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Mutations in the thyroid hormone transporter monocarboxylate transporter  8 (MCT8) result in 
MCT8 deficiency, characterized by severe intellectual and motor disability. The MCT8 protein is 
predicted to have 12 transmembrane domains (TMDs) and is expressed as monomers, homodimers, 
and homo-oligomers. This study aimed to delineate the mechanism of MCT8 oligomerization. 
Coimmunoprecipitation studies demonstrated that lithium dodecyl sulfate effectively disrupts MCT8 
protein complexes, indicating the involvement of non-covalent interactions. Successive C-terminal 
truncations of the MCT8 protein altered the oligomerization pattern only if introduced in the 
N-terminal half of the protein (TMD1-6). The truncation at extracellular loop 1 (E206X) still allowed 
homodimerization, but completely abrogated homo-oligomerization, whereas both were preserved 
by the C231X mutant (at TMD2), suggesting that the minimally required oligomerization sites are 
located proximal of Cys231. However, mutant constructs lacking the intracellular N-terminus or 
TMD1 and 2 were still capable to form homo-oligomers. Therefore, other domains distal of Cys231 
are also likely to be involved in the formation of extensive multidomain interactions. This hypothesis 
was supported by structural modeling. Despite multiple approaches, MCT8 oligomerization could not 
be fully abrogated unless a substantial part of the protein was removed, precluding detailed studies 
into its functional role. Together, our findings suggest that MCT8 oligomerization involves extensive 
noncovalent interactions between the N-terminal halves of MCT8 proteins. Most mutations identified 
in patients with MCT8 deficiency have only minor effects on MCT8 oligomerization and, thus, im-
paired oligomerization does not appear to be an important pathogenic mechanism.
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Normal brain development is highly dependent on adequate intracerebral thyroid hormone 
(TH) concentrations. Monocarboxylate transporter 8 (MCT8) plays a crucial role in the 
maintenance of TH homeostasis in the brain [1]. Mutations in the SLC16A2 gene, encoding 
MCT8, result in MCT8 deficiency, also known as Allan-Herndon-Dudley syndrome (AHDS), 
characterized by severe intellectual and motor disability, and abnormal thyroid function 
tests [2, 3]. Many inactivating mutations have been reported to date, with different under-
lying pathogenic mechanisms [4].
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The MCT8 protein is predicted to consist of 2 nearly symmetrical parts composed of 
6 transmembrane domains (TMDs), interconnected by a large intracellular loop. The 
C-terminus and N-terminus both are predicted to be located intracellularly [5, 6]. The MCT8 
protein is expressed as a monomer, homodimer, and possibly also as a homo-oligomer, in 
transient and stable overexpression systems [7, 8]. Recently it has been shown that MCT8 
dimers are present in a cellular context, and it was suggested that missense mutations in 
MCT8 differentially affect oligomerization potency [9]. Modulation of the MCT8 molecular 
surface by these mutations has been proposed as the mechanism accounting for this finding. 
Nevertheless, none of these mutations completely abrogated MCT8 oligomerization [9]. 
Different protein oligomerization mechanisms have been described, including the formation 
of covalent (eg, disulfide bonds), electrostatic (eg, ionic bonds and hydrogen bonds) or hydro-
phobic interactions, or mediation of monomer-monomer contacts through ions (Ca2+ or Mg2+) 
or small molecules (eg, [10-16].). Conventional immunoblot studies have shown that MCT8 
oligomers are at least partially resistant to the denaturing effects of the chaotropic agent 
sodium dodecyl sulfate (SDS) and the reducing effects of dithiothreitol (DTT), suggesting 
that MCT8 oligomerization is not solely mediated by (weak) noncovalent interactions or 
disulfide bonds [7]. Indeed, all cysteine (Cys)  residues within MCT8 can be substituted by 
Alanine (Ala) without affecting its oligomerization [7, 17].

Despite these studies, the exact mechanism involved in MCT8 oligomerization and 
the domain(s) of the MCT8 protein involved in this process remain to be characterized. 
It is furthermore unknown whether the monomers (and dimers) detected on conventional 
immunoblots arise from the disruption of oligomeric complexes or solely reflect the quater-
nary protein organization inside the cell. Lack of this knowledge precludes further studies 
into the relevance of MCT8 oligomerization for transporter function. It is also unclear whether 
specific naturally occurring mutations in MCT8 may abrogate MCT8 oligomerization and to 
what extent this contributes to the pathogenicity of such mutations.

We aimed to further delineate the MCT8 oligomerization mechanism and identify 
the domains involved in this process. Because MCT8 is able to form homo-oligomers, 
we postulated that each MCT8 protein should be able to interact with at least 2 other 
MCT8 proteins and should therefore contain at least 2 distinct domains that are involved 
in the formation of monomer-monomer contacts. Our findings indeed support that MCT8 
oligomerization is mediated through extensive hydrophobic and electrostatic interactions 
between distinct domains within the N-terminal half of the protein, composed of multiple 
TMDs and putative loops. Despite multiple approaches, MCT8 oligomerization could not be 
fully abrogated unless a substantial part of the protein was removed, preventing studies 
into its functional role. Thus, our studies provide novel insights on the quaternary struc-
tural organization of MCT8.

1.  Materials and Methods

A.  Materials

Unlabeled iodothyronines, DTT and EDTA, were obtained from Sigma-Aldrich. [125I] 
3,5,3′-triiodothyronine (T3) and [125I] thyroxine (T4) were synthesized as previously described 
[18]. X-tremeGENE 9 transfection reagent was obtained from Roche Diagnostics. An over-
view of all commercially available primary and secondary antibodies (Abs) is provided in 
Supplemental Table 1 [19]. Purified polyclonal rabbit antiserum against the C-terminus of 
human MCT8 (designated 1306, RRID:AB_2661880 [20]), and human MCT10 (designated 
1758, RRID: AB_2661879 [21]) have been described previously [22, 23].

B.  Plasmids

Cloning of wild-type human MCT8 (WT MCT8) complementary DNA (cDNA) into pcDNA3, 
human WT MCT10 cDNA into pcDNA3, and human µ-crystallin (CRYM) into pSG5 has been 
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described previously [22, 23]. CRYM is a cytosolic TH-binding protein that greatly reduces 
the efflux of TH, thereby increasing the net cellular TH accumulation. The WT MCT8 con-
struct used in the present studies contains the coding sequence for the short MCT8 isoform, 
starting at the second translational start site (MCT875-613). The N-terminally Flag-tagged 
human MCT8 (Flag-MCT8) construct was cloned into pcDNA3 after polymerase chain re-
action amplification of WT MCT8 cDNA using forward primers containing the Flag-tag se-
quence (Supplemental Table 2) [19]. The cloning of N-terminally Myc-tagged MCT8 has been 
described previously [24]. We introduced the following mutations into the nontagged WT 
MCT8 construct using QuikChange site-directed mutagenesis (Stratagene) according to the 
manufacturer’s protocol: E206X, C231X, R245X, F256X, Q335X, S448X, Q520X, and C546X. 
The locations of these mutations are indicated in Supplemental Fig. 1 [19]. N-terminally 
truncated MCT8 constructs were generated by substituting the native translational start 
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Figure 1.  A, Coimmunoprecipitation studies on lysates derived from COS-1 cells transiently 
expressing Flag-MCT8 (lanes 2 and 7), Myc–monocarboxylate transporter 8 (MCT8) (lanes 
3 and 8), or both tagged constructs (lanes 4 and 9). To exclude that the homodimerization 
results from an assay artifact, sonicated lysates derived from cells separately expressing 
Flag-MCT8 or Myc-MCT8 were mixed and incubated for 30 minutes on ice, prior to the 
immunoprecipitation (IP) step (lanes 5 and 10). COS-1 cells transfected with pcDNA3 empty 
vector (EV) were taken along as a negative control (lanes 1 and 6). Lysates were incubated in 
lithium dodecyl sulfate (LDS) loading buffer without dithiothreitol. The mouse monoclonal 
M2 Flag antibody was used for Flag-MCT8 detection, and rabbit monoclonal anti-Myc for 
Myc-MCT8 detection. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used to 
demonstrate the absence of nonspecific proteins in the IP sample. Note that Myc-MCT8 was 
detected in the IP sample only when coexpressed with Flag-MCT8 (lane 9). MCT8 monomer is 
indicated with an arrow and MCT8 dimer and oligomers with an arrowhead. B, Native PAGE 
on lysates of COS-1 cells transiently transfected with pcDNA3 empty vector (EV) or wild-type 
MCT8. A total of 25 µg of total lysate was either incubated in the presence of LDS-containing 
NuPAGE sample loading buffer at 70 °C for 10 minutes (+LDS) or kept at room temperature 
in native sample loading buffer (final concentrations: 31.25 mM Tris-HCl (pH 6.8), 12.5% 
glycerol, 0.5% bromophenol blue) in the absence of LDS (–LDS, native conditions) prior to 
separation under native conditions (1×PAGE buffer). MCT8 detection was performed with the 
N-terminal MCT8 antibody (3353) and visualized with IRDye680 goat-antirabbit secondary 
antibody. CT, cotransfected; EV, empty vector; ML, mixed lysates.
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site by an Ala (resulting construct will be referred to as MCT8M75A). Next, downstream trans-
lational start sites were reintroduced, resulting in the N-terminally truncated constructs 
MCT897-613 and MCT8147-613. All used primer pairs are listed in Supplemental Table 2 [19]. 
Sanger sequencing was performed to confirm the presence of the introduced mutations.

To generate a construct lacking TMD1 and 2 (referred to as delTMD1/2), amino acids 170 
to 234 were removed from the WT MCT8 cDNA construct using a unique EcoNI restriction 
site located at nucleotide position 503 to 513 and a second EcoNI site that was introduced 
by site-directed mutagenesis at position 697 to 707 (primers in Supplemental Table 2) [19]. 
After EcoNI digestion and gel purification, (QIAquick Gel Extraction Kit; Qiagen) the linear 
cDNA lacking nucleotides 507 to 701 was religated using T4 ligase (Roche). The deletion 
of C507-T701 was confirmed by DNA sequencing (Baseclear). A Flag-tagged variant of this 
construct was generated as described earlier.

An MCT1/8 chimera was generated by amplification of the cDNA sequence encoding the 
5′UTR, translational start-site and the first 9 amino acids (covering the small intracellular 
N-terminal domain) of MCT1 from the pCMV-Sport6_MCT1 construct (Open Biosystems). 
Hind III and Nhe I restriction sites were added at the 5′ and 3′ end, respectively, using 
primers listed in Supplemental Table 2 [19]. A  fragment of 164 base pairs ranging from 
C502 to C666 was next amplified from the WT MCT8 construct and an Nhe I  site was 
added at the 5′ end (primers in Supplemental Table 2) [19]. A Bam HI restriction site was 
already present within the amplified fragment. Both polymerase chain reaction products 
were first digested with Nhe I, purified, and ligated, resulting in a chimeric MCT1/8 frag-
ment. This fragment was further digested with Hind  III and Bam HI, gel-purified, and 
ligated into a Hind III/Bam HI digested WT MCT8 cDNA construct. The chimeric construct 
was sequenced to confirm proper ligation.

C.  Cell Culture and Transfection

COS-1 African green monkey kidney (CVCL_0223) and JEG-3 human choriocarcinoma 
(CVCL_0363) cells were obtained from ECACC (Sigma-Aldrich) and were cultured in 6- 
or 24-well plates (Corning) in DMEM (Dulbecco’s Modified Eagle Medium)/F12 medium 
(Invitrogen), containing 9% heat-inactivated fetal bovine serum (Invitrogen), 2% Pen/Strep 
(Roche), and 100  nM sodium selenite (Sigma-Aldrich). All transient transfections were 
performed using X-tremeGENE 9, according to the manufacturer’s protocol (Roche). We 
have previously shown the absence of differences in transfection efficiency between WT and 
mutant MCT8 constructs [25].

D.  Thyroid Hormone Uptake Experiments

For TH uptake studies, COS-1 or JEG-3 cells were seeded in 6-well plates and cotransfected 
in duplicate at 75% confluence with indicated amount of pcDNA3 empty vector (EV) control, 
or indicated amount of WT or mutant MCT8 and 500 ng CRYM or pcDNA3 EV. Two days 
after transfection, cells were washed with incubation buffer (Dulbecco’s phosphate-buffered 
saline containing 0.1% D-glucose and 0.1% bovine serum albumin) and subsequently 
incubated for 30 minutes at 37 °C in incubation buffer containing 1 nM unlabeled T3 or T4 
and 5 × 105 cpm [125I]T3 or [125I]T4, respectively. After incubation, cells were briefly washed 
with incubation buffer and lysed with 0.1 M sodium hydroxide. The amount of radioactivity 
in the lysates was measured with a gamma counter.

E.  Coimmunoprecipitation Studies

COS-1 cells cultured in 6-well plates were transfected with 500 ng of indicated constructs. 
Lysates were prepared 48 hours after transfection in immunoprecipitation (IP) buffer 
(50 mM Tris-HCl, 150 mM NaCl, 10 mM EDTA, 1% Triton-X-100) containing protease in-
hibitor cocktail (Roche) and incubated on ice for 30 minutes. Lysates of 4 wells per condition 
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were pooled, sonicated on ice, and centrifuged at 16.100 g for 20 minutes to remove nuclear 
debris. A fraction of the supernatant was saved as an input sample, whereas the remaining 
fraction was incubated overnight at 4 °C with pre-equilibrated mouse monoclonal M2 anti-
Flag beads. After 3 washes with IP buffer, Flag-MCT8 protein complexes were eluted using 
the M2 Flag peptide (Sigma-Aldrich) in IP buffer according to the manufacturer’s protocol. 
IP eluate and input lysate (20 µL each) were subjected to immunoblotting as described in 
the following section.

F.  Immunoblotting

For immunoblots on total cell lysates, JEG-3 and COS-1 cells were cultured in 6-well plates 
and transfected with 500 ng WT or mutant MCT8 (unless indicated otherwise). Two days 
after transfection, cells were rinsed once with Dulbecco’s PBS, collected in a 100 mM sodium 
phosphate buffer containing 2 mM EDTA (P100E2, pH 7.2), and sonicated on ice. Protein 
levels were measured using a Bradford assay (BIO-RAD). After heating for 10 minutes at 
70 °C in the presence of NuPAGE 1× lithium dodecyl sulfate (LDS) loading buffer (Thermo 
Scientific) and 10 mM DTT (unless otherwise indicated), 25 µg protein was separated on a 
10% or 4% to 15% gradient mini-PROTEAN TGX Precast Protein Gel (BIO-RAD), blotted 
to polyvinylidene difluoride membranes, and probed as indicated in the figure legends 
with rabbit anti-MCT8 antiserum (directed against the C-terminus) [22], mouse M2 anti-
Flag Ab (RRID: AB_262044 [26]), rabbit anti-Myc Ab (RRID: AB_439680 [27]), rabbit anti-
MCT8 Ab (directed against the N-terminus, RRID: AB_1079343 [28]), or MCT10 antiserum 
[23] (Supplemental Table 1) [19]. Mouse antiglyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) (RRID: AB_2107445 [29]) and/or mouse anti–ZO-1 Ab (RRID: AB_2533147 [30]) 
were used as controls in coimmunoprecipitation (co-IP) studies. IRDye680 goat anti-mouse 
(RRID: AB_10706161 [31]) and IRDye800 goat anti-rabbit (RRID: AB_621843 [32]) Abs 
1:20,000 (LI-COR) were used as secondary Abs. Abs were detected with Odyssey Infrared 
Detection System (LI-COR).

G.  Native Polyacrylamide Gel Electrophoresis

For native polyacrylamide gel electrophoresis (PAGE), cells were cultured as described for 
conventional immunoblotting. Lysates were prepared in P100E2 buffer and sonicated for 
10 seconds on ice, and after addition of native sample loading buffer (final concentrations: 
31.25 mM Tris-HCl (pH 6.8), 12.5% glycerol, 0.5% bromophenol blue), 25 µg was separated on 
a 4% to 15% precast mini-PROTEAN TGX gradient gel (BIO-RAD) under native conditions 
(1× PAGE buffer: 25 mM Tris-base, 192 mM glycine, ~pH 8.3), and further processed as 
described for conventional immunoblots.

H.  Surface Biotinylation Assays

For surface biotinylation assays, cells were cultured on 10-cm dishes and transfected with 
2000 ng of the indicated constructs at 75% confluence. Two days after transfection, surface 
proteins were labeled with sulfo-NHS-biotin (Thermo Scientific) and isolated according to 
previously described methods [6].

I.  Immunocytochemistry

JEG3 cells were cultured on 10-mm glass coverslips coated with poly-D-lysine (Sigma-
Aldrich) and transfected with 250 ng WT or mutant MCT8. After 24 hours, the cells were fixed 
with 4% paraformaldehyde for 20 minutes at 37 °C, permeabilized with 0.2% triton X-100 
(Sigma-Aldrich) in PBS for 5 minutes at room temperature. Samples were blocked for 1 hour 
at room temperature in PBS containing 2% bovine serum albumin and incubated overnight 
with N-terminal MCT8 Ab 3353 (1:1000, Sigma-Aldrich), or C-terminal MCT8 antiserum 
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(1:500) and mouse monoclonal ZO-1 Ab (1:500, Invitrogen) at 4  °C (Supplemental Table 
1) [19]. After secondary staining with goat-antirabbit Alexa Fluor 488 (RRID:AB_143165 
[33]) and goat-antimouse Alexa 633 (RRID: AB_2535718 [34]) (Invitrogen), cover slips were 
mounted on glass slides with Prolong Gold containing DAPI (4′,6-diamidino-2-phenylindole) 
(Invitrogen). Samples were examined on a Zeiss Meta 510 microscope using Zeiss LSM soft-
ware (Carl Zeiss B.V.).

J.  Homology Modeling

YASARA Structure was used for molecular homology modelling of a putative homodimeric 
MCT8 complex using our previously published MCT8 homology model in outward-open con-
formation [6, 35-37]. Two MCT8 monomers were manually juxtapositioned in a way that 
accommodates our in vitro findings. Molecular dynamic simulations were performed in an 
AMBER 14 force field with periodic boundaries for 4 nanoseconds to establish and opti-
mize the interactions between the 2 monomers, as previously described [6]. All images were 
created using YASARA Structure and Pov-Ray v3.6 software (www.povray.org).

K.  Statistical Analysis

All uptake results are expressed as means ± SEM of at least 3 separate experiments in du-
plicate. Statistical significance was determined using indicated statistical tests carried out 
in GraphPad Prism, version 6.

2.  Results

In line with previous studies (eg, [7].), MCT8 monomers (55 kDa), homodimers (110 kDa), and 
putative homo-oligomers (multiples of 55 kDa) were detected on a conventional immunoblot 
in total lysates of COS-1 cells transiently expressing WT MCT8 after preincubation with 
LDS sample buffer containing 10 mM DTT (Supplemental Fig. 2A) [19]. To study whether 
Mg2+ and Ca2+ mediate these monomer-monomer interactions, lysates were incubated in the 
presence of increasing concentrations of the Mg2+/Ca2+ chelator EDTA prior to immunoblot 
analysis. However, no reduction in oligomerization was observed (Supplemental Fig. 2A) 
[19]. Moreover, lysates incubated in the presence of increasing concentrations DTT showed 
similar levels of oligomerization as those incubated in the absence of DTT, suggesting that 
disulfide bonds do not play a major role (Supplemental Fig. 2B) [19]. In addition, bands 
corresponding to the size of WT MCT8 homodimeric complexes were detected in skin 
fibroblasts, which endogenously express MCT8 (Supplemental Fig. 2C) [19].

Importantly, from conventional immunoblots it cannot be concluded whether monomers 
result from the disruption of multimeric complexes during the experimental procedure. 
Moreover, it remains unclear whether the MCT8 dimers and oligomers as detected on con-
ventional immunoblots are formed in a cellular context or during sample preparation because 
of random protein aggregation. To address these questions, we performed anti-Flag co-IP 
experiments on lysates of COS-1 cells coexpressing WT Flag-MCT8 and Myc-MCT8 or a mix-
ture of lysates derived from COS-1 cells that separately expressed Flag-MCT8 or Myc-MCT8. 
Myc-MCT8 was coprecipitated when expressed together with Flag-MCT8, but not in mixed 
lysates from cells separately expressing Myc-MCT8 or Flag-MCT8 (Fig. 1A). This strongly 
suggests that a cellular context is indeed required for the formation of monomer-monomer 
interactions. Interestingly, on coexpression of both constructs, the Myc-MCT8 protein is pre-
dominantly present as a monomer in the IP sample, indicating that Flag-MCT8/Myc-MCT8 
complexes are at least partially disrupted after preincubation in the presence of LDS sample 
buffer. Importantly, on coexpression of Flag-MCT8 and MCT10, another T3 transporter that 
shares a 49% amino acid sequence identity with MCT8, MCT10, was not detected in the IP 
fraction (Supplemental Fig. 3) [19]. This illustrates the specificity of the MCT8 monomer-
monomer interactions. To further validate that MCT8 monomer-monomer interactions may 
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be mediated by noncovalent interactions, we next separated lysates of COS-1 cells transfected 
with MCT8 expression construct under native conditions. In the absence of LDS in the loading 
buffer, a pronounced band that poorly migrated through the gel was observed, whereas in the 
presence of LDS in the loading buffer, multiple bands were visible (Fig. 1B). These findings 
confirm that MCT8 dimers/oligomers can be disrupted with LDS.

To identify the domains within MCT8 that are involved in oligomerization, we performed 
an extensive domain screen by introducing the following premature stop mutations in WT 
MCT8: R245X, Q335X, S448X, and Q520X (mutations identified in patients with MCT8 defi-
ciency), and E206X, C231X, F256X, C546X (artificial mutations) (Fig. 2A). These constructs 
are referred to as MCT875-244, MCT875-334, MCT875-447, MCT875-519, MCT875-205, MCT875-230, 
MCT875-255, MCT875-545, respectively. On expression in COS-1 cells, all C-terminal–truncated 
mutants showed a complete loss of MCT8-mediated TH uptake (Fig. 2B). Similar results 
were found in JEG-3 cells (data not shown). None of the truncated constructs were expressed 
at the cell membrane as assessed by confocal microscopy in transiently transfected JEG-3 
cells (Fig. 2C). As expected, the monomers of all premature stop mutants were expressed 
at a molecular weight less than 55 kDa (Fig. 2D). The MCT875-334, MCT875-447, MCT875-519, 
and MCT875-545 mutant proteins showed a similar degree of homodimerization as WT MCT8 
(Fig. 2E). Similar to WT MCT8, bands at multiples of the molecular weight of the mon-
omer were observed for these mutants, which provides further evidence for the formation of 
homo-oligomeric complexes. Together, these findings indicate that the C-terminal half of the 
protein is not required for the stabilization of monomer-monomer interactions. Although the 
MCT875-230, MCT875-244, and MCT875-255 mutant proteins were still able to form homodimers 
and homo-oligomers, a relative increase in the monomer fraction was observed (Fig.  2D 
and 2E). This implies on the one hand that TMD3-6 may contribute to the stabilization of 
monomer-monomer interactions and on the other hand that a sufficient part of both inter-
action sites in each monomer is still preserved in the MCT875-230 mutant protein. Further 
truncation of the protein completely abrogates homo-oligomerization and severely reduces 
the stability of homodimeric complexes, as illustrated by the MCT875-205 mutant (Fig. 2D 
and 2E). We therefore postulate that the Glu206-Cys231 region (covering part of ECL1 
and TMD2) constitutes at least a part of one interaction site, whereas the intracellular 
N-terminus and/or TMD1 comprise (part of) the second interaction site.

To further explore the role of the intracellular N-terminus in MCT8 oligomerization, 
a construct lacking all TMDs was generated. Unfortunately, this construct could not be 
detected at protein level (data not shown). Previous attempts to remove the entire intracel-
lular N-terminal domain (ΔPest) also had detrimental effects on protein expression levels 
[7]. Therefore, we substituted the intracellular N-terminus of MCT8 by the intracellular 
N-terminus of MCT1, resulting in an MCT1/8 chimera. As far as we know, the short intra-
cellular N-terminus of MCT1 (9 amino acids long) is not involved in monomer-monomer 
interactions or interactions with other proteins [38-40]. In addition, N-terminally truncated 
MCT8 constructs were generated through inactivation of the original translational start 
site (M75A) and subsequent introduction of 2 downstream alternative start sites (Q97M 
and R147M , further referred to as MCT897-613 and MCT8147-613, respectively; Fig. 3A). On 
transient expression in COS-1 cells, MCT897-613 showed near-normal TH uptake, whereas 
TH transport by MCT8147-613 amounted to 55% of WT (Fig. 3B). The MCT1/8 chimera did 
not induce TH uptake over background. Similar results were obtained in JEG-3 cells (data 
not shown).

MCT897-613 and MCT8147-613 were still expressed at the cell membrane, whereas the MCT1/8 
chimera showed a predominant intracellular distribution in JEG-3 cells (Fig. 3C). Using 
antiserum against the C-terminus of MCT8, MCT897-613, and MCT8147-613 showed similar 
expression levels as WT on transient expression in COS-1 (Fig. 3D) and JEG-3 cells (data 
not shown), whereas the expression level of the MCT1/8 chimera was much lower in both 
cell lines. Nevertheless, all constructs were detected as monomer and homodimer and low 
levels of homo-oligomers were detected for WT MCT8, MCT8147-613, and the MCT1/8 chimera 
(Fig. 3D). These findings indicate that the intracellular N-terminus is not strictly required 
for oligomer formation, although a stabilizing role cannot be excluded.
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Figure 2.  A, Schematic representation of the monocarboxylate transporter 8 (MCT8) protein 
structure, in which the locations of the C-terminally truncating mutations are indicated. 
The E206X, C231X, R245X, F256X, Q335X, S448X, Q520X, and C546X mutant proteins will 
be further referred to as MCT875-205, MCT875-230, MCT875-244, MCT875-255, MCT875-334, MCT875-

447, MCT875-519, MCT875-545, respectively. B, Uptake of T3 (white bars) and T4 (gray bars) in 
COS-1 cells transiently transfected with wild-type (WT) MCT8 or the indicated mutant 
(500 ng) in the presence of human µ-crystallin (250 ng) in 30 minutes at 37 °C. Uptake 
values are corrected for background thyroid hormone (TH) uptake levels observed in COS-1 
cells transfected with pcDNA3 empty vector (EV). Results are presented as means ± SEM 
(n = 4-7). Statistical significance was tested using 1-way analysis of variance followed by 
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Interestingly, the M75A construct showed 20% residual TH uptake (Fig.  3B). Several 
bands were detected for the M75A mutant with the C-terminal antiserum (Fig. 3D), but 
not using the N-terminal MCT8 Ab (Supplemental Fig. 4) [19]. This suggests the presence 
of in-frame alternative start-sites (AUG or non-AUG) downstream of residue 155, the end 
of the recognition sequence of the N-terminal MCT8 Ab. However, on reintroduction of an 
optimal start site in case of the MCT897-613 or MCT8147-613 constructs, these bands completely 
disappeared.

Taken together, these results suggest that both monomer-monomer interaction sites are 
located within the N-terminal half of the protein. Because the MCT875-230 mutant protein 
retained oligomerization potency and the intracellular N-terminus is not essential for olig-
omer formation, we postulate that one interaction site at least includes TMD1 (Arg147-
Glu206) and the other site at least part of ECL1 and TMD2 (Glu206-Cys231). In addition, 
other domains within the N-terminal half of the protein may also be of importance in sta-
bilization of monomer interactions, which is indeed supported by the observation that the 
MCT8 construct lacking TMD1 and TMD2 (MCT8Δ170-234) is still able to form homodimers, 
homo-oligomers and heterodimeric complexes with WT Flag-MCT8 (Fig. 4A). As expected, 
the MCT8Δ170-234 protein is functionally inactive (Fig. 4B) and not expressed at the cell mem-
brane (Fig. 4C).

Next, we aimed to incorporate these in vitro findings into a structural model of the MCT8 
dimer using our recently published MCT8 homology model in outward-open conformation 
[6]. Indeed, TMD1 and TMD2 form part of the external surface of the protein and could thus 
be involved in the formation of monomer-monomer interactions (Fig. 5A,B). The N-terminal 
halves of 2 MCT8 monomers were juxtapositioned in an orientation that at least allowed 
the formation of interactions between TMD1 of one monomer and TMD2 of the other 
(Fig. 5C). On molecular dynamic simulations, extensive contacts were observed between 
TMD1, TMD5, and TMD6 of one monomer, and TMD2 and TMD4 of the other (Fig. 5C). In 
line with our in vitro findings, most of the residues involved in these contacts are hydro-
phobic or charged (Fig. 5D). Although the predictability of the exact structural orientation 
of intracellular and extracellular loops as well as the C- and N-terminal ends, is generally 
low in homology models, it is not excluded that also these domains contribute to the forma-
tion of monomer-monomer contacts. Importantly, in the current configuration, movement 
of the C-terminal half of the MCT8 protein is not influenced by MCT8 monomer-monomer 
interactions. Assuming a rocker switch model for substrate translocation [41], the current 
structural organization would therefore allow each MCT8 protein to change its conforma-
tional status independently of the interacting MCT8 protein(s).

To further confirm this hypothesis, we next aimed to interfere with the formation of 
MCT8 oligomeric complexes. Given the extensive nature of the interactions between MCT8 
monomers, we were unable to generate an MCT8 construct lacking oligomerization potency 

the Dunnett multiple-comparison test. TH uptake levels for all mutants were significantly 
lower than WT (P < .001). C, Subcellular localization of WT and mutant MCT8 in transi-
ently transfected JEG-3 cells assessed by confocal microscopy. Depicted is the merged image 
of the nuclear staining with DAPI (4′,6-diamidino-2-phenylindole) (blue), MCT8 staining 
with goat-antirabbit Alexa488 (green), and ZO-1 staining as a cell membrane marker 
using goat-antimouse Alexa633 (red). None of the mutants was expressed at the cell mem-
brane. All images were generated using ImageJ software. The scale bar represents 4 µm. 
D, Representative immunoblot of lysates from COS-1 cells transfected with WT or mu-
tant MCT8 (N = 3). MCT8 detection was performed with the N-terminal MCT8 antibody 
(3353) and visualized with IRDye680 goat-antirabbit secondary antibody. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used as loading control. Monomers of WT and 
mutant MCT8 are indicated with arrowheads. E, Quantification of the band intensities for 
monomer, homodimeric, and oligomeric WT or mutant MCT8 as shown in D by densitometry 
using ImageJ. The order of the various mutant constructs as listed in the in-figure legend cor-
respondent to the order of the bars. Results are presented as means ± SEM (n = 3). Statistical 
differences were assessed using a 2-way analysis of variance followed by Dunnett post hoc 
tests; *P less than .05; **P less than .01; ***P less than .001.
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Figure 3.  A, Schematic representation of the monocarboxylate transporter 8 (MCT8) protein 
structure, in which the locations of the N-terminally truncating mutations are indicated. The 
inactivated original start (Met75) is indicated with a red circle and the introduced translation 
start sites with gray circles. The gray square represents the short intracellular N-terminus of 
MCT1 that directly precedes transmembrane domain 1 in the MCT1/8 chimera. B, T3 (white) 
and T4 (gray) uptake in COS-1 cells transiently transfected with 500 ng wild-type (WT) or 
mutant MCT8 and 250 ng human µ-crystallin after 30 minutes incubation at 37 °C. Uptake 
values are corrected for background thyroid hormone (TH) uptake levels observed in COS-1 
cells transfected with pcDNA3 empty vector (EV). Results are presented as means ± SEM 
(n = 3-4). Statistical significance was tested using 1-way analysis of variance followed by the 
Dunnett multiple-comparison test. ***P less than .001. C, Subcellular localization of WT and 
mutant MCT8 in transiently transfected JEG-3 cells assessed by confocal microscopy depicted 
as described in Fig. 2C. D, Representative immunoblot of lysates from COS-1 cells transfected 
with WT or indicated mutant MCT8 (n = 3). MCT8 detection was performed with the rabbit 
anti-MCT8 antiserum (1306, directed against the C-terminus of MCT8) and visualized with 
IRDye680 goat-antirabbit secondary antibody. Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) was used as loading control. Monomers of WT and mutant MCT8 are indicated 
with arrowheads. The black box indicates the bands representing oligomers of MCT8147-613 and 
MCT1/8 chimera.
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Figure 4.  A, Coimmunoprecipitation (co-IP) studies in COS-1 cells (co)expressing wild-type 
(WT) monocarboxylate transporter 8 (MCT8) or MCT8Δ170-234 mutant constructs containing in-
dicated tags (representative blot of 2 repetitive experiments). Membranes have been stained 
with the mouse monoclonal M2 anti-Flag antibody and rabbit monoclonal anti-Myc, stripped, 
and subsequently stained with rabbit anti-MCT8 3353 antibody. On coexpression of flag-
MCT8Δ170-234 and myc-MCT8WT, myc-MCT8WT was detected in the precipitated fraction after 
flag-based co-IPs, indicating that flag-MCT8Δ170–234 and myc-MCT8WT form heterodimers. B, T3 
(white) and T4 (gray) uptake in COS-1 cells transiently transfected with 500 ng WT MCT8 
or the MCT8Δ170-234 mutant and 250 ng human µ-crystallin in 30 minutes at 37°C. Uptake 
values are corrected for background thyroid hormone uptake levels observed in COS-1 cells 
transfected with pcDNA3 empty vector (EV). Results are presented as means ± SEM (n = 3). 
Statistical significance was tested using 1-way analysis of variance followed by the Dunnett 
multiple-comparison test and revealed that T3 and T4 uptake both were significantly reduced 
in the MCT8Δ170-234 mutant (P < .001). C, Subcellular localization of WT and mutant MCT8 in 
transiently transfected JEG-3 cells assessed by confocal microscopy, depicted as described in 
Fig. 2C.
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without directly affecting its function as a TH transporter. Alternatively, we therefore 
explored to what extent heterodimerization between WT and functionally inactive truncated 
mutant MCT8 proteins could abrogate MCT8 function. For this reason we first studied 
whether the truncated and full-length MCT8 proteins were able to form heterodimers. 
Co-IP experiments were performed on COS-1 lysates coexpressing WT Flag-MCT8 and ei-
ther the MCT875-519 (the largest truncated protein encountered in a patient with MCT8 de-
ficiency), MCT875-205 (impaired oligomerization and reduced homodimerization), MCT875-230, 
or MCT875-244 (intact homodimerization and oligomerization) mutant proteins. All truncated 

Figure 5.  Structural homology model of the monocarboxylate transporter 8 (MCT8) 
monomer in which A, transmembrane domain 1 (TMD1) and B, transmembrane domain 2 
(TMD2) are highlighted in yellow and green, respectively. Parts of both TMDs compose the 
outer surface of the MCT8 protein. C, A putative organization of an MCT8 homodimeric 
complex, allowing the interaction of 2 distinct parts of the N-terminal half of 2 MCT8 pro-
teins. This structural organization allows the formation of oligomeric complexes in which all 
monomers are interacting via a similar mechanism. Of note, in this orientation the movement 
of the C-terminal half of the MCT8 protein is not influenced by MCT8 monomer-monomer 
interactions. Assuming a rocker switch model for substrate translocation, each monomer can 
change its conformational status independently of the interacting monomer(s). D, Frontal 
view of C in which the molecular surface is shown of the residues located within 0.5 nM 
(Ångstrom) from the other MCT8 protein, which theoretically allows interactions. Residues 
are colored according to residue type: in blue, positively charged residues (Arg, Lys, His); in 
red, negatively charged residues (Asp, Glu); in gray, hydrophobic residues; in light blue, polar 
residues containing a hydroxyl group (Ser, Thr, Tyr) and Cys residues; and in green, polar 
residues with an amide group (Asn, Gln). Note that the majority of MCT8 protein-protein 
interactions have a hydrophobic or electrostatic nature, which is in line with our in vitro ex-
periments. Moreover, it is not excluded that the intracellular loops (ICLs) and extracellular 
loops (ECLs), including the large ICL3 that links TMD6 and TMD7, contribute to the forma-
tion of monomer-monomer interactions.
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mutants, including MCT875-205, were detected in the IP fraction only if coexpressed with 
WT Flag-MCT8, (Fig. 6). In addition, bands representing the intact heterodimers of WT 
MCT8 and the MCT875-230 and MCT875-244 mutants were detected. These findings support 
the presence of a common dimerization mechanism and moreover suggest that the forma-
tion of interactions between WT and mutant MCT8 proteins already takes place before the 
trafficking to the cell membrane, because none of the truncated mutants is expressed at the 
cell membrane if expressed individually (Fig. 2C).

Finally, we studied to what extent increasing concentrations of the MCT875-230 mutant 
could interfere with WT MCT8 TH transport function by competitive interference with 
WT MCT8 homodimerization/oligomerization. First, we confirmed the absence of the 
MCT875-230 protein at the plasma membrane in COS-1 cells using surface biotinylation 
assays (Supplemental Fig. 5) [19]. Next, we performed Flag-tagged mediated co-IP on total 
lysates of COS-1 cells coexpressing Flag-MCT8 and Myc-MCT8 and increasing amounts of 
the MCT875-230 mutant. This resulted in a modest reduction of the amount of Myc-MCT8 
detected in the IP samples, indicating that MCT875-230 is able to competitively interfere with 
the formation of WT Flag-MCT8 and Myc-MCT8 interactions (Supplemental Fig. 6A and 
6B) [19]. Nevertheless, even in presence of the highest concentration of the MCT875-230 mu-
tant, Myc-MCT8 was still detected in the IP fraction, indicating incomplete disruption of 
the WT homodimers/oligomers. Parallel uptake assays showed no reduction in T3 uptake 
levels under these conditions (Supplemental Fig. 6C) [19]. These findings suggest that the 
observed reduction in homodimer formation does not result in a decrease in TH transport.

3.  Discussion

The present study provides novel insights into the mechanism of MCT8 oligomerization. 
Our findings suggest that MCT8 monomer-monomer interactions are formed through ex-
tensive noncovalent interactions between the N-terminal halves of MCT8 monomers, which 
are likely to be formed early in the trafficking process. Given the extensive nature of these 
interactions, monomer-monomer interactions could not completely be abolished by targeted 
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Figure 6.  Coimmunoprecipitation (co-IP) studies on lysates derived from COS-1 cells 
transiently expressing either Flag-MCT8 or indicated mutant monocarboxylate trans-
porter 8 (MCT8) or a combination of Flag-MCT8 and indicated mutant MCT8 constructs. 
Input and IP samples were run on separate gels (boxed). Blots were stained with rabbit 
anti-MCT8 antibody and mouse M2 anti-Flag antibody, stripped and stained for mouse 
anti–ZO-1 (a membrane marker to exclude impurities in the co-IP procedure) and mouse 
antiglyceraldehyde-3-phosphate dehydrogenase (GAPDH) as loading control. Note the pres-
ence of all truncated mutants (bracket) in the IP samples on coexpression with wild-type 
Flag-MCT8 (arrow), indicating the presence of heterodimers. EV, empty vector
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mutations, including large deletions, preventing detailed studies into the physiological 
function of homodimerization and oligomerization.

Although homodimeric and homo-oligomeric organization of MCT8 has been described in 
many studies, it has long been unknown whether these complexes are formed inside the cell 
(eg, [7, 8]). Recent bimolecular fluorescent complementation studies have demonstrated for 
the first time that at least MCT8 homodimers are likely to be formed in a cellular context 
[9]. These findings are further substantiated by our present co-IP data showing that the for-
mation of MCT8 dimers and oligomers as detected on immunoblots is not an assay artifact 
but requires a cellular context.

In an attempt to elucidate the functional role of MCT8 oligomerization, we first aimed 
to identify the type of interaction(s) that underlie MCT8 oligomerization and the involved 
domains. Previous studies excluded that disulfide bonding mediates MCT8 oligomerization 
because each Cys residue in MCT8 can be substituted by an Ala without affecting its 
oligomerization [17]. Moreover, MCT8 oligomerization was barely enhanced by the Cys 
cross-linker HgCl2 [7]. Here, we extended on these studies by showing that the addi-
tion of increasing concentrations DTT did not affect oligomerization. We also excluded 
the presence of Ca2+- and Mg2+-mediated oligomerization. Although previous conventional 
immunoblot studies suggested that MCT8 monomer-monomer interactions could not be 
completely abrogated by heat and SDS [7], our present co-IP experiments show that a 
substantial part of the MCT8 dimers are disrupted using LDS sample buffer, even in the 
absence of DTT. These findings were further substantiated by native PAGE experiments 
that showed that the addition of LDS is critical to disrupting the MCT8 complexes. 
Together, these observations have several important implications. First, MCT8 is likely 
to be predominantly present as a complex under native conditions. Second, disruption of 
MCT8-MCT8 interactions by LDS suggests that noncovalent interactions (hydrophobic 
and electrostatic) are involved in MCT8 oligomerization. Finally, at least part of the 
monomers (and dimers) observed on immunoblots of total lysates are the result of the 
disruption of MCT8 oligomers during the procedure and thus do not necessarily reflect 
the amount of monomer inside the cell. It has been previously demonstrated for other 
proteins that strong hydrophobic interactions can be relatively heat and SDS (and LDS) 
resistant, which may explain why earlier studies concluded that MCT8 dimerization was 
SDS resistant [42].

Our successive C-terminal and N-terminal truncation experiments mapped the monomer-
monomer interaction sites to the N-terminal half of the MCT8 protein. This part contains 
6 TMDs, typically strongly hydrophobic, flanked by charged residues in the extracellular 
loops and intracellular loops that allow electrostatic interactions. Although we showed that 
TMD1 and TMD2 are minimally required to form oligomeric complexes, as demonstrated 
by the MCT875-230 mutant, specific deletion of these TMDs resulted in a mutant protein that 
retained its oligomerization capacity. This suggests the presence of extensive monomer-
monomer contacts involving other domains beyond TMD1 and TMD2. This was indeed fur-
ther illustrated by structural modeling of a putative homodimeric conformation of MCT8, 
which suggested not only the involvement of multiple TMDs, but possibly also loop regions, 
including the large intracellular loop between TMD6 and TMD7. Of note, removal of a sub-
stantial part of the N-terminal PEST-domain (residues 75-147) resulted in a mutant MCT8 
protein with substantial residual TH transport capacity, implying that naturally occurring 
variations in this region are likely to be well tolerated.

In light of our present findings, it is not surprising that although the effects of many 
missense mutations have been studied, none of these mutations have been found to completely 
abrogate MCT8 protein-protein interactions (ie, [8, 9, 17, 24]). Nevertheless, a subset of MCT8 
missense mutations has been recently described to reduce MCT8 dimerization (S194F, A224T, 
L434W, and R445C), whereas others were found to enhance dimerization (del230F, V235M, 
and ins236V) [9]. Because the affected residues in the first group are predicted to be located 
within the substrate pore, the authors speculated that oligomerization was affected through 
the effects of these mutations on the overall protein structure and thus protein surface. 
Interestingly, the mutations that were found to enhance MCT8 dimerization all affect TMD2, 
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which may well be consistent with a direct contribution of TMD2 in stabilization of the inter-
action between MCT8 monomers as is also supported by our present data. However, in the pre-
sent and previously reported studies we found that even large truncations and domain-specific 
deletions are not sufficient to completely abrogate MCT8 oligomerization [7]. Therefore, we 
were unable to generate a mutant MCT8 protein that completely lacks homodimerization and 
oligomerization capacity while retaining residual transport function. As an alternative, we 
explored whether coexpression of the truncated and functionally inactive MCT875-230 mutant 
interferes with WT MCT8 oligomerization. Although this approach resulted in an apparent 
reduction of interactions between WT MCT8 proteins, they were not completely abrogated. 
Moreover, no alterations in MCT8-mediated T3 uptake were observed under these conditions. 
This could mean that, at least in an overexpression system, a substantial alteration in the 
monomer:oligomer ratio has very little impact on MCT8 function. However, it is not excluded 
that the MCT875-230 mutant is mainly competing with WT homo-oligomerization inside the cell 
and not at the cell membrane given its impaired plasma membrane trafficking. This would 
result in the exclusive presence of the fully functional WT oligomers at the plasma membrane. 
The question of whether MCT8 oligomerization is required to achieve (optimal) transporter 
function thus remains unaddressed. It should however be noted that from a structural per-
spective, an MCT8 monomer should at least be sufficient to form a transporter channel and 
function as a transporter (eg, [5].).

Although the effects of truncating mutations on the structure of the remaining MCT8 
protein are generally unpredictable, we observed that all truncated proteins were still able 
to form heterodimers with WT MCT8. This finding at least suggests that the interacting 
domains in the resulting mutants are still being recognized by the WT protein, which may 
indicate at least some degree of structural preservation. Because none of the C-terminally 
truncated proteins reach the plasma membrane if expressed individually (Fig.  2C), the 
presence of WT-mutant interactions, as assessed by co-IP, may suggest that the formation 
of MCT8 oligomers is likely to be an early event in the maturation and trafficking of the 
MCT8 protein. These observations further support recent studies of Fischer et al, showing 
the presence of MCT8 homodimerization in endoplasmatic reticulum-like structures [9].

Given the important role of MCT8 in the blood-brain barrier and neuronal cells [43], it 
would have been of interest to study MCT8 oligomerization in vascular endothelial or neu-
ronal cell lines because the presence of cell-type specific factors may importantly influence 
the type and extent of MCT8 protein-protein interactions. However, such experiments were 
limited by the poor transfection efficacy of these cell lines (data not shown). Nevertheless, we 
speculate that the domains involved in homo-oligomerization are not likely to differ between 
cell lines because this is largely determined by the intrinsic properties of the MCT8 protein.

Taken together, our data show that MCT8 oligomerization is mediated through exten-
sive noncovalent interactions involving TMDs and putative loops within the N-terminal 
half of the protein. Given the extensive nature of these interactions, we speculate that most 
mutations encountered in patient with MCT8 deficiency will have only minor effects on the 
oligomeric organization of MCT8. This is important to the field because the property to form 
dimeric/oligomeric complexes has been specifically studied in many reports on the impact of 
mutations identified in patients with MCT8 deficiency.

Acknowledgments

We would like to dedicate this manuscript to the memory of Theo Visser, who suddenly passed away 
during its finalization. He was deeply involved in the design of these studies and interpretation of the 
results.

We thank Ramona E. van Heerebeek and Selmar Leeuwenburgh for their technical assistance and 
the Optical Imaging Center (Erasmus MC Rotterdam) for the technical support regarding the confocal 
imaging studies.

Financial Support: This work was supported by the Netherlands Organisation for Health 
Research and Development (project number 113303005 to W.E.V.) and by the Sherman Foundation 
(to W.E.V.).

D
ow

nloaded from
 https://academ

ic.oup.com
/jes/article/4/8/bvaa080/5859536 by guest on 23 Septem

ber 2020

https://doi.org/10.1210/jendso/bvaa080


16 | Journal of the Endocrine Society | doi: 10.1210/jendso/bvaa080

Additional Information

Correspondence: Stefan Groeneweg, MD, The Rotterdam Thyroid Center & Department of 
Internal Medicine, Erasmus Medical Center, Room Ee502, Wytemaweg 80, 3015 CN, Rotterdam, the 
Netherlands. E-mail: s.groeneweg@erasmusmc.nl.

Disclosure Summary: The authors have nothing to disclose.
Data Availability:  All data generated or analyzed during this study are included in this published 

article or in the data repositories listed in References.

References
	 1.	Friesema  EC, Ganguly  S, Abdalla  A, Manning  Fox  JE, Halestrap  AP, Visser  TJ. Identification 

of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem. 
2003;278(41):40128-40135.

	 2.	Friesema EC, Grueters A, Biebermann H, et al. Association between mutations in a thyroid hormone 
transporter and severe X-linked psychomotor retardation. Lancet. 2004;364(9443):1435-1437.

	 3.	Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S. A novel syndrome combining thyroid 
and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. 
Am J Hum Genet. 2004;74(1):168-175.

	 4.	Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid hormone transporters. Endocr 
Rev. 2020;41(2):146-201.

	 5.	Kinne  A, Kleinau  G, Hoefig  CS, et  al. Essential molecular determinants for thyroid hormone 
transport and first structural implications for monocarboxylate transporter 8. J Biol Chem. 
2010;285(36):28054-28063.

	 6.	Groeneweg  S, Lima  de  Souza  EC, Meima  ME, Peeters  RP, Visser  WE, Visser  TJ. Outward-open 
model of thyroid hormone transporter monocarboxylate transporter 8 provides novel structural and 
functional insights. Endocrinology. 2017;158(10):3292-3306.

	 7.	Visser  WE, Philp  NJ, van  Dijk  TB, et  al. Evidence for a homodimeric structure of human 
monocarboxylate transporter 8. Endocrinology. 2009;150(11):5163-5170.

	 8.	Biebermann H, Ambrugger P, Tarnow P, von Moers A, Schweizer U, Grueters A. Extended clinical 
phenotype, endocrine investigations and functional studies of a loss-of-function mutation A150V in 
the thyroid hormone specific transporter MCT8. Eur J Endocrinol. 2005;153(3):359-366.

	 9.	Fischer J, Kleinau G, Müller A, et al. Modulation of monocarboxylate transporter 8 oligomerization 
by specific pathogenic mutations. J Mol Endocrinol. 2015;54(1):39-50.

	 10.	Yang  Y, Mo  W, Zhang  JT. Role of transmembrane segment 5 and extracellular loop 3 in the 
homodimerization of human ABCC1. Biochemistry. 2010;49(51):10854-10861.

	 11.	Wei P, Liu X, Hu MH, et al. The dimerization interface of the glycoprotein Ibβ transmembrane do-
main corresponds to polar residues within a leucine zipper motif. Protein Sci. 2011;20(11):1814-1823.

	 12.	Salazar G, Falcon-Perez JM, Harrison R, Faundez V. SLC30A3 (ZnT3) oligomerization by dityrosine 
bonds regulates its subcellular localization and metal transport capacity. PloS One. 2009;4(6):e5896.

	 13.	Wei W, Lampe L, Park S, et al. Disulfide bonds within the C2 domain of RAGE play key roles in its 
dimerization and biogenesis. PloS One. 2012;7(12):e50736.

	 14.	Pace AJ, Gama L, Breitwieser GE. Dimerization of the calcium-sensing receptor occurs within the 
extracellular domain and is eliminated by Cys –> Ser mutations at Cys101 and Cys236. J Biol Chem. 
1999;274(17):11629-11634.

	 15.	Boyson JE, Erskine R, Whitman MC, et al. Disulfide bond-mediated dimerization of HLA-G on the 
cell surface. Proc Natl Acad Sci U S A. 2002;99(25):16180-16185.

	 16.	Dai Y, Walker SA, de Vet E, Cook S, Welch HC, Lockyer PJ. Ca2+-dependent monomer and dimer 
formation switches CAPRI Protein between Ras GTPase-activating protein (GAP) and RapGAP ac-
tivities. J Biol Chem. 2011;286(22):19905-19916.

	 17.	Lima de Souza EC, Groeneweg S, Visser WE, Peeters RP, Visser TJ. Importance of cysteine residues 
in the thyroid hormone transporter MCT8. Endocrinology. 2013;154(5):1948–1955.

	 18.	Mol JA, Visser TJ. Synthesis and some properties of sulfate esters and sulfamates of iodothyronines. 
Endocrinology. 1985;117(1):1-7.

	 19.	Groeneweg S, Berge A, Lima De Souza EC, Meima ME, Peeters RP, Visser WE. Insights into the 
mechanism of MCT8 oligomerization. J Endocr Soc. 2020. Deposited January 2, 2020. http://hdl.
handle.net/1765/123004

	 20.	RRID:AB_2661880, https://scicrunch.org/resolver/AB_2661880
	 21.	RRID:AB_2661879, https://scicrunch.org/resolver/AB_2661879

D
ow

nloaded from
 https://academ

ic.oup.com
/jes/article/4/8/bvaa080/5859536 by guest on 23 Septem

ber 2020

https://doi.org/10.1210/jendso/bvaa080
mailto:s.groeneweg@erasmusmc.nl?subject=
http://hdl.handle.net/1765/123004
http://hdl.handle.net/1765/123004
https://scicrunch.org/resolver/AB_2661880
https://scicrunch.org/resolver/AB_2661879


doi: 10.1210/jendso/bvaa080 | Journal of the Endocrine Society | 17

	 22.	Friesema EC, Kuiper GG, Jansen J, Visser TJ, Kester MH. Thyroid hormone transport by the human 
monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism. Mol Endocrinol. 
2006;20(11):2761-2772.

	 23.	Friesema EC, Jansen J, Jachtenberg JW, Visser WE, Kester MH, Visser TJ. Effective cellular up-
take and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol. 
2008;22(6):1357-1369.

	 24.	Novara  F, Groeneweg  S, Freri  E, et  al. Clinical and molecular characteristics of SLC16A2 
(MCT8) mutations in three families with the Allan-Herndon-Dudley syndrome. Hum Mutat. 
2017;38(3):260-264.

	 25.	Jansen J, Friesema EC, Kester MH, et  al. Functional analysis of monocarboxylate transporter 8 
mutations identified in patients with X-linked psychomotor retardation and elevated serum triiodo-
thyronine. J Clin Endocrinol Metab. 2007;92(6):2378-2381.

	 26.	RRID:AB_262044, https://scicrunch.org/resolver/AB_262044.
	 27.	RRID:AB_439680, https://scicrunch.org/resolver/AB_439680.
	 28.	RRID:AB_1079343, https://scicrunch.org/resolver/AB_1079343.
	 29.	RRID:AB_2107445, https://scicrunch.org/resolver/AB_2107445.
	 30.	RRID:AB_2533147, https://scicrunch.org/resolver/AB_2533147.
	 31.	RRID:AB_10706161, https://scicrunch.org/resolver/AB_10706161.
	 32.	RRID:AB_621843, https://scicrunch.org/resolver/AB_621843.
	 33.	RRID:AB_143165, https://scicrunch.org/resolver/AB_143165.
	 34.	RRID:AB_2535718, https://scicrunch.org/resolver/AB_2535718.
	 35.	Krieger  E, Vriend  G. YASARA View—molecular graphics for all devices—from smartphones to 

workstations. Bioinformatics. 2014;30(20):2981-2982.
	 36.	Krieger E, Joo K, Lee J, et al. Improving physical realism, stereochemistry, and side-chain accu-

racy in homology modeling: four approaches that performed well in CASP8. Proteins. 2009;77(Suppl 
9):114-122.

	 37.	Duan Y, Wu C, Chowdhury S, et al. A point-charge force field for molecular mechanics simulations 
of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem. 
2003;24(16):1999-2012.

	 38.	Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP. CD147 is tightly associated 
with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 
2000;19(15):3896-3904

	 39.	Deora AA, Philp N, Hu J, Bok D, Rodriguez-Boulan E. Mechanisms regulating tissue-specific po-
larity of monocarboxylate transporters and their chaperone CD147 in kidney and retinal epithelia. 
Proc Natl Acad Sci U S A. 2005;102(45):16245-16250.

	 40.	Wilson MC, Meredith D, Halestrap AP. Fluorescence resonance energy transfer studies on the inter-
action between the lactate transporter MCT1 and CD147 provide information on the topology and 
stoichiometry of the complex in situ. J Biol Chem. 2002;277(5):3666-3672.

	 41.	Forrest LR, Krämer R, Ziegler C. The structural basis of secondary active transport mechanisms. 
Biochim Biophys Acta. 2011;1807(2):167-188.

	 42.	Arumugam M, Ajitkumar P. Heat and SDS insensitive NDK dimers are largely stabilised by hy-
drophobic interaction to form functional hexamer in Mycobacterium smegmatis. Acta Biochim Pol. 
2013;60(2):199-207.

	 43.	Vatine GD, Al-Ahmad A, Barriga BK, et al. Modeling psychomotor retardation using iPSCs from 
MCT8-deficient patients indicates a prominent role for the blood-brain barrier. Cell Stem Cell. 
2017;20(6):831-843.e5.

D
ow

nloaded from
 https://academ

ic.oup.com
/jes/article/4/8/bvaa080/5859536 by guest on 23 Septem

ber 2020

https://doi.org/10.1210/jendso/bvaa080
https://scicrunch.org/resolver/AB_262044
https://scicrunch.org/resolver/AB_439680
https://scicrunch.org/resolver/AB_1079343
https://scicrunch.org/resolver/AB_2107445
https://scicrunch.org/resolver/AB_2533147
https://scicrunch.org/resolver/AB_10706161
https://scicrunch.org/resolver/AB_621843
https://scicrunch.org/resolver/AB_143165
https://scicrunch.org/resolver/AB_2535718

