba et al., 2018).  
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Soil respiration is a measure of decomposition rate of organic material in the soil (Kutsch, W. et al., 

2010). It consists of two main components, ‘autotrophic’ and ‘heterotrophic’ respiration (Figure 1). 

The autotrophic component can be further separated into respiration of the roots and their mycorrhizal 

symbionts and the microbiota of the rhizosphere. Heterotrophic component is due to soil micro-

organisms that decompose the organic materials from above-ground and belowground litter. 

Decomposition rate in the oxygen-rich surface layer (acrotelm) of a profile is greater than in water-

saturated layer (catotelm) (Clymo, 1965; Moore, 1987). Efflux from aerobic decay releases CO2. 

Anaerobic microbial decay occurs more slowly, and efflux mainly as CH4. Part of the CH4 produced 

in the catotelm is consumed by methanotrophic bacteria in the acrotelm (Lai, 2009). In addition, 

compounds which can be used by heterotrophic decomposers are produced. Large spatial and 

temporal variation in these respiration rates are common.   

Figure 1. Simplified carbon dynamics of peatlands. Gross primary production (GPP) produces influx of 

carbon (C) to the system. Part of C is utilized in plant metabolism, producing outflux of C via autotrophic 

respiration. Respiration takes place at above (leaves and stems) and below ground (roots) parts of the plants. 

In time, portion of the organic matter produced gets buried. Buried material is either deposited as peat or 

decomposed by heterotrophic respiration. Decomposing in aerated acrotelm layer produces carbon dioxide 

(CO2) and methane (CH4) in unaerated catotelm. Part of the produced CH4 is used by methanotrophic bacteria 

and additional compounds are produced that can be used by heterotrophic decomposers. Portion of C is 

exported in diluted form with outflowing water. (Figure modified from Lees et al. (2018))  
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Peatlands are mostly located at boreal and subarctic regions and extensive development has been 

detected at western Siberia, central Canada, north western Europe, and Alaska (Z. Yu et al., 2011). 

Peatlands north of 45°N have accumulated ~500 gigatons of C mostly during the Holocene (Loisel et 

al., 2014). However, plant growth at arctic climate conditions is very limited and peat formation is 

not common (Clymo R.S., 1998). Still, Arctic plays an important role in the global C dynamics. It 

has been a sink for atmospheric CO2 (0 to 0.8 Pg. C yr-1) during recent decades (McGuire et al., 2009). 

Simultaneously, acting as a substantial source of CH4 to the atmosphere (32 to 112 Tg. CH4 yr-1), 

primarily because large areas covered by wetlands. Large spatiotemporal variations in C 

accumulation rates of arctic peatlands have been observed, both at local and regional scales (Zhang 

et al., 2018). Nevertheless, evidence of paleoenvironmental studies shows higher accumulation rates 

during past warmer climate phases (Charman et al., 2013; Z. Yu et al., 2011). Data of those studies 

is mostly collected from boreal area, leading to uncertainties of the impacts of rising temperature to 

the arctic areas. Another source of increasing uncertainty is the number of interconnected ecosystem 

components controlling the C accumulation rates. 

 

In addition to soil respiration rates, NPP is a significant component affecting the accumulation rates. 

NPP is closely linked to the length of the growing season and cumulative photosynthetically active 

radiation during the growing season (Gallego-Sala et al., 2018; Loisel et al., 2014; Piilo et al., 2019). 

Thus, predictions of increase in C accumulation rates in a warming climate are reasonable. As a 

whole, dynamics governing the accumulation rates are much more complex. Multiple factors impact 

alteration in cohesion with temperature, for instance peat composition soil hydrology and presence 

of permafrost (Klein et al., 2013; Z. C. Yu, 2012).  

 

Peat composition (organic matter content and C/N mass ratios) is directly linked to the type of 

vegetation covering the soil (Wang et al., 2015). Thus, composition of parent material also affects the 

rate of C accumulation. Then again vegetation type and soil hydrology are strongly connected. It has 

been suggested that alteration of water table depth affects peatland accumulation rates non-linearly, 

as both too shallow (wet conditions) and too deep (dry conditions) water table level hampers litter 

production (Rennermalm et al., 2010). Decomposition rates are highly influenced by the degree of 

soil water saturation. In addition, water availability together with atmospheric acid deposition 

strongly controls the rate of C being dissolved, while hydrological processes govern exportation (Xu 

et al., 2020). At arctic areas permafrost has restrained exportation dissolved C (Ma et al., 2019). 
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Permafrost depicts subsurface earth materials that remain below 0 °C for two or more consecutive 

years (Boike et al., 2018). Gross portion permafrost areas are in the Arctic, where organic C remain 

stored in a frozen form. Warming of Arctic may further permafrost thawing, making these areas 

important components of the global climate system. Permafrost and its thawing rates can also alter C 

budgets by creating drier or wetter conditions (McLaughlin & Webster, 2014). Wetter conditions can 

lead to rise of the water table level, slowing down decomposition rates, but enhancing CH4 emissions. 

Drier conditions lead to lower water table levels, enabling increase in biomass at surface but also 

higher quantity of peat is now exposed to aerated conditions, enabling aerated decomposition of peat 

and higher CO2
 emissions. 

 

In conclusion, peatland NPP and C balance are mostly defined by GPP and ER, as large component 

of C fluxes in terrestrial ecosystems takes place in gaseous form (Alm et al., 2007). Nevertheless, 

multiple factors with direct and indirect pathways impact GPP and ER rates. Thus, reliable C balance 

estimates often require multi-source data.  

  

2.2 Factors contributing to vegetation dynamics 

Large-scale spatiotemporal variations in C accumulation rates are controlled by regional and local 

environmental conditions. Variations in characteristic and processes typical to the area can have 

significant effects to soil formation and vegetation dynamics in general. Harsh arctic climate 

conditions and low availability of nutrients are limiting factors for vegetation development at 

Svalbard (Gąsiorowski, 2019). Thus, processes affecting sediment supply, hydrological conditions, 

and nutrient distributions in the landscape, could have strong impacts to plant nutrient supply and 

development. 

 

Arctic is warming faster than anywhere else on Earth, impacts of this can be seen in Glacier dynamics 

of Svalbard. Holocene maximum glacier extent was reached during the “Little ice age”, that started 

with ice advancement in the 13th or 14th century (Svendsen & Mangerud, 1997). Cold climate phase 

of “Little ice age” prevailed at Svalbard between 1500 and 1900 AD (Yang et al., 2020). Svalbard is 

a low mass-balance-gradient glacial environment (accumulation and ablation rates altitudinal 

variation across the glacier is minor), with mostly temperate glaciers (Hodgkins, 1997). Temperate 

glaciers are entirely at the melting temperature, except transiently cooling surface layer during winter. 

Only at perennial basis glaciers at high elevations can be defined non-temperate. Decline of glaciers 



7 

 

in western Svalbard, where our study are resigns, has been ongoing for several decades (Bourgeois 

et al., 2016).  

 

Glaciers are sensitive to climate shifts and these effects are often seen in the variation of rock-flour 

production (van der Bilt et al., 2015). As glaciers mechanically grind rock beneath them, rock-flour 

is produced, through this glacial erosion. Meltwater flushes suspended sediments downstream with 

runoff water, enhancing sediment deposition at lowlands and changing the hydrological environment. 

Fine grainsized rock flour has a high reactivity and may therefore help to rejuvenate nutrient poor 

soils and provide nutrients to plants (Gunnarsen et al., 2019). Thus, proglacial areas, located in front 

of glaciers are strongly influenced by these fluxes of water and sediment (Hodgkins et al., 2009). 

Also, glacial retreat leads to expansion of new habitats for fauna and flora of the area.  

 

Despite the limited number of large herbivores, Svalbard’s vegetation is strongly affected by fauna. 

Dating results have indicated occurrence of reindeer at Svalbard over 5000 years ago and sea bird 

colonization at Svalbard over 9000 years ago (Yuan et al., 2010; van der Knaap, 1989). Svalbard 

reindeer (R. t. platyrhynchus) colonize nearly all non-glaciated land area (Le Moullec et al., 2019). 

Grazing pressure and fertilizing effects of reindeer faecal pellet have been presumed to affect 

productivity of tundra vegetation (Albon et al., 2017; Sundqvist et al., 2019). As accumulation of 

reindeer faecal pellets can have fertilizing affects, so does excrement of seabirds. Via seabird 

excrements marine bio-elements are transported to land. Areas located under bird colonies present 

exceptions to otherwise nutrient poor soils (Gąsiorowski, 2019). Nutrients from bird excrement are 

washed out from the colonies by precipitation, fertilizing areas affected by runoff. Important 

herbivore bird species at Svalbard are Svalbard rock ptarmigan (Lagopus muta hyperborean) and 

migratory geese species (pink-footed (Anser brachyrhynchus), barnacle (Branta leucopsis) and Brent 

goose (Branta bernicla)) (Descamps et al., 2017). Predatory bird species are glaucous gull (Larus 

hyperboreus) and skua spp.. 

 

In conclusion, external abiotic and biotic factors typical to Svalbard, most likely have an impact on 

soil and vegetation dynamics. Melt waters from the glaciers affect regional sediment supply, 

hydrological conditions, and nutrient distributions. Also, fauna of the area impact vegetation 

productivity. Grazing reindeers use ground vegetation as nutrition, and simultaneously shape 

insulation capabilities of mosses covering the soil and their excrement offers nitrogen (N) 

fertilization. Even stronger variation in soil nutrient availability is caused by large seabird colonies 

Areas located under cliffs with large bird colonies likely have much better nutrient availability. 
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2.3. Normalized difference vegetation index 

NDVI is widely used as a proxy for plant biomass and vegetation productivity, also known as a 

“greenness index” (Santin-Janin et al., 2009; Vogelmann et al., 2012). Index is based upon the 

observation, that by measuring red and near infrared (NIR) wavelengths of electromagnetic spectrum, 

and calculating ratio between these wavelengths, an index sensitive to photosynthetically active 

vegetation is produced (Rouse et al., 1974; Tucker, 1979). Chlorophyll of healthy green plants absorb 

more light in the red wavelength and due to plant cell structure, higher reflection characteristics are 

recorded in the NIR wavelength (Nouri et al., 2017). Thus, high index values are recorded in areas 

that have dense coverage of photosynthetically active vegetation. NDVI can be calculated by 

equation:  

NDVI = (NIR - red) / (NIR + red) 

Index values vary between -1 to +1 (Nouri et al., 2017). Negative values are recorded from areas 

covered by clouds, water or snow (Figure 2). Values close to zero primarily depict rocks or bare soil. 

Usually shrubs and meadows return values ranging between 0.2 to 0.3, while values above 0.6 often 

indicate forest or other highly dense vegetation. At arctic areas where moss communities constitute 

most of the understory, interpretation of NDVI values is more challenging.  

 

Compared to vascular plants moisture content of mosses can vary more widely and rapidly (Hajek & 

Beckett, 2007). Many species show abilities to recover even after extreme desiccation. Nevertheless, 

drying affects photosynthetic activity of mosses negatively. Yet, optimal water content for peak 

photosynthetic rate does not necessarily occur at full saturation (Harris, 2008). Experimental study 

noted that as moisture content of sphagnum moss communities (Spaghnum augustifolium and 

Spaghnum capilliofilium) declined from 80% to 70%, recorded NDVI index value reduced by 0.17 

to 0.2 (May et al., 2018). Respectively, with pleurocarpus moss communities (Hylocomium 

splendens, Aulocmnium spp and Polytichum spp.) NDVI index value reduced by 0.06 to 0.12. Thus, 

short term changes in moisture conditions can considerably affect NDVI values recorded at areas 

where mosses cover the ground. 

 

As multiple variables can affect calculation of NDVI negatively, ways to reduce uncertainties have 

been developed.  Appropriate order and pre-processing steps of optical remote sensing data provides  

 necessary foundation to prepare data for ecological analyses (Young et al., 2017). When spectral 

values are being compared across images from multiple time-windows, imagery should be pre-
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processed either to surface reflectance or to relative values to ensure comparability. Clouds, cloud 

shadows, and snow can significantly influence the spectral bands of optical sensors (Zhu et al., 2015). 

Their presence can cause serious problems in calculation of vegetation indices and especially in 

change detection. Compositing images from known time periods (i.e. mean, median and maximum 

value calculation over all images of period), can reduce effects of short term variations due to cloud 

cover and moisture conditions, which is desirable when studying long-term changes of landcover 

using NDVI time-series (Baniya et al., 2018; Chen et al., 2003; Fassnacht et al., 2019; Vickers et al., 

2016; Zhou et al., 2001). 

 

Terrestrial C cycle models often require information on photosynthetically active radiation incident 

on the vegetation, fPAR, and conversion efficiency of absorbed energy (Jung, 2008; Monteith, 1977; 

Scholze et al., 2017). Spatiotemporal modelling requires parameterization of the land surface, which 

is only possible using remote sensing (Hilker et al., 2008). NDVI can be seen as representation of the 

fPAR, as it indicates distribution of leaf area and chlorophyll amount (Lees et al., 2018). Therefore, 

it has been used also as a proxy when estimating GPP within the spatiotemporal C models. Still, it is 

good to acknowledge that NDVI indicates “greenness” of the vegetation, not the actual 

photosynthesis. 

Figure 2. Landsat 8 acquisition (LC082140042014071501T1) presented as red, green and blue- (RGB) and 

as NDVI-image. RGB-composite on the left was composed from the bands 4, 3 & 2. On the right side NDVI-

image is calculated using near infrared and red channels (bands 5 & 4). Before the calculation, pixel values 

out of valid range were set to NA (blank pixel at sea areas). Areas with glaciers clearly distinguishable in the 

RGB image, have NDVI values close to 0. High NDVI values can be seen at the vegetated valley areas. 
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3. Research questions 

This Master’s thesis was brought forth as a part of a larger research project studying response of high-

latitude peatlands and organic soils to past and recent warming. Classical biogeography’s view 

suggest that ecosystems are strongly governed by climatic constrains regarding their structure and 

functions (Reichstein et al. 2014). My research hypotheses are that global climate change has affected 

environmental conditions at Svalbard’s moss tundra areas, altering their C dynamics. Secondly, 

history of these changes can be reconstructed from soil profile segments by dating methods 

supplemented with soil property analyses. Furthermore, these changes are partly caused by increase 

in vegetation productivity, which can be detected with using NDVI time series. 

 

Presently only a limited number of palaeoenvironmental studies concerning soil C cycles from 

Svalbard exists (Nakatsubo et al., 2015; J. Rozema et al., 2006; van der Knaap, W.O, 1988; Wojcik 

et al., 2019). As global warming likely affects the mass balance of C near soil surfaces, where surface 

temperatures fluctuate with air temperature, it is important to focus research efforts on C cycling of 

recently accumulated soil (Turetsky et al., 2004). Here palaeoenvironmental methods and remote 

sensing-based vegetation indices are combined, to study recent changes in soil properties and soil C 

accumulation rates at four study sites. Thesis investigates following research questions: 

 

• Have organic matter and carbon accumulation rates of Svalbard’s moss tundra areas changed 

during the recent past? If so, when and why? 

• Do changes in the recent organic matter and carbon accumulation rates reflect changes in the 

weather history of the study area?  

• Can Landsat data from the study area be used to monitor changes of vegetation composition, 

and to detect spatiotemporal variation of recent carbon accumulation rates? 

 

Organic matter and C accumulation histories are reconstructed using dating methods supplemented 

with soil property analyses. In terms of environmental drivers, meteorological measurements are 

emphasised, other factors potentially contributing to changes in accumulation rates are assessed 

through literature. Landsat derived NDVI indices may enable monitoring of changes in vegetation 

composition and productivity, at wide areas with medium spatial resolution. If proven that Landsat 

derived NDVI data offers a proxy for soil C accumulation, valuable spatiotemporal information of 

high-latitude moss tundra and peatland areas’ accumulation histories covering multiple decades could 

be derived.  
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4. Study area  

Svalbard is an archipelago of Norway. Study area is located at the largest island of the archipelago, 

Spitsbergen. Terrain of Spitsbergen is mountainous, and large portion of the island is covered by 

glaciers. Long-term presence of glaciers can be seen in the island’s topography, as it is deeply carved 

by fjords. All study sites surround Isfjord, located at latitude 78.3°N and longitude 15.0°E. Study area 

consists of four different moss dominated tundra areas, which are Alkehornet, Colesdalen, Björndalen 

and Bolterdalen (Figure 3).   

 

Sites where chosen as they have other active study and monitoring efforts already established 

(Christensen et al., 2020; COAT, 2020). Alkehornet is only site situated at the northern shore of 

Isfjord, on a small headland (Figure 4). Soil mass movements induced likely by gelifluction and 

cracking of peat are common at the slopes of Alkehornet. Coring points at Alkehornet were chosen 

so, that no alteration in soil due to gelifluction or peat cracking was noticeable near these points 

(Table 1). Rest of the sites are situated at valleys, descending to southern shores of Isfjord. Varying 

erosion and accumulation patterns of sediments could be seen at bottom of the valleys. Colesdalen -

valley has the warmest microclimate of the four sites. River Coleselva runs at its bottom flowing 

towards Isfjord. Björndalen is small valley close to the shoreline. Bottom of the valley is flat, with 

streams flowing from Håberg -glacier towards Isfjord. Bolterdalen is a valley with a small river 

running on the bottom. Valley descends to a larger Adventdalen -valley, where Longyearbyen, the 

largest settlement of Svalbard resides.  

Figure 3. Left panel presents the location of archipelago of Svalbard at the Northern hemisphere. Right panel 

presents locations of study sites at the island of Spitsbergen, Svalbard. Sites are presented by alphabets running 

from west to east (Alkehornet = A, Colesdalen = B, Björndalen = C and Bolterdalen = D). 
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Due to arctic climate, productivity of terrestrial ecosystems is limited, thus leading to thins soils 

(Gąsiorowski, 2019). This sets limitations to development of vascular plants. Therefore, paludified 

soils composed of bryophytes are the most widespread type of vegetation at arctic areas. Description 

of vegetation types of the study sites differs, depending on the source. Elvebakk A. (2005) classified 

Alkehornet as a circumneutral tundra characterized by Luzula nivalis and rest of the sites as Cassiope 

tetragona tundra. In more recent digital vegetation maps, pixelwise classifications of the sites consists 

pixel values representing wet moss tundra, swamps or mires, bird cliff vegetation and Cassiope 

tetragona heaths (B. E. Johansen et al., 2012; Norwegian Polar Institute, 2020). Also, on finer spatial 

scale variation in the tundra landscape of Svalbard, snow cover duration, efficiently determines the 

landscape-scale distribution of arctic and alpine plants (Cooper et al., 2011).   

Figure 4. Photograph of each study site presented above (© Piilo, 2018). Photo-A shows landscape 

characteristic to Alkehornet. Steep cliffs dominate the landscape, with distinct mass movements down the 

slopes. Low lying areas have wet soils with large quanties of moss plants growing. Photo-B shows hummocky 

vegetation covering the field layer of Colesdalen -valley. In the background flows Coleselva -river and behind 

it steep slopes surrounding the valley ascend. Photo-C is taken from the bottom of Björndalen valley. Flowing 

meltwater streams run through otherwise flat floor of the valley. Photo-D is taken from Bolterdalen. Left side 

of the photo shows rather dry herbaceous moss tundra typical to the area. On the right, area with wetter 

depression is shown. These environments alternate within the valley. 
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In situ observations proved that species composition at all the sites is 

highly uniform. Vegetation at the sites can be described as herbaceous 

moss tundra. Prevailing species were identified (Table 2). Notable 

observations altering from general trend of the sites were scarce 

Sphagnum species observations at Björndalen and Colesdalen. At 

Björndalen patches with Sphagnum squarrosum were observed. Two 

different Sphagnum species were observed at Colesdalen (Sphagnum 

fuscum and Spaghnum squarrosum). However, the abundancies were very 

minor. 

 

Reindeer faecal pellets were found abundantly at every study site, which 

implies that grazing of reindeer packs occurs at all the sites. No estimates 

of quantity of individuals grazing at the sites, or differences between the 

sites are available. Large-scale declination of moss or vascular 

plant cover, due to grazing was not noted. Large bird colonies inhabit the 

cliffs ascending over Alkehornet study sites. No large bird colonies were 

noted near the other three sites. 

SPECIES 

Tomentypnum nitens 

Aulacomnium palustre 

Sanionia uncinata 

Equisetum arvense spp. 

alpestre 

Salix polaris 

Bistorta vivipara 

Petasites frigidus  

Dupontia fisheri 

Dryas octopetala 

Saxiafraga hirculus 

Eriopohorum 

scheuchzeri 

Cassiope tetragona 

Poa alpina 

Deschampsia alpina 

Site Core id Coordinates  Elevation WTD pH 

Alkehornet Alk.1 78.215, 13.826 67 NA 6 

Alkehornet Alk.3 78.214, 13.828 29 NA 4.5 

Alkehornet Alk.4 78.214, 13.831 26 NA 5 

Alkehornet Alk.5 78.214, 13.827 38 10 5.5 

Alkehornet Alk.7 78.213, 13.830 23 NA 4.5 

Björndalen Bj.1 78.224, 15.331 23 6 5 

Björndalen Bj.2 78.224, 15.328 30 8 5 

Björndalen Bj.3 78.223, 15.328 29 6 5 

Bolterdalen Bo.1 78.172, 16.034 34 NA 5 

Bolterdalen Bo.3 78.172, 16.033 29 NA 5 

Bolterdalen Bo.4 78.172, 16.034 29 8 5 

Bolterdalen Bo.6 78.173, 16.030 20 NA 5 

Colesdalen Col.1 78.108, 15.044 11 NA 5 

Colesdalen Col.2 78.108, 15.043 11 32 5 

Colesdalen Col.4 78.104, 15.049 NA NA 5 

Table 1. In situ measurements per coring point. Coordinates are as decimal degrees. Elevation is presented 

as meters above sea level. Water table depth is centimetres from soil surface.  pH at accuracy of 0.5 

Table 2. Taxa recorded 

in the proximity of 

coring sites. 
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5. Material  

Field samples were collected, and measurements recorded between the dates of 24.7.2018 and 

29.7.2018. Remote sensing data and historical weather data were collected during autumn of 2019 

and spring of 2020. In this chapter these datasets are individually presented. 

 

5.1 Soil samples 

Each sampling point was individualized with an id-code and exact coordinates and elevation 

information were saved using a GNSS receiver. Plant species covering the soil in a near proximity of 

the sampling points were identified to general level; no species-specific identification was done. 

Information on water table depth, pH and other individual traits of the site were reported. Total of 22 

soil profiles were collected during the field work period. In this thesis, 15 of those samples are studied. 

Samples were chosen so, that they form a representative sample of every study area.  

 

5.2 Digital surface model 

Version 3.0 Digital surface model (DSM) tiles with spatial resolution of 10 meters, were downloaded 

from ArcticDEM server (Porter et al., 2018). ArcticDEM project provides automatically produced 

high-resolution, high quality, DSM of the Arctic. Data is constructed from in-track and cross-track 

high-resolution (~0.5 meter) imagery acquired by the DigitalGlobe constellation of optical imaging 

satellites. DSM are assembled from these images by using optical stereo imagery, high-performance 

computing, and open source photogrammetry software. To cover all the area surrounding Isfjord, four 

tiles all in all were downloaded. Grid id values of downloaded tiles are 34_51_10m, 35_51_10m, 

34_52_10m and 35_52_10m.  

 

5.3 Landsat data 

To be able to detect temporal changes within a time frame, comparable to C accumulation data 

derived from dated soil sections, large image collections spanning over decades are required. In 

addition, requirements for spatial and temporal resolution are present. To detect land cover changes 

in the near proximity of the coring points, high enough spatial resolution is required. In the High 

Arctic, snow cover melts usually in June, and plant senescence starts in early August (Cooper et al., 

2011). Thus, the growing season is very short, though strong interannual variation takes place. This 



15 

 

sets requirements to temporal resolution, especially at areas where imaging is often hampered by 

cloudiness. Here Landsat data were used to meet these requirements. 

 

Landsat data were ordered via Earth Explorer, user interface for online search and orders (United 

States Geological Survey, 2019a). Data query was filtered by sensor, data processing level and to 

touch only summer months (June, July and August). Landsat 5, 7 and 8 -satellite missions’ data 

(Collection 1 processed to Level-2 –state) were selected and ordered (only available on-demand) 

(Dwyer, 2019; United States Geological Survey, 2019c, 2019b). Products generated from Landsat 5, 

7 and 8 sensors all share 30-meter spatial resolution on a Universal Transverse Mercator or Polar 

Stereographic mapping grid. This enables pixelwise change detection between products. Bulk 

downloading of the ordered and processed data were carried out with python based espa-bulk-

downloader (appendix A) (USGS-EROS/Espa-Bulk-Downloader, 2015/2020). 

 

Level-2 products are processed to surface reflectance. Surface reflectance measures the fraction of 

incoming solar radiation reflected from Earth's surface to the Landsat sensor (United States 

Geological Survey, n.d.-b). Surface reflectance products improve comparison between multiple 

images over the same region. This is due to processing steps accounting for atmospheric effects such 

as aerosol scattering and thin clouds, which can help in the detection and characterization of Earth 

surface change. Surface reflectance products are assigned to certain collections based upon their 

quality assessment. Tier-1 data is processed to Precision and Terrain corrected products (L1TP) with 

image-to-image registration to the Global Land Survey control of ≤12-meter radial root mean square 

error (Dwyer, 2019). If his registration threshold is not met, data is processed either to Systematic 

and Terrain Corrected products (L1GT) or to systematically corrected (L1GS). L1TP data is 

radiometrically calibrated and orthorectified using ground control points and DSM to correct for relief 

displacement. L1GT data is radiometrically calibrated and systematic geometric corrections applied 

using the satellites ephemeris data and DSM to correct for relief displacement. L1GS data is 

radiometrically calibrated with only systematic corrections applied using satellite ephemeris data.  

Only L1TP data is suitable for pixel-level time series analysis as it is. 

 

Availability of images was largely limited because high level of cloudiness in the study area. Due to 

cloud coverage in every image, no images were downloaded from the years 1997, 2003 and 2007. In 

total 94 images were downloaded, placing between the years 1985 to 2018. Image pool consisted 30 

of Landsat 8 images (L1TP products), 27 Landsat 7 images (L1GT products) and 37 Landsat 5 images 

(L1GS products). These images were filed in folders, per sensor name and the image coverage area. 
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Image coverage is described by Worldwide Reference System 2 (WRS2) -scene code (Masek, 2020). 

WRS-2 is a global notation system for Landsat data. It specifies a nominal scene centre designated 

by path and row numbers. Downloaded data originated from 11 individual WRS-2 scenes. 

 

5.4 Weather data 

Measured weather data was downloaded, in attempt to evaluate climate trends at Isfjord area during 

the 1900 AD to 2018 AD period. Data recorded at Longyearbyen station covers the period from 1917 

to 1976 (station ended operating at 1977). Data recorded at Svalbard airport covers the period 1977 

to 2018. Airport is located at the shore of Isfjord, 28 meters above the sea level, residing near 

Longyearbyen, the administrative centre of Svalbard.   

 

Annual mean air temperatures from Longyearbyen area are available from 1898 onwards (Norwegian 

Meteorological Institute, 2020a). Secondly, seasonal mean temperature dataset includes annual 

average temperatures separately for winter, spring, summer, and autumn months (Norwegian 

Meteorological Institute, 2020c). For some years, the data is missing. Variation in ice condition 

strongly affects the temperature in Svalbard, leading to large interannual variations. Therefore, in the 

seasonal data variations on time scales shorter than 10 years have been smoothed. Dataset of annual 

total precipitation at Svalbard airport was downloaded (Norwegian Meteorological Institute, 2020b). 

Precipitation measurements are available from the year 1915 till present. Data regarding monthly sum 

of the effective temperature during the growing season was downloaded (temperature sum 

accumulates if the daily mean temperature exceeds 5 ºC. Portion of the daily mean temperature that 

exceeds 5ºC, is then added to the monthly sum. This dataset was compiled using daily mean 

temperature averaged from multiple measurement stations around Svalbard) (Norwegian 

Meteorological Institute, 2020d). From these monthly sum values, annual sum values of the effective 

temperature were derived. 
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6. Methods 

This study is primary based on in-situ collected soil samples and downloaded remote sensing data. 

To support these datasets measured weather data were downloaded as well. First, methods used to 

study soil samples are described. Secondly, methods used to study remote sensing data are described.  

 

6.1. Soil profile sample coring and storing 

Soil profiles were collected using box auger, until reaching the mineral soil or ice. Samples were 

wrapped in plastic and transported to laboratory in sealed PVC tubes. Individual id codes were 

determined for each profile (first three letters of the site and then running number). At Alkehornet 

site mineral soil was reached only with Alk.1 soil profile. Bottom layers of other cores from 

Alkehornet were frozen, preventing sampling from deeper layers. At other sites mineral soil was 

reached with every core. While still in Svalbard all samples were stored in a freezer (-80 °C) for more 

than 40 hours. This was a precaution to prevent possible spreading of Ecinococcus parasite to Finland. 

Then samples were transported to University of Helsinki, Finland, where the samples were stored in 

a freezer.  

 

For analyse purposes, cores were defrosted and subsampled into 1-cm thick slices. Outermost layer 

of the core was discarded to avoid any contamination. Slicing was carried out either by knife or sharp 

set of scissors. To avoid contamination equipment was cleaned between every subsampling operation. 

Subsamples were named by their stratigraphic position within the core and stored into sealed plastic 

bags. Sample from topmost centimetre (0-1 cm) was named 1. Naming id was then continuously 

increased as sample-depth increased. 

 

6.2 Bulk density 

To enable C accumulation analyses, sample bulk density was calculated for every subsample. 

(Chambers et al., 2011). First, plastic containers with volume of 5 cm3 were weighted. From every 

soil subsample 5 cm3 volumetric sample was extracted into a weighted plastic container with a pair 

of tweezers. Container was filled with intent not to compress the sample by pressing down on it but 

at the same time avoiding leaving air pockets. Container was sealed with parafilm perforated by 

needle. This protects the samples but enables moisture to efflux. Then samples were refrozen, and 

freeze-dried. Dried samples were weighed, and the weight of the plastic container was subtracted. 

Finally, bulk density was calculated by dividing dry peat weight by wet peat volume (g/cm3). 
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6.3 Organic material, carbon and nitrogen content 

From every subsample portion of organic material was separated and loss on ignition (LOI) 

measurements conducted (Heiri et al., 2001). Sample crucibles were cleaned, dried, and weighed 

before setting samples in. Crucible and the sample were then weighted together. Samples were kept 

in furnace with a temperature of 550 °C for four hours. Crucibles were set to cool down in a 

desiccator. Then crucibles with burnt material were re-weighted, considering weight of the crucible 

itself. Weight of sample material left, presents the mineral material, after the organic material has 

burnt away. From the weight lost in ignition, proportion of organic matter in the sample was defined.  

 

C/N content measurements were performed at four-centimetre intervals for nine of the cores (Alk.3, 

Alk.4, Alk.7, Bj.1, Bj.3, Bo.3, Bo.4, Col.1 and Col.2). Analysis requires sample weight of only 

0.015g. Thus, small fraction of the dried samples was ground using a mortar. C and N content was 

measured from sub-samples using LECO TruSpec Elemental Determinator at the University of 

Helsinki, Finland. From these results site-specific average C content was calculated. This average C 

value was used for the six profiles for which C analyses were not carried out. 

 

6.4 Radiocarbon 14C and lead 210Pb dating 

Chronologies were composed by dating subsamples either with radiocarbon (14C) accelerator mass 

spectrometry or lead (210Pb) dating methods. Radiocarbon dating was used in particularly to date 

profile bottom layers with high organic content. Lowest subsample segment presumed as organic soil 

was determined by visual inspection. For radiocarbon dating plant macrofossils were collected from 

the inner parts of the lowest subsample to avoid contamination with modern C. Sampling equipment 

was kept clean to mitigate possibilities of contamination. Dating itself was conducted in two parts. 

Nine of the bottom samples were sent to Poznan Radiocarbon Laboratory (Poznan, Poland). Later, 

six more bottom samples and one additional segment from middle of Alk.4 profile were sent to 

Finnish Museum of Natural History (LUOMUS, Helsinki, Finland). 

 

Accelerator mass spectrometry radiocarbon dating can be used to reliably date < 50 000 old material 

(Piotrowska et al., 2011). The 14C isotope is produced in upper atmosphere, through nuclear reactions 

between thermal neutrons and N nuclei. Plants assimilate CO2 and simultaneously 14C through 

photosynthesis. As the plant dies, no further radiocarbon is assimilated, and previously assimilated 

radiocarbon begins to decay. 14C decays back to 14N. Half-life of the isotope is estimated to be 5730 

± 40 years (Goodwin, 1962).  
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Atmospheric 14C concentration varies through time (Reimer et al., 2013). Fluctuation in the isotope 

production rate is caused by geomagnetic and solar modulation of the cosmic-ray flux, and the C 

cycle. If the conventional calculated 14C age (non-calibrated) is placed within the past 200 years, it is 

termed as 'Modern' (Stuiver & Polach, 1977). Non-calibrated modern 14C dates are reported as 

percentage of modern C (pMC). pMC represents the proportion of anthropogenically-induced 

radiocarbon atoms in the sample compared to the 1950 AD level. Influx of artificial radiocarbon into 

the atmosphere was a result of nuclear bomb tests and led to a situation where modern age calculations 

present ‘future’ calculated date. Hence, a calibration of radiocarbon years is necessary. Initial results 

were calibrated with IntCal 13 calibration curve. It has been agreed that the year 1950 AD is used as 

the standard reference year (zero year), when converting 14C age estimates to AD calendar years (Flint 

& Deevey, 1962). Thus, the 14C dates can be converted to the AD scale without ambiguity arising 

from the year of measurement, publication, citation or from the decay of 14C in oxalic acid. 

Accelerator mass spectrometry radiocarbon dating of modern peat samples can offer decadal-scale 

age resolution over the last several thousands of years and even more accurate results for the recent 

past (Turetsky et al., 2004). As related to methodological uncertainties, a combination of dating 

techniques should be preferably used. 

 

210Pb dating is one of the few independent dating methods that can yield a continuous chronology. 

Here it was used to increase temporal resolution for the recent changes in accumulation history. 70 

profile sample segments were extracted from 9 of the profiles for 210Pb dating. Profiles were 

subsampled with three-centimetre interval from surface downwards. Samples were freeze-dried and 

grinded fine. These samples were transported to University of Exeter in May of 2019. There 210Pb 

dating was conducted by the author and a fellow student, with guidance of the laboratory personnel.  

 

Samples were set into beakers and spiked with 1 ml of polonium-209 isotope (209Po) yield tracer. 

Nitric acid (HNO3 70%) was added to the mixture and set to a hotplate. Samples were brought to 

dryness, cooled down and then 10 ml of hydrogen peroxide added (30% H2O2). Once more, 5ml 

hydrochloric acid was (6M HCL) added, samples set back to the hot plate and brought to dryness. 

Residue formed was dissolved to hydrochloric acid (0.5M HCL). Solution was set into a centrifuge. 

Supernatant was moved to plating jars with added hydrochloric (0.5M HCL) and 0.2 grams of 

ascorbic acid (C6H8O6). Silver discs were placed into the plating jar, suspended at end of a string. 

Plating jars were set to a magnetic stirring table (850rpm) for 24 hours. Here polonium’s alpha 

emitting isotopes (209Po & 210Po) are absorbed to silver plates. Plates were removed, cleaned with 
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distilled water and then dated. Dating was conducted using Ortec Octête Plus Integrated Alpha-

Spectrometry System (Software: Maestro-32).  

 

When 14C information relies on C assimilation of plants, lead-dating relies on 210Pb deposits as dry 

or wet deposition from the air (Turetsky et al., 2004). Uranium-238 is a primordial nuclide with a 

long half-life (4.46 × 109 yr.). 238U is found in all sediments and through a continuous decaying 

process produces 210Pb and other daughter isotopes. Within soil uranium decays to multiple decay 

products, which subsequently decay to inert Radon gas (222Rn). Through a series of short-lived 

isotopes 222Rn decays to 210Pb (half-life of 22.3 yr.). Thus, total 210Pb found in soils has two 

components: component produced within soil by decaying 222Rn and component derived from 222Rn 

that was first diffused into the atmosphere and subsequently decayed to 210Pb. Through dry fallout or 

wet deposition this diffused 210Pb is then deposited to soil from the atmosphere. Thus, activity of the 

deposited 210Pb in undisturbed, vertically aggrading soils, is greatest in young surface deposits 

(Appleby’ & Oldfield, 1983). Activity tends to decrease in older, deeper material as a result of 

radioactive decay. 

 

6.5 Age-depth models and recent accumulation rates 

With R-based Bacon-package semi-automatic age-depth modelling script was composed, using 14C 

and 210Pb dating results jointly as input data (Appendix B) (Blaauw et al., 2020; R Core Team, 2019). 

For profiles that had only bottom layer dated, surface layer (0-1 cm) formation year was defined to 

sampling year. Bacon applies Bayesian statistics with prior information, using self-adjusting Markov 

Chain Monte Carlo -sampling method (Christen & Fox, 2010), returning posterior probability 

distribution of date estimates within 95% probability interval. Mean values of these date estimates, 

with one-centimetre interval were extracted.  

 

Site-specific average C content was calculated from all successfully dated soil profile segments 

(Alkehornet: 31.9%, Björndalen: 40.5%, Bolterdalen: 26.3% and Colesdalen: 39.4%). For profiles 

with no C measurements conducted, site-specific average C content was imposed on every profile 

segment. Utilizing bulk density, C content information, and age-depth model results, recent C 

accumulation rates (g C m-2 yr-1) were calculated for every soil profile with one-centimetre interval 

(Mäkilä, 2011). Due to large variation of mineral content in part of the subsample segments, formula 

used was adjusted to take this factor in consideration (Juselius et al. unpublished). Instead of using 
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dry bulk density of the whole subsample, bulk density of the organic material was used to dismiss 

impact of mineral material in samples. The adjusted formula is: 

A c= r × ω ×C ×1000 

Where Ac = carbon accumulation rate (g C m-2 yr-1), r = rate of vertical soil increment (mm yr-1), ω= 

organic bulk density (dry bulk density × LOI) and C = carbon content as a proportion of dry bulk peat 

(%). Average non-cumulative apparent accumulation rates were calculated for three time-windows: 

1900 AD, 1940 AD and 1980 AD till present, respectively. These focus periods were chosen to depict 

post “Little ice age” period, looking for signal related to recent climate warming. Calculations were 

carried out soil profile- and site-specific.  

 

6.6 Digital surface model  

Four DSM tiles with spatial resolution of 10 meters were pre-processed using QGIS 3.10.2 (QGIS 

Development Team, 2020). Tiles were re-projected to WGS84 / UTM 33N (EPSG: 32633) projection. 

Secondly, four tiles were merged to one raster and clipped to represent only area of Isfjord. Resulting 

product was visually inspected in case of anomalies. Artefacts showing high elevation values of over 

400 meters, were identified over water areas of Isfjord. To ensure that these artefacts would not affect 

later processing steps, sea areas were masked out by using shapefile of Spitsbergen islands land area 

(Norwegian Polar Institute, 2014). Minor high-altitude areas with missing data were identified at 

southwestern part of the study area. These areas were covered by ice or snow in Landsat imagery. 

Thus, it was presumed that these deficiencies would not affect NDVI analysis negatively. Lastly, 

multilevel b-spline interpolation was used to reduce spatial resolution of the data to 30 meters, 

matching the spatial resolution of Landsat satellite imagery. 

 

6.7 Landsat cloud masking 

Boolean cloud mask raster layers were iteratively composed, based on quality assurance bands of 

every acquisition (appendix C) (United States Geological Survey, 2019b, 2019c). Pixels with low 

confidence of clouds were not included in the mask layers. Hence, possibility of losing valid pixels 

was avoided. Every pixel determined as cloud shadow, cloud, medium confidence cloud, high 

confidence cloud or high confidence cirrus was added to the mask file. These new cloud mask -raster 

files were iteratively written within every acquisition folder.  
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6.8 Data cubes and acquisition co-registration 

Landsat product processing levels are defined so, that for time-series analysis, an image-to-image 

registration accuracy of ≤12-meter (RMSE) must be met (Dwyer, 2019). Additional georeferencing 

is likely needed when working across large spatial extents or timeframes, working with older imagery 

in the Landsat archive or areas of the world where sufficient ground control points have not been 

obtained (N. E. Young et al., 2017). Jupyter notebook was used through Anaconda science platfrom 

to compose Python script to select needed bands, stack these bands into data cubes and then co-

register every cube (Appendix D) (Anaconda Software Distribution, 2016). Sub-pixel accuracy was 

set for accuracy requirement for co-registration. 

 

Red band, NIR band and cloud mask were selected and these raster layers stacked. This was done 

iteratively to every acquisition. For every WRS-2 scene, that had Landsat 5 or 7 data downloaded, 

one Landsat 8 L1TP -image, was chosen as a reference image.  Reference images with no cloud cover 

were preferred, or image with cloud cover as little as possible. For three of the WRS-2 scenes, Landsat 

8 L1TP -images with low cloud cover were not available. Adjacent WRS-2 scenes have a large 

overlap at high-latitudes, so for these images, adjoining scene was selected as reference. Lower 

processing level Landsat 5 and 7 acquisition were co-registered with a Landsat 8 L1TP image.  

 

Co-registration was conducted with python based AROSICS (Automated and Robust Open-Source 

Image Co-Registration Software) -package (Scheffler et al., 2017), using a computer running 64-bit 

Windows 10 Home Client, Intel i3-7100 3.91GHz CPU and 8.00 Gt RAM. AROSICS is independent 

of spatial or spectral characteristics and robust against high degrees of cloud coverage and spectral 

and temporal land cover dynamics. Methodology is based on phase correlation to estimate sub-pixel 

shifts in the frequency domain. To achieve this, Fourier shift theorem in a moving-window manner 

is utilized. Phase correlation delivers high accuracy co-registration results, even in the case of poor 

signal-to-noise ratios and substantial ground cover changes between different images (i.e. snow cover 

variation, deglaciation, and vegetation dynamics). A dense grid of spatial shift vectors is created, 

together with total of five individual validation and quality estimation metrics. These steps are: 

validity check of calculated integer shifts, displacement threshold check, cross-power spectrum 

reliability check of the respective tie point, image similarity evaluation before and after shift 

correction and utilization of robust RANSAC algorithm to estimate the parameters of an assumed 

affine transformation between the images, thus identifying outliers among the previously calculated 

shift vector grid (Fischler & Bolles, 1981; Hast et al., 2013).  
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AROSICS offers two optional approaches for co-registration, that the user can choose from, “local” 

and “global” approach (Scheffler et al., 2017). The local co-registration approach applies phase 

correlation in a moving-window manner to a regular grid of coordinate points and estimates X/Y 

translations for each point within the overlapping area of the input images. The global co-registration 

approach computes the displacements at only one small image subset, user defined by given grid size 

and centre coordinates. Global co-registration assumes that the whole misregistration between images 

can be described by a constant shift value and no displacement alteration occurs within the target 

image. Primarily, local co-registration was utilized. Tie point grid resolution was set to 40 pixels, 

max iterations to 20, maximum shifts to 80 and size of the moving window to 400 × 400 pixels. In 

un-successful cases, target image went through a two-step registration. First, global registration was 

used, to detect the large “main” shift. Secondly, new locally registered file was written, and the global 

approach was used into take in consideration the remaining shifts within this image.  

 

6.9 Topographic correction 

Topographic correction refers to the compensation of the different solar illuminations due to the 

irregular shape of the terrain (Riano et al., 2003). Due to this effect variation in the reflectance 

response of similar vegetation types occur. Shaded areas show less than expected reflectance, whereas 

in sunny areas the effect is the opposite. Topographic correction may be crucial for multispectral and 

for multitemporal analysis in areas of rough terrain.  

 

Due to large topographic variation of the study area, R-based script was composed to consider the 

spectral variation caused by topography (appendix E). RStoolbox -packages topCor -function was 

applied, utilizing average cosine correction (Civco, 1989; Leutner, 2019). Average cosine correction 

was designed to compensate for overcorrection by the original cosine method (Pimple et al., 2017; 

Teillet et al., 1982). Thus, the average illumination is also included in the calculation formula of the 

method.  

 

6.10 Annual NDVI composites and sensor harmonization 

Co-registered imagery were clouds masked and NDVI was calculated. Resulting NDVI images were 

filed in folders based on their acquisition year. For every year pixel-wise maximum NDVI composite 

was created. If some year had only one acquisition, this image would be directly used. Maximum 



24 

 

NDVI, represents the peak vegetation photosynthetic activity of the growing season. It serves as an 

indicator of tundra biomass reached at that point of time. This parameter is least influenced by noise, 

cloud cover or variation in growing season length (Vickers et al., 2016; Walker, 2003). Also, in May 

2003 Landsat 7 suffered the loss of its scan line corrector, leading to data gaps within images (Landsat 

Science, n.d.). Composites compiled from multiple images, can help to fill in these no data areas 

present in individual acquisitions.   

 

R-based script was composed to calculate annual maximum NDVI composites and to consider the 

sensor harmonization (appendix F) (Robert J. Hijmans, 2020). When using data from three different 

sensors it is likely that cross-sensor discrepancies appear. There are small differences between red 

and NIR bands’ spectral resolution between the sensors (United States Geological Survey, 2019b, 

2019c). Ju and Masek (2016) proposed a method to derive cross sensor scaling factors between NDVI 

values. Method utilizes the fact that swath from two adjacent Landsat imaging paths have a side lap, 

which widens with increasing latitude. Images captured on consecutive days with two different 

sensors, are collected to compose a sequence of “triplet observations”. Triplet observations are used 

to evaluate discrepancies between the sensors. 

 

Not enough cloud-free imagery on consecutive days with differing sensors was found for the study 

area to empirically reproduce cross sensor evaluation. Using methodology depicted above calibration 

coefficients between Landsat 5 and 7, and between Landsat 7 and Landsat 8 sensors have been 

calculated for high-latitude acquisitions from Northern Canada (Pironkova et al., 2018). The NDVI 

composite scaling factors presented were, 1.036 to adjust Landsat 5 to its Landsat 7 equivalent, and 

1.086 to adjust Landsat 8 to its Landsat 7 equivalent. Here those calibration coefficients were directly 

utilized. No smoothing was imposed to the harmonized annual composites, as averaging of NDVI 

values would be present in extraction of soil profile-wise time-series. 

 

6.11 Statistical methods 

Series of statistical tests were used to analyse the changes over time. R-based script to assess gradual 

change in vegetation over the whole Isfjord area and to extract soil profile coring pointwise timeseries 

was composed (appendix G). First, possible trends in vegetation cover composition during the 1985 

to 2018 period was studied. Secondly, relationship between soil profile coring pointwise timeseries 

and apparent C accumulation rates were studied.  
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For trend detection pixelwise Regional Kendall Test was performed, which utilizes the Mann-Kendall 

rank correlation and Theil-Sen's slope estimator (Marchetto & Marchetto, 2017). Analysis does not 

require a normally distributed data; computations are possible even if data includes missing values, 

and the weight of extreme values does not affect the results the same way as in many other correlation 

tests. Regional Mann-Kendall test returns three raster files that include pixelwise values of Kendall’s 

Tau, Theil-Sen's slope estimator and p-value. Kendall’s Tau is a measure of concordance between 

two variables (time and NDVI) (Hamed, 2011; Kendall, 1948). Tau statistic presents the difference 

between the probabilities of concordance and discordance between the two variables. Tau values can 

vary between -1 (both variables have negative trend in perfect concordance) and +1 (both variables 

have positive trend in perfect concordance). Theil-Sens slope estimator is a non-parametric method 

to estimate linear trend, by fitting a line to the sample points in the plane, by choosing the median of 

the slopes of all lines through pairs of points (Theil, H., 1950). Pixelwise subset of resulting Theil-

Sen’s slope raster was compiled from pixels, that have Tau value <-0.4 or >0.4 and p-value < 0.05. 

Resulting in a raster that depicts pixels that has a negative or positive trend based on Tau values, and 

significant p-values on the level of 0.05 (Appendix H). 

 

Theoretical analyses and field studies have shown that NDVI is near-linearly related to 

photosynthetically active radiation absorbed by a plant canopy, therefore also related to 

photosynthesis occurring in vegetation cover (Glenn et al., 2008). To compile soil profile-wise NDVI 

timeseries, buffer with radius of 50 meters, was determined around sampling point coordinates. A 

weighted mean of cell values falling within the buffer area was calculated. Approximate fraction of 

each raster cell falling within the buffer zone was used as the weight-component in the calculation. 

Valid values were restricted to higher than zero, to ensure that no snow-covered observations were 

considered. To assess relationship between the soil C accumulation rates and NDVI, a linear mixed 

effect model approach was adapted. Mixed models offer a useful approach to analyse unbalanced 

repeated measurements (Cnaan, 1997). Method differs of ordinary linear regression as it allows lack 

of independence between observations and to model more than one error term. Typical types of 

random effects are the division of study area to blocks or observational studies that are replicated 

across the sites or times (Bolker et al., 2009).  

 

Soil profile coring plots had variation in environmental conditions and vegetation cover composition. 

Thus, variation in plot-wise NDVI values and their development during the study period was 

presumed. Recent apparent C accumulation rates were calculated for soil profile segments one 

centimetre thick, thus covering soil accumulated during several years or even tens of years 
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(accumulation rates ranged from 0.002 to 0.5 cm yr-1, with average of 0.10 cm yr-1). To reduce the 

difference in length of periods that the variables depict, a three-year moving-window averaging was 

applied to profile-wise NDVI timeseries. Normality of input data were assessed. Impact of averaging 

was evaluated by calculating Pearson’s correlation coefficient between C accumulation rate and both 

averaged and non-averaged data before model fitting.  

 

Presumed presence of differences in the slopes and intercepts of soil profile coring plot-wise NDVI 

and accumulation relationships were evaluated. First visual inspection was conducted, by fitting plot-

wise linear regression lines. Then, a linear mixed effects model was composed using R-based lme4 -

packages lmer-function (Bates et al., 2015) (Appendix I). Recent apparent C accumulation rates were 

determined as response variable, averaged NDVI as a fixed effect and individual coring plots were 

defined as random effect variables. Validation of mixed effects models is more complicated compared 

to linear models. Forming p- or R2-values for mixed models are not as straightforward as they are for 

the linear model. However, one can extract a significance values from comparison of two models. 

Requirements to consider random effects were studied by composing models sequentially and 

comparing them. Then marginal r-squared values and conditional intraclass correlation (ICC) for the 

models were calculated (Nakagawa et al., 2017). Marginal r-squared presents the proportion of the 

total variance explained by the fixed effects, and conditional ICC defines proportion explained by 

plot-wise clustering.  

 

In total three models were composed: intercept only, random intercept (NDVI as fixed parameter with 

random intercept) and full model (NDVI as fixed parameter with random intercept and slope). 

Maximum likelihood estimation was used in model fitting, so that model fit comparison with analysis 

of variance (ANOVA) -test would be possible (McNeish, 2017). Maximum likelihood incorporates 

information about both the fixed effects and the variance components. For sequential comparison 

Akaike information criterion (AIC), Bayesian information criterion (BIC), conditional ICC, marginal 

R2, root-mean-square deviation and 95% confidence interval information were extracted to compare 

model goodness of fit (Akaike, 1974; Schwarz, 1978).  
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7. Results 

7.1. Soil profile properties 

Thickness of obtained soil profile samples varied greatly. Frozen soil restricting sampling depth at 

Alkehornet, indicated presence of permafrost. Average thickness of all the 15 soil profiles collected 

was 15.5 centimetres. Large site- and core-wise variation in soil properties was observed. At three of 

the sites: Björndalen, Bolterdalen and Colesdalen core-wise bulk density measurements followed 

lowering trend from bottom towards surface with slight variation. Highest bulk density values were 

measured from bottom samples. However, samples from Alkehornet showed large variation within 

profiles. Alk.7 profile deviated partly from the lowering trend from bottom to surface, with bulk 

density growing from bottom upwards, reaching peak at 6-7 cm depth, then declining towards the 

surface. Alike variation in samples from Alkehornet could also be seen in measured LOI values. 

 

At Björndalen, Bolterdalen and Colesdalen slight variation in organic matter content was noted, but 

mainly all profiles followed an increasing trend in LOI values from bottom towards surface. At 

Alkehornet only Alk.1 profile had clear increasing trend, without large variation of LOI values. Other 

Alkehornet profiles showed large fluctuation of LOI within the soil profiles, with variation most 

evident in Alk.3 profile (Figure 5). LOI measurements 

of Alk.3, Alk.5, and Alk.7 showed high organic matter 

content in bottom samples, as LOI values calculated 

were still high (79.4%, 68.9% and 84.1%). 

 

C and N values were derived from individual profiles 

and site-specific averages calculated. Profile-wise N 

content did not show clear trends. Content varied within 

profiles, without evident increasing or lowering trend, 

that would have followed sampling depth. However, 

variation between site-specific average N content was 

evident (Table 3). N content results from Alkehornet 

showed notably higher values compared to other sites. C 

content measurement results mainly showed increasing 

trend in soil profile segments from bottom to surface. 

Alkehornet site’s sample profiles that had fluctuation in 

bulk density and LOI, also had variation discrepancies in 

Figure 5. LOI measurements for Alk.3 soil 

profile. LOI (%) presents relative organic 

matter content as percentages. Highest 

content was measured at surface sample 0-

1cm. Bottom sample (29-30 cm) has LOI (%) 

of 79.43. Variation within the soil profile is 

large, which implies that at multiple 

occasions mineral soil has mixed with the 

accumulated organic soil matter.  
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C content measurements within profiles. Site-specific C average values ranged from 23.28% to 

38.55%. From C and N measurements C/N ratio was calculated. Higher N content at Alkehornet is 

visible also when comparing site-specific C/N results. 

 

Table 3. Site-specific data (minimum, average and maximum) of nitrogen content in percentages (N%), carbon 

content in percentages (C%) and ratio of the nitrogen and carbon content (C/N). Alkehornets’ nitrogen content 

results clearly differ from other three sites. Variation in maximum carbon content measurements between the 

sites is small. More variation is perceived in minimum and average values. C/N ratio shows clear difference 

between Alkehornet and other sites. At Alkehornet all C/N ratio statistics are considerably smaller than at 

other sites.   

 

 

7.2 Chronologies and age-depth models 

Large portion of bottom layers dated with 14C method yielded modern ages (deposited after 1950 AD) 

(table 4). Alkehornet soil profiles were much deeper and older than the profiles collected from other 

sites. Alk.4 bottom sample (depth of 24-25 cm) yielded oldest calibrated age of 5863 BP, and the 

additional sample towards top (depth 14-15 cm) age of 1341 BP. Youngest bottom sample from 

Alkehornet was Alk.1 (depth of 10-11cm). It was dated to 1950 BP. Regarding Björndalen, 

Bolterdalen and Colesdalen, the calibrated ages of the bottom samples varied between 155 BP and -

31 BP. Multiple bottom samples from these three sites had low LOI, which indicates that visual 

determination of lowest organic sample segment was inaccurate. 

 

In general, the amount of 210Pb extracted from sample segments with three-centimetre interval, 

expressed decreasing activity of 210Pb as presumed (Figure 6). For an unresolved reason Col.1 profile 

did not follow a decreasing trend. Thus, date estimation for this profile was unsuccessful with 210Pb 

method and only 14C bottom layer age could be used as input for age-depth model. Zero activity level 

of the profile subsamples was often reached near a halfway of a profile. Thus, 210Pb procedure did 

not provide age-estimation for the deeper layers.  

 

Site Alkehornet Björndalen Bolterdalen Colesdalen 

stat min avg. max min avg. max min avg. max min avg. max 

N% 0.95 1.99 3.04 0.15 0.93 1.4 0.29 0.60 1.02 0.52 0.97 1.59 

C% 13.62 32.335 40.94 3.93 32.24 42.37 7.63 23.28 38.56 31.94 38.55 41.13 

C/N 10.42 17.57 40.44 26.97 40.37 53.14 17.86 37.86 64.63 20.12 45.48 78.51 
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Table 4. Results of 14C dating, with samples identified by unique Id and the sample depth. Loss on ignition 

percentage (LOI %) indicates percentage of organic material in the sample. Non-calibrated dating results are 

reported as BP 14C dates. Modern non-calibrated dates are reported as percentage of modern carbon (pMC). 

Calibrated ages are reported as calibrated before present dates (BP cal.)  

 

210Pb-based chronology from Alkehornet reached the early 1800s AD. The Björndalen chronology 

reached early 1970’s AD. The Bolterdalen chronologies covered approximately half of the profiles 

in terms of depth. For Bol.3 and Bol.4 profiles the chronologies reached until 9 cm deep, with an age 

estimate placing in the 1950’s AD and early 1910’s AD, respectively. Out of Colesdalen profiles, 

only Col.2 profile was reliably dated by 210Pb. Col.2 reached chronology reached 6-7cm depth with 

an age estimate of 1995 AD.   

 

Profiles that had only bottom layer dated, the accumulation rates were practically linearly modelled 

(Figure 7). Profiles with combined chronologies showed larger variation in accumulation rate 

patterns. At Alkehornet steep increase in accumulation rates of Alk.4 and Alk.7 profiles was 

distinguished. Björdalen profiles Bj.1 and Bj.3 showed more moderate, but steady increase in 

accumulation rates. At Bolterdalen Bo.3 and Bo.4 profiles have alike sections in the depth of circa 

nine to four centimetres, where the accumulation rates lower slightly, and then start to increase. At 

Colesdalen, Col.2 profile shows a steady increase of accumulation rate, but large uncertainty area for 

the lowest 210Pb dated sample exists (area coloured with cyan colour). 

Site Core Id Depth (cm) LOI % BP 14C   BP cal. 

Alkehornet Alk.1 10-11 33.47 2003 ± 23 1950 

Alkehornet Alk.3 29-30 79.43 1510 ± 35 1497 

Alkehornet Alk.4 24-25 12.01 5030 ± 40 5863 

Alkehornet Alk.4 14-15 82.10 1195 ± 22 1341 

Alkehornet Alk.5 23-24 68.91 3079 ± 22 3218 

Alkehornet Alk.7 31-32 84.14 4480 ± 35 5228 

Björndalen Bj.1 12-13 52.34 100.11 ± 0.31 pMC 67 

Björndalen Bj.2 9-10 39.86 129,31 pMC -27 

Björndalen Bj.3 6-7 49.92 106.98 ± 0.33 pMC -33 

Bolterdalen Bo.1 11-12 19.05 101,76 pMC -7 

Bolterdalen Bo.3 12-13 20.83 107.38 ± 0.33 pMC -10 

Bolterdalen Bo.4 15-16 11.13 100.41 ± 0.32 pMC -7 

Bolterdalen Bo.6 8-9 12.39 103,34 pMC -10 

Colesdalen Col.1 10-11 41.93 128 ± 0.37 pMC -31  

Colesdalen Col.2 10-11 23.67 102.24 ± 0.32 pMC -8 

Colesdalen Col.4 7-8 68.03 176 ± 26 155 
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Bo.4 profile had one 210Pb age at depth of 8-9 cm, which was an outlier. This age was omitted, and 

confidence rather put on the bottom age of the profile. Decision was justified as Bo.3 and Bo.4 bottom 

ages supported each other. Profiles with multiple dated samples, showed conformingly increasing 

accumulation rates towards the profile tops.  

  

Figure 6. 210Pb dating results with the activity of 210Pb as Bq/kg and the corresponding AD year estimations 

visualized against soil profile section’s depth. Method presumes decreasing activity by depth. Generally, 

reliable date estimations cannot be produced for deepest measurements, as the decreasing 210Pb activity is 

associated with increasing level of uncertainty. Thus, most date estimates produced here reach circa halfway 

mark of the full profile length. For unresolved reason Col1. sample activity did not follow decreasing trend, 

and zero activity level was never reached. Thus, reliable date estimates could not be derived for this profile. 
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Figure 7. Age-depth models results visualized (X-axis presents dates (BP cal.) and Y-axis sample segment 

depth (cm)). Individual plot-scales differ due to variation in profile thickness and accumulation histories. 14C 

results are presented in blue and 210Pb results with green. Dark dotted lines present 95% confidence intervals, 

areas with grey shading present posterior probability distribution of date estimates and red line their mean.  
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7.3 Recent carbon accumulation rates  

In total, recent C accumulation rates with one-centimetre depth interval, were successfully calculated 

for 237 sample segments. Dated bottom ages varied significantly between profiles and between sites. 

Focus was set on three determined periods to facilitate comparison: 1900 AD, 1940 AD and 1980 AD 

till present, omitting observations dated older than 1900 AD. Count of remaining C accumulation rate 

estimates per focus period were: 129, 121, 88 (gross portion of accumulation rate estimates 

concerning Alkehornet were omitted due to their old age). Accumulation rates were not constant 

within the profiles nor within the sites (Figure 8). Björndalen, Bolterdalen and Colesdalen sites had 

individual bottom samples younger than 1940 AD and younger than 1980 AD. Thus, recent 

accumulation rate estimations of some profiles did not cover all three focus periods.  

Alk.1 and Alk.5 profiles had only one observation that was dated younger than 1900 AD. Thus, no 

variation within study period was observed, concerning these two profiles. Bo.4 profile had highest 

count of 16 observations placing within the longest study period. Large variation in count of 

observations is strongly related to variation in magnitude of organic matter and C accumulation rates. 

Profiles with large count of date estimates, have accumulated a thicker soil layer in a shorter time, 

compared to the ones with lower observation count. Overall, calculated accumulation rates for 

individual profile segments ranged between 0.68 and 230.20 g C m-2 yr-1. Both, smallest and largest 

values were obtained from Alkehornet. Average of all accumulation rates within the longest focus 

period was 53.76 g C m-2 yr-1.  

Figure 8. Distribution of annual carbon accumulation rates per soil profile within the longest focus period 

presented. Large profile and site-specific variations are distinguishable. Alk.7 demonstrates large variation 

when compared to other profiles from Alkehornet.  
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Despite large variation in soil profile-wise annual accumulation rates, a growing trend was 

perceivable within most of the soil profiles when averaged per study periods (Table 5). However, 

Bo.1 -profile had a decrease of 7.77 g C m-2 yr-1 in average accumulation rates between 1940 AD and 

1980 AD. Also, Bj.2 and Bo.6 showed minute decreases during the same period. Site-specific 

averages and average of all the calculated accumulation rates still conveyed information of increasing 

trend during 1900 to 2018 AD period (Table 6). 

 

Table 5. Average recent carbon accumulation rates (RERCA) (g C m-2 yr-1) per soil profile (Profile ID) were 

calculated for periods 1900 AD, 1940 AD and 1980 AD till present. Bottom age indicates date estimation of 

when organic soil has started to accumulate in calibrated BP dates. If core-specific accumulation rate 

estimates did not cover certain focus period, not available (NA) value was determined.  

Profile 

ID 

Bottom age 

(BP cal.) 

RERCA  

1900 AD 

RERCA 

1940 AD 

RERCA 

1980 AD 

Alk1. 1950 0.68 0.68 0.68 

Alk3. 1497 21.95 26.68 32.53 

Alk4. 5863 15.98 16.06 16.38 

Alk5. 3218 1.30 1.30 1.30 

Alk7. 5228 92.27 98.83 124.38 

Bj1. 67 53.30 59.71 74.82 

Bj2. -27 NA 72.54 71.08 

Bj3. -33 NA NA 58.99 

Bo1. -7 NA 41.10 33.33 

Bo3. -10 NA 54.52 62.28 

Bo4. -7 NA 47.47 57.66 

Bo6. -10 NA 31.98 31.55 

Col1. -31 NA NA 85.23 

Col2. -8 NA 65.47 69.76 

Col4. 155 23.63 25.56 32.96 

 

Table 6. Average recent carbon accumulation rates (RERCA) (g C m-2 yr-1) per site (Site) and for all the sites 

together (Total) were calculated for periods 1900 AD, 1940 AD and 1980 AD till present. Bottom age indicates 

average of all dated profile bottom segments per site in calibrated BP dates. If none of the site’s profiles 

reached as far back as the study period, not available (NA) value was determined. Otherwise site-specific 

average was calculated from available data.  

 

 

 

 

 

 

Site 
Bottom age 

(BP cal.) 

RERCA  

1900 AD 

RERCA 

1940 AD 

RERCA 

1980 AD 

Alkehornet 3551 52.72 60.85 76.80 

Björndalen 2 61.31 64.28 68.54 

Bolterdalen -8 NA 47.84 52.53 

Colesdalen 39 64.27 67.69 74.36 

Total 896 53.76 56.04 62.94 
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7.4 Recent climate history 

In a previous study, substantial variation in temperature and precipitation has been observed at 

Svalbard during 20th and 21st century (Førland et al., 2011). Positive trend in both temperature and 

precipitation at Svalbard was detected. However, 1943–1965 was a period with rather strong winter 

cooling, which led to an overall decline in the annual temperatures. Obtained measured weather data 

used here agrees with those observations (Figure 9).  

 

Range of annual mean temperatures for 1900–1909 period was from -8.1 to -7.0 °C. In comparison, 

range of average of annual mean temperatures for 2009–2018 period was from -3.3 to -1.8°C, 

suggesting significant increase in annual temperatures between these decades. Data of the summer 

month mean temperatures starts from the year 1914. Range of summer month mean temperatures 

during the first decade of observations (1914–1923) was from 3.4 to 4.5 °C, and range of 2009–2018 

period was from 5.74 to 6.1 °C. Implying that temperature rise has not been as strong during the 

summer months (growing season) as for the rest of the year. The annual sum of the effective 

temperature does not show similarly distinct positive trend, supporting deduction that warming has 

been less pronounced for the growing season. Annual precipitation data shows large fluctuation 

during the 20th century followed by a sharp increase during 21st century.  

 

Figure 9. Four historical weather datasets plotted, for the years with available data (Norwegian Meteorological 

Institute, 2020a,2020b,2020c,2020d). Annual mean temperatures and summer month mean temperatures both 

have followed similar rising trend. Annual precipitation displays fluctuation and large increase during 21st 

century. Annual sum of the effective temperature days (Annual GDD heat sum) shows more variation compared 

to the two other temperature variables. Still, similar growing trend is distinct from the 1980’s forward.  
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7.5 Landsat co-registration and topographic correction 

In total, co-registration process of the 54 acquistions, took approximately 74 hours. Processing time 

of individual image varied from 33 minutes (tie point grid of 4605points, resulting in 1508 valid 

matches) to 2 hours and 40 minutes (tie point grid of 18456 points, resulting in 15727 valid matches). 

Thirteen images went through the two-phased co-registration. Ten of these images were eventually 

disregarded in the validation phase (Figure 10), as they could not reach a sub-pixel accuracy.  Images 

that could not be corrected, suffered at least from one of these traits: majority of the image was 

covered by clouds, image had extremely large spatial shifts or image had distinct geometrical 

distortions (portion of L1GS images).  Largest shift detected by global registration was 316 pixels on 

Figure 10. Results of one Landsat 5 and one Landsat 7 acquisition co-registration with AROSICS presented. 

Acquisition filenames are presented on top of the presentations. Panels on the left side, presents initial spatial 

shifts in meters found by AROSICS in the original acquisition images. In co-registration process 4421 valid 

tie points were found for the Landsat 5 and 6035 valid tie points for Landsat 7 image presented here. Right 

Panel shows spatial shifts observed after co-registration. It is evident that spatial shifts remain within the 

imagery, but they are significantly reduced. In both presented images, sub-pixel accuracy was reached. 
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X-axis and  702 pixels on Y-axis, translating to a shift of 9.48 kilometres on x-axis and 21.06 

kilometres on Y-axis. Out of 54 images with insufficient georegistration, 44 were reliably co-

registered. When taking Landsat 8 data into account, a total image pool of 84 reliably geo registered 

images within 1985 to 2018 period was achieved (Table 7). For all these images topographic 

correction was successful. 

 

Table 7. Year of acquisition (year) and number of reliably co-registered images (images) presented. These 

statistics includes Landsat 8 images that were initially reliably geo-registered. Due to high cloud cover at the 

study area and acquisitions that could not be reliably co-registered, five years of the study period are missing 

imagery completely. It is noticeable that quantity of images available per year is focused towards the end of 

the study period.  

 

 

7.6 Spatiotemporal trends of NDVI  

From successfully co-registered and topographically corrected images, cloud free annual pixelwise 

maximum NDVI composites were composed. Resulting to 29 annual maximum value composites. 

Leaving five years with no data available (Table 7). Pixelwise 

masking of Theil-Sen’s slope raster by Tau and p-values 

resulted into gross portion of high elevation and glaciated areas 

being masked out. Thus, regarding pixel-wise change in NDVI 

values only at areas with significant change.  

 

Masked Theil Sen’s slope values ranged between -0.0309 and 

0.0300 (Figure 11). Low quantity of pixels with a slope value 

zero, is a result of Tau-value masking. Calculated average of 

slope values was 0.0059. Utilizing this average value, to 

Year Acquisitions  Year Acquisitions  Year Acquisitions 

1985 3  1997 0  2009 2 

1986 4  1998 1  2010 4 

1987 2  1999 2  2011 4 

1988 0  2000 3  2012 2 

1989 5  2001 1  2013 2 

1990 0  2002 3  2014 8 

1991 2  2003 0  2015 4 

1992 4  2004 1  2016 10 

1993 2  2005 1  2017 2 

1994 1  2006 3  2018 5 

1995 1  2007 0    

1996 1  2008 1    

Figure 11. Distribution of masked 

Theil-Sens slope values. 
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estimate NDVI change during the study period, results in NDVI increase of 0.1950. Comparing this 

to average value from corresponding pixels in maximum NDVI composite of the year 1985 (average 

NDVI of 0.1955), this would translate to 99% increase in average NDVI values. To support these 

results annual averages of pixels corresponding to masked Theil Sen’s values were calculated from 

annual maximum value NDVI composites (Figure 12). Averages derived from maximum value 

composites raster, showed an increasing trend. Though, extremely low average NDVI values were 

noted for three of the years (1994, 1996 and 2009).  

 

In terms of spatial variation, positive slope values were detected at valleys and lowland areas (Figure 

13). Implying to greening during the 1985 AD to 2018 AD period. High values on a large area, were 

especially noted in the south-eastern section of the covered study area (Reindalen). All off the soil 

profile coring sites, showed positive slope values. Negative values were found from riverbeds, 

furrows and high-altitude areas (Similar areas where most NA values appeared.), gross portion 

located at north-western parts of the study area. Affects of the Landsat 7 missions missing scan line 

corrector can be seen at the northern shoreareas of Isfjord, where sections with clearly striped spatial 

pattern of NA-values can be seen.  

 

 

 

Figure 12. Annual average NDVI values calculated from maximum NDVI composites. Values were 

calculated from pixels corresponding to the masked Theil-Sens slope pixels. At least two years with clears 

outlier values are evident. Years 1996 and 2009 were strongly affected by scarcity of data and possibly 

large areas recorded were still snow-covered.  
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Figure 13. In the top row original output rasters of regional Mann-Kendall test are presented. Pixels with 

high p-values occurred mostly at high altitude areas. Tau values at valley floors and at shore areas showed 

strong positive trends.  Tau values close to zero appear at high altitude areas, showing no clear change. Thus, 

advancing masking of pixels from high altitude areas. Masked Theil-Sens slope pixels present strong positive 

trends at valleys and low land areas. Large areas with high positive slope values occur in the valleys located 

in the south-eastern parts of the study area. Negative trends were found from high altitude areas, riverbeds, 

and furrows. However, it should be noted that, most streams and rivers have been masked out. 
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7.7 NDVI and recent carbon accumulation rate 

Profile-wise, three-year moving window averaging resulted to 79 pairwise observations of NDVI and 

recent apparent C accumulation rates. Count of pairwise observations was unevenly distributed 

between sampling plots (Table 8). Few extremely high C accumulation rates were estimated for years 

with high soil accumulation rates. These were not treated as outliers nor removed. In the input data 

original annual maximum NDVI and recent apparent C accumulation rates showed Pearson 

correlation of only 0.03. Using NDVI data averaged with the three-year moving window increased 

Pearson correlation to 0.14. Thus, moving window averaged data was selected for the following 

analysis steps (In this chapter NDVI -term refers to this averaged data).  

Table 8. Distribution of pairwise recent carbon accumulation rates and NDVI observations during the 1985 

to 2018 period. Limited amount of observations hindered evaluation of the relationship at individual plots. 

 

Fitting plot-wise linear regression lines between NDVI and accumulation rates, confirmed 

presumptions of plot-wise differences in the slopes and intercepts (Figure 14). Large variation was 

visually observable. In addition, intercept only 

mixed model supported observations of plot-

wise differences in terms of intercept values 

(Appendix E). Intercept only model showed 

large residual variance on profile plot level, with 

an intraclass correlation value of 0.50. Fair 

intraclass correlation value shows that 

observations are more similar within the plots 

than between them (plot-wise clustering explains 

50% of variance). These observations enforced 

the assumption that the final model should take 

into consideration the random effects caused by 

variation between soil profile coring plots. 

Profile Alk.1 Alk.3 Alk.4 Alk.5 Alk.7 

Observations 1 2 2 1 5 

Profile Bj.1 Bj.2 Bj.3 Bo.1 Bo.3 

Observations 7 8 6 7 7 

Profile Bo.4 Bo.6 Col.1 Col.2 Col.4 

Observations 9 5 10 7 2 

Figure 14. Soil profile-wise linear regression lines 

between recent carbon accumulation rates (RERCA) 

and normalized difference vegetation index (NDVI). 
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Sequentially adding random intercept and slope, did not lead to eminent improvements in AIC or BIC 

values retuned by ANOVA-test, nor were comparison within statistically significant range (p<0.05) 

(Table 8). With the full model intercept and slope returned a correlation value of -1, which implies 

that model cannot simultaneously consider individual random variation of both. Also, conditional 

ICC rose and marginal R2 lowered when adding random slope. Still, theoretically the full model is 

most justified option. Root-mean-square results did not show large variation between the models. 

Large range of confidence interval implies uncertainty in accuracy fixed effect estimates. In addition, 

all models were tested for singularity and residuals for homoscedasticity and normality. All model 

tested false for singularity and in terms of homoscedasticity residuals were evenly distributed.  

 

Table 9. Results of compared individual models: intercept only (ic.only), random intercept (r.ic), random 

intercept and random slope model (full). Statistics include fixed effects estimates for intercept (IC) and NDVI, 

analysis of variance, conditional intraclass correlation (ICC), marginal R2 (R2), root mean square deviation 

(RMSE) and 95% confidence intervals. Every model returned conditional R2 value (conditional ICC + 

marginal R2) over 0.50, but NDVI was responsible of only a fraction of the variation (marginal R2), and plot-

wise variation explains over 50% with every model. RMSE results of every model were congruent. Confidence 

intervals show large range for fixed effects. 

  

In summary, every model implied plot-wise difference, and mainly positive relationship between 

apparent C accumulation rates and NDVI (Figure 15). Fixed effect of NDVI appeared to be strong, 

but wide 95% confidence intervals lead to low accuracy of the estimates. Explanatory power of the 

models was weak, even at its best only 2% of the total variation of apparent C accumulation rates was 

explained by NDVI, when over 50% resulted from plot-wise variation. 

Model 

fit 

Fixed effects 

estimates 
Analysis of variance 

ICC R2 RMSE 

95% confidence 

interval 

IC NDVI AIC BIC p-value IC NDVI 

ic.only 53.856 NA 770.47 777.58 NA 0.503 0 23.98 
39.92 to 

68.80 
NA 

r.ic 28.82 46.86 769.71 779.18 0.09638 0.523 0.02 23.29 
-3.62 to 

61.26 

-7.63 to 

101.07 

full 39.0 26.68 772.24 786.46 0.48160 0.530 0.01 23.08 
11.79 to 

66.21 

-30.39 to 

87.75 
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8. Discussion 

Site-specific recent average C accumulation rates obtained in this study are higher than maximum 

rates estimated for northern peatland areas during the Holocene and higher than recent average annual 

rates (Loisel et al., 2014; Treat et al. 2016; Z. Yu et al., 2011). However, range of profile-wise 

calculated accumulation rates was large. Only few remote sensing studies from Isfjord area utilizing 

NDVI have been conducted. Touching on subjects of NDVI and field-recorded phytomass (B. 

Johansen & Tømmervik, 2014), spatiotemporal variability in the onset of the growing season (Karlsen 

et al., 2014) and monitoring of arctic greening (Vickers et al., 2016). To authors best knowledge, no 

earlier studies from Svalbard exist that would have produced directly comparable results, in terms of 

recent soil C accumulation rates. Nor has NDVI timeseries applicability as a predictor of soil C 

accumulation, been assessed against dated soil samples before.  

 

8.1 Recent carbon accumulation rates and environmental drivers 

Soil C accumulation rates are highly variable spatially and temporally. Local variation can occur even 

within seemingly homogenous and small areas. The soil C fluxes are controlled by multitude of 

biogeochemical transformation and transfer processes. Results suggested that organic soil formation, 

possibly indicating onset of paludification at Björndalen, Bolterdalen and Colesdalen sites has 

initiated in the recent past (Table 4 & Table 5). Oldest bottom age measured from these sites was 

dated 225 years old, youngest bottom age was dated to -33 BP. Soil profile bottom ages from 

Alkehornet differed clearly from these ages, as they were thousands of years old. Mineral soil was 

Figure 15. Results of all three model fits presented. Fitted measurement points and regression lines are plot-

wise color-coded. Intercept only model shows variation of plot-wise intercept estimates. With random 

intercept model this variation of intercept is considered, but the NDVI as predictor variable has fixed slope 

regardless of the plot. Full model includes plot wise variation both in intercept and slope. Every plot likely 

had individual land cover traits and vegetation development history. Thus, full model theoretically permits 

most solid estimation of relationships between NDVI and soil C accumulation rates. 
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reached only with one of the Alkehornet soil profiles due to permafrost, thus complete thickness of 

organic soil profile could not be measured. Minor discrepancies in organic matter accumulation 

histories were evident in profiles collected from Alkehornet (Figure 5); occasionally the organic 

layers were interrupted by minerogenic input mixing into organic soil matrix, likely due to 

cryoturbation or soil mass movements induced by gelifluction at the ridges.  

 

All profiles with multiple dated segments, showed increase in recent organic matter accumulation 

rates (Figure 7). Nonetheless, large variation in recent C accumulation rates between individual soil 

profiles and within the study sites were observed (Table 5 & Figure 8). Reason behind of all intra-

site variations were not differentiated. Levelling of extreme values took place as site-specific recent 

C accumulation rates were calculated, in pursuance of regionally representative data. Site-specific 

average rate results (Table 6) and average rate of all observations during the 1900 AD to 2018 AD 

period (53.76 g C m-2 yr-1), implied that recent apparent C accumulation rates at the study area have 

been greater than at most high-latitude peatland areas. All site-specific recent average C accumulation 

rates coherently showed an increasing trend, implying increase in soil C pool at inner fjord areas of 

Svalbard. Still, it should be taken to consideration, that the newly added litter has not had time to 

fully decompose. Thus, interpretation of the signal is not unambiguous. Studies concerning high-

latitude peatlands have reported alike high recent average annual C accumulation rates and notable 

increasing trend, from south central Alaska (Loisel & Yu, 2013), north-western Québec, Canada 

(Piilo et al., 2019), northern Finland and Russia (Zhang et al., 2018).   

 

Due to climate change the need to understand and predict current Arctic environmental changes has 

increased. A relatively sparse measurement network limits the availability of information concerning 

recent changes in C accumulation rates of high-arctic ecosystems. Multiyear C balance measurements 

carried out during the recent decades at multiple northern peatlands, have shown a large weather-

driven interannual variability from weak C sources to strong C sinks, as a response to hydrological 

and temperature conditions (Z. Yu et al., 2011). Despite large interannual variations, site averages 

converge around 20–30 g C m-2 yr-1, with an overall mean modelled net C balance of 25 (±31) g C 

m-2 yr-1. Accumulation rates calculated for all the sites studied here, had higher average accumulation 

rates than before mentioned results.   

 

Data synthesis of peatland dynamics since the Last Glacial Maximum, reported highest rates of C 

accumulation (~25 g C m-2 yr-1) in northern peatlands during early Holocene (Z. Yu et al., 2010). This 

was likely due to maximum summer insolation and the greatest seasonality in insolation and climate 
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at that time. These results are supported by another database synthesis covering the whole Holocene, 

on basis of 151 peat cores from 127 sites (located north of 45 °N). It reported that highest rates of C 

accumulation (25–28 g C m-2 yr-1) were recorded during the early Holocene (Loisel et al., 2014). 

However, Treat et al. (2016) separated samples that were classified into environmental class of 

“tundra permafrost peatland” and calculated median C accumulation rate for samples older than 1000 

years. They reported median C accumulation rate of 108 g C m-2 yr-1. After the maximum peak rate, 

C accumulation during the mid- and late Holocene declined. No estimates on how large percentage 

of recently accumulated C at the study sites will become part of the long-term C store were carried 

out here. However, results indicate that changes in the declining trend reported by the long-term 

studies, could be taking place. 

 

Some efforts to study long term trends of C accumulation and estimation of soil C stocks at Svalbard 

have been taken. Peat cores covering the active layer were collected and dated from moss tundra area 

of Stuphallet in 2011 AD, approximately 100 km to northwest from the study area of this thesis 

(Nakatsubo et al., 2015). Average thickness of active layer was reported to be 28 centimetres with 

permafrost layer present below. Dated bottom ages of active layer varied between 701 to 81 BP cal. 

The long-term apparent C accumulation rate estimates ranged between 9.0 to 19.2 g C m-2 yr-1. A 

single permafrost layer from Stuphallet (depth of 103.7 –105 centimetres) has been dated to 5710 ± 

150 BP by Rozema et al. (2006). They also dated segments of tundra peat cores collected from Ny 

Ålesund, Stuphallet, Blomstrand and Isdammen. Respectively, obtained calibrated 14C dates for the 

profile bottom samples were 350–490 BP, 5710 BP, 4670 BP and 700–900 BP. Showing large site-

specific variation of bottom ages. Notably, none of these bottom ages place in the most recent 

centuries, diverging from results obtained from most sites in this thesis.  

 

Colony of seabirds nesting nearby Stuphallet sampling sites, was recognised as an important factor 

affecting nutrient supply area (Nakatsubo et al., 2015). Conveying information alike to samples 

collected from Alkehornet (average profile depth 24.4 cm, nutrition supply dispensed by bird colonies 

and organic matter continuing below permafrost boundary). Fertilizing effect of the sea bird colony 

at Alkehornet was noticeable in N content measurements, as they depict clearly higher percentual 

content than samples from other sites (Table 3). This eminent nutrition supply together with position 

on southwards opening ridge (higher insolation than other sites), could partly be responsible why this 

environment has been suitable for initiation of organic matter accumulation much earlier than the 

other study sites. In terms of current soil C stocks in Svalbard as a whole, efforts towards extensive 

spatial upscaling has been carried out (Weiss et al., 2017; Wojcik et al., 2019). Altogether, permafrost 
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soil organic C storage in 0- to 1-meter depth at unglaciated areas of Spitsbergen island has been 

estimated to be 105 Tg, with an average of 6.26 ± 1.47 kg C m-2 (Weiss et al., 2017). 

 

As soil C accumulation is a balance between assimilation rate and decomposition rate, changes in 

factors controlling these processes likely impact the accumulation rates. Strong increasing trend in 

annual average temperatures and precipitation at the study area was observed (Figure 9). Virtually all 

biogeochemical reactions are dependent on thermal activation and proceed more rapidly at higher 

temperatures (Petrucci et al., 2007). Thus, prevailing surface temperatures significantly affects rates 

in which these processes advance. Simultaneously, temperature rise during the summer months 

elongates the growing season (Le Quéré et al., 2016). Modelled results for 1961 AD to 2012 AD 

period, reported that snow onset date has been delayed by two days per decade in response to autumn 

warming (van Pelt et al., 2016). Non-significant (p>0.1) trend in springtime snow disappearance of 

0.7 days per decade was reported. Longer snow free periods and warmer summers are associated with 

greater soil mineralization and higher nutrient turnover (Aerts et al., 2006; Albon et al., 2017; Barber 

et al., 2009). Simultaneous increase in atmospheric CO2 concentration is predicted to have a fertilizing 

effect on flora. During 2002 to 2011 period, rise in atmospheric CO2 concentrations were 2.0 ± 0.1 

ppm annually (Field et al., 2014). Together with changing climate, regional factors affecting moisture 

conditions and nutrition supply, have had influence on the C accumulation rates and potential 

initiation of paludification at the younger sites.  

 

Regional factors hypothesized to affect recent apparent C accumulation rates of the study sites, were 

fertilizing sea bird colonies, grazing reindeers and concomitant fertilizing effect, and glacier 

meltwaters with fine grainsized rock flour. It is feasible to deduct that these changes have affected 

the flora and soil C accumulation rates during the study period (Albon et al., 2017; Gąsiorowski, 

2019; Gunnarsen et al., 2019; Hodgkins et al., 2009; Le Moullec et al., 2019). Effects of bird colonies 

could be differentiated from the data. Fertilizing effect of reindeer faecal pellets is probable, but the 

fact that they were present at every study site, prevented comparison between the sites. However, 

experimental study at 12 study locations across the Scandinavian mountains, showed that soil mineral 

N content were almost twice as high in areas where reindeers grazed, then at areas with no grazing 

reindeer (Sundqvist et al., 2019). No difference in soil phosphorus content were noted between areas.  

Also, it has been proposed that plant response to nutrient addition at subarctic tundra is not consistent 

but differs along elevation gradients and vegetation types (Sundqvist et al., 2014). Hansen et al. 

(2007) studied vegetation changes through a 26 years long period, following Svalbard reindeer 

population that was not subjected to predation. A population was introduced to an area free from 
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reindeers. This had strong trophic top-down effects on the vegetation, as they have a varied diet and 

eat almost all types of vegetation. Long-term faecal accumulation acts as N fertilization. Still, areas 

with moss, vascular plant or lichen cover declined. Previously dominant fruticose lichens were almost 

depleted. During the study, population number crashed during one winter with strong resource 

limitation due to ground icing. Even after the population crash, lichens showed no signs of recovery. 

This indirectly effected recovery rates of other plant groups after the crash. Mosses recovered 

completely and even exceeded pre-reindeer levels. Contrary, it has been suggested that increase in 

reindeer population, rises grazing pressure and this could lead to increased productivity of the tundra 

vegetation (Albon et al., 2017). Grazing reduces thickness of the moss layer, which in turn, can lead 

to increase in soil temperature. Higher temperature enhances soil mineralization and nutrient 

turnover, possibly leading to increased plant productivity. Recent reindeer abundance estimates for 

Svalbard are the largest ever recorded with a mean of population size estimates of 22,435 (Le Moullec 

et al., 2019). Total population size estimates from which the mean value was calculated, withheld 

estimates 13 times higher than the minimum estimates from the late 1950s, and twice as high as an 

estimate based on counts between 1969–2008. Considerable population development during the study 

period, supports deduction of grazing reindeers’ possible fertilizing effect at the study sites.  

 

In addition to biotic nutrition sources, decline of glaciers of western Svalbard during recent decades, 

may have provided source of mineral material rich in macronutrients for the study sites (Bourgeois 

et al., 2016; Gunnarsen et al., 2019). Glacial movement results in bedrock abrasion, producing fine-

grained rock flour with high reactivity. Simultaneously, retreating glaciers reveal bare soil susceptible 

for erosion. This material is often deposited to proglacial areas (Hodgkins et al., 2009). All the study 

sites are located so that meltwaters originating from glaciers at higher elevations, are likely to affect 

them. In addition, local environmental conditions and individual characteristics of every study site 

should not be neglected, as the mixed modelling results also suggested (Table 9).  

 

In summary, an increasing trend in recent apparent soil C accumulation rates was observed at inner 

fjord areas of Svalbard. Regional factors and processes that have potentially influenced local C 

dynamics jointly with changing climate were identified. Factors like topography, moisture conditions, 

nutrient supply, vegetation composition, with soil microbial communities play their role in 

establishing conditions beneficial for soil C accumulation at Svalbard (Adachi et al., 2006; Yoshitake 

et al., 2011, 2018). Interactions between these factors are presumable, as is their adjustment to the 

changing climate. Thus, warming trend of surface temperatures can be expected to accelerate 

discussed processes and continue to influence soil C accumulation rates at the study area. 



46 

 

8.2 NDVI timeseries, greening and recent carbon accumulation 

Potential of various remote sensing methods producing data suitable to be used as proxy in C 

dynamics studies of organic soils has been recognized (Lees et al., 2018; Lopatin et al., 2019; 

McPartland et al., 2019). Still, only earth observing satellite data provides suitable, global, 

temporally, and spatially consistent data, covering the last decades (Fensholt et al., 2012). However, 

using satellite based remote sensing to directly monitor changes in below ground C stocks is still 

challenging, due to disturbance caused by vegetation cover (Rasel et al., 2017).  

 

Gross portion of lower level Landsat products were successfully co-registered, topographically 

corrected, and composited. Method was unsuccessful with imagery suffering from large spatial shifts 

and distinct geometrical distortions. However, results showed that with reasonable amount of 

processing, lower level Landsat products (L1GS and L1GT) can be co-registered to satisfactory level, 

cloud masked, topographically corrected and timeseries with annual maximum value composites 

generated. As a remark, the methodology did not take into consideration possible errors caused by 

deficient terrain correction of L1GS images. 

 

Approach selected for trend detection, resulted into gross portion of high elevation and glaciated areas 

being masked out. Multiple possible reasons for this exist. First, it is possible that at these areas 

significant changes have not happened. Secondly, annual fluctuation of snow or ice cover, could have 

led to insignificant Tau values. Thirdly, cloud masking process at times masks out snow-covered or 

glaciated areas. This again, could have led to lower availability of data from these areas. Lower 

availability of data, in turn, can increase the pixelwise p-values. Pixels with p-value exceeding 0.05 

limit were masked out. Thus, resulting time-series presents areas where noticeable change had 

happened during the study period (Figure 13). 

 

Results implicated significant positive trend in NDVI, showing average annual increase of 0.0059. 

Which translates to average 0.1950 increase of NDVI at the study area, during the 1985-2018 period. 

If compared to average maximum NDVI of the corresponding pixels, during year of 1985, this would 

lead to percentual increase of 99%. Negative slope values notable at riverbeds and furrows, resulted 

likely from variation of flowing water between acquisitions or fluvial erosion. Several central 

Spitsbergen valleys are strongly affected by erosion and accumulation processes (Elvebakk, 2005). 

Flooding and aeolian sand silt transportation alter the valley floors. Resulting in forming of perennial 

mud flats and instable areas covered by pioneer vegetation. Areas with instable trends, were 
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predisposed to being masked out by Kendall Tau filtering. Negative values at high altitude areas, 

were likely not caused by declining vegetation at these areas, rather its an outcome of snow and ice 

cover producing negative NDVI values. However, significant greening trend was observed virtually 

at all low-lying areas. These observations indicate increased vegetation productivity across the study 

area. Simultaneously, mean annual temperature data showed most rapid increase during the period in 

which the remote sensing data covers. Rozema et al. (2006) focused on vegetation, climate and 

environment reconstruction based on peat cores collected from multiple sites at Svalbard. In this study 

an undated peat core with length of 19 centimetres was collected near Longyearbyen, next to the 

drinking water reservoir Isdammen, located within eastern section of the area covered by remote 

sensing data of this thesis (Figure 13). Surprisingly, they reported that the profile pollen record 

seemed stable during the recent past, not showing clear changes in vegetation composition and 

suggesting dry and nutrient poor tundra environment. 

  

Additionally, NDVI’s suitability as s proxy for vegetation productivity solely was assessed. Mixed 

model results showed strong positive effects, but explanatory power of the models was weak and 

confidence interval ranges large. Therefore, actual strength of the effect could not be stated. NDVI 

was used as a proxy for GPP, neglecting changes in other factors possibly affecting NPP and C 

accumulation rates. NDVI is strongly tied to the vegetation type of the study area. At many areas 

NDVI includes contributions from both mosses and vascular plants covering the soil. However, for 

the same NDVI response, moss can generate only about one third of the GPP that vascular plants can, 

due to much lower photosynthetic capacity (W. Yuan et al., 2014). This variation could have 

hampered performance of the models. In addition, processes regulating C accumulation rates, like 

litter degradability, pH, ER variation, changes in water table levels, erosion and exportation of organic 

material, biochemical processes in the soil were not taken into consideration (Limpens et al., 2008), 

since most of these factors cannot be detected by NDVI. Comparable efforts quantify decades long 

NDVI timeseries and soil C accumulation rates have not been previously conducted.  

 

Alike approaches to identify changes or trends in landcover and vegetation, with linear regression 

slopes has been used successfully in other studies (Fensholt et al., 2012; Fensholt & Proud, 2012; 

Xiaoyi Guo et al., 2017). Vickers et al. (2016) studied greening at Isfjord area during the 1986-2015 

period, using maximum-value NDVI derived from AVHRR series of satellites (spatial resolution of 

1 kilometre), at areas where pixelwise average NDVI values were above 0.2 during their study period. 

Thus, possibly masking out areas where vegetation succession might have advanced during latter part 

of their study period. To account for years with outlier maximum NDVI values, for all possible pairs 



48 

 

of years, they removed the corresponding temperature and maximum NDVI values. This sequential 

subsetting was conducted to identify which pair of years, when removed from the dataset, produced 

the best correlation between mean summer temperature and maximum NDVI. They detected average 

increase of 29% for the whole dataset and increase 59% for the best fit subset timeseries. Thus, 

supporting results of significant rising trend at the area. Still, large differences in scale of the change 

between studies exists. Results are not directly comparable due to differences in study period, spatial 

resolution, and basis of pixelwise masking. Method presented here took into consideration plant 

composition changes without average NDVI limitations, thus possible succession at areas with 

previously non or minor vegetation was more likely observed. Also, no attempts to remove outlier 

values were taken, as the Mann-Kendall rank correlation used for masking is not as strongly affected 

by the weight of extreme values as many other correlation tests.  

 

In summary, results suggested that NDVI is useful in detecting spatiotemporal patterns of vegetation 

composition change, however this information cannot be used directly to estimate soil C 

accumulation rates. Complex relationships with multiple environmental factors govern the soil C 

accumulation rates, and here no other factors than NDVI as presentative of GPP was taken into 

consideration. Thus, these results do not imply that NDVI could not be successfully used as an input 

variable of more robust modelling structures. 

 

8.3 Potential error sources 

This thesis combined highly technical methods, from the fields of palaeoecology and remote sensing 

(Figure 16). Utmost caution was followed when treating the soil samples at all stages, and precautions 

taken to reduce possible error sources disturbing remote sensing data. To mitigate possible humane 

error sources high precision demanding stages of laboratory work concerning dating methods, were 

conducted under supervision. Soil profile segments were dated with resolution of one centimetre. 

This is high precision compared to many palaeoecological studies. However, discrepancy of temporal 

resolution between soil C accumulation rates and annual maximum NDVI values complicated joining 

the datasets. 

 

Lowest organic layers were determined visually due to schedule imposed by reserved sample dating. 

Due to expenses, dating of multiple samples from deep layers of every profile was not possible. Large 

variation in the organic matter content of the bottom samples was noted, pointing to differences in 

the stages of potential paludification process between the samples. Nevertheless, extensive view of C 
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accumulation history was obtained through age-depth modelling. Bacon age-depth modelling results 

were not compared to other methods, which could have strengthened the reliability of obtained 

results. However, performance comparison of five novel age-depth modelling methods (including 

Bacon) stated that all the models yielded comparable results for recent accumulation histories 

(Sikorski, 2019). 

 

Age-depth modelling results included segments with thousands of years old bottom ages, showing 

rapid increase in organic matter accumulation rates when approaching modern times (Alk.4 and Alk.7 

profiles). These results might partly suffer from the fact, that accumulation rates of recently formed 

peat cannot be reliably compared older, deeper, peat layers (D. M. Young et al., 2019). As the newly 

added litter has not had time to fully decompose, and eventually only part of it will become part of 

the long-term C store. As emphasis here was solely put on the recent changes, this potential bias did 

not require consideration.  
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Insufficient ground control points have hindered reliable geo-registration of Landsat acquisitions at 

high latitudes (Dwyer, 2019). High cloud cover and the relatively short growing season of the study 

area, limited availability of cloudless acquisitions recorded during growing season. Also, 

topographical alteration is large at the study area, and sun elevation angle stays relatively low even 

in the summer months. These two variables can limit success rate of atmospheric correction, required 

to process surface reflectance data products (United States Geological Survey, n.d.-b, 2019c, 2019b). 

Semi-automated methodology was presented to bypass these problems at least partly, with co-

Figure 16. Summary of workflow steps of this thesis simplified and summarised. Dark green textboxes depict 

initial data sources. Grey textboxes depict processing steps. Light-green textboxes depict analysis results. 

Abbreviation used in the figure: digital elevation model (DEM), carbon and nitrogen measurements (C/N), loss 

on ignition (LOI), radiocarbon dating (14C), lead dating (210Pb), normalized difference vegetation index (NDVI), 

recent apparent carbon accumulation rates (RERCA), Linear Mixed-Effects Models using 'Eigen' and S4 -

package (lme4) and Seasonal and Regional Kendall Tests (RKT). 
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registration as a significant step. AROSICS co-registration performance was not compared with other 

solutions. However, a study where Landsat 8 and Sentinel 2 -imagery where co-registered using 

AROSICS, computed mean RMSE of 3.4 ± 1.3 metres in xy-coordinates (Stumpf et al., 2018). 

Supporting selection of AROSICs as a valid option performing well in co-registration of multi-

temporal datasets.  

 

Sufficiency of image pool size used in this study can be questioned. Years with no or only one annual 

NDVI raster available were present. Thus, it is likely that the actual annual maximum NDVI was not 

recorded for multiple years during study period. Larger image pool of time series analysis ready data 

would have raised reliability and enabled calculation of study area specific sensor correction 

coefficients. Average NDVI Values for the study area showed considerable increase at year 2013, 

just when Landsat 8 sensor data becomes available. More frequent availability of images could have 

bettered detection of actual NDVI maximum peak, or this could be caused by a defect in the sensor 

cross calibration. As an example of extensive data pool, Chávez et al. (2019) provided first digital 

peatland inventory and multiscale productivity assessment for the Chilean Altiplano (63,705 km2), 

using 31 years of Landsat data with 8997 acquisition scenes. Soon constraints of time series analysis 

ready Landsat data also at high-latitudes could be largely removed, as Landsat Collection 2 is released 

(United States Geological Survey, n.d.-a). Several processing, geometric, and 

radiometric improvements are promised. Until then, end-users must rely on external processing steps. 

Processing large image collections that meet these requirements demand significant data storage 

capacity and high computational power (Azzari & Lobell, 2017). To answer these needs, cloud 

computing platforms that have direct access to remote sensing data, now enables large spatial-scale 

multitemporal ground cover classification and environmental monitoring at all locations on earth 

where time series analysis ready data is available (M. C. Hansen et al., 2013; Mahdianpari et al., 

2018; Tian et al., 2020).  

 

Data scarcity likely affected which areas were masked out in the trend detection phase and results 

from these areas (Figure 13). At areas with lower quantity of data, even a small number of notably 

low values could have distorted the potential trends. It has been noted that these results can be 

confound by other environmental (i.e. soil moisture) and anthropogenic factors (i.e. agriculture and 

increase of impermeable surfaces) (Ahmed et al., 2017; Raynolds & Walker, 2016; Wen et al., 2017). 

Increase in quantity of water may be masking increases in vegetation, when using the water sensitive 

NDVI. This could be a credible error source in the analysis. Since at Svalbard topography causes 

large variation in snow cover, ground temperature and permafrost thickness, which can all play a role 
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in local moisture conditions (Cooper et al., 2011; Humlum et al., 2003). Minor quantity of pixels with 

negative slope values were recorded at high altitudes, near waterbodies and at valley floors. These 

observations were assumed to originate from variations in snow cover at the high altitudes, quantity 

of water in streams and stored in water bodies (moving shoreline of water bodies) and erosion. Also, 

drought can notably affect the reflectance values recorded from mosses covering the ground (Harris, 

2008; W. Yuan et al., 2014). Use of annual maximum NDVI compositing, should reduce effects of 

momentary changes in soil moisture. However, previously stated insufficiency of image pool could 

have lowered the success rate of this approach.  

 

As portion of the annual composites did not cover the whole study area. This increased count of NA 

values when compiling soil-profile wise timeseries. However, use of three-year moving window 

averaging of the profile-wise NDVI values, enabled finding a comparable pair for every C 

accumulation rate estimate between 1985 AD and 2018 AD. This did not remove the fact that, some 

soil profiles had only 1 or 2 pairwise observations of NDVI and annual average C accumulation rates. 

Which heavily impacted performance of the linear mixed effects model.  

 

9. Conclusions 

Knowledge of soil C stocks located at high-latitude permafrost regions and their response to climate 

change is still deficient. This thesis brought together information of recent C accumulation history of 

organic soils, climate history and vegetation succession at four moss tundra sites in Svalbard, Norway. 

As Svalbard was affected by “Little ice age” till 1900 AD, focus was set on changes taken place later 

than this. Dataset of soil properties and accumulation histories of 15 soil profiles were successfully 

compiled. Averages of multiple profiles were used to exclude the influence intra-site variation in 

accumulation rates, thus separating the genuine regional effect of changing climate.  

 

Increase of annual average temperatures greater than the global average rate, accompanied with 

increase in precipitation was noted at the study area. Significant changes in vegetation composition 

and productivity has taken place, associated with increase in recent soil C accumulation rates. This is 

suggesting that ecosystems at Svalbard are experiencing rapid ecological change, due to forcing 

imposed by climate change. NDVI indices revealed clear patterns in spatiotemporal development of 

vegetation composition and productivity. Greening trend was notable virtually at all valleys and low-

lying areas. However, information derived from indices, could not reliably explain spatiotemporal 
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variation in soil C accumulation rates, suggesting that NDVI indicates variations in fPAR but is not 

a good proxy of NPP at high-latitude moss tundra areas.  

 

Climate change and regionally impacting factors in synergy have increased organic matter and C 

accumulation rates at Svalbard’s moss tundra areas, pointing to potential onset of paludification 

process. This is emphasizing potential significance of high-latitude moss tundra areas in regards of 

soil C sequestration. Spatiotemporal heterogeneity of C transformation and transfer processes still 

impose large challenges for C-cycle modelling. To alleviate this problem, representative data from 

wider range of environmental conditions needs to be covered. Constantly developing remote sensing 

products offer data sources for method development concerning upscaling and estimation of soil-

atmosphere C fluxes. More efforts towards synergetic use of field sampling and remote sensing are 

needed to further predictions of Arctic soil C pools response to climate change. 
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12. Appendixes 

Appendix A: Espa-bulk-downloader 

Before starting you need to have python, git and pip installed:  

python (https://www.python.org/downloads/) 

GIT (https://gitforwindows.org/) 

pip (download get-pip.py (https://bootstrap.pypa.io/get-pip.py).  

 

Run through command line:  

python get-pip.py 

 

Next step: install the USGS-EROS ESPA-bulk downloader through command line: 

pip install git+https://github.com/USGS-EROS/espa-bulk-downloader.git 

 

Compose bulk download order of Landsat level-2 (Surface reflectance) products of your choice at 

USGS earth explorer (https://earthexplorer.usgs.gov). When the products are processed to Level-2 

confirmation e-mail with order-id will be sent. Then bulk downloading trough command line is 

possible by: 

 

python download_espa_order.py -e "your e-mail" -o "your order ID" -d "destination folder" -u 

"ERS username" -p "password" 

 

Bulk downloading to your destination folder should start. 

 

Appendix B: Age-depth modelling script 

# Needed packages 

install.packages("rbacon") 

install.packages(“stringr”) 

library(rbacon) 

library(stringr) 

 

# Empty global environment 

rm(list=ls()) 

https://earthexplorer.usgs.gov/
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#set working directory 

setwd("Your_directory_here") 

 

####   Calculate C14 ages from pMC values of radiocarbon dates #### 

# Needed variables: 

# mn = Reported mean of the pMC. 

# sdev = Reported error of the pMC. 

# ratio = Most modern-date values are reported against 100. If it is against 1 instead, use 1 here. 

# decimals = Count of decimals required for the radiocarbon age. 

 

pMC.age(mn = 129.31, sdev = 0.34, ratio = 100, decimals = 2) 

 

#### Age-depth modelling   ### 

# List all profile directories and go through all profile-files by changing CoreDir[] index 

# Thickness (thick=) affects flexibility of the age-depth model. Smoother with smaller sections but 

computationally heavy. 

# choose correct post bomb-calibration curve (http://calib.org/CALIBomb/) 

# 14C calibration curve is IntCal13 (cc=1). Options are cc=2 (Marine13), cc=3 (SHCal13), or cc=4 

(an alternative curve). 

 

#Retrieve directory names (core files) to a list 

coreDirList = list.dirs(path = ".", full.names = FALSE, recursive = FALSE) 

 

#Check that the length of the list matches number of your samples 

length(coreDirList) 

 

#change the coreDirList[] -index value to change the input sample file (from 1 - to list length) 

coreName = coreDirList[1] 

 

#Main modelling function 

#"acc.mean" control estimated deposition speed. 

#"thick" controls size of sections function splits core into 

#"d.by" controls output depths for which ages are calculated. 
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Bacon(coredir= ".", core = coreName, acc.mean = , thick = 0.5, d.by = 1, postbomb = 1, cc = 1, 

depth.unit="cm", age.unit = "yr", rotate.axes = TRUE, rev.age = TRUE) 

 

#Test if the MCMC mixing of your core, with the applied settings, can be trusted (not compulsory) 

#Values above 1.05 threshold of the ‘Gelman and Rubin Reduction Factor’ indicates poor mixing 

#"run =" determines how many model runs will be compared 

Baconvergence(core = coreName, run = 10, coredir= ".", thick =  1, postbomb = 1, cc = 1, 

depth.unit="cm", age.unit = "yr") 

 

#Configure agedepth-plot only 

agedepth(model.only = TRUE, rotate.axes = TRUE , rev.age = TRUE, age.lab = 'Year (cal BP)', 

d.lab='Depth (cm)', bty='O') 

 

#Plot core’s estimated accumulation rates cm/yr 

accrate.age.ghost(rev.age = TRUE, plot.range = FALSE, cmyr = TRUE, acc.lim = c(0,3)) 

 

#Add site name to the plot, with x & y values that converge with the created plot upper left corner 

text(x = 37, y = 2.7, labels = coreName, cex = 1.8) 

 

Appendix C: Landsat cloud masking 

#Clear environment 

rm(list = ls()) 

options(stringsAsFactors= FALSE) 

 

#### Needed packages ### 

install.packages("raster") 

install.packages("rgdal") 

library("raster") 

library("rgdal") 

 

### INPUT DATA PATHS ### 

#Local path for Landsat 8 OLI images 

imgPathOli = "F:/lsTimeSeries/oli/wrs2/" 
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#Local path for OLI images chosen to act as reference images 

refPath = "F:/ref_Images/" 

#Local path for TM images to be corrected 

imgPath = "F:/lsTimeSeries/tm/wrs2/" 

 

### Pixel values to be masked ### 

# Landsat 8 surface reflectance code (LASRC) product guide: 

https://www.usgs.gov/media/files/land-surface-reflectance-code-lasrc-product-guide 

# Pixels with low confidence cloud assessment are not taken into consideration 

# Cloud shadow: 328, 392, 840, 904, 1350 

# Cloud: 352, 368, 416, 432, 480, 864, 880, 928, 944, 992 

# Medium confidence cloud: 386, 388, 392, 400, 416, 432, 898, 900, 904, 928, 944 

# High confidence cloud: 480, 992 

# High confidence cirrus: 834, 836, 840, 848, 864, 880, 898, 900, 904, 912, 928, 944, 992 

 

# Landsat 4-7 Surface Reflectance (LEDAPS) Product Guide: 

https://www.usgs.gov/media/files/landsat-4-7-surface-reflectance-code-ledaps-product-guide 

# Pixels with low confidence cloud assesment are not taken in to consideration 

# Cloud shadow: 72, 136 

# Cloud: 96, 112, 160, 176, 224 

# Medium confidence cloud: 130, 132, 136, 144, 160, 176 

# High confidence cloud: 224 

 

### LANDSAT 8 OLI IMAGES ### 

 

#index 

i=1 

#WRS 2 scenes 

wrs = list("210004", "211004", 

214004","215004","216004","217003","217004","218003","219003") 

 

#Iterate WRS scenes 

for (i in 1:length(wrs)){ 
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  #Find sub directories containing individual acquisition directories 

  subDirs = list.dirs(paste(imgPathOli, wrs[i], sep=""), recursive=FALSE) 

  #sub-directory index 

  j=1 

   

  for (j in 1:length(subDirs)){ 

     

    #Find pixel_qa -file 

    qaFile = list.files(path = subDirs[j], pattern = "pixel_qa.tif", full.names = FALSE) 

    qaFilePath = paste(subDirs[j],"/",qaFile[1], sep="") 

    qaFileName = gsub(pattern = "\\.tif$","", qaFile) 

     

    #Boolean raster from qa-band cloud values 

    #Result has cloud values TRUE (1) and clear pixels FALSE (0) 

    raster_qa = raster(qaFilePath) 

    raster_qa[raster_qa %in% c(328, 392, 840, 904, 1350, 352, 368, 416, 432, 480, 864, 880, 928,    

944, 992, 386, 388, 400, 898, 900, 944, 834, 836, 848, 912)] = 9999 

    raster_qa[raster_qa != 9999] = FALSE 

    raster_qa[raster_qa == 9999] = TRUE 

    #Set NA pixels to have value TRUE 

    raster_qa[is.na(raster_qa)] = TRUE 

     

    #write cloud mask file to same folder 

    outputD = paste(subDirs[j],"/", sep="") 

    out_path = paste(outputD,qaFileName,"_cloudMask.tiff",sep="") 

    writeRaster(raster_qa, out_path, format= "GTiff", overwrite=TRUE, datatype = "INT2S") 

     

    #remove variables 

    rm(qaFile, qaFilePath, qaFileName, raster_qa, outputD, out_path) 

    removeTmpFiles(h = 0.016) 

     

    j= j+1 

    } 

i = i+1 
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} 

 

### LANDSAT 5TM and Landsat 7 TM+ data ### 

# Determine WRS-2 scenes 

wrs = list("210004", "211004", "212004", "213004", 

"214004","215004","216004","217003","217004","218003","219003") 

# Index 

i=1 

 

#loop through WRS-2 scenes 

for (i in 1:length(wrs)){ 

   

  #Find sub directories containing individual acquisition directories 

  subDirs = list.dirs(paste(imgPath,wrs[i], sep=""), recursive=FALSE) 

  #Sub-directory index 

  j = 1 

   

  for (j in 1:length(subDirs)){ 

     

    #Find pixel_qa -file 

    qaFile = list.files(path = subDirs[j], pattern = "pixel_qa.tif", full.names = FALSE) 

    qaFilePath = paste(subDirs[j],"/",qaFile[1], sep="") 

    qaFileName = gsub(pattern = "\\.tif$","", qaFile) 

     

    #Boolean cloud mask from qa-band 

    #Result has cloud values TRUE (1) and clear pixels FALSE (0) 

    raster_qa = raster(qaFilePath) 

    raster_qa[raster_qa %in% c(72, 136,96, 112, 160, 176, 224,130, 132, 144)] <- 9999 

    raster_qa[raster_qa != 9999] = FALSE 

    raster_qa[raster_qa == 9999] = TRUE 

    #Set NA pixels to have value TRUE 

    raster_qa[is.na(raster_qa)] = TRUE 

     

    #write cloud mask to same folder 
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    outputD = paste(subDirs[j],"/", sep="") 

    out_path = paste(outputD,qaFileName,"_cloudMask.tiff",sep="") 

    writeRaster(raster_qa, out_path, format= "GTiff", overwrite=TRUE, dataType = "INT2S") 

     

    #remove variables 

    rm(qaFile, qaFilePath, qaFileName, raster_qa, outputD, out_path) 

    removeTmpFiles(h = 0.016) 

     

    j= j+1 

  } 

  i = i+1 

} 

 

Appendix D: Landsat co-registration 

# These installation commands should work within local Jupyter lab 

# Install packages needed for AEROSICS-package to work properly 

import sys  

!conda install --yes --prefix {sys.prefix} -c conda-forge numpy gdal scikit-image matplotlib pyproj 

shapely geopandas pandas cmocean basemap pykrige 

 

# Package to speed up AROSICS local co-registration function. (Not necessary and not compatible 

with newest Python versions). Co-registration will work without this package - just slower. 

!conda install --yes --prefix {sys.prefix} -c jesserobertson pyfftw 

 

# Package to read the filepaths 

!{sys.executable} -m pip install glob2  

 

# Package for co-registration of images 

!{sys.executable} -m pip install arosics 

 

# Package for stacking image bands 

!{sys.executable} -m pip install rasterio 

# If this does not work, download and install binaries from: 

https://www.lfd.uci.edu/~gohlke/pythonlibs/#rasterio 



79 

 

# Import needed packages 

import glob2 as glob 

from arosics import COREG_LOCAL 

from arosics import COREG 

import rasterio 

import os 

import gdal 

import numpy as np 

import matplotlib.pyplot as plt 

 

#Input directories 

#Landsat 8 OLI images chosen to work as reference 

refPath = "F:/refImages/" 

 

#All other Landsat 8 OLI images 

imgPathOli = "F:/lsTimeSeries/oli/wrs2/" 

 

#Landsat 5 TM and Landsat 7 ETM+ images to be corrected 

imgPath = "F:/lsTimeSeries/tm/wrs2/" 

# Define band stacking functions (OLI and TM Sensors have differing bands) 

# Landsat 8 data 

def stackBandsL8(bandList, out_path): 

    '''Stacks bands given in a list. Modified from Loïc Dutrieux post at: 

    https://gis.stackexchange.com/questions/223910/using-rasterio-or-gdal-to-stack-multiple-bands- 

without-using-subprocess-commands 

    ''' 

    #band names 

    descriptions = [ 

    'cloudMask',    

    'B4', 

    'B5' 

    ] 
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# Read metadata of first file 

    with rasterio.open(bandList[0], dtype = rasterio.int16) as src0: 

        meta = src0.meta 

 

    # Update meta to reflect the number of layers 

    meta.update(count = len(bandList)) 

 

    # Read each layer and write it to stack. Define the data type to signed integer 16 bit 

    with rasterio.open(out_path, 'w', **meta) as dst: 

        for id, layer in enumerate(bandList, start=1): 

            with rasterio.open(layer) as src1: 

                dst.write_band(id, src1.read(1).astype(rasterio.int16)) 

                dst.set_band_description(id, descriptions[id-1]) 

 

# Landsat 5 and 7 data 

def stackBandsL5L7(bandList, out_path): 

    '''Stacks bands given in a list. Modified from Loïc Dutrieux post at: 

    https://gis.stackexchange.com/questions/223910/using-rasterio-or-gdal-to-stack-multiple-bands-

without-using-subprocess-commands 

    ''' 

    #band names 

    descriptions = [ 

    'cloudMask', 

    'B3', 

    'B4'     

    ] 

    # Read metadata of first file 

    with rasterio.open(bandList[0], dtype = rasterio.int16) as src0: 

        meta = src0.meta 

 

    # Update meta to reflect the number of layers 

    meta.update(count = len(bandList)) 

    # Read each layer and write it to stack. Define the data type to to signed integer 16 bit. 

    with rasterio.open(out_path, 'w', **meta) as dst: 
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        for id, layer in enumerate(bandList, start=1): 

            with rasterio.open(layer) as src1: 

                dst.write_band(id, src1.read(1).astype(rasterio.int16)) 

                dst.set_band_description(id, descriptions[id-1]) 

 

# Stack Landsat 8 cloudmask, red- and NIR-bands into "datacubes" 

# Determine WRS-2 scenes where input data is recorded 

wrs = ["210004", "211004", "214004","215004","216004","217003","217004","218003","219003"] 

 

for sceneId in wrs: 

    ''' Iteratively create datacubes by stacking bands within each acquistion scene folder'''  

     

    #check sub-directories (acquistions) under every WRS-scene 

    subDirs = os.listdir(imgPathOli + sceneId + "/") 

    for directory in subDirs: 

         

        #iterate subdirectories, create list of bands and compile datacubes 

        cloudMask = glob.glob(imgPathOli + sceneId + "/" + directory + "/*cloudMask.tif") 

        band4 = glob.glob(imgPathOli + sceneId + "/" + directory + "/*band4.tif") 

        band5 = glob.glob(imgPathOli + sceneId + "/" + directory + "/*band5.tif")      

        bandList = cloudMask + band4 + band5 

         

        #output 

        outputD = imgPathOli + sceneId + "/" + directory + "/" 

        filename = directory + "_STACK.tiff" 

        out_path = outputD + filename 

        stackBandsL8(bandList, out_path) 

 

# Stack Landsat 5 and 7 cloudmask, red- and NIR-bands into "datacubes" 

# Determine WRS-2 scenes where input data is recorded 

wrs = ["210004", "211004", "212004", "213004", 

"214004","215004","216004","217003","217004","218003","219003"] 

for sceneId in wrs: 

    ''' Iteratively create datacubes by stacking bands within each acquistion scene folder'''  
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    #check sub-directories (acquistions) under every WRS-scene 

    subDirs = os.listdir(imgPath + sceneId + "/") 

    for directory in subDirs: 

         

        #iterate subdirectories, create list of bands and compile datacubes 

        cloudMask = glob.glob(imgPath + sceneId + "/" + directory + "/*cloudMask.tif") 

        band3 = glob.glob(imgPath + sceneId + "/" + directory + "/*band3.tif") 

        band4 = glob.glob(imgPath + sceneId + "/" + directory + "/*band4.tif")      

        bandList = cloudMask + band3 + band4 

         

        #output 

        outputD = imgPath + sceneId + "/" + directory + "/" 

        filename = directory + "_STACK.tiff" 

        out_path = outputD + filename 

        stackBandsL5L7(bandList, out_path) 

 

# Compile co-registration function. Set inputs are: 

# reference image, target image, reference cloud mask, target cloud mask, and output-path 

 

def co_reg(im_reference, im_target, cloud_mask_ref, cloud_mask_tgt, out_path): 

    '''co-registers reference and target images. Pre-determined bands from the stacks 

    are for L8 OLI B6 and for L5&L7 B5.  ''' 

    CRL = COREG_LOCAL(im_reference,im_target, mask_baddata_ref=cloud_mask_ref, 

mask_baddata_tgt=cloud_mask_tgt, path_out=out_path, grid_res=40, max_iter=20, max_shift=40, 

window_size=(360,360), fmt_out= 'GTIFF') 

    CRL.correct_shifts() 

 

#Co-Register all the Landsat 5 and 7 stacks iteratively, using Landsat 8 NIR band as reference 

 

wrs = ["210004", "211004", "212004", "213004", 

"214004","215004","216004","217003","217004","218003","219003"] 

for sceneId in wrs: 
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    """Iterates all the WRS-2 acquisition scenes. Co-registers all the Landsat 5 & 7 raster stacks to a 

Landsat 8 raster stack from a corresponging WRS-2 scene. Corrected raster stacks are the written as 

an output""" 

     

    #path for reference raster 

    refFile = glob.glob(refPath+sceneId+"/*/*band5.tif")  

    refFile = "".join(refFile) #list to str 

     

    #path for reference cloud-mask 

    refCloudMask = glob.glob(refPath+sceneId+"/*/*_cloudMask.tif") 

    refCloudMask = "".join(refCloudMask) # List to str 

 

    # List sub-directories of raster stacks to be corrected 

    imgSubDirs = os.listdir(imgPath + sceneId + "/") 

    #iterate target image directories at imgSubDirs: 

 

        #path for target raster stack                      

        imgStack = glob.glob(imgPath+ sceneId+"/"+directory+ "/*STACK.tiff") 

        imgStackPath = "".join(imgStack) # List to str 

 

        #path for target cloud mask  

        tgtCloudMask = glob.glob(imgPath+sceneId+"/"+directory+ "/*_cloudMask.tif") 

        tgtCloudMask = "".join(tgtCloudMask) # List to str 

   

        #Output path                          

        outputD = imgPath + sceneId + "/" + directory + "/" 

        filename = directory + "_STACK_cor.tiff" 

        output_path = imgPath + filename 

 

        #Co-register                              

       CRL =  co_reg(im_reference = refFile, im_target = imgStackPath, cloud_mask_ref = 

refCloudMask, cloud_mask_tgt = tgtCloudMask, out_path = output_path)  
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# Visualization of the calculated absolute lenghts of the initial shift vectors. 

CRL.view_CoRegPoints(figsize=(15,15), backgroundIm='tgt')  

 

#By comparing corrected image to the initial reference image, one can achieve map of shifts present 

AFTER shift correction. (Do not set output for local co-registration) 

CRL_after_corr = COREG_LOCAL(im_ref= "reference stack path", im_tgt="corrected output 

filepath",grid_res=150, fmt_out= 'GTIFF', max_iter= 10, max_shift= 15, window_size=(60,60)) 

CRL_after_corr.view_CoRegPoints(figsize=(15,15),backgroundIm='ref') 

 

#GLOBAL REGISTRATION – if needed (paths and coordinates manually set) 

#Reference data 

im_reference = "F:/refImages/216004/LC082160042015080101T1-

SC20200106154242/LC08_L1TP_216004_20150801_20170406_01_T1_sr_band5.tif" 

cloud_maskRef = "F:/refImages/216004/LC082160042015080101T1-

SC20200106154242/LC08_L1TP_216004_20150801_20170406_01_T1_pixel_qa_cloudMask.tif" 

 

#Target data 

im_target = "F:/lsTimeSeries/tm/wrs2/218003/LT052180031998071501T2-

SC20200106121650/LT052180031998071501T2-SC20200106121650_STACK.tiff" 

im_mask = "F:/lsTimeSeries/tm/wrs2/218003/LT052180031998071501T2-

SC20200106121650/LT05_L1GS_218003_19980715_20161223_01_T2_pixel_qa_cloudMask.tif" 

 

#Ouput path 

output_path = "F:/lsTimeSeries/tm/wrs2/reRun/corGL/LT052180031998071501T2-

SC20200106121650_STACK_GLcor.tiff" 

 

# Determine matching window centroid XY-coordinates manually 

wpCoords = (439191,8771931) 

#Global co-registration 

coRegImg = COREG(im_reference, im_target, mask_baddata_ref=cloud_maskRef, 

mask_baddata_tgt= im_mask, s_b4match=3, wp= wpCoords, max_iter=40, max_shift=705, 

ws=(4000,4000), path_out=output_path) 

coRegImg.correct_shifts() 
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Appendix E: Topographic correction 

# Applying sensor calibration coefficients to NDVI images (Pironkova et al. 2018) 

 

#clear environment 

rm(list = ls()) 

options(stringsAsFactors= FALSE) 

 

#install.packages("raster") 

#install.packages("rgdal") 

#install.packages("gdalUtils") 

##install.packages("RStoolbox") 

library(rgdal) 

library(gdalUtils) 

library(raster) 

library(RStoolbox) 

 

#Area of interest .shp file (AOI) 

aoi = readOGR("F:/ data/GIS/AOI/isfjord.shp") 

#Extract crs and aoi information 

targetCrs = crs(aoi) 

targetExtent = extent(aoi) 

 

#Digital elevation model  

dem = raster("F:/arcticDEM/isfjord_DEM30m_crop.tif") 

#Make sure datasets have same crs 

dem = projectRaster(dem, crs = targetCrs) 

#Extract slope and aspect information as radians 

terrDem = terrain(dem, opt=c('slope','aspect'), unit= 'radians') 

rm(dem) 

 

### Landsat 8 data ### 

oliPath = "F:/lsTimeSeries/oli/wrs2/" 

outputD = "F:/topoCorNDVI/" 
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wrs = list("210004", "211004", 

"214004","215004","216004","217003","217004","218003","219003") 

 

#index 

i=1 

 

#Iterate WRS scenes 

for (i in 1:length(wrs)){ 

   

  #Sub directories of individual acquisitions 

  subDirs = list.dirs(paste(oliPath,wrs[i], sep=""), recursive=FALSE) 

  #sub-directory index 

  j=1 

   

  for (j in 1:length(subDirs)){ 

     

    #Read in data stack 

    stackPath = list.files(path = subDirs[j], pattern = "STACK.tiff", full.names = T) 

    dataStack = stack(stackPath) 

     

    #Extract filename for output 

    stackName = list.files(path = subDirs[j], pattern = "*STACK.tiff", full.names = FALSE) 

    outputName = gsub(pattern = "_STACK.tiff$","", stackName) 

     

    #Re-project and crop data 

    dataStack = projectRaster(dataStack, crs = targetCrs) 

    dataStackCrop = crop(dataStack, targetExtent) 

    rm(stackPath, dataStack, stackName) 

 

    #Align terrain data with Landsat data 

    terrAlign = resample(terrDem, dataStackCrop[[3]], method ="bilinear") 

 

    #Subset needed bands 

    cloudMask = dataStackCrop[[1]] 
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    redBand = dataStackCrop[[2]] 

    nirBand = dataStackCrop[[3]] 

    rm(dataStackCrop) 

   

    #Cloudmask red and NIR band 

    redBandMasked = mask(x = redBand, mask = cloudMask, maskvalue =1, updateValue = NA) 

    nirBandMasked = mask(x = nirBand, mask = cloudMask, maskvalue =1, updateValue = NA) 

    rm(redBand, nirBand, cloudMask) 

     

    #Valid range of landsat Surface reflectance values is 0 to 10 000 (scale factor 0.0001) 

    redBandMasked[redBandMasked < 0] = NA 

    nirBandMasked[nirBandMasked < 0] = NA 

     

    redBandMasked[redBandMasked > 10000] = NA 

    nirBandMasked[nirBandMasked > 10000] = NA 

     

    #Read acquisition metadata 

    metaFilePath = list.files(path = subDirs[j], pattern = "MTL.txt", full.names = T) 

    metaData <- readMeta(metaFilePath) 

 

    #Topographically correct image 

    redTopo = topCor(redBandMasked, terrAlign, metaData, method = "avgcos") 

    nirTopo = topCor(nirBandMasked, terrAlign, metaData, method = "avgcos") 

    rm(redBandMasked, nirBandMasked, terrAlign, metaFilePath, metaData) 

     

    #Topographically corrected NDVI values 

    ndvi = (nirTopo - redTopo) / (nirTopo + redTopo) 

    rm(nirTopo, redTopo) 

     

    #L8 to L7 Calibration coefficient  

    NDVI_calib = ndvi * 1.0863 

     

    #Using calibration coefficient, can cause some pixel values to exceed NDVI limits 

    NDVI_calib[NDVI_calib > 1] = 1 
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    NDVI_calib[NDVI_calib < -1] = -1 

     

    #If image does not fill extent of AOI, fill empty areas within extent with NA values. 

    if (extent(NDVI_calib) != targetExtent){ 

      NDVI_calib = extend(x = NDVI_calib, y = targetExtent, value = NA) 

    } 

     

    #Write file 

    out_path = paste(outputD,outputName,"_NDVI.tiff",sep="") 

    writeRaster(NDVI_calib, out_path, format = "GTiff", overwrite=TRUE) 

    rm(NDVI, NDVI_calib, outputName, out_path) 

     

    #To save disk space during the loop - remove temporary raster files older than one minute 

    removeTmpFiles(h = 0.016) 

    j= j+1 

  } 

  i = i+1 

} 

 

### Landsat 5 & 7 data ### 

tmPath <- "F:/lsTimeSeries/tm/wrs2/" 

outputD = "F:/topoCorNDVI/" 

wrs = list("210004", "211004", "212004", "213004", 

"214004","215004","216004","217003","217004","218003","219003") 

 

#index 

i=1 

 

#Iterate WRS scenes 

for (i in 1:length(wrs)){ 

   

  #Find sub directories of individual acquisitions 

  subDirs = list.dirs(paste(tmPath,wrs[i], sep=""), recursive=FALSE) 

  #sub-directory index 
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  j=1 

   

  for (j in 1:length(subDirs)){ 

     

    #Read in data stack - crop with area of interest extent 

    stackPath = list.files(path = subDirs[j], pattern = "*_STACK_cor.tiff", full.names = T) 

    dataStack = stack(stackPath) 

     

    #Extract filename for output 

    stackName = list.files(path = subDirs[j], pattern = "*_STACK_cor.tiff", full.names = FALSE) 

    outputName = gsub(pattern = "_STACK_cor.tiff$","", stackName) 

     

    #Project and crop data 

    dataStack = projectRaster(dataStack, crs = targetCrs) 

    dataStackCrop = crop(dataStack, targetExtent) 

    rm(stackPath, dataStack, stackName) 

    #Align terrain grid with Landsat data 

    terrAlign = resample(terrDem, dataStackCrop[[3]], method ="bilinear") 

   

    #Subset needed bands 

    cloudMask = dataStackCrop[[1]] 

    redBand = dataStackCrop[[2]] 

    nirBand = dataStackCrop[[3]] 

    rm(dataStackCrop) 

     

    # Cloudmask red and NIR band 

    redBandMasked = mask(x = redBand, mask = cloudMask, maskvalue =1, updateValue = NA) 

    nirBandMasked = mask(x = nirBand, mask = cloudMask, maskvalue =1, updateValue = NA) 

    rm(redBand, nirBand, cloudMask) 

     

    #Valid range of landsat Surface reflectance values is 0 to 10 000 (scale factor 0.0001) 

    redBandMasked[redBandMasked < 0] = NA 

    nirBandMasked[nirBandMasked < 0] = NA 
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    redBandMasked[redBandMasked > 10000] = NA 

    nirBandMasked[nirBandMasked > 10000] = NA 

     

    #Read acquisition metadata 

    metaFilePath = list.files(path = subDirs[j], pattern = "MTL.txt", full.names = T) 

    metaData <- readMeta(metaFilePath) 

     

    #Topographically correct image 

    redTopo = topCor(redBandMasked, terrAlign, metaData, method = "avgcos") 

    nirTopo = topCor(nirBandMasked, terrAlign, metaData, method = "avgcos") 

    rm(redBandMasked,nirBandMasked, terrAlign, metaFilePath, metaData) 

     

    #Topographically corrected NDVI values 

    ndvi = (nirTopo - redTopo) / (nirTopo + redTopo) 

    rm(nirTopo, redTopo) 

     

    #Make sure final file's extent matches area of interest  

    #If image does not fill extent of aoi, fill empty areas within extent with NA values. 

    if (extent(ndvi) != extent(aoi)){ 

      ndvi = extend(x = ndvi, y = targetExtent, value = NA) 

    } 

     

    #Write file 

    out_path = paste(outputD,outputName,"_NDVI.tiff",sep="") 

    writeRaster(ndvi, out_path, format = "GTiff", overwrite=TRUE) 

    rm(ndvi, outputName, out_path) 

     

    #To save disk space during the loop - remove temporary raster files older than one minute 

    removeTmpFiles(h = 0.016) 

    j= j+1 

  } 

  i = i+1 

} 
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# Apply calibration coefficient to Landsat 5 topographically corrected files 

l5Files = list.files(path = outputD, recursive = TRUE, pattern = "LT05*", full.names = T) 

i = 1 

 

for (i in 1:length(l5Files)){ 

  l5file = raster(l5Files[i]) 

  #Landsat 5 to landsat 7 equivalent  

  l5file = l5file * 1.036 

  #Scale values exceeding NDVI limits 

  l5file[l5file > 1] = 1 

  l5file[l5file < -1] = -1 

  #overwrite raster 

  writeRaster(l5file, filename = l5Files[i], format = "GTiff", overwrite=TRUE) 

  i=i+1 

} 

#Literature: 

#Pironkova, Whaley & Lan. (2018). Time series analysis of Landsat NDVI composites with Google 

Earth Engine and R: User guide - Science and Research Technical Manual TM-06. 

10.13140/RG.2.2.16830.95040.  

 

Appendix F: Annual NDVI composites 

#clear environment 

rm(list = ls()) 

options(stringsAsFactors= FALSE) 

 

#install.packages("raster") 

#install.packages("rgdal") 

#install.packages("gdalUtils") 

library(rgdal) 

library(gdalUtils) 

library(raster) 
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#Filepaths 

ndviPath = "F:/topoCorNDVI" 

outputMax = "F:/annualComposites/max/" 

 

#List topographically corrected NDVI files 

ndviFiles = list.files(path = ndviPath, pattern = "NDVI.tif", recursive = TRUE, full.names = T) 

 

#Find sub directories of NDVI per year 

yearDirs = list.dirs(ndviPath, recursive=FALSE) 

 

#Read in .shp file with Svalbard land areas 

#Make sure file has same CRS as NDVI rasters 

landMask <- readOGR("F:/data/GIS/NP_S1000_SHP/S1000_Land_f.shp") 

landMask <- spTransform(landMask, CRSobj = "+proj=utm +zone=33 +datum=WGS84 +units=m 

+no_defs +ellps=WGS84 +towgs84=0,0,0") 

 

#index 

i=1 

 

#Iterate directories containin NDVI images per year 

for (i in 29:length(yearDirs)){ 

   

  #List images of certain year 

  ndviFiles = list.files(path = yearDirs[i], pattern = "NDVI.tif", full.names = T) 

   

  #If more than one acquistion is available calculate max values 

  #Else use the single image as it is 

  if (length(ndviFiles)> 1){ 

     

    #Read files into stack and mask sea areas out 

    annualData = stack(ndviFiles) 

    annualData = mask(annualData, landMask) 
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    #Annual Max 

    anMax = max(annualData, na.rm = T) 

    maxOutPath =  paste(outputMax,years[i],"NDVImax.tif", sep = "") 

    writeRaster(anMax, maxOutPath, format = "GTiff", overwrite=TRUE) 

    rm(annualData, anMed, anMax) 

    

  } else { 

     

    #Read raster and mask sea areas out 

    singleAcq = raster(ndviFiles) 

    singleAcq = mask(singleAcq, landMask) 

     

    #Write files 

    maxOutPath =  paste(outputMax,years[i],"NDVImax.tif", sep = "") 

    writeRaster(singleAcq, maxOutPath, format = "GTiff", overwrite=TRUE) 

    rm(singleAcq) 

  } 

   

  rm(ndviFiles, maxOutPath) 

  removeTmpFiles(h = 0.016) 

  i = i+1 

} 

#Create raster stacks of maximum NDVI composites 

maxFiles = list.files(path = outputMax, pattern = "max.tif", recursive = TRUE, full.names = T) 

maxStack= stack(maxFiles) 

writeRaster(maxStack, filename = "F:/annualComposites/maxStack.tiff",format = "GTiff") 

 

Appendix G: Regional Mann-Kendal test and soil profile -wise timeseries 

#clear environment 

rm(list = ls()) 

options(stringsAsFactors= FALSE) 
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#install.packages("rgdal") 

#install.packages("raster") 

#install.packages("stringr") 

#install.packages("stats") 

#install.packages("lubridate") 

#install.packages("rkt") 

 

library(rgdal) 

library(raster) 

library(stringr) 

library(stats) 

library(lubridate) 

library(rkt) 

 

#READ IN DATA 

maxStack = stack("F:/annualComposites/maxStack.tif") 

samplePoints = read.csv("F:/ data/GIS/coringPoints/profilePoints.csv", sep = ";", header = T) 

 

#Acquisition years as list 

years = list.dirs("F:/topoCorNDVI", recursive=FALSE, full.names = F) 

#Set acquisition date in the middle of July (median of the dates in building composites) 

#Convert to date variable 

Dates = as.Date(paste(years,"-7-16", sep = ""), format = "%Y-%m-%d", origin="1985-7-16") 

 

#set date values to stack 

stackDates = setZ(maxStack, Dates) 

#convert year info also to numeric form 

year <- as.numeric(substr(getZ(stackDates), 1, 4)) 

 

#Define function for pixel-wise Regional Kendall Tests for trend and Theil-Sen's slope estimator. 

#Mofified from Pironkova et al (2018) 

 

 

tsFunc <- function(x) { 
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  if(all(is.na(x))){ 

    c(NA,NA,NA) 

  } else { 

    mKenn <- rkt(year, x) 

    a = mKenn$B 

    b = mKenn$sl 

    c = mKenn$tau 

    return(cbind(a, b, c)) 

  } 

}   

   

#apply Man Kendall test function to maximum NDVI stack 

mkRaster <- calc(stackDates, fun=tsFunc) 

names(mkRaster) = c("thsSlope", "p-value", "tau") 

 

#Save output 

writeRaster(mkRaster, filename = "F:/annualComposites/mkTimeSerie.tiff", format = "GTiff", 

overwrite=TRUE) 

 

#MAX VALUE COMPOSITE 

#Theil-Sens slope estimator 

thSlope = mkRaster[[1]] 

#p-value raster 

pValue = mkRaster[[2]] 

#Tau raster 

kTau = mkRaster[[3]] 

 

#p-value maskraster 

pValue[pValue > 0.05] = NA 

#tau maskraster 

kTau[kTau < -0.4 & kTau > 0.4] 

#Mask by  

maskedSl = mask(thSlope, pValue) 

maskedSl = mask(maskedSl, kTau) 
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writeRaster(maskedSl, filename = "F:/annualComposites/mkTimeSerieMasked.tiff", format = 

"GTiff", overwrite=TRUE) 

 

### INDVIDUSAL MEASUREMENT POINT TIME SERIES ### 

#Extract sitenames and xy coordinates in decimal degrees 

coords = samplePoints[, c("id", "longitudeDD_E", "latitudeDD_N")] 

names(coords) = c("id", "x", "y") 

 

#Set projection information 

coordinates(coords)= ~x + y 

proj4string(coords) = CRS("+proj=longlat +ellps=WGS84 +datum=WGS84") 

 

#Convert projection 

sitesProjected <- spTransform(coords, crs(maxStack)) 

 

#Subset samplepoints that have age-depth models composed 

Alk1 = subset(sitesProjected, sitesProjected$id == "Alk1.") 

Alk3 = subset(sitesProjected, sitesProjected$id ==  "Alk3.") 

Alk4 = subset(sitesProjected, sitesProjected$id ==  "Alk4.") 

Alk5 = subset(sitesProjected, sitesProjected$id ==  "Alk5.") 

Alk7 = subset(sitesProjected, sitesProjected$id ==  "Alk7.") 

Bj1 = subset(sitesProjected, sitesProjected$id == "BJ1.") 

Bj2 = subset(sitesProjected, sitesProjected$id == "BJ2.") 

Bj3 = subset(sitesProjected, sitesProjected$id ==  "BJ3.") 

Bo1.1 = subset(sitesProjected, sitesProjected$id ==  "Bo1.1") 

Bo1.3 = subset(sitesProjected, sitesProjected$id ==  "Bo1.3") 

Bo1.4 = subset(sitesProjected, sitesProjected$id == "Bo1.4") 

Bo1.6 = subset(sitesProjected, sitesProjected$id ==  "Bo1.6") 

Col1 = subset(sitesProjected, sitesProjected$id ==  "Col1.") 

Col2 = subset(sitesProjected, sitesProjected$id == "Col2.") 

Col4 = subset(sitesProjected, sitesProjected$id == "Col4.") 

 

 

#Extract NDVI weighted mean NDVI value from buffer area surrounding sample points 
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#Alkehornet sample points 

Alk1_maxNdvi = extract(maxStack, Alk1, buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 

Alk1_ts = as.numeric(Alk1_maxNdvi) 

write.csv(Alk1_ts, file= "F:/pointTimeSeriesCsv/Alk1_ts.csv") 

 

Alk3_maxNdvi = extract(maxStack, Alk3, buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 

Alk3_ts = as.numeric(Alk3_maxNdvi) 

write.csv(Alk3_ts, file= "F:/pointTimeSeriesCsv/Alk3_ts.csv") 

 

Alk4_maxNdvi = extract(maxStack, Alk4, buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 

Alk4_ts = as.numeric(Alk4_maxNdvi) 

write.csv(Alk4_ts, file= "F:/pointTimeSeriesCsv/Alk4_ts.csv") 

 

Alk5_maxNdvi = extract(maxStack, Alk5, buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 

Alk5_ts = as.numeric(Alk5_maxNdvi) 

write.csv(Alk5_ts, file= "F:/pointTimeSeriesCsv/Alk5_ts.csv") 

 

Alk7_maxNdvi = extract(maxStack, Alk7, buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 

Alk7_ts = as.numeric(Alk7_maxNdvi) 

write.csv(Alk7_ts, file= "F:/pointTimeSeriesCsv/Alk7_ts.csv") 

 

#Bjordalen sample points 

Bj1_maxNdvi = extract(maxStack, Bj1, buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 

Bj1_ts = as.numeric(Bj1_maxNdvi) 

write.csv(Bj1_ts, file= "F:/pointTimeSeriesCsv/Bj1_ts.csv") 

 

Bj2_maxNdvi = extract(maxStack, Bj2, buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 
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Bj2_ts = as.numeric(Bj2_maxNdvi) 

write.csv(Bj2_ts, file= "F:/pointTimeSeriesCsv/Bj2_ts.csv") 

 

Bj3_maxNdvi = extract(maxStack, Bj3, buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 

Bj3_ts = as.numeric(Bj3_maxNdvi) 

write.csv(Bj3_ts , file= "F:/pointTimeSeriesCsv/Bj3_ts.csv") 

 

#Bolterdalen sample points 

Bo1.1_maxNdvi = extract(maxStack, Bo1.1, buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 

Bo1.1_ts = as.numeric(Bo1.1_maxNdvi) 

write.csv(Bo1.1_ts, file= "F:/pointTimeSeriesCsv/Bo1.1_ts.csv") 

 

Bo1.3_maxNdvi = extract(maxStack, Bo1.3,buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 

Bo1.3_ts = as.numeric(Bo1.3_maxNdvi) 

write.csv(Bo1.3_ts, file= "F:/pointTimeSeriesCsv/Bo1.3_ts.csv") 

 

Bo1.4_maxNdvi = extract(maxStack,Bo1.4, buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 

Bo1.4_ts = as.numeric(Bo1.4_maxNdvi) 

write.csv(Bo1.4_ts, file= "F:/pointTimeSeriesCsv/Bo1.4_ts.csv") 

 

Bo1.6_maxNdvi = extract(maxStack, Bo1.6, buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 

Bo1.6_ts = as.numeric(Bo1.6_maxNdvi) 

write.csv(Bo1.6_ts, file= "F:/pointTimeSeriesCsv/Bo1.6_ts.csv") 

 

#Colesdalen sample points 

Col1_maxNdvi = extract(maxStack, Col1, buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 

Col1_ts = as.numeric(Col1_maxNdvi) 

write.csv(Col1_ts, file= "F:/pointTimeSeriesCsv/Col1_ts.csv") 
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Col2_maxNdvi = extract(maxStack, Col2, buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 

Col2_ts = as.numeric(Col2_maxNdvi) 

write.csv(Col2_ts, file= "F:/pointTimeSeriesCsv/Col2_ts.csv") 

 

Col4_maxNdvi = extract(maxStack, Col4, buffer=50, fun=mean, na.rm=T, weights = T, 

normalizeWeigths = T) 

Col4_ts = as.numeric(Col4_maxNdvi) 

write.csv(Col4_ts, file= "F:/pointTimeSeriesCsv/Col4_ts.csv") 

 

Appendix H: Mask and visualize trend test results 

#clear environment 

rm(list = ls()) 

options(stringsAsFactors= FALSE) 

 

#install.packages("rgdal") 

#install.packages("raster") 

#install.packages("stringr") 

#install.packages("stats") 

#install.packages("lubridate") 

#install.packages("rkt") 

 

library(rgdal) 

library(raster) 

library(stringr) 

library(stats) 

library(lubridate) 

library(rkt) 

library(viridis) 

library(sp) 
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#DATA 

mktStack = stack("F:/ data/tsStacks/mkTimeSerie.tif") 

maxStack = stack("F:/ data/tsStacks/maxStack.tif") 

 

#Theil-Sens slope estimator 

thSlope = mktStack[[1]] 

#p-value raster 

pValue = mktStack[[2]] 

#Kendall's TAU 

kTau= mktStack[[3]] 

 

#p-value mask raster 

pValueMask = pValue 

pValueMask[pValueMask > 0.05] = NA 

#Tau-mask 

tauMask = kTau 

tauMask[tauMask < -0.4 & tauMask > 0.4] = NA 

 

#NDVI1985 

ndvi1985 = maxStack[[1]] 

ndvi2018 = maxStack[[29]] 

 

#Mask slope values with by significant p-values 

pMasked = mask(thSlope, pValueMask) 

#Mask slope by significant Kendalls Tau 

maskedTHS= mask(pMasked, tauMask) 

# select same pixels from Max NDVI composite from year 1985 

ndvi1985 = maxStack[[1]] 

maskedNDVI1985 = mask(ndvi1985 , maskedTHS) 

 

#STATS 

cellStats(ndvi1985, mean) #0.1317888 

cellStats(maskedNDVI1985, mean) #0.1926941 

cellStats(maskedTHS, mean) #0.005802191 
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# PERCENTUAL GROWTH OF MAX NDVI VALUES 

ndvi85_mean = cellStats(maskedNDVI1985, mean) 

nYears = 2019-1985 

meanSlope = cellStats(maskedSl, mean) 

ndviGrowth = meanSlope * nYears 

percentualGrowth = (ndviGrowth / ndvi85_mean) * 100 #102.377% growth 

#Min and max slopes 

print(cellStats(maskedTHS, min)) # -0.03094007 

print(cellStats(maskedTHS, max)) #0.0300209 

hist(maskedTHS) 

 

#Values expects vs measured 

ndvi2018 = maxStack[[29]] 

maskedNdvi2018 = mask(ndvi2018, maskedNDVI1985) 

ndvi2018mean = cellStats(maskedNdvi2018, mean) 

slopeEstimatedValues = ndvi85_mean * (ndviGrowth / ndvi85_mean + 1) 

 

#Theil-Sens slope estimator 

thSlope = mktStack[[1]] 

#p-value raster 

pValue = mktStack[[2]] 

#Kendall's TAU 

kTau= mktStack[[3]] 

 

spplot(kTau, main = list("Kendall's Tau", cex = 4), col.regions = viridis(16), cuts = 15, colorkey 

=list(labels = list(cex=2))) 

spplot(pValue, main = list("p-value", cex = 4), col.regions = viridis(16), cuts = 15, colorkey 

=list(labels = list(cex=2))) 

spplot(thSlope, main = list("Theil-Sens slope", cex =4), col.regions = viridis(16), cuts = 15, 

colorkey =list(labels = list(cex=2))) 

 

Appendix I:  Linear mixed effects model 

#clear environment 

rm(list=ls()) 
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#install packages 

install.packages("lme4") 

install.packages("arm") 

install.packages("ggplot2") 

install.packages("tidyverse") 

install.packages("viridis") 

install.packages("fBasics") 

install.packages("performance") 

 

library(lme4) 

library(arm) 

library(ggplot2) 

library(tidyverse) 

library(viridis)  

library(fBasics) 

library(performance) 

 

### READ DATA ### 

rercaNDVI = read.csv("F:/ data/svalbardCaccAndPredictors.csv", header = T, sep = ";") 

 

#Change one column name to more comprhernsible one 

names(rercaNDVI)[3] = "Profile" 

 

#Remove lines with NA values in accumulation rate column 

rercaNDVI = subset(rercaNDVI, !is.na(rercaNDVI$C.m2.a)) 

 

### PRELIMINARY DATA STUDY ### 

#check that site and core_id are read as factors 

str(rercaNDVI) 

#summary of data variables 

summary(rercaNDVI) 

 

#Observations per site are not evenly distributed 

table(rercaNDVI$Profile, useNA = "no" ) 
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#Cross-correlation between numeric parameters 

cor(rercaNDVI[,c(4:10)], use="pairwise.complete.obs") 

 

#PLOT average NDVI and apparent carbon accumulation rates per soil profiel plot 

with(rercaNDVI,plot(Profile, moving3y_NDVI)) 

with(rercaNDVI,plot(Profile, C.m2.a)) 

 

#Plot NDVI and carbon accumulation relationship per site 

plot = ggplot(data      = rercaNDVI, 

       aes(x     = moving3y_NDVI, 

           y     = C.m2.a, 

           col   = Profile, 

           group = Profile))+ 

  geom_point(size     = 4, 

             alpha    = .9)+ 

  theme(legend.position = "right", text=element_text(size=25), plot.title = element_text(size = 42))+ 

  geom_smooth(method = lm, 

              se     = FALSE, 

              size   = 1,  

              alpha  = .8)+ 

  xlab("NDVI")+ 

  ylab("g C m-2 y-1")+ 

  labs(title = "Soil profile-wise RERCA and NDVI relationship") 

 

plot + scale_colour_viridis(discrete = T, option = "viridis")  

 

### MODEL FITTING ### 

#Intercept only model 

icOnly = lmer(C.m2.a ~ 1 + (1 | Profile), data = rercaNDVI, REML = F)  

#model summary 

summary(icOnly) 

#Intraclass correlation 

icc(icOnly) 
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#R2 

r2_nakagawa(icOnly, by_group = FALSE) 

#95% confidence intervals for fixed parameters 

confint(icOnly, oldNames=F, level=0.95, method="Wald") 

 

#Random intercept with fixed effect 

r.ic = lmer(C.m2.a ~ 1+ moving3y_NDVI +(1 | Profile), data = rercaNDVI, REML=F) 

#summary 

summary(r.ic) 

#intraclass correlation 

icc(r.ic) 

#R2 

r2_nakagawa(r.ic, by_group = FALSE) 

#95% confidence intervals for fixed parameters 

confint(r.ic, oldNames=F, level=0.95, method="Wald") 

 

#full model  

fullModel = lmer(C.m2.a ~ 1+ moving3y_NDVI +(1 + moving3y_NDVI | Profile), data = 

rercaNDVI, REML=F) 

summary(fullModel) 

#intraclass correlation 

icc(fullModel) 

#R2 

r2_nakagawa(fullModel, by_group = FALSE) 

#95% confidence intervals for fixed parameters 

confint(fullModel, oldNames=F, level=0.95, method="Wald") 

### ANOVA TEST ### 

anova(icOnly, r.ic, fullModel) 

compare_performance(icOnly, r.ic, fullModel) 

 

#Test singularity 

isSingular(icOnly) 

isSingular(r.ic) 

isSingular(fullModel) 
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#homoscedasticity of model residuals 

plot(icOnly) 

plot(r.ic) 

plot(fullModel) 

 

#Test normality of residuals 

#IC only 

shapiroTest(resid(r.ic)) 

qqnorm(resid(r.ic)) 

qqline(resid(r.ic), col = "red") 

 

#random IC 

shapiroTest(resid(icOnly)) 

qqnorm(resid(icOnly)) 

qqline(resid(icOnly), col = "red") 

 

#full model 

shapiroTest(resid(fullModel)) 

qqnorm(resid(fullModel)) 

qqline(resid(fullModel), col = "red") 

 

### MODEL FIT SUMMARY PLOT ### 

ggplot(fortify(fullModel), aes(moving3y_NDVI, C.m2.a, color=Profile)) + 

  stat_summary(fun.data=mean_se, geom="pointrange", size = 1.8, alpha = 0.9 ) + 

  stat_summary(aes(y=.fitted), fun=mean, geom="line", size = 1.6, alpha = 0.9)+ 

  theme(legend.position = "right", text=element_text(size=25), plot.title = element_text(size = 42, 

hjust=0.5))+ 

  xlab("NDVI")+ 

  ylab("g C m-2 y-1")+ 

  labs(title = "Full model") 


