
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lecr20

Econometric Reviews

ISSN: 0747-4938 (Print) 1532-4168 (Online) Journal homepage: https://www.tandfonline.com/loi/lecr20

Focused information criterion for locally
misspecified vector autoregressive models

Jan Lohmeyer, Franz Palm, Hanno Reuvers & Jean-Pierre Urbain

To cite this article: Jan Lohmeyer, Franz Palm, Hanno Reuvers & Jean-Pierre Urbain (2019)
Focused information criterion for locally misspecified vector autoregressive models, Econometric
Reviews, 38:7, 763-792, DOI: 10.1080/07474938.2017.1409410

To link to this article:  https://doi.org/10.1080/07474938.2017.1409410

Published with license by Taylor & Francis
Group, LLC© 2017 Jan Lohmeyer, Franz
Palm, Hanno Reuvers, Jean-Pierre Urbain

View supplementary material 

Accepted author version posted online: 11
Dec 2017.
Published online: 08 Feb 2018.

Submit your article to this journal 

Article views: 786

View related articles 

View Crossmark data

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/334430312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tandfonline.com/action/journalInformation?journalCode=lecr20
https://www.tandfonline.com/loi/lecr20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07474938.2017.1409410
https://doi.org/10.1080/07474938.2017.1409410
https://www.tandfonline.com/doi/suppl/10.1080/07474938.2017.1409410
https://www.tandfonline.com/doi/suppl/10.1080/07474938.2017.1409410
https://www.tandfonline.com/action/authorSubmission?journalCode=lecr20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lecr20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/07474938.2017.1409410
https://www.tandfonline.com/doi/mlt/10.1080/07474938.2017.1409410
http://crossmark.crossref.org/dialog/?doi=10.1080/07474938.2017.1409410&domain=pdf&date_stamp=2017-12-11
http://crossmark.crossref.org/dialog/?doi=10.1080/07474938.2017.1409410&domain=pdf&date_stamp=2017-12-11


https://doi.org/10.1080/07474938.2017.1409410

Focused information criterion for locally misspeci�ed vector
autoregressive models

Jan Lohmeyer, Franz Palm, Hanno Reuvers, and Jean-Pierre Urbain∗

Department of Quantitative Economics, Maastricht University SBE, Maastricht, The Netherlands

ABSTRACT

This paper investigates the focused information criterion and plug-in average
for vector autoregressive models with local-to-zero misspeci�cation. These
methods have the advantage of focusing on a quantity of interest rather than
aiming at overallmodel �t. Any (su�ciently regular) function of theparameters
can be used as a quantity of interest. We determine the asymptotic properties
and elaborate on the role of the locally misspeci�ed parameters. In particular,
we show that the inability to consistently estimate locally misspeci�ed param-
eters translates into suboptimal selection and averaging. We apply this frame-
work to impulse response analysis. A Monte Carlo simulation study supports
our claims.
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1. Introduction

Themotivation for this paper stems fromHansen (2005). The author considers a Gausssian ARMA(1,1)
model approximated by AR(k) models with k ∈ {0, 1, . . . , kmax} and is interested in the impulse
responses. Table 1 of Hansen (2005) shows that the MSE-minimizing AR order depends strongly on
parameter values and impulse response horizon. An extreme case is the speci�cation yt = 0.5yt−1 +
ǫt − 0.9ǫt−1. The MSE-minimizing autoregressive orders equal 0 and 10 for the impulse responses
at horizon 2 and 6, respectively. Ivanov and Kilian (2005) report a similar issue in a VAR setting.
They simulate VAR processes similar to those o�en found in empirical work, and rank di�erent model
selection criteria (AIC, BIC, HQ, and serial correlation tests) based on theMSE of the estimated impulse
responses implied by the selected model. A uniformly best criterion was not found. This might be
expected since information criteria like AIC and BIC aim at globalmodel �t and do not take into account
the quantity of interest (such as the impulse response at a particular horizon). The Focused Information
Criteria introduced by Claeskens and Hjort (2003) does take into account the interest of the researcher.
Hansen (2005) acknowledged the opportunities for the FIC for the estimation of impulse responses
when he remarked based on simulation outcomes: “The message from Tables 2 and 3 is that the FIC
is an intriguing challenger to existing model selection methods and deserves attention and scrutiny.”
A theoretical justi�cation of these simulation results was not provided.

We develop a theoretical framework starting from a vector autoregression where part of the coe�-
cients are local-to-zero, i.e., declining to zero at a rate of T−1/2 with T denoting sample size. This case
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is fundamentally di�erent from a static setup because dynamic properties are also varying with sample
size.1 Building on ideas from Claeskens and Hjort (2003), Claeskens and Hjort (2008) and Liu (2015),
we propose an estimator that can be used for both model selection and model averaging. This estimator
is fairly general as it only requires the parameters of interest to be a su�ciently smooth transformation of
the model’s parameters. The results are subsequently applied to the speci�c case of impulse responses. A
slight generalization of a theorem by Liu (2015) enables us to not only construct con�dence intervals for
a speci�c horizon, but to also construct con�dence bands for multiple horizons. In addition, we provide
an in depth discussion on the role of the local-to-zero parameters. These parameters cannot be estimated
consistently, and we show that as a consequence the FIC and plug-in averages do not fully minimize the
asymptotic mean squared error.

Our paper is related to the literature on model selection/averaging and the literature on impulse
response analysis. We now discuss both. One of the earliest references on frequentist model averaging is
the paper by Bates andGranger (1969). The literature onmodel averaging that is unrelated to forecasting
is of a more recent origin. One literature branch on frequentist model averaging started with the paper
by Hansen (2007). This paper shows that weight selection by minimization of Mallow’s criterion will
asymptotically lead to the lowest possible squared error among a class of estimators. His regression
setup with homoskedastic errors was generalized to regression forecasts in Hansen (2008), and was
modi�ed by Hansen and Racine (2012) to allow for heteroskedastic errors. A time series application
to stationary autoregressions of in�nite order is Zhang et al. (2013). Zhang and Liu (2017) report results
on the distribution of Mallow’s and Jackknife-based model averaging weights in linear regressions with
irrelevant variables.

The second branch of literature on frequentist model averaging evolves around locally misspeci�ed
models. The FIC was proposed by Claeskens and Hjort (2003) and extended by Claeskens and Hjort
(2008). The underlying idea has been applied to various settings. We will report a nonexhaustive list.
Liu (2015) considered the linear regression setup and derived asymptotically valid con�dence intervals.
Two additions to the treatment e�ects literature are Lu (2015) and Kitagawa andMuris (2016). DiTraglia
(2016) provides results for generalized method of moments estimation. Liu and Kuo (2016) consider
predictive regressions.

Finally, we brie�y discuss the literature on impulse response (IR) analysis in autoregressive models.
A comprehensive discussion on IR analysis can be found in Section 3.7 of Lütkepohl (2005). Both
Lütkepohl (1990) andBenkwitz et al. (2000) have reported that the coverage of the impulse response con-
�dence intervals can be low since the convergence rate of the estimators to their asymptotic distribution
is nonconstant over the whole parameter space. Another important topic for impulse response analysis
is the construction of joint con�dence bands. A naive Cartesian product of the individual con�dence
intervals leads to severe undercoverage, whereas con�dence bands based on the Bonferroni inequality
have good coverage but are at the same time excessively wide. O�en considered alternatives are bootstrap
methods, e.g., Kilian (2001), Lütkepohl et al. (2015), and Bruder and Wolf (2017).

The remainder of this paper is organized as follows. Section 2 presents the model framework, the
estimation procedure, and the asymptotic properties of: (1) the parameter estimates, (2) the feasible FIC,
and (3) the elements of the weighting matrix. A discussion and illustration of the consequences of the
inconsistent estimation of the local-to-zero parameter follows. Our theoretical �ndings are subsequently
supported by various Monte Carlo simulations in Section 3. Section 4 concludes, and the mathematical
proofs are presented in the Appendix.

In terms of notation, we follow Abadir and Magnus (2002) as closely as possible; in particular
d−→

and
p−→ signify convergence in distribution and convergence in probability, respectively. The stochastic

and the strict stochastic order relations are denoted by Op(·) and op(·). Vectors are printed in bold and

1Dynamic models under local-to-zero misspeci�cation were discussed in Claeskens et al. (2007) and Rohan and Ramanathan
(2011). Bothpapers �rst derive the asymptotic results in a settingwithout localmisspeci�cation and subsequently introduce
themisspeci�cation (see p. 363 of Claeskens et al. (2007) and Equation (8) on p. 221 of Rohan and Ramanathan (2011)). The
theoretical implications of this two step procedure are not completely clear.
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denote column vectors by default. 0j is the column vector of length j consisting of zeros only. We permit
small deviations from Abadir and Magnus (2002) to keep our notation in line with the notation of Liu
(2015).

2. Theory

2.1. Model framework

Let the K-dimensional multiple time series
{{
yT,t

}∞
t=−∞

}∞
T=1

constitute a vector triangular array
generated by the vector autoregressive (VAR) processes

yT,t = B1yT,t−1 + . . . + Bp1yT,t−p1
+ 11√

T
yT,t−p1−1 + . . . +

1p2√
T
yT,t−p1−p2

+ ut , (2.1)

where Bi (i ∈ {1, 2, . . . , p1}) and 1i (i ∈ {1, 2, . . . , p2}) are (K × K) coe�cient matrices. Equation
(2.1) di�ers in one important aspect from the usual VAR speci�cations, namely some of the coe�cient
matrices are premultiplied by T−1/2 with T denoting sample size. This local-to-zero misspeci�cation
causes di�erent dynamics for every T. Mathematically, this decay rate will prove to be crucial for the
development of the asymptotic theory because it prevents the omitted variable bias from diverging with
increasing sample size. Intuitively, we could think of this model speci�cation as expressing a degree of
uncertainty concerning the true lag order. The VAR process includes p := p1 + p2 lags for �nite T, yet
asymptotically a VAR(p1) remains. This can be interpreted as exploring a shrinking neighborhood of
the VAR(p1) model.

2.2. Parameter estimation and asymptotics

To simplify notation, we collect all the parameters in the matrices B = [B1 B2 · · · Bp1 ], CT =
[11 12 · · · 1p2]/

√
T = 1/

√
T, and de�ne 2T = [B CT]. Similarly to Lütkepohl (2005), we also

stack the observations over time to obtain,

YT :=
(
yT,1, yT,2, . . . , yT,T

)
(K × T),

zT,t :=




yT,t
yT,t−1

...
yT,t−p+1


 (Kp × 1),

ZT :=
(
zT,0, zT,1, . . . , zT,T−1

)
(Kp × T),

U := (u1, u2, . . . , uT) (K × T).

(2.2)

The model can now be expressed as YT = 2TZT + U . A variety of approximating models can be
considered but we will restrict our attention to models that use the same lag order in every equation (see
Remark 1 for further details). Using the same lag order in the cross-section is common practice and will
decrease the notational burden. Selectionmatrices are used to relate all estimators to the estimator using
p lags. That is, for some integerm, such that p1 ≤ m ≤ p,

L := L(1) ⊗ IK , with L(1) =
[

Ip1
Op2×p1

]
(Kp × Kp1),

S0 := S
(1)
0 ⊗ IK , with S

(1)
0 =

[
Op1×p2

Ip2

]
(Kp × Kp2),

Sm := S(1)
m ⊗ IK , with S(1)

m =
[

Im
O(p−m)×m

]
(Kp × Km),

5′
m := 5′(1)

m ⊗ IK , with 5′(1)
m =

[
Im−p1

O(p−m)×(m−p1)

]
(Kp2 × K(m − p1)).

(2.3)
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The Kronecker products with IK are a direct consequence of estimating all equations with the same lag
order. The regressor matrix for the estimation of a VAR(m) model satis�es ZT,m = S′

mZT . The implied

OLS estimator is the (K × Km) matrix 2̂T,m given by

2̂T,m = 2T,m + CT(IKp2 − 5′
m5m)S′

0ZTZ
′
T,m(ZT,mZ

′
T,m)−1 + UZ′

T,m(ZT,mZ
′
T,m)−1. (2.4)

Some rearranging and rescaling produces,

√
T
(
2̂T,m − 2T,m

)
=

√
TCT︸ ︷︷ ︸
1

(
IKp2 − 5′

m5m

)
S′
0

(
1

T
ZTZ

′
T

)
Sm

[
S′
m

(
1

T
ZTZ

′
T

)
Sm

]−1

+
(

1√
T
UZ′

T

)
Sm

[
S′
m

(
1

T
ZTZ

′
T

)
Sm

]−1

, (2.5)

and it can be seen that the T1/2-consistency of the estimator precisely matches the decay rate of T−1/2

in the elements of the parameter matrix CT . As a �nal step we apply the vec operator to transform the
parameter matrices into a single parameter vector,

√
T
(
θ̂T,m − θT,m

)
=
([

S′
m

(
1

T
ZTZ

′
T

)
Sm

]−1

S′
m

(
1

T
ZTZ

′
T

)
S0

(
IKp2 − 5′

m5m

)
⊗ IK

)
δ

+
([

S′
m

(
1

T
ZTZ

′
T

)
Sm

]−1

S′
m ⊗ IK

)
1√
T

T∑

t=1

vec
(
utz

′
T,t−1

)
, (2.6)

where θ̂T,m = vec(2̂T,m), θT,m = vec(2T,m), and δ = vec(1). Equation (2.6) depends on: (1) various
selection matrices, (2) the random matrix 1

TZTZ
′
T = 1

T

∑T
t=1 zT,t−1z

′
T,t−1, and (3) the random vector

1√
T

∑T
t=1 vec

(
utz

′
T,t−1

)
. The latter two rescaled sums are typically encountered in laws of large numbers

and central limit theorems, respectively. The following three assumptions guarantee that such theorems
are applicable.

Assumption 1. The sequence {ut} of random K-vectors is an independent and identically distributed
sequence with mean vector zero, a positive de�nite covariance matrix E(utu

′
t) = 6, and there exists a

c > 0 such that E|uitujtuktumt| < c < ∞ for i, j, k,m = 1, 2, . . .K.

Assumption 2. det (BT(z)) = det
(
IKz

p − B1z
p−1 − . . . − Bp1z

p2 − 11√
T
zp2−1 − . . . − 1p2√

T

)
6= 0 for

all |z| ≥ 1 and ∀T ∈ N.

Assumption 3. det (B∞(z)) = det
(
IKz

p1 − B1z
p1−1 − . . . − Bp1

)
6= 0 for all |z| ≥ 1.

Assumption 1 provides moment bounds and independence between the innovation ut and its past.
This latter property is exploited to apply limit theorems for martingale di�erences.2 Assumptions 2 and
3 require the vector autoregressive process to be stationary for every �nite T and also in the absence of
local misspeci�cation. The asymptotic properties of the OLS estimators are stated in Theorem 1.

2The requirement of i.i.d. innovations canbe relaxed to the assumption that {ut} is amartingale di�erence sequence. Formally,
let Ft = σ (us ,−∞ < s ≤ t) denote the sigma �eld generated by the innovations up to and including time t. Our results
remain valid if the conditions E(ut) = 0 and E(utu

′
t) = 6 are replaced by E

(
ut|Ft−1

)
= 0 and E

(
utu

′
t|Ft−1

)
= 6,

respectively.
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Theorem 1 (Asymptotic Normality of the Least Squares Estimator). Let Assumptions 1–3 hold. Then
(a) In the limit T → ∞, we have for any m ∈ M = {p1, p1 + 1, . . . , p},

√
T
(
θ̂T,m − θT,m

)
d−→ Amδ +

([
S′
m�Sm

]−1
S′
m ⊗ IK

)
R ∼ N

(
Amδ,

[
S′
m�Sm

]−1 ⊗ 6
)
,

with � = plimT→∞
1
T

∑T
t=1 zT,t−1z

′
T,t−1, Am =

[
S′
m�Sm

]−1
S′
m�S0

(
IKp2 − 5′

m5m

)
⊗ IK and

R ∼ N (0,� ⊗ 6).

(b) Let ûmT,t denote the OLS residuals from the estimation of a VAR(m). Consider 6̂
m

u = 1
T

∑T
t=1 û

m
T,tû

m′
T,t

as an estimator for 6u. The result in part (a) can be strengthened to joint asymptotic normality with

the covariance matrix estimator 6̂
m

u ,


√
T
(
θ̂T,m − θT,m

)

√
Tvech

(
6̂

m

u − 6
)

 d−→ N

([
Am

O

]
δ,

[[
S′
m�Sm

]−1 ⊗ 6 O

O 422

])
.

The matrix 422 is speci�ed in the Appendix.
(c) The estimator convergence as discussed in parts (a) and (b) of this theorem is also a joint convergence

across di�erent m ∈ M. That is, for {i1, i2, . . . , iM} ∈ M, any m ∈ M, and i1 < i2 < . . . < iM , we
have




√
T
(
θ̂T,i1 − θ i1

)

√
T
(
θ̂T,i2 − θ i2

)

...√
T
(
θ̂T,iM − θ iM

)

√
Tvech

(
6̂

m

u − 6
)




d−→ N







Ai1

Ai2
...

AiM

O




δ,




V i1i1 V i1i2 . . . V i1iM O

V i2i1 V i2i2 . . . V i2iM O
...

...
. . .

...
...

V iM i1 V iM i2 . . . V iM iM O

O O . . . O 422






.

The matrices V jk are given by V jk =
[
S′
j�Sj

]−1
S′
j�Sk

[
S′
k�Sk

]−1 ⊗ 6. It su�ces to consider a single

estimator for 6 because all the estimators are asymptotically equivalent.

The matrix � deserves further attention. It is de�ned as the probability limit of the Gram matrix
1
TZTZ

′
T . The proof of Theorem 1 reveals that this probability limit equals E(z∞,tz

′
∞,t) where z∞,t is

de�ned as in Equation (2.2) but being generated by a VAR without local misspeci�cation. We illustrate
this remark with the AR process de�ned by yT,t = αyT,t−1 + δ1√

T
yT,t−2 + δ2√

T
yT,t−3 + ut , that is an AR

model with p1 = 1, p2 = 2 and p = 3: in that case � = σ 2

1−α2

[
1 α α2

α 1 α
α2 α 1

]
.

Remark 1. The consequences of the localmisspeci�cation framework are visible in Theorem1. Standard
asymptotics will fail if relevant parameters are le� out since omitted variable bias will dominate
asymptotically.3 The local-to-zero rate of T−1/2 balances this diverging behavior such that a �nite
asymptotic bias remains. This reasoning applies to all models that contain all the �xed parameters (i.e.,
the lag order should be no less than p1) and leave out arbitrary parameters that are local-to-zero.

Remark 2. Assumption 2 is rather strict because it requires stationarity for all T in the natural numbers.
Is it even possible for any parameter combination to satisfy this assumption?We can answer this question

3Let us consider the data generating process yt = α1yt−1 +α2yt−2 + ut . Suppose that we estimate an AR(1) model. The OLS

parameter estimator of the �rst lag coe�cient, say α̂, satis�es
√
T(α̂ −α1) =

√
Tα2

1
T

∑T
t=1 yt−1yt−2

1
T

∑T
t=1 y

2
t−1

+
1√
T

∑T
t=1 yt−1ut

1
T

∑T
t=1 y

2
t−1

. The

�rst term on the RHS diverges at large T for α2 6= 0. The divergence rate is
√
T .
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in the a�rmative for the univariate case but the result does not generalize easily to the multivariate case.
For the univariate case, we de�ne the lag polynomial βT(L) by

βT(L)yT,t =
(
1 − β1L − . . . − βp1L

p1 − δ1√
T
Lp1+1 − . . . −

δp2√
T
Lp
)
yT,t = ut . (2.7)

Fujiwara (1916) has shown that the largest modulus root of a polynomial a(z) = a0z
n + a1z

n−1 + . . . +
an−1z + an is bounded above by 2max

{
|a1/a0|, |a2/a0|1/2, . . . , |an/a0|1/n

}
. The largest modulus root

of the lag polynomial βT is thus bounded by

2max

{
|β1|, |β2|

1
2 , . . . , |βp1 |

1
p1 , | δ1√

T
|

1
p1+1 , . . . , |

δp2√
T

|
1
p

}
. (2.8)

We deduce from Equation (2.8) that 2max
{
|β1|, |β2|

1
2 , . . . , |βp1 |

1
p1 , |δ1|

1
p1+1 , . . . , |δp2 |

1
p

}
< 1 guaran-

tees stationarity for all T.4

2.3. Quantities of interest

The focused information criterion (FIC) introduced by Claeskens and Hjort (2003) focusses on a
quantity of interest rather than general model �t. Quantities of interest could be a single parameter,
several parameters, or parameter transformations. Natural quantities of interest in the current dynamical

setting are the impulse responses. In general, let µ : RK2p+K(K+1)/2 → R
l de�ne the mapping from

the model parameters to the l-dimensional focus quantity. The �rst K2p arguments of the function µ

are reserved for the conditional mean parameters, whereas the last K(K + 1)/2 arguments refer to the
parameters in6. As suchwe de�ne σ = vech(6) and σ̂ = vech(6̂), andwriteµ(θ , σ ).5 We additionally
assume that evaluating the quantity of interest at µ((θT,m, 0K2(p−m)), σ ) provides an estimate for the
quantity of interest in the model with m lags. The Auxiliary Result in the Appendix shows that this is
true for the impulse responses. The next theorem follows from Theorem 1 and the multivariate �rst-
order delta method.

Theorem 2 (Asymptotic Normality of the Quantities of Interest). Let µ : RK2p+K(K+1)/2 → R
l have

a continuous �rst derivative at all points (θm, 0K2(p−m), σ ), with m ∈ M. Let θ∞ denote the parameters
obtained by taking θT,p but setting 11 = 12 = . . . = 1p2 = O, and de�ne the Jacobian matrices Dθ =
∂µ(θ∞, σ )/∂θ ′ and Dσ = ∂µ(θ∞, σ )/∂σ ′. For Dθ and Dσ not having zero rows, under Assumptions
1–3, and as T → ∞,

√
T
(
µ
(
(θ̂T,m, 0K2(p−m)

), σ̂
)
− µ(θT,p, σ )

)
d−→ N

(
DθCmδ,DθPm(� ⊗ 6)PmD

′
θ + Dσ 422D

′
σ

)
,

with Pm = Sm
[
S′
m�Sm

]−1
S′
m ⊗ IK and

Cm =
(
Sm
[
S′
m�Sm

]−1
S′
m� − IKp

)
S0

(
IKp2 − 5′

m5m

)
⊗ IK .

We de�ne the impulse response at horizon h as the hth coe�cient matrix of the MA(∞) representa-

tion yt =
∑∞

i=0 8iut−i with80 = IK , henceµ : RK2p+K(K+1)/2 → R
K2
. Theorem2 can be applied if the

Jacobian matricesDθ andDσ are known. Lütkepohl (1990) lists these Jacobian matrices for the impulse
responses, the orthogonalized impulse responses, the accumulated responses, the total accumulated

4This condition is a su�cient but by no means a necessary condition. For p1 = 1 and p2 = 1, the model yT ,t = 0.7yT ,t−1 +
0.75√

T
yT ,t−2 + ut is stationary for all T but the parameters violate the requirement based on Fujiwara’s bound.

5Theorem 1 showed that all the 6̂
m
u are asymptotically equivalent. We omit the superscriptm from now on.

768   J. LOHMEYER ET AL.



responses, and the forecast error variance decomposition. The speci�c case of the (orthogonalized)
impulse responses is highlighted in the following Corollary.

Corollary (An Application to Impulse Responses). Let A∞ denote the (Kp × Kp) companion matrix
related to the process in which the misspeci�cation coe�cients have been set to zero, J = [IK O · · · O] a
matrix of dimensions (K × Kp) and 6u = PP′. Then, under the assumptions of Theorem 2,

(a) The asymptotic distribution of the estimated impulse response at horizon i, 8̂i, follows

√
T
(
vec(8̂i) − vec(8i)

)
d−→ N

(
GiCmδ,GiPm (� ⊗ 6)PmG

′
i

)
,

where Gi = ∂vec (8i) /∂θ =
∑i−1

j=0 J (A∞)i−1−j ⊗ 8j.

(b) The asymptotic distribution of the estimated orthogonalized impulse response at horizon i, 9̂ i, follows

√
T
(
vec(9̂ i) − vec(9 i)

)
d−→ N

(
FiCmδ, FiPm (� ⊗ 6)PmF

′
i + F̄i422F̄

′
i

)
,

where F0 = O and Fi =
(
P′ ⊗ IK

)
Gi for i > 0. For all i we have F̄i = (IK ⊗ 8i)H with H =

∂vec(P)/∂σ ′ = L′
K[LK

(
I
K2 + KKK

) (
P ⊗ IK

)
L′
K]−1 (see Lütkepohl (1990) for the de�nitions of LK

and KKK).

Remark 3. The �rst-order deltamethod is invalid if eitherDθ orDσ has zero rows. It is well-documented
in the literature thatDθ can have zero rows for speci�c parameter combinations when impulse responses
are considered. We refer to Lütkepohl (1990) and Benkwitz et al. (2000) for details.

2.3.1. Model selection: The focused information criterion (FIC)

The intuition behind the FIC of Claeskens and Hjort (2003) is most easily understood for a univariate
quantity of interest, so we temporarily assume l = 1. The generalization tomultiple quantities is covered
in Remark 4. Theorem 2 implies that the asymptotic mean squared error (AMSE) of the focus quantity

µ
(
(θ̂T,m, 0K2(p−m)), σ̂

)
is

AMSE
(
µ
(
(θ̂T,m, 0K2(p−m)), σ̂

))
= Dθ

[
Cmδδ′C′

m + Pm(� ⊗ 6)Pm

]
D′

θ + Dσ 422D
′
σ . (2.9)

There are three contributions to the AMSE: (1) the term DθCmδδ′C′
mD

′
θ is an asymptotic squared bias

originating from the exclusion of local-to-zero parameters, (2) the asymptotic variance contribution
DθPm(� ⊗ 6)PmD

′
θ , and (3) the contribution Dσ 422D

′
σ which does not depend on the lag order m.

Overall we face a bias-variance tradeo� when having to decide onm.

The FIC is an estimate of the AMSE. The quantities θ̂T,p and �̂ = 1
T

∑T
t=1 zT,tz

′
T,t provide

consistent estimates for θT and �, repectively. In view of the continuous mapping theorem, P̂m =
Sm

[
S′
m�̂Sm

]−1
S′
m ⊗ IK and

Ĉm =
(
Sm

[
S′
m�̂Sm

]−1
S′
m�̂ − IKp

)
S0

(
IKp2 − 5′

m5m

)
⊗ IK , (2.10)

are consistent estimators as well. A consistent estimator for δ is not available due to the adopted
misspeci�cation framework.We follow the existing literature (see Claeskens andHjort (2003), Liu (2015),

and Charkhi et al. (2016) among others) and use δ̂ =
√
Tvec(2̂T,pS0) which satis�es6

δ̂
d−→ Rδ = δ + (S′

0�
−1 ⊗ IK)R ∼ N(δ, S′

0�
−1S0 ⊗ 6). (2.11)

6δ̂ =
√
T vec(2̂T ,pS0) is the sample equivalent of δ = vec(1) =

√
Tvec(CT ) =

√
Tvec(2T ,pS0).
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Asymptotically, we have E(δ̂δ̂
′
) = δδ′ + S′

0�
−1S0 ⊗ 6. Using the asymptotically unbiased estimate

δ̂δ̂
′ − S′

0�̂
−1

S0 ⊗ 6̂ for δδ′, the FIC for the approximating model withm lags is de�ned as

F̂ICm = Dθ

[
Ĉm

(
δ̂δ̂

′ − S′
0�̂

−1
S0 ⊗ 6̂

)
Ĉ

′
m + P̂m(�̂ ⊗ 6̂)P̂m

]
D′

θ + Dσ 4̂22D
′
σ . (2.12)

This estimate of the AMSE can be computed for every model, and the model with the lowest F̂ICm is
selected. We elaborate on implications of inconsistent estimation of δ in Section 2.4.

Remark 4. The same procedure can be followed when l > 1, but the AMSE becomes an (l × l) matrix.
The trace or determinant are meaningful ways to describe this AMSE matrix by a see scalar Charkhi
et al. (2016).7 The trace is computationally convenient because the overall FIC will be the sum of the
individual univariate FIC contributions.

2.3.2. Model averaging: Plug-in averaging

Liu (2015) proposed a model averaging approach along the lines of the FIC. It was named plug-
in averaging. We again depart from the case l = 1, see Remark 5 for the generalization. Part (b)
from Theorem 1 implies that linear combinations of the VAR parameter estimates are also asymptot-
ically normally distributed. Interpret the coe�cients in the linear combination as weights, i.e., de�ne

w = (wp1 ,wp1+1, . . . ,wp) with w ∈ H =
{
w ∈ [0, 1]p2+1 :

∑p
m=p1 wm = 1

}
.8

Theorem 3 details the asymptotic distribution of the following weighted estimator,

µ̄(w) =
p∑

m=p1

wmµ
(
(θ̂T,m, 0K2(p−m)), σ̂

)
. (2.13)

Theorem 3 (Asymptotic Normality of the Plug-In Estimator). Under the Assumptions of Theorem 2, we
have for T → ∞,

√
T
(
µ̄(w) − µ(θT , σ )

)
d−→ Dθ

p∑

m=p1

wmCmδ + Dθ

p∑

m=p1

wmPmR + Dσ S

∼ N


Dθ

p∑

m=p1

wmCmδ,V + Dσ 422D
′
σ


 ,

with V =
∑p

m=p1

∑p
l=p1

wmwlDθPm (� ⊗ 6)PlD
′
θ .

As for the FIC, we compute the AMSE and �nd9

AMSE(µ̄(w)) =
p∑

m=p1

p∑

l=p1

wmDθ

(
Cmδδ′C′

l + Pm (� ⊗ 6)Pl

)
D′

θwl = w′9w, (2.14)

with the ((p2 + 1) × (p2 + 1)) matrix 9 having the (m, l)th element 9m,l = Dθ

(
Cmδδ′C′

l +

Pm (� ⊗ 6)Pl

)
D′

θ . The optimal weight vector that minimizes the AMSE is given by w0 =
argminw∈H w′9w. Butw0 depends on population quantities, so using the same estimates for population

7Any mapping from the AMSE matrix to a scalar can be used, e.g., matrix norms could be used as well.
8We assume that we average over all the models inM = {p1, p1 + 1, . . . , p}.
9The contribution Dσ 422D

′
σ does not depend on m, and is therefore inconsequential for the analysis. This term will be

omitted from the AMSE to allow for an easier presentation.
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quantities as in Section 2.3.1, we compute feasible weights as

ŵ = arg min
w∈H

w′9̂
j
w, j ∈ {Biased, Bias cor}, (2.15)

with

9̂
Biased

m,l = Dθ

[
Ĉmδ̂δ̂

′
Ĉ

′
l + P̂m

(
�̂ ⊗ 6̂

)
P̂l

]
D′

θ ,
(2.16)

9̂
Bias cor

m,l = Dθ

[
Ĉm

(
δ̂δ̂

′ − S′
0�̂

−1
S0 ⊗ 6̂

)
Ĉ

′
l + P̂m

(
�̂ ⊗ 6̂

)
P̂l

]
D′

θ .

The sole di�erence between the matrix elements in Equation (2.16) is an asymptotic bias correction for

δ̂δ̂
′
. For both versions, Equation (2.15) is a quadratic programming problem with linear constraints.

Solvers are readily available (for example “quadprog” inMatlab, or “qprog” in Gauss). The estimator
for δ remains inconsistent and we again refer to Section 2.4 for a discussion of the implications.

Remark 5. As in Remark 4, we will obtain an (l × l) AMSE matrix for multiple quantities of interest.
This matrix has to be summarized by a scalar. The trace has again computational bene�ts because the

objective function will take the form ŵ = argminw∈H w′
(∑

i 9̂
j

i

)
w with 9̂

j

i the matrix corresponding

to the ith focus quantity.

Remark 6. Two remarks related to Charkhi et al. (2016) are in place.

1. The weight vector ŵ is only uniquely determined when 9̂
j
is positive de�nite. As such, the bias

subtraction may lead to nonunique weights.
2. Charkhi et al. (2016) consider a weighting scheme in which the weights sum to one but are not

necessarily positive. Simulation results have shown that it is advisable to keep the positivity constraint
in our autoregressive setup because weights can otherwise become large in magnitude and rather
unstable.

Remark 7. Autoregressive models of in�nite order have been considered by Berk (1974) and Lewis and
Reinsel (1985) among others. It is an intriguing questionwhether the current framework can be extended
to VAR(∞) models.10 We argue that the main di�culty is the estimation of the in�nitely many local-

to-zero parameters. Let us consider the univariate model yT,t = αyT,t−1 +
∑∞

j=1

(
δj√
T

)
yT,t−1−j + ut

as an illustration. We conjecture11 that the asymptotic distribution of the approximating AR(1) model

follows
√
T(α̂ − α)

d−→ N
(∑∞

j=1 δjα
j, 1 − α2

)
. The bias contribution to the AMSE now depends on

in�nitely many δj. Their estimation would require the lag order of the largest approximating model to
grow with sample size. Our proof of Theorem 1 does not easily allow for such an extension since we
currently rely on the �nite dimension of the companion matrix. A full exploration of this topic is le� for
further research.

There is one �nal result that forces us to look at the case l > 1. Practitioners are usually interested
in the impulse responses for several horizons. Using a separate weight vector for every horizon may: (1)
create impulse responses that vary irregularly from one horizon to the next due to strong changes in the
weights, and (2) result in con�dence intervals that do not take into account the dependence between the
horizons. Theorem 4 extends the result of Liu (2015) to obtain asymptotically valid con�dence bands
for several horizons.

10We thank an anonymous referee for bringing this topic to our attention.
11We can be more precise concerning our assumptions. Theorem 1 has shown that the asymptotic results are governed by
the process with the local-to-zero parameters being set equal to zero. We assume that this remains true when there are
in�nitely many local-to-zero parameters.
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Theorem 4 (Joint Con�dence Bands). Under the Assumptions of Theorem 2, if wm(δ̂)
d−→ wm(Rδ), and

if Dθ (� ⊗ 6)D′
θ + Dσ 422Dσ ≻ 0, then

(√
T
(
µ̄(ŵ) − µ(θT , σ )

)
− Dθ

p∑

m=p1

ŵmĈmδ̂

)′(
Dθ

(
�̂ ⊗ 6̂

)
D′

θ + Dσ 4̂22Dσ

)−1

(√
T
(
µ̄(ŵ) − µ(θT , σ )

)
− Dθ

p∑

m=p1

ŵmĈmδ̂

)
≤ χ2

l,1−α ,

is an asymptotically correct (1 − α) con�dence band, where χ2
l,1−α

denotes the (1 − α) quantile of a chi-
squared distributed random variable with l degrees of freedom.

Remark 8. There is one practical concern which has not been addressed, namely the choices for p1 and
p.12 p1 will turn out to be unimportant. To see this, we consider the expression for F̂ICm (a similar reason-

ing applies to the plug-in weights). The termsDθ P̂m(�̂⊗ 6̂)P̂mD
′
θ andDσ 4̂22D

′
σ in Equation (2.12) do

not depend on p1, so it remains to inspect the contribution Dθ Ĉm

(
δ̂δ̂

′ − S′
0�̂

−1
S0 ⊗ 6̂

)
Ĉ

′
mD

′
θ . Using

δ̂ =
√
T(S′

0 ⊗ IK)θ̂T,p we can rewrite this contribution as

Dθ

(
Ĉm(S′

0 ⊗ IK)

) [
(
√
Tθ̂T,p)(

√
Tθ̂T,p)

′ − �̂
−1 ⊗ 6̂

] (
Ĉm(S′

0 ⊗ IK)

)′
D′

θ . (2.17)

By de�nition of Ĉm, we have

Ĉm(S′
0 ⊗ IK) =

(
Sm

[
S′
m�̂Sm

]−1
S′
m�̂ − IKp

)[
S0

(
IKp2 − 5′

m5m

)
S′
0

]
⊗ IK

=
(
Sm

[
S′
m�̂Sm

]−1
S′
m�̂ − IKp

)([
O O

O IK(p−m)

]
⊗ IK

)

︸ ︷︷ ︸
B

, (2.18)

thereby showing that actually none of the contributions to F̂ICm depends on p1. However, the zero
pattern of the matrix B in Equation (2.18) will only cause a nondiverging value for F̂ICm if models are
chosen such that m ∈ M = {p1, p1 + 1, . . . , p}. This supports the claim in Remark 1. The lag order of
the full model, that is p, might be chosen by AIC or set equal to an a priori selected pmax.

2.4. E�ects of inconsistently estimating delta

Equation (2.11) showed that δ̂ converges to a normally distributed random vector centered around δ.

How does this in�uence the selection and averaging procedures? Clearly, F̂ICm, 9̂
Biased
m,l , and 9̂Bias cor

m,l
will not converge in probability to the AMSE they are intended to estimate. The limiting distributions

of these quantities are highlighted in Theorems 5 and 6. The plug-in results are stated for 9̂Bias cor
m,l , but

a simple omission of the bias correction term would give the corresponding �ndings for 9̂Biased
m,l .

Theorem 5 ([The Asymptotic Behavior of F̂ICm). ] Under the Assumptions of Theorem 2, we have for
m ∈ M\p,

F̂ICm
d−→ Dθ

[
Cm

(
RδR

′
δ − (S′

0�S0 ⊗ 6)
)
C′
m + Pm(� ⊗ 6)Pm

]
D′

θ + Dσ 422D
′
σ

:= FIC∞
m ∼ amχ2

noncentral

(
1,
(
DθCmδ

)2
/am

)
− am + DθPm(� ⊗ 6)PmD

′
θ + Dσ 422D

′
σ ,

12We thank an anonymous referee who rightfully conjectured that the choice of p1 does not have an in�uence on the

numerical outcome for F̂ICm .
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where am = DθCm(S′
0�

−1S0 ⊗ 6)C′
mD

′
θ , and χ2

noncentral(ν, λ) denotes a noncentral chi-squared
distributed random variable with ν degrees of freedom and noncentrality parameter λ. It can be shown

that E
(
FIC∞

m

)
= AMSE

(
µ(θ̂T,m, 0K2(p−m), σ̂ )

)
and var(FIC∞

m ) = 2am(am + 2(DθCmδ)2). For the full

model, m = p, we have

F̂ICp
p−→ FIC∞

p = Dθ (�
−1 ⊗ 6)D′

θ = AMSE
(
µ(θ̂T,p, σ̂ )

)
.

Theorem 6 (The Asymptotic Behavior of 9̂Biased
m,l and 9̂Bias cor

m,l ). Under the Assumptions of Theorem 2,
we have for m, l ∈ M\p,

9̂Bias cor
m,l

d−→ R′
δC

′
mD

′
θDθClRδ + DθPm(� ⊗ 6)PlD

′
θ − DθCm(S′

0�S0 ⊗ 6)C′
mD

′
θ

:= 9
Bias cor,∞
m,l .

Two cases can be distinguished:

(a) If m = l, then 9Bias cor,∞
m,m ∼ amχ2

noncentral

(
1,
(
DθCmδ

)2
/am

)
− am + DθPm(� ⊗ 6)PmD

′
θ .

(b) De�ne A = S′
0�

−1S0 ⊗ 6, and consider the eigenvalue decomposition 1
2A

1/2(C′
mDθD

′
θCl +

C′
lDθD

′
θCm)A1/2 =

∑2
i=1 λiviv

′
i, where λi denotes the eigenvalue corresponding to the eigenvector

vi. If m 6= l, then

9
Bias cor,∞
m,l ∼

2∑

i=1

λiχ
2
noncentral

(
1,
(
v′
iA

−1/2δ
)2)+ DθPm(� ⊗ 6)PlD

′
θ

− DθCm(S′
0�S0 ⊗ 6)C′

mD
′
θ .

If m = p and/or l = p, then 9̂Bias cor
m,l

p−→ 9m,l.

Theorems 5 and 6 stated the limiting distribution of the FIC and the matrix elements that enter the
weighting scheme. Based on the random limits of these quantities, we might expect that our methods
will not truly minimize the AMSE among either model choices or model weights. We proceed with a

small illustration to stress the di�erence between knowing δ and having an estimator δ̂ that converges
in distribution only.

An illustration

Consider a simpli�ed DGP, yT,t = 0.5yT,t−1 + δ√
T
yT,t−2 + ut , with var(ut) = 1, and a focus on the

impulse response at horizon 1 (i.e., Dθ = (1, 0) and Dσ = 0). The model set is M = {1, 2}. This
simpli�ed setting makes the asymptotic behavior of the FIC and plug-in weights analytically tractable.
Figure 1(a) depicts FIC∞

1 and FIC∞
2 as a function of δ. Note that FIC∞

1 converges in distribution and
has a nonzero probability to give an outcome below FIC∞

2 . This asymptotic selection probability of the
model withm = 1 can be calculated analytically using Theorem 5. Figure 1(b) shows that the FIC does
not select the model with the smallest AMSE with probability one.

Our simpli�ed model can also be used to examine the e�ect of δ̂ on the plug-in weights. We focus on
the weights in the absence of bias correction.13 The (2 × 2) limiting matrix 9∞ is

9∞ =
[
a1χ

2
noncentral

(
1, (DθC1δ)

2/a1
)
+ σ 2DθP1D

′
θ σ 2DθP1D

′
θ

σ 2DθP1D
′
θ σ 2Dθ�

−1D′
θ

]
, (2.19)

13There is a�niteprobability for thematrix8∞ tohaveanegativeeigenvaluewhen thebias correction is applied. This severely
complicates the derivations, so we exclude this case from our analysis. For the 9∞ matrix without bias correction we will

have 9∞ ≻ 0 ifD′
θ
(�−1 − P1)Dθ

> 0. The latter requirement is equivalent toD′
θ

[
−ω12
ω11

]
6= 0.
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Figure 1. (a) The asymptotic MSE of the models with one and two lags (red and black line, respectively). The area between the 5 and

95% quantiles of FIC∞
1 is shaded in red. F̂IC2 converges in probability to the values of the black line. (b) The asymptotic selection

probabilities of the model with m = 1. The infeasible estimator takes a binary decision based on whether the red or black line in
graph (a) is lowest. Model selection based on the focused information criterion results in a smoothed asymptotic selection probability

because F̂IC1 converges in distribution.

Figure 2. The 5 and 95% quantiles of the asymptotic distribution of the weights as a shaded red area, see Equation (2.20). The solid
cyan lines are the asymptotically optimal weights which can only be obtained if either δ is known (infeasible) or a consistent estimator
for δ is available.

where a1 = σ 2DθC1S
′
0�S0C

′
1D

′
θ (see Theorem 6). Let w∗ denote the asymptotically optimal plug-in

weight for the model withm = 1. We have

Pr
(
w∗ ≤ x

)
= Pr

(
χ2
noncentral

(
1, (DθC1δ)

2/a1
)

≥
σ 2Dθ (�

−1 − P1)D
′
θ [1 − x]

a1x

)
. (2.20)
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Figure 2 shows the area between the 5 and 95% quantiles of w∗ together with the optimal weight for
known delta. We see that the asymptotic distribution of w∗ is located closer to zero than the optimal
infeasible weights. This is unsurprising because the lack of bias-correction causes (on average) an
overestimation of the AMSE of the model withm = 1.

Remark 9. The exposition in this section was based on a simpli�ed model. We concluded that the
absence of a consistent estimator for δ translates into suboptimal model selection and suboptimal
model averaging. Also in more elaborate models, the FIC and the elements of the weighting matrix
9 will converge to random variables (except for m = p). It is key to realize that the AMSE with
estimated δ will not coincide with the AMSE that can be attained if δ was either known or consistently
estimated. We conjecture that these considerations are equally relevant outside an autoregressive
framework, e.g., in the regression framework discussed in Liu (2015) and the likelihood framework of
Charkhi et al. (2016).

3. Simulations

This simulation section consists of three parts.14 In the �rst part we will verify our derivations for
the simpli�ed DGP, and see how the suboptimal selection/averaging a�ects the �nite sample MSE.
This section is followed by a study of the impulse responses for di�erent horizons in a univariate
and multivariate setting. All our graphs are made as a function of the scalar δ. This scalar measures
the amount of misspeci�cation and the closeness to unit root.15 Any missing starting values in the
autoregressive recursionwere replaced by zeros, and the �rst 100 data pointswere omitted as a presample.
All results are based on 100,000 Monte Carlo replications.

The performance of the various methods was assessed using the empirical mean squared error. For
model selection the featured methods are:
1. The Akaike information criterion (“AIC”) and Bayesian information criterion (“BIC”), e.g., Section

4.3 of Lütkepohl (2005) and the original papers by Akaike (1998) and Schwarz et al. (1978).
2. The “FIC” from Equation (2.12) with estimated δ.
3. An infeasible version of the FIC abbreviated as “Infeas.” This information criterion is based on

population quantities, especially δ is known.
For the model averaging setup we consider:
1. “sAIC” and “sBIC” as smoothed counterparts of the AIC and BIC, see Burnham and Anderson

(2002). To illustrate, let AIC(m) denote the AIC for model m ∈ M. The smoothed AIC assigns a
weight of exp

(
− 1

2AIC(m)
)
/
∑

m∈M exp
(
− 1

2AIC(m)
)
to modelm.

2. Three plug-in averages are reported. “Plug-in” and “Plug-in Corr.” are computed from Equations

(2.15) and (2.16), where only the second average uses the bias correction on δ̂δ̂
′
. The plug-in average

based on known δ is denoted “Infeas.”
3. The “Jackknife” model averaging procedure detailed in Hansen and Racine (2012) and Zhang et al.

(2013).
4. The Stein combination shrinkage method used in the simulation section of Hansen (2016) is

abbreviated “SteinH.” This shrinkage method combines VAR(1) through VAR(p) models as well
as univariate AR(1) through AR(p) models. Our DGP contains considerable interaction between
the cross-sectional units so we also consider a shrinkage method abbreviated “Stein” which only
combines the VAR(1) through VAR(p).

14A selection of simulation results is reported here, extensive results can be found in the Supplementary Material.
15Previous studies (e.g., Hansen (2007), Hansen (2008), Hansen and Racine (2012), Liu andOkui (2013), Zhang et al. (2013) and

Liu (2015)) show the performance as a function of the population R2. This representation is inconvenient in our dynamic
setup because it is unclear when we are approaching the boundary of the stationarity region.
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Figure 3. (a) The empirical asymptotic MSE of the models with one and two lags (red and black line, respectively). The area between

the 5 and 95% empirical quantiles of F̂IC1 and F̂IC2 are shaded in red and grey. (b) The empirical selection probabilities of the FIC. (c)
The AMSE of the models withm = 1 andm = 2 together with the empirical MSE of the feasible FIC (red) and infeasible FIC (cyan). This
�gure was obtained for T = 100 and should be compared with the asymptotic results in Figure 1.

3.1. Simpli�ed DGP

Figures 3 and 4 provide the �nite sample con�rmation of the intuition we gained from the simpli�ed
DGP.16 The wide spread in the empirical distribution of F̂IC1 shown in Figure 3(a) results indeed in a
smoothed instead of binary selection between the models (Figure 3(b)). The performance of the feasible
FIC is therefore worse than that of the infeasible FIC that assumes δ to be known. At high |δ|, we see that
the probability to select the wrong model is small. The feasible FIC, therefore, performs similarly to its
infeasible counterpart for large amounts of misspeci�cation only.

In Figure 4, the three panels display results on the plug-in averages. The quantiles of the weight
distribution without bias correction should be compared to those in Equation (2.20) and Figure 2.
The results match. Figure 4(b) shows the quantiles of the weight distribution with bias correction. As
expected, this distribution is shi�ed toward higher weights because the upward bias of the AMSE of the
model withm = 1 is removed. We can see in 4(c) that the plug-in averages do not perform as well as the
infeasible estimator. Unreported simulation results at a sample size of T = 1000 con�rm that this e�ect
does not disappear with sample size. The inconsistent estimation of δ again causes the feasible weights
to di�er from optimal weights.

16In this section we have rescaled the empirical MSE by the sample size to make it comparable to the asymptotic results of
Figures 1 and 2, hence the label empirical asymptotic MSE.
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Figure 4. The 5 and 95% empirical quantiles of the weights distribution without bias correction (a) and with bias correction (b). The
infeasible weights are displayed in cyan. The empirical MSE of plug-in methods is shown in (c). The sample size is T = 100.

3.2. Simulation results for an autoregressivemodel

Further simulations are based on the following model17:

yT,t = 0.5yT,t−1 + δ√
T
yT,t−2 + δ

2
√
T
yT,t−3 + ut , ut

i.i.d.∼ N (0, 1). (3.1)

The second and third lag are local-to-zero implying that M = {1, 2, 3}. The coe�cients in front of
the misspeci�ed lags decline linearly as in Liu (2015), where δ governs the amount of misspeci�ca-
tion.The largest modulus eigenvalue of the companion matrix is about 0.3 at δ = −0.2 and increases
monotonously to approximately 0.9 at the boundaries of the interval [−4, 2].

Remark 10. The AMSEs of the impulse response at horizon 1 are the same form = 2 and m = 3. The
plug-in weights are not unique, also see Remark 6.

3.2.1. MSE comparison

The empirical MSE of the various selection methods are shown in Figure 5 for the impulse responses
at horizon 1, 3, and 5. Due to the strong penalty on model complexity, the BIC performs well for small

17We show in the SupplementaryMaterial that the simpli�edmodel with p1 = p2 = 1, i.e., yT ,t = αyT ,t−1 + δ√
T
yT ,t−2 +ut , is

special because the gradient vector has no in�uence onmodel selection and plug-in averaging. We extend themodel with
an additional lag to see the in�uence of the impulse response horizon.
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Figure 5. The empirical MSE for model selection. The DGP is yT ,t = 0.5yT ,t−1 + δ√
T
yT ,t−2 + δ

2
√
T
yT ,t−3 + ut . (a) h = 1, T = 100, (b)

h = 1, T = 1000, (c) h = 3, T = 100, (d) h = 3, T = 1000, (e) h = 5, T = 100, and (f ) h = 5, T = 1000.

amounts of misspeci�cation, but its performance quickly deteriorates as |δ| increases. The performance
of the AIC and the feasible version of the FIC are comparable for large areas of the parameter space, with
neither of these methods being preferred to the other. The infeasible FIC is very frequently the preferred
method.
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Model averaging results are reported in Figure 6. The behavior of the smoothed BIC procedure is
similar to that of its selection counterpart, i.e., it only performs well for small δ. The same remark
applies to the plug-in average with bias correction. The Jackknife, smoothed AIC, and the plug-in
average without bias correction are close competitors, where the plug-in average is a better candidate for

Figure 6. The empirical MSE for model averaging. The DGP is yT ,t = 0.5yT ,t−1 + δ√
T
yT ,t−2 + δ

2
√
T
yT ,t−3 + ut . (a) h = 1, T = 100, (b)

h = 1, T = 1000, (c) h = 3, T = 100, (d) h = 3, T = 1000, (e) h = 5, T = 100, and (f ) h = 5, T = 1000.

ECONOMETRIC REVIEWS   779 



Figure 7. (a) and (b) The empirical MSE of the OLS estimator of the model with 1 lag (OLS1), 2 lags (OLS2) and the full model with 3
lags (OLS3). Gray lines show the asymptotic MSE approximations as provided by the delta method. (c) and (d) The empirical selection
probabilities (see Figure 5 for the appropriate legend). (e) and (f ) The empirical distribution of the weights (see Figure 6 for the

appropriate legend). The DGP is yT ,t = 0.5yT ,t−1 + δ√
T
yT ,t−2 + δ

2
√
T
yT ,t−3 + ut for all graphs. (a) h = 3, T = 100, (b) h = 3,

T = 1000, (c) h = 3, T = 100, (d) h = 3, T = 1000, (e) h = 3, T = 100, and (f ) h = 3, T = 1000.
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large |δ|. The performance of the plug-in average with known δ is best. It even performs uniformly the
best at the larger sample size of T = 1000.

What causes the superior performance of the infeasible estimators? Our simulation �ndings can be
understood from the intuition that was gained from the simpli�ed DGP. Panel (a) and (b) from Figure 7
show the empirical MSE of the three models, m ∈ {1, 2, 3}, together with the AMSE of these models.
The asymptotic approximation is close for T = 100 and improves further at T = 1000. The selection
probabilities in panels (c) and (d) reveal how the infeasible estimator takes a binary decision with the lag

length increasing with δ. For the simpli�ed DGP we have seen how the convergence in distribution of δ̂
causes smeared out selection probabilities instead of the binary decision. This e�ect is also observed in
the graphs, even at the large sample size of T = 1000. The panels (e) and (f) tell the same story for the
plug-in weights.

We also perform simulation where we focus on several impulse responses simultaneously, see
Remarks 4 and 5. The trace is used to map the AMSE matrix to a scalar. The simulation outcomes are
qualitatively similar to our results for the impulse responses at a single horizon. Further details can be
found in the Supplementary Material.

3.2.2. Con�dence intervals

Con�dence intervals/bands can be calculated based on Theorem 4. Simulation results are provided in
Tables 1 and 2. The desired nominal coverage level was 90%. Table 1 shows that the empirical coverage
of the individual con�dence intervals is consistently too low. At horizon 2 and 3 this under-coverage
is least severe and decreases with sample size. The coverage of the con�dence level for horizon 6 varies
strongly across δ and can be very low. It is well-established in the literature (e.g., Kilian (1998) and Kilian

Table 2. The empirical coverage of the 90% con�dence regions (see Theorem 4) as a function of sample size T and misspeci�cation
parameter δ.

h = {2, 3} h = {2, 6}
δ T = 100 T = 250 T = 500 T = 1000 T = 100 T = 250 T = 500 T = 1000

−4.0 89.71 89.94 90.01 90.08 87.14 86.47 71.25 9.87
−3.0 89.59 90.03 90.11 90.11 84.15 73.27 41.74 56.54
−2.0 89.64 90.05 90.07 90.02 74.91 56.85 68.57 93.01
−1.0 89.59 90.01 90.01 90.02 76.13 89.96 90.41 90.21
0.0 89.41 89.86 89.89 89.93 83.80 86.91 88.31 89.16
1.0 89.17 89.74 89.77 89.87 85.99 87.91 88.56 89.13
2.0 88.54 89.75 89.79 89.91 87.29 88.83 89.16 89.46

Figure 8. The con�dence intervals are based on the asymptotic normality of
√
T
(
µ̄(ŵ) − µ(θT , σ )

)
− D

θ

∑p1+p2
m=p1

ŵmĈmδ̂ (see

Theorem 4). The displayed histograms are constructed for yT ,t = 0.5yT ,t−1 + δ√
T
yT ,t−2 + δ

2
√
T
yT ,t−3 + ut with δ = −2 and T = 500,

i.e., the boxed entries in Table 1. The number of Monte Carlo replications is 100, 000. (a) h = 2, T = 500 and (b) h = 6, T = 500.
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(2001)) that inference on impulse responses at higher horizons is inherently more di�cult because of
the increased nonlinearity in the parameters. This nonlinearity causes the delta method approximation

to perform poorly. Figure 8 shows the histograms of
√
T
(
µ̄(ŵ) − µ(θT , σ )

)
− Dθ

∑p1+p2
m=p1 ŵmĈmδ̂

for the impulse responses at horizons 2 and 6 (corresponding to the boxed numbers in Table 1). Note
that the con�dence intervals/bands de�ned in Theorem 4 are based on the asymptotic normality of
this expression. The sometimes severe under-coverage at horizon 6 should therefore not come as a
surprise. This poor asymptotic approximation at horizon 6 also in�uences the empirical coverage of
the con�dence bands as can be seen in Table 2.

3.3. Simulation results for a vector autoregressivemodel

Our simulation results are based on a bivariate VAR with DGP

yT,t =
(
0.5 0
0.5 0.5

)
yT,t−1 + δ√

T

(
1 0
0.5 1

)
yT,t−2 + δ

2
√
T

(
1 0
0.5 1

)
yT,t−3 + ut ,

(3.2)

ut
i.i.d.∼ N (0,6u) , where 6u =

(
1 0.17

0.17 0.33

)
,

Figure 9. The empirical MSE of the impulse response estimator for several selection and averaging methods. We have displayed the
results for the response of variable 1 to a structural shock in the variable 1 for horizons 2 and 6. The DGP is given in Equation (3.2). The
sample size is T = 100. (a) h = 2, model selection, (b) h = 6, model selection, (c) h = 2, model averaging, and (d) h = 6, model
averaging.
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Figure 10. Identical to Figure 9, but for T = 1000. (a) h = 2, model selection, (b) h = 6, model selection, (c) h = 2, model averaging,
and (d) h = 6, model averaging.

which is similar to the VAR used in Lütkepohl et al. (2015) for impulse response analyses. This process
has the same roots as the univariate process of Equation (3.1) butwith doublemultiplicity. The parameter
δ governs the degree of misspeci�cation. For brevity, we only report MSE results of the response of
variable 1 to a structural shock in variable 1. Figures 9, and 10 show the results for horizons 2 and 6.18

Similarly to the univariate results, none of the methods performs uniformly best. Only the infeasible
methods get close to dominating all other methods for the large sample size of T = 1000. The ragged
spike for “Infeas” in Figure 9(a) is caused by an abrupt binary decision to switch between models with
di�erent lag lengths. Finally, it is interesting to note that the Stein shrinkage methods perform well in
comparison to the plug-in averaging procedure.

4. Conclusion

In this paper, we studied the issue ofmodel selection andmodel averaging formultivariate autoregressive
processes in a locally dri�ing asymptotic framework. Within this dri�ing framework we derived the

18The simulation results for all four impulse responses and horizons 1–6 can be found in the Supplementary Material.
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asymptotic normality of the least squares estimators. The multivariate delta method subsequently
ensured that this asymptotic normality carries over to su�ciently smooth parameter transformations,
e.g., impulse responses. The focused information criterion and plug-in averaging estimator were de�ned
as the minimizers of the estimated asymptotic mean squared error of the focus parameter estimator.

We highlighted the role of the misspeci�cation parameter δ. Both Liu (2015) and DiTraglia (2016)
mentioned that the feasible FIC remains random in the limit. We provided the explicit expressions for
the limiting distribution of the FIC values and the elements of the weighting matrices, and illustrated
that the feasible estimators do not truly minimize the asymptotic mean squared error. This latter result
might encourage further research into di�erent ways to deal with the misspeci�cation parameter. There
are to the best of our knowledge two alternatives reported in the literature. The recent paper by Kitagawa
and Muris (2016) adopts a mixed frequentist and Bayesian framework to alleviate the estimation of
δ in their study of model averaging in semiparametric estimation of treatment e�ects. Hansen (2016)
similarly adopts a local-to-zero framework but minimizes a risk quantity that does not require the direct
estimation of δ.

Our simulation study of univariate andmultivariate autoregressive processes underlined the previous
paragraph because the infeasible estimator (the estimator knowing δ) frequently dominated the other
methods. The latter was especially the case at the larger sample size of T = 1000. There was no clearly
preferred method for feasiblemodel selection/averaging.

A possible extension of this work is an application to forecasting. Such an extension would com-
plement: (1) the predictive static regression setup discussed in Liu and Kuo (2016), and (2) the
prediction focused model selection of autoregressive models in Claeskens et al. (2007). Forecasts for
autoregressive models o�en start from the assumption that estimation and prediction are applied to
two independent processes with the same stochastic structure. The link to this current paper is that
(under this independence assumption) the asymptotic covariance matrix of the forecast is a continuous
transformation of the autoregressive parameters, see Section 3.5 of Lütkepohl (2005) for further
details.

Appendix

Mathematical proofs

Proof of Theorem 1. As in Liu (2015) we �rst relate the parameters of the VAR(m) models to the
parameters of the VAR(p). With the aid of the selection matrices we have

2̂T,m = YTZ
′
T,m(ZT,mZ

′
T,m)−1 = (BL′ZT + CTS

′
0ZT + U)Z′

T,m(ZT,mZ
′
T,m)−1

= ([B CT]SmS′
mZT + CT(IKp2 − 5′

m5m)S′
0ZT + U)Z′

T,m(ZT,mZ
′
T,m)−1

= (2T,mZT,m + CT(IKp2 − 5′
m5m)S′

0ZT + U)Z′
T,m(ZT,mZ

′
T,m)−1

= 2T,m + CT(IKp2 − 5′
m5m)S′

0ZTZ
′
T,m(ZT,mZ

′
T,m)−1 + UZ′

T,m(ZT,mZ
′
T,m)−1. (A.1)

We rearrange terms to obtain the starting point of our analysis. Note especially how the scaling by T1/2

cancels against the T−1/2 decay rate of the elements in the matrix CT . See Remark 1 for a discussion. An
expression in terms of the �xed parameter matrix 1 remains:

√
T
(
2̂T,m − 2T,m

)
=

√
TCT︸ ︷︷ ︸
1

(
IKp2 − 5′

m5m

)
S′
0

(
1

T
ZTZ

′
T

)
Sm

[
S′
m

(
1

T
ZTZ

′
T

)
Sm

]−1

+
(

1√
T
UZ′

T

)
Sm

[
S′
m

(
1

T
ZTZ

′
T

)
Sm

]−1

. (A.2)
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If we de�ne the vector of parameter estimates as θ̂T,m = vec(2̂T,m) and the true parameter vector
θT,m = vec(2T,m), then the properties of the vec operator provide

√
T
(
θ̂T,m − θT,m

)
=
([

S′
m

(
1

T
ZTZ

′
T

)
Sm

]−1

S′
m

(
1

T
ZTZ

′
T

)
S0

(
IKp2 − 5′

m5m

)
⊗ IK

)
δ

+
([

S′
m

(
1

T
ZTZ

′
T

)
Sm

]−1

S′
m ⊗ IK

)
1√
T

T∑

t=1

vec
(
utz

′
T,t−1

)
, (A.3)

where δ = vec(1). We will prove both plimT→∞
1
TZTZ

′
T = plimT→∞

1
T

∑T
t=1 zT,t−1z

′
T,t−1 = � and

1√
T

∑T
t=1 vec(utz

′
T,t−1)

d−→ N (0,� ⊗ 6). These two results prove part (a) of Theorem 1, because the

continuous mapping theorem implies that
√
T(θ̂T,m − θT,m) = Amδ + ([S′

m�Sm]−1S′
m ⊗ IK)R+ op(1).

We start with the proof of plimT→∞
1
TZTZ

′
T = �. The process

{
yT,t

}∞
t=−∞ is stationary and ergodic

for every �xed T in view of Assumptions 1 and 2 (e.g., Theorem 3 on p. 204 of Hannan (1970)). De�ne
the companion matrix AT and innovation vector Et such that zT,t = ATzT,t−1 + Et , i.e.,

AT :=




B1 B2 · · · Bp1−1 Bp1
C1√
T

C2√
T

· · · Cp2−1√
T

Cp2√
T

IK O · · · O O O O · · · O O

...
...

...
...

...
...

...
...

O O · · · O O O O · · · IK O




(Kp × Kp),

Et :=
(
u′
t , 0

′, . . . , 0′)′ (Kp × 1).

(A.4)

From this extended VAR(1) form we conclude that zT,tz
′
T,t = ATzT,t−1z

′
T,t−1A

′
T + AzT,t−1E

′
t +

Et−1z
′
T,t−1A

′
T + EtE

′
t . Stationarity implies

lim
T→∞

(
IK2p2 − AT ⊗ AT

)
plim vec

(
1

T

T∑

t=1

zT,t−1z
′
T,t−1

)

= plim vec

(
1

T

T∑

t=1

ATzT,t−1E
′
t

)
+ plim vec

(
1

T

T∑

t=1

Etz
′
T,t−1A

′
T

)
+ plim vec

(
1

T

T∑

t=1

EtE
′
t

)
.

(A.5)

The nonrandom matrix AT will converge to the matrix A∞ for large T. A∞ is thus obtained from AT

by replacing the ratios Ci/
√
T with zero matrices for i ∈ {1, 2, . . . , p2}. Note that the eigenvalues of A∞

coincidewith the roots of thematrix polynomialB∞(z) augmentedwithKp2 additional zero eigenvalues.
Assumption 3 guarantees that the matrix Ip2 − A∞ ⊗ A∞ is invertible.

Subsequently we consider the RHS of Equation (A.5). Let yT,t−j,k and ut,k denote the kth component

of yT,t−j and ut , respectively. If we can show that 1
T

∑T
t=1 yT,t−j,kut,l

p−→ 0 for all j ∈ {1, 2, . . . , p} and
k, l ∈ {1, 2, . . . ,K}, then the �rst two terms in the RHS of Equation (A.5) are op(1). To prove this, we

de�ne the array X
jkl
T,t = yT,t−j,kut,l/T and the norming cT = 1/T. X

jkl
T,t is a martingale di�erence (m.d.)

array with respect to the �ltration Ft = σ(us,−∞ < s ≤ t) and E|Xjkl
T,t/cT |4 = E|yT,t−j,kut,l|4 is �nite

in view of Assumption 1. Result 12.10 from Davidson (1994) implies that |Xjkl
T,t|2 is uniformly integrable

and Result 19.7 from the same reference gives 1
T

∑T
t=1 yT,t−j,kut

L2→ 0. The result for the �rst two terms
follows. The third term in the RHS of Equation (A.5) is a sample mean of an i.i.d. sequence. Khinchine’s
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Theorem gives the probability limit. Combining all the results, we conclude that

vec (�) := plimT→∞vec

(
1

T

T∑

t=1

zT,t−1z
′
T,t−1

)
=
(
IK2p2 − A∞ ⊗ A∞

)−1
vec

(
6∗)+ op(1), (A.6)

where 6∗ = e6e′ and e is the (Kp × K) matrix composed of the �rst K column of IKp. This

shows that plimT→∞
1
TZTZ

′
T = �. Ergodicity for every T also provides the result (I

K2p2
− AT ⊗

AT)vec(E(zT,t−1z
′
T,t−1)) = vec (6) and hence � = limT→∞ E(zT,t−1z

′
T,t−1) because AT → A∞.

We rely on the Cramer-Wold theorem (e.g., Result 25.5 from Davidson (1994)) to prove the

convergence of 1√
T

∑T
t=1 vec(utz

′
T,t−1) to R ∼ N (0,� ⊗ 6). Let ξ denote a �xed (K2p × 1) vector.

X∗
T,t = ξ ′vec(utz

′
T,t−1) is a m.d. array with respect to Ft . We note that σ 2

Tt = E(X∗2
T,t|Ft−1) =

E(ξ ′vec(uTz
′
T,t−1)vec(uTz

′
T,t−1)

′ξ |Ft−1) = E(ξ ′((zT,t−1z
′
T,t−1)⊗(utut))ξ |Ft−1) = ξ ′((zT,t−1z

′
T,t−1)⊗

6 )ξ and that X∗2
T,t is square integrable by Assumption 1. Moreover, from s2T =

∑T
t=1 E(X∗2

T,t) =
ξ ′(E(zT,t−1z

′
T,t−1) ⊗ 6)ξ we have

sup
T

T

s2T
= sup

T

1

ξ ′ (E
(
zT,t−1z

′
T,t−1

)
⊗ 6

)
ξ

< ∞. (A.7)

Equation (A.7) holds because the quadratic form in the denominator cannot be zero as both 6 and
E(zT,t−1z

′
T,t−1) are positive de�nite matrices. The positive de�niteness of 6 is part of Assumption 4.

For �nite T, E(zT,t−1z
′
T,t−1) cannot be positive semide�nite because this would imply the existence of a

κ 6= 0 such that κ ′E(zT,t−1z
′
T,t−1)κ = E(κ ′zT,t−1)

2 = 0 and at least one component of zT,t−1 is zero for
all t. Also it cannot approach a positive semide�nite matrix due to convergence to �. A generalization
of Result 24.4 from Davidson (1994) to martingale di�erence arrays shows that

1√
T

∑T
t=1 ξ ′vec

(
utz

′
T,t−1

)
√

ξ ′ (E
(
zT,t−1z

′
T,t−1

)
⊗ 6

)
ξ

d−→ N (0, 1) . (A.8)

The expression under the square root is asymptotically equivalent to ξ ′(� ⊗ 6)ξ . The second result,

1√
T

∑T
t=1 vec(utz

′
T,t−1)

d−→ N (0,� ⊗ 6), follows because ξ is arbitrary. The proof of part (a) is

complete.
Part (b) of Theorem 1 is a joint convergence result with the estimator for the covariance matrix.

For any model with m ∈ {p1, p1 + 1, . . . , p} lags we de�ne the residual matrix (residuals are stacked

columnwise) by Û
m

T,t = YT − B̂T,mZT,m. The estimated covariance matrix based on the residuals from
the model withm lags satis�es

6̂
m

u = 1

T

(
YT − 2̂T,mZT,m

) (
YT − 2̂T,mZT,m

)′

= 1

T

[(
2T,m − 2̂T,m

)
S′
mZT + CT

(
IKp2 − 5′

m5m

)
S′
0ZT + U

]

[(
2T,m − 2̂T,m

)
S′
mZT + CT

(
IKp2 − 5′

m5m

)
S′
0ZT + U

]′

=
(
2T,m − 2̂T,m

)
S′
m

(
ZTZ

′
T

T

)
Sm

(
2T,m − 2̂T,m

)′

+ CT

(
IKp2 − 5′

m5m

)
S′
0

(
ZTZ

′
T

T

)
S0

(
IKp2 − 5′

m5m

)′
C′
T
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+
(
2T,m − 2̂T,m

)
S′
m

(
ZTZ

′
T

T

)
S0

(
IKp2 − 5′

m5m

)′
C′
T +

(
2T,m − 2̂T,m

)
S′
m

(
ZTU

′

T

)

+ CT

(
IKp2 − 5′

m5m

)
S′
0

(
ZTZ

′
T

T

)
Sm

(
2T,m − 2̂T,m

)′
+ CT

(
IKp2 − 5′

m5m

)
S′
0

(
ZTU

′

T

)

+
(
UZ′

T

T

)
Sm

(
2T,m − 2̂T,m

)
+
(
UZT

T

)
S0

(
IKp2 − 5′

m5m

)′
C′
T + 1

T
UU ′. (A.9)

The stochastic orders of the various terms in Equation (A.9) are known from previous results. We have

2T,m − 2̂T,m = Op(T
−1/2), ZTZ

′
T/T

p−→ �, CT = O(T−1/2) and ZTU
′/T = Op(T

−1/2) by Equation

(A.8). We conclude that 6̂
m

u = 1
TUU ′ + oP(1). Every covariance estimator (every in the sense of for all

m ∈ M) has therefore the same asymptotic distribution as the covariance estimator based on the true
innovations.

Joint asymptotic normality of the parameter estimates and the covariance estimator can be obtained
along the lines of the proof of Proposition 11.2 of Hamilton (1994). That is, we de�ne

λt = vech




u21t − σ11 u1tu2t − σ12 . . . u1tuKt − σ1K
u2tu1t − σ21 u22t − σ22 . . . u2tuKt − σ2K

...
...

. . .
...

uKtu1t − σK1 uKtu2t − σK2 . . . u2Kt − σKK


 . (A.10)

The sequence {λt} is i.i.d. and thus also a martingale di�erence sequence. One can apply the Cramer-
Wold Theorem to the extended martingale di�erence vector (vec(utz

′
T,t−1)

′,λ′
t)

′ to show
[
(1

√
T)
∑T

t=1 vec(utz
′
T,t−1)

(1
√
T)
∑T

t=1 λt

]
d−→ N

([
0

0

]
,

[
411 412

421 422

])
. (A.11)

We already know that 411 = � ⊗ 6. The elements in the covariance matrix 412 take the form
limT→∞ E(uk1tyT,t−j,k2(uk3tuk4t − σk3k4)). They are zero because limT→∞ E(yT,t−j,k2) = 0. Finally,

422 = E
(
λtλ

′
t

)
. The typical elements are E((uitujt − σij)(ultumt − σlm)).

De�ne two independent random vectors: R ∼ N (0,� ⊗ 6) and S ∼ N(0,422). We will proof the
claim in part (c) of Theorem 1 for the case of three di�erent models indexed by m1,m2,m3 ∈ M. The
proof is immediate, since



√
T
(
θ̂T,m1 − θT,m1

)

√
T
(
θ̂T,m2 − θT,m2

)

√
Tvech

(
6̂

m3

u − 6u

)




d−→



Am1

Am2

O


 δ +




([
S′
m1

�Sm1

]−1
S′
m1

⊗ IK

)
O([

S′
m2

�Sm2

]−1
S′
m2

⊗ IK

)
O

O IK(K+1)/2



[
R

S

]
. (A.12)

Proof of the Auxiliary Result. The proof uses mathematical induction so let us compare the impulse
responses of the VAR(p) and VAR(p+ 1) models. For p = 0 we are comparing a white noise model with
a VAR(1) with coe�cient matrix A. The impulse responses at horizon h (the case h = 1 is trivial so we
focus on h > 1) for these models areOK×K and Ah, respectively. The base case p = 0 holds.

We start the inductive step by de�ning the companion matrix of the VAR(p + 1),

F(p+1) =




A1 A2 . . . Ap Ap+1

IK O . . . O O

O IK . . . O O
...

...
. . .

...
...

O O . . . IK O



. (A.13)
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This companion matrix is (K(p + 1) × K(p + 1)). For an arbitrary matrix of this size, say A, we will
introduce the notation [A]ij to denote its (i,j)th block of dimension (K×K). In this notation, the impulse
response at horizon h for the VAR(p + 1) is simply [(Fp+1)

h]11. Setting Ap+1 = O provides K zero
columns, and hence

[(Fp+1)
h]11 =

p+1∑

j1=1

· · ·
p+1∑

jh−1=1

[Fp+1]1j1[Fp+1]j1j2 · · · [Fp+1]jh−11

=
p∑

j1=1

[Fp+1]1j1



p+1∑

j2=1

· · ·
p+1∑

jh−1=1

[Fp+1]j1j2 · · · [Fp+1]jh−11




= . . . =
p∑

j1=1

· · ·
p∑

jh−1=1

[Fp+1]1j1[Fp+1]j1j2 · · · [Fp+1]jh−11 =
[
(Fp)

h
]11

. (A.14)

where Fp is the companion matrix related to the VAR(p). The inductive step is also complete.

Proof of Theorem 2. We rewrite the expression in Theorem 2 as

√
T
(
µ(θ̂T,m, 0K2(p−m), σ̂ ) − µ(θT,p, σ )

)

=
√
T
(
µ(θ̂T,m, 0K2(p−m), σ̂ ) − µ(θT,m, 0K2(p−m), σ )

)

−
√
T
(
µ(θT,p, σ ) − µ(θT,m, 0K2(p−m), σ )

)
. (A.15)

The �rst term in the RHS of Equation (A.15) contains a parameter transformation of the estimated
parameters. The �rst-order delta method can be applied to this expression because Theorem 2 explicitly
assumes the nonvanishing derivatives at the necessary points. The second term is nonrandom. It is the
di�erence of two terms which only di�er in locally misspeci�ed coe�cients which have been set to zero.
A Taylor expansion can handle this second contribution. The result from the delta method is

√
T

(
µ(θ̂T,m, 0K2(p−m), σ̂ ) − µ(θT,m, 0K2(p−m), σ )

)

d−→
(

∂µ(θ∞, σ )

∂θ ′ (Sm ⊗ IK)

)(
Amδ +

([
S′
m�Sm

]−1
S′
m ⊗ IK

)
R
)

+
(

∂µ(θ∞, σ )

∂σ ′

)
S,

(A.16)

where θ∞ denotes the parameter vector θT,p but with all the misspeci�cation parameters CT set to zero.
The result of the Taylor expansion is

√
T
(
µ(θT,p, σ ) − µ(θT,m, 0K2(p−m), σ )

)

=
√
Tµ(θT,m, 0K2(p−m), σ ) +

(
∂µ(θ∞, σ )

∂θ ′ (S0 ⊗ IK)

)(
(IKp2 − 5′

m5m) ⊗ IK

)
δ + O(T−1/2)

−
√
Tµ(θT,m, 0K2(p−m), σ )

= ∂µ(θ∞, σ )

∂θ ′

(
S0(IKp2 − 5′

m5m) ⊗ IK

)
δ + O(T−1/2). (A.17)
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The notation can be made a little lighter using the de�nitions in Theorem 2: Dθ = ∂µ(θ∞, σ )/∂θ ′ and
Dσ = ∂µ(θ∞, σ )/∂σ ′. Equations (A.15), (A.16) and (A.17) combine to

√
T
(
µ(θ̂T,m, 0p−m, σ̂ ) − µ(θT,p, σ )

)

d−→ Dθ

[(
Sm ⊗ IK

)
Am − S0

(
IKp2 − 5′

m5m

)
⊗ IK

]
δ

+ Dθ

(
Sm
[
S′
m�Sm

]−1
S′
m ⊗ IK

)
R + Dσ S

= Dθ

[(
Sm
[
S′
m�Sm

]−1
S′
m� − IKp

)
S0

(
IKp2 − 5′

m5m

)
⊗ IK

]
δ

+ Dθ

(
Sm
[
S′
m�Sm

]−1
S′
m ⊗ IK

)
R + Dσ S, (A.18)

where the �nal line follows from the de�nition ofAm.With the given de�nitions ofCm andPm we indeed
recover the result stated in Theorem 2,

√
T
(
µ(θ̂T,m, 0K2(p−m), σ̂ ) − µ(θT,p, σ )

)
d−→ DθCmδ + DθPmR + Dσ S

∼ N

(
DθCmδ,DθPm (� ⊗ 6)PmD

′
θ + Dσ 422D

′
σ

)
.

(A.19)

Proof of Theorem 3. By Equation (A.19),

√
T
(
µ̄(w) − µ(θT,p, σ )

)
=

p∑

m=p1

wm

[√
T
(
µ(θ̂T,m, 0K2(p−m), σ̂ ) − µ(θT,p, σ )

)]

d−→ Dθ

p∑

m=p1

wmCmδ + Dθ

p∑

m=p1

wmPmR + Dσ S. (A.20)

The calculation of the mean vector and the asymptotic covariance matrix is straightforward.

Proof of Theorem 4. A valid con�dence interval for a scalar focus was derived in Theorem 6 of Liu
(2015). We follow the same reasoning. Similar to Equation (A.20), we have

√
T
(
µ̄(ŵ) − µ(θT , σ )

)
d−→ Dθ

p∑

m=p1

wm(Rδ)CmRδ + Dθ

(
�−1 ⊗ IK

)
R + Dσ S. (A.21)

Next, by the convergence of δ̂ to Rδ ,

√
T
(
µ̄(ŵ) − µ(θT , σ )

)
− Dθ

p∑

m=p1

ŵmĈmδ̂
d−→ N

(
0,Dθ (�

−1 ⊗ 6)D′
θ + Dσ 422D

′
σ

)
. (A.22)

The con�dence region is constructed from the standardized quadratic form with population quantities
replaced by their consistent estimates.

Proof of Theorem 5. Consider m 6= p. We de�ne αm = C′
mD

′
θ , A = S′

0�
−1S0 ⊗ 6, and introduce a

standard normally distributed random vector ZK2p2 ∼ N(0, IK2p2) and random variable Z ∼ N(0, 1).
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Now Rδ = δ + A1/2ZK2p2 , and

R′
δC

′
mD

′
θDθCmRδ =

(
α′
m(δ + A

1/2ZK2p2)
)2 =

∥∥α′
mA

1/2
∥∥2
(

α′
mA

1/2ZK2p2∥∥α′
mA

1/2
∥∥ + α′

mδ∥∥α′
mA

1/2
∥∥

)2

= (α′
mAαm)

(
Z + α′

mδ/
√

α′
mAαm

)2
, (A.23)

where α′
mAαm = am. The squared expression has the stated noncentral chi-squared distribution (see

Chapter 29 of Johnson et al. (1994) for details andmoments). Finally, all quantities in F̂ICp = Dθ (�̂
−1⊗

6̂)D′
θ + Dσ 422D

′
σ are estimated consistently.

Proof of Theorem 6. If either m = p and/or l = p, then there is no bias contribution and the matrix
elements converge in probability. Now considerm, l 6= p, then
(a) Form = l, the proof is identical to the proof of Theorem 5, hence omitted.

(b) Start by noting that x′Ax = x′(A+A′
2 )x, this gives

R′
δαmα′

lRδ =
(
A

−1/2δ + ZK2p2

)′ [
A

1/2

(
αmα′

l + αlα
′
m

2

)
A

1/2

] (
A

−1/2δ + ZK2p2

)
(A.24)

We subsequently use the transformation stated in Imhof (1961). The matrix in square brackets is
symmetric and has a rank of at most two. The eigenvalue decomposition mentioned in Theorem 6
applies, and therefore

R′
δαmα′

lRδ =
2∑

i=1

λi
(
v′
iA

−1/2δ + Zi
)2 ∼

2∑

i=1

λiχ
2
noncentral

(
1,
(
v′
iA

−1/2δ
)2)

, (A.25)

where the independence of the Zi follows from orthonormality of the eigenvectors.
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