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Abstract

Basic and applied virus research requires specimens that are purified to high homogeneity. Thus,

there is much interest in the efficient production and purification of viruses and their

subassemblies. Advances in the production steps have shifted the bottle neck of the process to the

purification. Nonetheless, the development of purification techniques for different viruses is

challenging due to the complex biological nature of the infected cell cultures as well as the

biophysical and -chemical differences in the virus particles. We used bacteriophage phi6 as a

model virus in our attempts to provide a new purification method for enveloped viruses. We

compared asymmetrical flow field-flow fractionation (AF4)-based virus purification method to the

well-established ultracentrifugation-based purification of phi6. In addition, binding of phi6 virions to

monolithic anion exchange columns was tested to evaluate their applicability in concentrating the

AF4 purified specimens. Our results show that AF4 enables one-hour purification of infectious

enveloped viruses with specific infectivity of ~1×1013 PFU / mg of protein and ~65-95 % yields.

Obtained purity was comparable with that obtained using ultracentrifugation, but the yields from

AF4 purification were 2-3 –fold higher. Importantly, high quality virus preparations could be

obtained directly from crude cell lysates. Furthermore, when used in combination with in-line light

scattering detectors, AF4 purification could be coupled to simultaneous quality control of obtained

virus specimen.
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polyacrylamide gel electrophoresis; ss, single stranded; TCA, trichloroacetic acid; Vc, cross-flow; Vf, focus flow; VLP,
virus like particle; Vout, channel flow
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1. Introduction

Several animal viruses have an outer lipid envelope surrounding the proteinaceous capsid. The

envelope has a role in host recognition and cell penetration [1]. There is a group of bacteriophages

(viruses of bacteria), cystoviruses, that have an outer lipid envelope [2][3]. Phi6, the type organism

of the family Cystoviridae, infects Pseudomonas syringae and penetrates into cells by membrane

fusion in a similar manner as animal viruses [1]. The virion of phi6 is spherical, ~85 nm in diameter

and has a nucleocapsid composed of two proteinaceous layers beneath the lipid envelope [4].

Nucleocapsid shares similar structure with the double-layered particles of other double-stranded

(ds) RNA viruses, such as rotavirus and bluetongue virus [5, 6]. Due to the similarities between

important pathogenic viruses, phi6 is an ideal model organism to develop simpler, safer, and more

cost-effective ways to purify animal viruses with an external lipid-protein envelope.

Traditional ultracentrifugation-based virus purification methods expose virions (i.e. mature

infectious virus particles) to high forces potentially causing aggregation and/or otherwise damaging

the virions and compromising their infectivity. Viruses with lipid envelopes are especially vulnerable

to biophysical and biochemical stress (e.g. pH, temperature, acids, detergents, and shear forces),

and are thus prone to lose their biological activity.

AF4 is a promising method for virus purification [7, 8]. It is a versatile method in which the sample

components are separated by their hydrodynamic sizes [9]. No stationary phase is applied and

separation takes place in a thin trapezoidal channel by using two perpendicularly acting flows: the

laminar flow through the channel and the cross-flow, which pushes the sample components

towards the accumulation wall. The pore size of an ultrafiltration membrane lying on the

accumulation wall determines the size of molecules that pass through the membrane or stay in the

channel for separation. Due to the parabolic profile of the laminar flow, flow rates in the middle of

the channel are high and lower closer to the walls. Diffusion of sample components creates a

counteracting motion against the cross-flow and the distance from the accumulation wall is

determined by the hydrodynamic size of the sample components. In general, small particles with

higher diffusion coefficients reach an equilibrium position in the higher flow rate and are carried to



4

the detectors before the bigger ones. Separated molecules are directed to the detectors by the

laminar flow, which enables in-line analysis of measures such as concentration, shape, size, and

size distribution, depending on the detectors available [10]. AF4 has been used to separate a wide

variety of biomolecules and their complexes [10, 11]. In virus research, the focus has been mainly

in analytical studies, i.e. in the analysis of the size, size distribution, and aggregation of viruses or

in the quantitation of virus amounts. With virus like particles (VLPs), assembly conditions, stability,

as well as the purity and homogeneity of VLP preparations have been analysed [12-16].

Here we present a new, rapid and gentle virus purification method for the enveloped phi6 using

AF4. We demonstrate that AF4 purification of enveloped viruses straight from the cell lysate offers

an attractive new alternative for virus purification leading to high yields of infective viruses with

homogenous particle sizes. Previously we have shown the applicability of AF4 in purification of

viruses with different morphologies, sizes, and buffer requirements [7, 8], yet this is the first attempt

to utilize AF4 in purification of an enveloped phage that resembles animal viruses. To concentrate

specimens after AF4 purification, we explored the applicability of monolithic columns that have

been used in the separation and purification of a wide variety of biological materials, e.g. viral

genomes, plasmids, as well as proteins and their complexes [18-20] that include viruses and VLPs

[21]. Due to their high binding capacity towards phi6, monolithic anion exchange columns could be

coupled to AF4 to concentrate and potentially further purify virus preparations.

2. Materials and methods

2.1. Virus production and precipitation by polyethylene glycol and NaCl

Bacteriophage phi6 [2] was cultured and purified as described previously [17]. The host bacterium

Pseudomonas syringae HB10Y was grown in L-broth (LB) at 28 °C with aeration. Logarithmically

growing cells were infected by using the multiplicity of infection (MOI) of 10. Cell culture turbidity

was followed at the wavelength of 550 nm (Chlormic, JP Selecta S.A., Barcelona, Spain). After

lysis, the infected culture was treated by DNase I (37 °C, 30 min, 50 μg/mL; Sigma-Aldrich). Cell
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debris was removed by centrifugation (Sorvall rotor F12, 8000 rpm, 20 min, 4 °C). The resulting

supernatant is referred as phi6 lysate. Viruses were precipitated from the lysate using 10% (w/v)

polyethylene glycol (PEG) 6000 and 0.5 M NaCl and collected by centrifugation as above.

Precipitated viruses were resuspended in 20 mM potassium phosphate [pH 7.2], 1 mM MgCl2, in

approximately 1/100 of the initial volume. The resulting virus sample is referred as PEG-phi6.

2.2. Virus purification by ultracentrifugation

Viruses were purified in 5−20% (w/v) sucrose gradient by rate zonal centrifugation (Sorvall rotor

AH629, 24 000 rpm, 50 min, 15 °C). Sucrose solutions were prepared in a buffer containing 10 mM

potassium phosphate [pH 7.2] and 1 mM MgCl2. The light scattering virus zones were collected

and concentrated by differential centrifugation (Sorvall rotor T647.5, 32 000 rpm, 3 h, 10 °C). The

virus preparation resuspended in 20 mM potassium phosphate [pH 7.2], 1 mM MgCl2 (~1/300-

1/5000 of the initial lysate volume) is referred as 1×phi6. To obtain phi6 preparation purified to

homogeneity (referred as 2×phi6), virus-containing zones collected from the rate zonal

centrifugation were further purified by equilibrium centrifugation in 20–70% (w/v) sucrose gradient

(Sorvall rotor AH629, 24 000 rpm, 16 h, 15°C). Viruses were collected and concentrated by

differential centrifugation as described above.

2.3. AF4

AF4 experiments and data collection were performed by using the instrumentation and software

(Postnova Analytics, Landsberg, Germany) described previously [7]. Separations were performed

at 22 °C in a channel containing a 350 µm spacer. A regenerated cellulose (RC) membrane with a

molecular weight cut-off (MWCO) value of 100 kDa (Z-MEM-AQU-529, Postnova) was used. The

channel flow was monitored by UV-detection at 280 nm. The injected volume was adjusted to 1 mL

with the virus-specific buffer (20 mM phosphate buffer [pH 7.2], 1 mM MgCl2) that was also used as

the mobile phase in AF4. The samples studied were the phi6 lysate, PEG-phi6, and 1×phi6.

AF4 was performed by utilizing the linear cross-flow (Vc) elution program as we previously used it

successfully for the purification of other similar-sized viruses [7, 8]. The channel flow (Vout) was 0.2
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mL/min. The focusing step of 10 min with 1 mL/min focus flow (Vf) and 1 mL/min Vc was used. In

the elution phase, Vc decayed linearly from 1 mL/min to 0.1 mL/min in 25 minutes. Vc of 0.1 mL/min

was continued until the UV-signal reached the baseline. Between runs, the channel was rinsed

with the mobile phase without Vc. Fractions of 0.8 mL were collected starting from the beginning of

the elution (10 or 15 min onwards), stored at 4 °C until the off-line analyses were conducted (see

2.5.).

Multi-angle light scattering (MALS) and dynamic light scattering (DLS) data was collected using a

Vout of 0.5 ml/min for elution. The focusing step was 5 min. A 25 min linear Vc gradient was applied

starting from 1.0 mL/min to 0.28 mL/min, followed by a 15 min exponential step to a final Vc rate of

0.05 mL/min. The radius of gyration (Rg) was calculated from the measured MALS signal

intensities by applying an intensity distribution function P(ϑ) (sphere fit model) as previously

described [7]. The geometric diameter (Dgeo) was calculated from the obtained Rg-values using the

formula Dgeo=2×Rg / 0.775 that is suitable for particles with spherical shape. The radius of hydration

(Rh) was calculated from the measured DLS signal intensities using the cumulative fit method [18].

2.4. Monolithic chromatography

Chromatography using quaternary amine (QA), convective interaction media (CIM) 1 mL monolithic

anion exchange column (BIA Separations) was performed at the flow rate of 1 mL/min. Column

was washed, regenerated, and stored as recommended by the manufacturer. The buffer (20 mM

phosphate [pH 7.4], 1 mM MgCl2) and the virus sample (1×phi6) were filtered through 0.22 μm

polyethersulfone (PES) membrane filters (Thermo Scientific) before use. After loading the sample,

column was washed with 20 column volumes to remove unbound material. Elution was performed

using 30 column volumes of buffer and a linear 0–1.5 M NaCl gradient. Fractions (1 mL) were

collected starting from the beginning of the elution gradient.

2.5. Analytical methods

Proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) using 15% (w/v) acrylamide in the separation gel [19] and Coomassie staining. Nucleic
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acids were visualized by ethidium bromide staining of the stacking gel. When necessary, proteins

were concentrated by 10% (v/v) trichloroacetic acid (TCA) precipitation (30 min on ice) and

centrifugation (Eppendorf centrifuge 5415D, 13,000 rpm, 30 min, 4 °C). Purified 1×phi6 or

PageRuler Prestained Protein Ladder (#26616, Thermo Scientific, Fair Lawn, NJ, USA) were used

as molecular mass markers. Gels were documented using ChemiDoc (Bio Rad, Hercules, USA).

Plaque assay was used to determine the number of infectious viruses (plaque forming unit, PFU) in

the samples. Protein concentrations were measured using the Bradford assay [20] and a

microplate reader (Thermo Scientific, Fair Lawn, NJ, USA), with bovine serum albumin (BSA) as a

standard or by measuring A280 values by Eppendorf BioPhotometer (Hamburg, Germany). Specific

infectivities of the virus samples (PFU/mg of protein or PFU/A280) were calculated by using results

from plaque assay, Bradford assay and photometry. Recovery of the protein amount or infectious

viruses was calculated by formulas:  [100%*(∑A280, fractions)/A280,input], [100%*(∑μg proteinfractions)/μg

proteininput] or [100%*(∑PFUfractions)/PFUinput].
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3. Results

3.1. Precipitation and ultracentrifugation -based purification of phi6

Phi6 was purified with the established PEG-precipitation and ultracentrifugation-based method [35]

to produce input samples for purification using AF4 and to provide reference materials for

comparison of these two methods. As expected, the specific infectivity of the ultracentrifugation-

purified samples increased as the purification proceeded and the amount of host and growth

medium-derived impurities decreased (Table 1). In the starting material (phi6 lysate), the specific

infectivity was ~9×1011 PFU/mg of protein, which was improved ~3-fold to ~3×1012 PFU/mg of

protein after PEG-precipitation. The amount of infective PEG-phi6 viruses was ~80% of that of the

lysate. PEG-phi6 was further purified by rate zonal and concentrated by differential

ultracentrifugation. The recovered 1×phi6 had a specific infectivity of ~1×1013 PFU/mg of protein,

i.e. the specific infectivity improved by ~3-fold from that of PEG-phi6. Because A280 values contain

also the absorption derived from nucleic acid components, the A280-based specific infectivity value

for 1×phi6 was lower, ~1×1012 PFU/A280, respectively (Table 1). For PEG-phi6 and 1×phi6 the

corresponding specific infectivity values improved 25- and ~6-fold, respectively. The recovery of

infective 1×phi6 viruses was ~30% of that of the lysate. Precipitation and preparative

ultracentrifugation purification to near homogeneity (1×phi6) took ~1.5 working days and yielded ~7

mg of virus per liter of lysate (Table 1).

The analysis of the purification process by SDS-PAGE (see input samples in Fig.1) revealed that

the amount of impurities declined after each purification step, whereas phi6 proteins were

enriched. Phi6 virion contains 11 structural protein types with sizes ranging from 4.3 to 85 kDa [21].

3.2. Applicability of AF4 in the purification of phi6

Phi6 lysate, PEG-phi6, and 1×phi6 were next fractionated with AF4. For the lysate, the void peak

(V0) was followed by three peaks, whereas the fractograms of PEG-phi6 and 1×phi6 had two and

one major peaks, respectively (Fig. 1 A). Phi6 eluted at the end of the cross-flow gradient as a

single peak that contained the majority of infective viruses. For phi6, the recovery of infectious
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viruses in the best fractions (No. 7; 35-39 min) were ~95% and ~65% of the input sample for lysate

and PEG-phi6, respectively (Table 2). For 1×phi6, the corresponding best fraction contained ~35%

of the infectious input virus, but comparable virus amounts were present in fraction eluting at 39-43

min (Fig.1 B). Thus, by pooling the virus-containing AF4 fractions, the yields could be further

improved, yet the virus concentration might become more dilute (Fig. 1 B, Table 2). The

corresponding yields of the best fraction for total protein were lower than in the input samples,

indicating successful removal of impurities (Table 2).

The obtained specific infectivity was ~1×1012 PFU/A280 and ~7-8×1012 PFU/mg of protein,

irrespectively of the input sample used (Table 2). Based on PFU/A280 values, the highest ~200-fold

increase in specific infectivity was obtained for the AF4 purified lysate. The corresponding

improvement in specific infectivity was ~5-fold for PEG-phi6 and ~2-fold for 1×phi6, respectively.

Repeated experiments performed with a new biological batch of input samples resulted in

comparable recovery of infectious viruses and improvement in purity (data not shown).

SDS-PAGE analysis of AF4 purified lysate revealed that the first two peaks contained a variety of

host proteins (Fig. S1 A). Based on our previous studies, proteins ranging in size from 100 to 670

kDa cannot be separated with the applied flow settings and they elute as a single peak in the

beginning of the cross-flow elution gradient [7] as also observed here (Fig. 1 A, Fig. S1 A, B). The

virus peak was enriched with virus-specific proteins (Fig. 1 C, Fig. S1).

The size distribution of the components in the phi6 input samples was analyzed with an AF4

instrument that was coupled with MALS and DLS detectors and by applying Vout of 0.5 mL/min (Fig.

2, Fig. S2). Both the MALS and DLS signals indicated that the particles present in the virus peak

were relatively homogenous in size (Fig. 2). The corresponding intensity distribution profiles

showed good agreement with the applied spherical model (Fig. S3). The analysis of the purified

1×phi6 virus preparation resulted in a fractogram, where the system peak (~7 min) was followed by

the virus peak (25-35 min) (Fig. 2B). The obtained estimates for Rg (MALS) and Rh (DLS) at the

virus peak maxima were ~27 nm and ~81 nm, respectively (Table 3). The corresponding Rg and Rh

estimates for the PEG-phi6 were ~28 nm and ~80 nm, and for the phi6 lysate ~30 nm and ~90 nm,
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respectively (Fig. 2, Table 3). However, the DLS-signal intensities for phi6 lysate were low and

consequently error-prone. Conversion of the obtained Rg into geometric diameter yielded estimates

of ~71, 72, and 77 nm for the particles at virus peak maxima of 1×phi6, PEG-phi6 and phi6 lysate

(Table 3), respectively. Previously reported 85 nm diameter for phi6 is based on analytical

ultracentrifugation and ~70 nm when analyzed by cryo-electron microscopy [22].

Light scattering detectors revealed larger complexes eluting after the virus peak when phi6 lysate

and PEG-phi6 were analysed (Fig. S2). These complexes were not obvious in the UV fractograms

(Fig. 2). The obtained Rg range for such complexes was ~68-494 nm and ~50-180 nm, respectively

(Fig. 2). Although the UV and MALS detectors only showed a single major peak for 1×phi6 in the

fractograms (Fig. 2B, Fig. S2), the light scattering measurements revealed that some larger sample

components with Rg range of ~40-85 nm eluted after the main virus peak as well.

3.3. Applicability of QA monolithic matrices in concentration of purified phi6.

Virus containing fractions may need to be combined when pursuing the maximal yield of viruses.

This creates a need to concentrate the sample. AF4 purified phi6 lysate resulted in specimen with

purity comparable to 1×phi6, but with relatively low virus concentration (Table 2). We analyzed the

possibility to concentrate AF4 fractions by using QA monolithic columns. The overall applicability of

QA monolithic column to bind phi6 was first evaluated with highly purified 2×phi6 preparation. The

column bound phi6 efficiently as less than 0.001% of the infective particles (PFUs) and no protein

were detected in the flow through (data not shown).

Next a 10 mL sample of phi6 containing 0.67 mg of protein and 1.6×1012 PFUs was used as an

input. Two major peaks were observed (Fig. 3 A). Infective viruses and most protein eluted in the

first peak at 0.35-0.55 M NaCl in 4 mL volume. This peak contained 0.34 mg of protein, 9.5×1011

PFUs, and ~60% of infective viruses. The specific infectivity (~3×1012 PFU/mg of protein) was

comparable with that of the input, showing that the integrity of virions was not affected. However,

only 1.5-fold concentration of the virus sample was obtained.
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Based on SDS-PAGE analysis, the protein pattern typical for phi6 was observed in the first peak.

The virus co-eluted with few impurities (Fig. 3 D), but some were also successfully removed (see

fraction 5, Fig. 3 D). The second peak had high intensity (Fig. 3A) and low protein content (Fig. 3

B, D). Ethidium bromide staining of the SDS-PAGE stacking gel showed that it contained nucleic

acids that presumably derived from phi6 genomic dsRNA (data not shown). Thus, QA columns

successfully removed the free dsRNA and resulted in further purification of the sample.

4. Discussion

The increasing demand for highly purified viruses, VLPs, and their sub-complexes in basic

research, as well as in applications such as development of virus vectors, vaccinations, and

nanomaterials, has created a need for more efficient downstream processing of produced particles.

The choice of purification method depends on the intended use of the purified viruses and on the

properties of the virus of interest. Commonly used methods include precipitation, ultrafiltration,

ultracentrifugation, dialysis, and various chromatography techniques [23]. In many cases, methods

are combined to reach the best outcome. We compared two methods for purification of enveloped

bacteriophage phi6.

Phi6 is traditionally purified from the infected culture supernatant through PEG-NaCl precipitation

and rate zonal ultracentrifugation [17]. This method results in ~7 mg of highly purified infective

viruses from 1 L of lysate with an average yield of ~30% in ~1.5 days. Specific infectivity is

improved ~140-fold to ~1×1013 PFU/mg of protein. However, obtaining such samples is laborious,

time consuming, and demands quantities of starting materials as well as simultaneous access to

multiple ultracentrifuges. The size-based AF4 fractionation and passage of small components

through the accumulation wall reduced impurities in phi6-containing fractions and led to increased

specific infectivity that was similar, ~7-8×1012 PFU/mg of protein, for both the phi6 lysate and PEG-

phi6 (Table 2), and comparable to the values obtained by PEG-precipitation and ultracentrifugation

(Table 1) [35]. However, the obtained recoveries of infectious viruses from AF4 purification of phi6

lysate and PEG-phi6 were ~2-3-fold higher. Thus, our results support the previous reports

indicating that the RC membranes are suitable for a wide repertoire of viruses with different
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biophysical properties [7, 8, 12, 24]. When comparing the obtained results to our previous work on

AF4 purification of bacteriophage PRD1 (~63 nm) having a proteinaceous outer surface [7], the

yield of phi6 was approximately twice higher (~100%, ~40 µg/mL of lysate; assuming that 1 A280

unit of purified phi6 corresponds to 0.14 mg of protein, Table 1) than it was with PRD1 (~60%, ~24

µg/mL of lysate) [7]. Furthermore, no significant dilution of the phi6 lysate occurred contrary to the

7-fold dilution when PRD1 was purified by AF4 when the 350 μm spacer was used. In both cases,

the virus purification straight from the crude cell lysate resulted in the highest improvement in

specific infectivity of the three input samples analysed. For halophilic viruses, AF4 purification

using high total ionic strength mobile phase yielded ~40-50% of infectious viruses when lysates or

cleared cell supernatants were utilized [8].

A single 1h AF4 purification from 1 mL of the lysate yielded ~40 µg of phi6. Thus, obtaining

milligram amounts of virus would require ~25 runs. We have previously used 5 mL injections to

purify viruses from culture supernatants [8]. By using such injection volumes for phi6 lysate,

milligram amounts of purified virus could be achieved in ~5 h. Since AF4 can be run in a semi-

preparative mode with auto sampler and semi-preparative channel, larger scale purifications could

be achieved by utilizing automatic, repeated injections and larger volumes of lysate. In general, the

higher yields of infective viruses obtained from AF4 purification reduce the amount of starting

materials needed. With phi6, an equal milligram amount of purified viruses can be reached by

using six times less starting material than used for the ultracentrifugation-based purification.

AF4 coupled with MALS detector has been shown to provide an efficient method to separate and

quantitate influenza virus particles within allantoic fluids of infected eggs and supernatants of

infected cell cultures [24]. Here the light scattering data provided important information on the

quality of purified enveloped viruses. MALS analysis indicated that the size range of particles in the

virus peak of phi6 lysate and PEG-phi6 was larger than in the virus peak of 1×phi6. In addition,

MALS revealed that the larger sample components were efficiently excluded from AF4 purified

virus by performing fractionation at Vout of 0.5 mL/min. In general, virus purification is always
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balancing between yield and purity, but careful fractionation leads in greater homogeneity of the

final purified virus specimen.

Phi6 virions with negative surface charge [25] bound effectively to the strong QA anion exchange

column. For other enveloped viruses and VLPs, QA columns have been used for purification of

human immunodeficiency virus type 1 (HIV-1) gag VLPs and rubella viruses from infected culture

supernatants with ~40% and ~90% yields, respectively [26, 27]. Chromatography of phi6 produced

~0.3 mg of highly infective viruses from 10 mL of input with ~60% yield in ~30 min. Also nucleic

acids were removed efficiently. AF4 purification of bacteriophage PRD1 coupled with a monolithic

column resulted in full recovery of ~5-fold concentrated sample with very high purity [7]. However,

the obtained 1.5-fold improvement in the phi6 concentration was possibly due to the small amount,

~0.7 mg, of the input sample used, since the dynamic binding capacity of QA column is higher, ~5

mg of bacteriophage PRD1 [28] and according to manufacturer 20 mg of BSA.

Viruses can nowadays be produced in high quantities in bioreactors, but the removal of product-

and process-derived impurities is the challenge. Therapeutic applications of viruses, including

utilization of viral vectors and vaccine development, are rapidly growing fields of research that have

strict safety standards and requirements of high level of sample homogeneity. Need for new

efficient purification methods is obvious. We have previously shown the applicability of AF4 in

purification of a membrane vesicle -like pleolipovirus HRPV-1 (~44×55 nm); a spindle-shaped virus

His1 (~44×77 nm) that has a lipid-modified major capsid protein; two non-enveloped icosahedral

viruses PRD1 and HCIV-1 (~63 and 70 nm), and a tailed virus HVTV-1 (head ~76×96 nm, tail ~73

nm) [7, 8]. This study added the enveloped virus phi6 (~70 nm) to the list of viruses that are

amenable for AF4 purification. The benefits of AF4 are the following: i) one-step AF4 purification of

viruses is rapid and highly repeatable, ii) the use of virus specific buffer and the omission of the

stationary phase results in high yields of infectious viruses, iii) AF4 purification can be scaled up,

iv) coupling AF4 with in-line detectors provides real-time information on the quality and quantity of

the sample, and v) channel dimensions, membrane materials and the elution program can be

tailored for different samples and purposes, making AF4 highly versatile. However, the elution of
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the virus at the end of the cross-flow gradient may be problematic for input samples that contain

aggregates or other large sample components. For such samples, a thinner spacer or higher Vout

would promote their separation. For dilute input samples increased input sample volumes or pre-

concentration steps might be necessary to obtain reliable detector reads and fractions with

adequate virus concentrations. In conclusion, AF4 purification of viruses is an attractive alternative

with great potential to meet high purity standards of virus research and applications. The

similarities between phi6 and enveloped animal viruses, such as influenza virus, suggest that the

results obtained here could be used as guidelines and a starting point in the purification of

enveloped animal viruses as well.
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Table 1. Precipitation and preparative ultracentrifugation based purification of phi6a

phi6 lysate PEG-phi6 1×phi6

Virus amount (PFU) 4.9 x 1014 4.0 x 1014 1.3 x 1014

Virus yield (%) 100 84 27

Total A280 units 48733 1590 93

A280 yield (%) 100 3.3 0.2

Specific infectivity
(PFU/A280)

9.8 x 109 2.5 x 1011 1.4 x 1012

Protein (mg) 554 142 13.4

Protein yield (%) 100 26 2

Specific infectivity
(PFU/mg protein)

8.8 x 1011 2.8 x 1012 9.6 x 1012

a Data shown as an average of three biological batches obtained from 2 l of lysates per purification.
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Table 2. AF4 purification of phi6 lysate, PEG-phi6 and 1×phi6a.

phi6 lysate PEG-phi6 1×phi6

Input AF4:
peak fraction

7
(35-39 min)

AF4:
pooled fractions

6-8
(31-43 min)

Input AF4:
peak fraction

7
(35-39 min)

AF4:
pooled fractions

7-9
(35-47 min)

Input AF4:
peak fraction

7
(35-39 min)

AF4:
pooled fractions

7-9
(35-47 min)

Volume (ml) 1.0 0.8 2.4 1.0c 0.8 2.4 1.0c 0.8 2.4

Virus amount

(PFU)

1.9x1011 1.8x1011 2.7×1011 2.3x1012 1.5x1012 2.3×1012 9.1x1012 3.3x1012 6.4×1012

Virus yield (%) 100 95 142 100 65 100 100 36 70

Total A280 units 32b 0.17 0.27 9.0 1.2 2.1 9.9 2.4 5

A280 yield (%) 100 0.53 0.8 100 13.3 16 100 24 51

Specific infectivity

(PFU/A280)

5.9x109 1.1x1012 1.0×1012 2.6x1011 1.3x1012 1.1×1012 9.2x1011 1.4x1012 1.3×1012

Protein (mg) 0.3 n.d. n.d. 1.25 0.18 0.31 1.43 0.48 0.98

Protein yield (%) 100 n.d. n.d. 100 14 25 100 34 69

Specific infectivity
(PFU/mg protein)

6.3×1011 n.d. n.d. 1.8x1012 8.3x1012 7.4×1012 6.4x1012 6.9x1012 6.5×1012

a Input samples, AF4 fractions having the highest number of infectious viruses and pooled fractions of virus peak were compared. Results are calculated from three technical
repetitions.
b Buffer used as a blank. Total A280 unit value for the non-inoculated LB medium was 15. The corresponding protein concentration measured by Bradford was ~30 μg/ml.
c Input samples were diluted in buffer: PEG-phi6: 100 μl sample + 1000 μl buffer; 1×phi6: 50 μl sample + 1050 μl buffer.
n.d. not determined: protein concentration below detection limit.
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Table 3. Radius of gyration, Radius of hydration and geometric diameter for AF4 fractionated phi6 samples.

Sample Elution time
(min)

Rg range
(nm)a

Rg at peak
maxima

(nm)a

Rh range
(nm)a

Rh at peak
maxima

(nm)a

Geometric
diameter at

peak maxima
(nm)b

phi6 lysate 28-35.5 29-38 ~30 15-344* ~90* ~77

PEG-phi6 28.7-37.5 27-39 ~28 67-90 ~80 ~72

1×phi6 26.5-32.5 27-28 ~27 47-240 ~81 ~71

a See Fig. 2 and Fig. S2 for UV, MALS and DLS data
b Geometric diameter converted form Rg

*Low signal intensity, might be inaccurate



Figures and figure legends: Lampi et al. 2018 J. Chrom B

Figure 1. AF4 fractionation of phi6 lysate, PEG-phi6 and 1×phi6. (A) Fractograms obtained from the

purification of different input samples. The UV-detector signal (solid lines) for phi6 lysate and PEG-

phi6 is shown on the left y-axis and that of 1×phi6 on the right y-axis. Dashed line represents the

cross-flow gradient (additional right y-axis). (B) Virus titers (bars) and protein concentrations (lines)

measured from input samples and fractions eluting from 31 to 47 min. Coloring is the same as in panel

(A). (C) SDS-PAGE analysis of input samples and fractions containing the highest number of

infectious viruses. Proteins were precipitated from 540, 220, or 40 μl of fractions representing AF4



purified phi6 lysate, PEG-phi6, or 1×phi6. M stands for molecular weight marker (kDa). Major

structural proteins P1-P9 of phi6 are indicated.

Figure 2. AF4-MALS-DLS analysis of phi6 samples. Rg was calculated from MALS data applying

sphere fitting method and Rh from DLS data. (A) UV-fractogram for phi6 lysate (solid blue line, left y-

axis), Rg (solid black line, right y-axis) and Rh (grey circles, right y-axis). (B) UV-fractograms for PEG-

phi6 (thin yellow line) and 1×phi6 (thin orange line). Rg (right y-axis) is shown with thick solid lines in

colors of the corresponding UV fractograms. Rh (right y-axis) for PEG-phi6 is shown with black circles

and for 1×phi6 with grey circles. Vout applied in the analysis was 0.5 mL/min. Cross-flow gradient

(additional left y-axis) is presented with dashed line in both panels.



Figure 3. Concentration of phi6 by monolithic anion exchange. (A) Chromatogram for 1×phi6 using

QA column. Solid line represents the absorbance at 280 nm and dashed line shows the NaCl gradient.

(B) Protein concentrations in 1 mL fractions. (C) Virus titers of analysed fractions. Titers of fractions

marked with asterisks were not determined, (D) Analysis of protein content of the input sample

(marked with S) and fractions. Proteins were analysed from 250 μl of the corresponding fractions.

Major structural proteins of phi6 are marked as P1-P9.
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Fig. S1. Protein content of AF4 fractionated ɸ6 lysate, PEG-ɸ6, and 1×ɸ6.

Fig. S2. MALS measurement during AF4 reveals the presence of large sample components.

Fig. S3. Fitting the MALS-signal to the sphere model.
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Fig. S1. Protein content of AF4 fractionated ɸ6 lysate (A), PEG-ɸ6 (B), and 1xɸ6 (C). Corresponding
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