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Abstract  

Cloud computing is becoming a profitable technology because of it offers cost-effective IT solutions 

globally.  A well-designed task scheduling algorithm ensures the optimal utilization of clouds resources and 

reducing execution time dynamically. This research paper deals with the task scheduling of inter-dependent 

subtasks on unrelated parallel computing machines in a cloud computing environment. This paper considers 

two variants of the problem-based on two different objective function values. The first variant considers the 

minimization of the total completion time objective function while the second variant considers the 

minimization of the makespan objective function. Heuristic and  meta-heuristic (HEART) based algorithms 

are proposed to solve the task scheduling problems. These algorithms utilize the property of list scheduling 

algorithm of unrelated parallel machine scheduling problem. A Mixed Integer Linear Programming (MILP) 

formulation has been provided for the two variants of the problem. The optimal solution is obtained by 

solving MILP formulation using A Mathematical Programming Language (AMPL) software. Extensive 

numerical experiments have been performed to evaluate the performance of proposed algorithms. The 

solutions obtained by the proposed algorithms are found to out-perform the existing algorithms. The 

proposed algorithms can be used by cloud computing service providers (CCSPs) for enhancing their 

resources utilization to reduce their operating cost.  

Keywords: Scheduling; Heuristics; Resource Optimization; Cloud Computing; Metaheuristic. 

1. Introduction  

Cloud computing is gaining popularity due to its ability for delivering cost-effective cloud services which 

can bring a win-win situation for the end users as well as for the service providers (Khiat et al. (2020)). In 
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the cloud computing environment, the remote users can obtain computational resources over the Internet in 

scalable fashion based on their requirement (Gabriel and Moallemi (2020)). Cloud computing has become a 

backbone for the IT infrastructure of different industries and organizations viz. education, weather 

forecasting, hedge funding, e-commerce and big data solution (Gill et al. 2019,  Kaur et al. 2019). Kochan 

et al. (2018) used a cloud computing based framework in the domain of hospital supply chain to enhance the 

performance of demand and supply of healthcare items (Gill et al. 2019, Buyya et al. 2018, Islam et al. 

2020).   

According to the enterprise cloud computing survey, the top four cloud service providers are Microsoft 

Azure with 23% share, Amazon Web Services (AWS) with 22% share, Google Cloud with 21% share, and 

IBM Cloud with 17% share (Enterprise Cloud Computing Survey (2016)). This survey forecast that about 

90% of enterprises will increase their annual spending on cloud computing.  Also, SaaS-based applications 

are expected to grow by 18%, and Infrastructure/ Platform as a service is expected to grow by 27% 

annually. The survey further indicates the increases in the efficiency of the enterprises through the use of 

cloud computing solutions. According to the Forbes magazine report, the total turnover of the cloud 

computing industry was $67 Billion in 2015, which is expected to grow by $162 billion in 2020 (The 

Changing Faces of the Cloud (2017)).  The report further reveals that Cloud Computing will impact the 

business considerably in near future. The Cloud Computing Services Providers (CCSPs) are competing with 

each other to capture the market share (Bowen et al. (2015)). Hence, the success of a CCSP depends upon 

the cost-effective offerings to their clients (Casini et al. (2020)).  

In a cloud computing environment, a cloud is considered as a cluster of many distributed computers 

(Germain & Rana (2009), Tuli et al. (2020)). A physical computer can have more than one Virtual 

Machines (VMs) residing on it for a parallel execution of different tasks (Gill et al. (2020)). Thus, the cloud 

computing system can be considered as a system of parallel VMs (Saif et al. (2020)). An end user can use 

the cloud resources in the form of a lease from the cloud service providers (Srirama and Ostovar (2018)). 

The VMs can be leased at the price of 10 cents per hour (Li et al. (2012)). In a cloud computing 
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environment, millions of users submit their billions of tasks for processing on unrelated virtual parallel 

machines environment (Deming and Liu (2020)). In unrelated parallel machines environment, the execution 

time of a task is considered to be different for different machines (Vallada et al. (2019)). An unequal 

execution time of tasks over different machines arises because each machine has different processing speed, 

memory or complexity (Ezugwu (2019)). This paper deals with the design of efficient algorithms to achieve 

the cost-effective solution for cloud computing task scheduling problem using precedence constraints.  

1.1 Motivation and Our Contributions 

The main motivation behind this research work is to consider a scheduling problem where unrelated VMs are 

responsible for processing independent tasks. A task consists of a series of subtasks (Tsai et al. (2013)). A 

successor subtask can be started only after the completion of its predecessor subtask. The subtasks can be 

executed independently in the same machine or in a different machine. The execution time of each machine is 

known in advance. Each machine has known release time (i.e., the available time for execution of existing 

tasks) due to the ongoing process of other jobs.  In this research paper, we have considered two problem 

variants for two different objective functions. The first variant of the problem considers the minimization of 

the total completion time objective while the second variant of the problem considers the minimization of the 

makespan objective. A Mixed Integer Linear Programming (MILP) formulation has been provided for the 

proposed variants of the problem.  The MILP formulation is solved to obtain an optimal solution for small 

problem instances. We proposed HEuristics and metA-heuRisTic (HEART) algorithms to solve the bigger 

problem instances. The proposed algorithms are compared with the similar algorithms available in the 

literature. The benchmark problem instances are introduced to perform the numerical experiments. These 

problem instances can be used in future research to compare the performance of different algorithms.  

1.2 Article Organization  

The rest of the paper is organized as follows. Section 2 provides a literature review of related research work 

on task scheduling in cloud computing domain along with the literature review of parallel machines 
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scheduling problems. Section 3 provides the problem description and formulation of the proposed problem, 

whereas Section 4 describes the proposed algorithms. In Section 5, the results of the proposed algorithms are 

compared with the existing algorithms. Finally, Section 6 provides the conclusion of this research paper.  

2.   Related Work   

The related work section is divided into two subsections: 1) task scheduling and 2) unrelated parallel 

machines.  

2.1 Task Scheduling in Cloud Computing  

In the last decade, application of scheduling algorithms in the cloud computing environment took the 

momentum with the aim of improving the resource utilization (Bhatt et al. (2020)). Gill & Buyya (2018) 

discussed the resource provisioning for workloads in the parallel computing environment of clouds. Fang et 

al. (2010) discussed the load balancing problem in cloud computing environment to meet the Quality of 

Service (QoS) requirements. Many researchers considered the genetic algorithm to solve QoS-oriented 

scheduling problems in cloud computing (Dutta & Joshi (2011), Jang et al. (2012), Liu et al. (2013), and Li & 

Peng (2011)). Pandey et al. (2010) used Particle Swarm Optimization (PSO) for job scheduling to minimize 

the computation and data transmission costs. Tsai et al. (2013) considered parallel cloud computing services 

with different processing capacity to perform subtasks. They included processing and receiving cost in their 

model with the aim to minimize the cost and makespan simultaneously. These research papers indicate the 

popularity of scheduling issues in cloud computing environment due to its ability to improve resource 

utilization. Also, there are many algorithms available in the literature to solve the scheduling problem in the 

production environment. However, the above-mentioned paper did not utilize the existing 

algorithms/properties form a production scheduling problem to solve the cloud computing scheduling 

problem. One of the aims of this paper is to relate the existing scheduling model from the production 

environment to the scheduling model in the cloud computing environment.  

The problem considered in this paper resembles with the parallel machine scheduling problem. The parallel 

machine scheduling problem has been proved to be NP-hard (Cook (1971) and Garey Johnson (1979)). The 

parallel machine problem can be classified under three categories on the basis of machine configuration: 
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uniform machine configuration, heterogeneous machine configuration and unrelated machine configuration. 

In uniform machine configuration, the processing time of a task is the same for all machines. In 

heterogeneous machine configuration, the processing time of a task depends on machine speed. In unrelated 

machine configuration, the processing time of a task is different for different machines. The problem 

considered in this paper resembles with unrelated parallel machine problems, therefore, the remainder of the 

literature review discusses only unrelated parallel machine scheduling problems.  

2.2 Unrelated Parallel Machine Scheduling 

Luis & Ruiz (2010) and Lin et al. (2011) proposed metaheuristics to solve the unrelated parallel machine 

problems to minimize the makespan objective. Luis & Ruiz (2010) proposed iterative greedy local search 

based metaheuristic to solve the problem. Lin et al. (2011) proposed an artificial immune system, which 

combines the feature of the artificial immune system and simulated annealing. Lin et al. (2013) extended their 

work for the multi-objective problem by proposing a Genetic Algorithm (GA) to find the non-dominated 

solutions to minimize the makespan, the total weighted completion time, and the total weighted tardiness 

objectives. Other research papers in literature (Ezugwu et al. (2019), Vallada et al. (2019), Lei and Liu 

(2020)) considered variants of unrelated parallel machine problems such as setup time, batch processing, 

additional resources etc.  

Jose et al. (2017) proposed Job Scheduling Technique (JST) considered non-identical job sizes and unequal 

ready times over the unrelated parallel batch processing machines to minimize makespan objective. They 

developed many scheduling heuristics based on first-fit, best-fit and earliest job ready time rules to solve the 

problem. Shahvari & Logendran (2017) proposed an enhanced Tabu Search Algorithm (TSA) to solve the 

problem and considered batch processing in unrelated parallel machines to minimize a linear combination of 

total weighted completion time and the total weighted tardiness objectives. Joo & Kim (2015) considered 

setup time and production-availability in unrelated parallel machines to minimize the total completion time 

objective. They proposed a hybrid genetic algorithm to solve the problem. Cheng & Huang (2017) addressed 

an unrelated parallel machine scheduling problem for jobs with distinct due dates and dedicated machines to 

minimize the total earliness and tardiness objectives. They developed a modified GA with a distributed 
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release time control mechanism to solve the problem. Rodney et al. (2015) considered unrelated parallel 

machines with sequence dependent setup times to minimize the makespan. They developed a Variable 

Neighborhood Descent (VND) metaheuristic to solve the problem. Luis et al. (2017) considered unrelated 

parallel machine problem with additional resources to minimize the makespan objective. They proposed a 

mathematical model based on linear programming formulation to solve the problem. Further, they combined 

metaheuristic strategies with a linear programming model to solve the bigger problem instances. Oleh & Lars 

(2016) considered scheduling problems in flexible job shops in an unrelated parallel machines environment 

to minimize the total weighted tardiness objective. They proposed an iterative local search to solve the 

problem.  

Wang et al. (2020) developed an Optimal Charging Scheduling (OCS) technique for electric vehicles 

considering the impact of renewable energy sources, which uses MILP to optimize execution time.  Deng et 

al. (2020) proposed a MILP based Two-Stage Load (TSL) scheduling approach for building load’s peak-to-

average ratio reduction and improves execution time.  These prior works such as Wang et al. (2020) and 

Deng et al. (2020) use MILP with a limited perspective. None of them considered precedence constraints in 

their problem. The unrelated parallel machine problem, with precedence constraints, is considered by 

Herrmann et al. (1997), Liu & Yang (2011), Afzalirad & Rezaeian (2016) and Gacias et al. (2010). The 

problem presented in this paper considers that many independent tasks consist of numerous inter-dependent 

subtasks. Each subtask can be processed independently but it can be started only after processing of 

predecessor subtask. Thus, the problem discussed in this paper can be considered as a special case of 

unrelated parallel machine scheduling problem with precedence constraints. Gacias et al. (2010) considered 

scheduling problem with precedence constraints and sequence-dependent setup times to minimize the total 

completion time and maximum lateness objectives independently. They proposed a branch-and-bound based 

exact algorithm and limited discrepancy based heuristic method to solve the problem. Afzalirad & Rezaeian 

(2016) considered resource constrained unrelated parallel machine scheduling problem with sequence-

dependent setup time, precedence constraints and machine eligibility restrictions to minimize the makespan 

objective. They developed a GA and artificial immune system (AIS) to solve the problem.   
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Herrmann et al. (1997) considered unrelated parallel machine scheduling problem with precedence 

constraints to minimize makespan objective. Herrmann et al. (1997) highlighted the problem as an 

application of office scheduling problem where workers perform different interdependent tasks with different 

skill sets for each subtask. They proposed a look-ahead based HH heuristic to solve the problem. The HH 

heuristic is based on scheduling a task in each iteration, which could lead to a late schedule of some tasks in 

the future.  Liu and Yang (2011) proposed a serial schedule (SS) heuristic to solve unrelated machine 

problem with precedence constraints for minimizing the makespan objective. The SS heuristic assigns a task 

to the earliest available machine iteratively. They compared SS algorithm with HH algorithm of Herrmann et 

al. (1997). Their numerical experiment showed the better performance of SS heuristic as compared to the HH 

heuristic.  

The algorithm proposed by Gacias et al. (2010) and Afzalirad & Rezaeian (2016) cannot be used to solve the 

problem considered in this paper because they considered additional constraints. However, the algorithm 

proposed by Herrmann et al. (1997) and, Liu & Yang (2011) can be used to solve the problem considered in 

this paper. We propose a simple heuristic and ant colony based metaheuristic to solve the problem. In the 

numerical experiment, we compare the performance of proposed algorithms with the SS heuristic of Liu & 

Yang (2011) and HH heuristic of Herrmann et al. (1997).  

2.3 Critical Analysis 

As discussed above, none of the above-mentioned papers considered precedence constraints in their unrelated 

parallel machines problem. Existing works are considering tasks independently, which leads to poor 

scheduling decisions, as shown in the evaluation section. Wang et al. (2020) and Deng et al. (2020) use MILP 

without considering. Hence, the precedence constraints-based MILP and heuristic/meta-heuristic approaches 

out-perform the baseline models. The current work shows a proof-of-concept of the novel approach and 

establishes that the proposed approach out-performs in a fundamental computing platform. This research 

work performs task scheduling of inter-dependent subtasks on unrelated parallel computing machines in a 

cloud computing environment using heuristic and meta-heuristic algorithms. We have performed the 

evaluation of our research work by considering all the possible performance parameters. Table 1 shows the 



Preprint Accepted in Journal of Software Practice and Experience        Aug 2, 2020                                            8 

comparison of proposed work (HEART) with existing techniques based on important parameters. 

Table 1: Comparison of our proposed work (HEART) with related works 

Work Heuristic 

Optimization 

Multi-

Scale 

System 

Dataset  Unrelated 

Parallel 

Machines 

Precedence 

Task 

Constraints 

Heuristic and 

Meta-Heuristic 

Algorithms 

Cloud 

Computing 

Evaluation Parameters  

MKS TCT RPD CPU PG ST 

HH Heuristic (Herrmann et 

al. (1997)) 

√ √ Small  √   √      

SS Heuristic (Liu & Yang 

(2011)) 

√  Small  √  √ √      

JST (Jose et al. (2017))   √  Small √    √      

TSA (Shahvari & 

Logendran (2017)) 

  Small √    √      

OCL (Wang et al. (2020))  √ Small     √      

TSL (Deng et al. (2020))  √ Small     √      

HEART (this work) √ √ Small and Large  √ √ √ √ √ √ √ √ √ √ 

Abbreviations: MKS:  Makespan value produced by an algorithm, TCT:  Total completion time value produced by an algorithm, RPD:  Relative 

percentage deviation of an algorithm from the best solution, CPU:  CPU time consumed by an algorithm, PG:  Percentage gap of an algorithm form 
the optimal solution and ST:  Scheduling Time  

 

3. System Model and Problem Formulation 

The section discusses the cloud model and problem formulation.  

3.1 Cloud Model 

The proposed algorithms in this paper can be deployed in real cloud platforms to allow efficient task 

scheduling in unrelated machines. This is quite evident in modern systems due to variation in compute 

performance, bandwidth availability and dynamic resource consumption statistics. Thus, we describe a 

large-scale distributed cloud platform model suitable for the proposed heuristic and meta-heuristic 

algorithms. The system model is shown in Figure 1. The design strategy as illustrated in the figure is as 

follows: The data is acquired from the Data Acquisition layer which consists of API gateways, IoT 

devices including sensors and Point of Scale (PoS) systems (AVAC, Tuli et al. 2020). This data is 

encapsulated in a task using gateways to be sent to Computing and Communication layer. Herein, the 

cloud nodes communicate using light-weight message passing approaches like MQTT to share task data 

and computational meta-data. MQTT is a machine-to-machine (M2M)/”Internet of Things” connectivity 

protocol (Hunkeler et al. 2008). The Analytics layer resides in one of the cloud nodes which handles the 

complete system and is responsible for monitoring and scheduling of tasks and cloud machines. The final 

task results are sent to the end user from the Analytics layer using alerts, web-portals or gateway 

applications (Mancini et al. 2019). 
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Figure 1: System Model 

3.2 Problem Formulation 

The problem considered in this paper deals with a situation in which a cloud computing scheduler receives n 

independent tasks for executing at m resources. Each task consists of a series of subtasks and is acceptable 

for processing on any resources. The cloud computing scheduler wants to assign nt inter-dependent subtasks 

from set  1 2 3 ,  ,  ,  ,  ,i ntT T T T T T    to m available resources 1 2( , ,..., )mR R R R .  A task i consists of 

in  inter-dependent series of subtasks denoted by set    ,  = ( ,)il

i

l n
T T T


 where lT  and ll n

T


are the first and 

last subtask for the task l. There is a temporal relationship among subtasks of task i, viz. all subtasks are 

performed in a sequential series. The subtask 1lT   can be started only after completion of the sub-task lT ; the 

subtask 2lT   can be started only after completion of the subtask 1lT   and so on.  Each subtask has just one 

predecessor except the first subtask of a task. Let ( )ipred T  denote the predecessor of task iT , which can be 

defined as follows.  
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1 1

0

( )
i j j

i

T if subtasksT and T belongs tothe same job
pred T

T otherwise

 
 


   

Here 0T  is an imaginary subtask with zero process time. We assume that this subtask has already been 

completed.  A subtask iT  can be executed to any cloud resources kR R , however, it can be started only 

after the completion of predecessor subtask ( )ipred T .  

The process time ikP  for executing the subtask iT on resource kR is known in advance. A resource kR  is 

available for processing any subtask only after time kt  because the resources are assumed to be, at the time, 

executing previously assigned subtask. A subtask-preemption is not allowed and resources are not allowed to 

process more than one subtask at a time.  A subtask is executed on a single resource at a time and the given 

resources are available continuously.  The problem involves assigning subtasks to appropriate resources in 

such a way that the specified objective function is minimized. A MILP formulation is provided for the two 

variants of the problem. The first variant of the problem considers the minimization of the total completion 

time objective function and the second variant of the problem considers the minimization of the Makespan 

objective. The first problem is denoted as Problem 1 and the second problem is denoted as Problem 2.  Two 

variants of the problem are formulated using the following decision variables. 

 Decision variables: 

jkF      Completion time on resource j for a subtask scheduled at position k, 

ijkX     Binary variable taking value 1 if subtask i is assigned to resource j at position k; 0 otherwise, 

 iC     Completion time of task i, 

maxC  Makespan of the optimal solution. 

Problem 1:  Minimization of total completion time 

 Min         
1

n

i

i

Z C


  (1) 
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 Subject to                    

1 1

1
m n

ijk

j k

X i T
 

                                                                                               (2) 

 
1

1 ,
n

ijk

i

X j R k L


                    (3) 

 
1 1

1

;
n

j j ij ij

i

F t X P j R


      (4) 

 
1 1

1

, 2
n

jk j k ij ij

i

F F X P j R k



                                                                              (5) 

(1 ) , ,i jk ijkC F M X i T j R k L             (6) 

 ( )

1 1
i

m n

i pred T ij ijk

j k

C C p X i T
 

         (7)                                   

 0 0C                                                                                                                     (8) 

 {0,1}, , ,ijkX i T j R k L                                                                                   (9) 

Equation (1) provides the expression for the minimization of the total completion time. Equation (2) ensures 

that a task iT  is scheduled on one resource and one position only. Equation (3) ensures that a maximum one 

subtask can be assigned for a given resource at a given position. Equation (3) also implies the possibility of 

not assigning any subtask in a given resource at a given position.  Equation (4) calculates the completion time 

for the task scheduled at first position on resource j, while the equation (5) calculates the completion time for 

other positions. Equation (6) provides the completion time calculation for task i. Equations (7) and (8) 

preserve the predecessor constraints among different subtasks. Finally, equation (9) enforces binary condition 

for decision variable Xijk. 

Problem 2:  Minimization of Makespan  

 Min         maxZ C   (10) 

     Subject to 
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1 1

1
m n

ijk

j k

X i T
 

                                                                                           (11) 

 
1

1 ,
n

ijk

i

X j R k L


                                                                              (12) 

            
1 1

1

n

j j ij ij

i

F t X P j R


                                                                                    (13) 

        
1 1

1

, 2
n

jk j k ij ij

i

F F X P j R k



                                                                        (14) 

     (1 ) , ,i jk ijkC F M X i T j R k L              (15) 

 ( )ii pred T ijC C P i T                                                                                        (16) 

 0 0C                                                                                                                         (17) 

 max iC C i T                     (18) 

{0,1}, , ,ijkX i T j R k L                                                                                      (19)  

Equation (10) provides expression for the minimization of Makespan objective.  Equations (11) to (17) are 

same as equations (2) to (8). The additional constraints (18) provide the calculation of Makespan. Finally, 

equation (19) enforces the binary constraints for decision variable Xijk. 

4. Proposed Algorithms   

In this paper an optimal solution is generated for the total completion time and the Makespan objective using 

the MILP formulation provided in the previous section. ‘A Mathematical Programming Language (AMPL)’ 

software is used to solve the MILP formulation. The MILP formulation can only be solved for small problem 

instances because the CPU time increases exponentially with increase in problem size. Furthermore, a 

heuristic and a meta-heuristic are proposed to solve the cloud resource allocation problem for the large 

problem instances.  

The proposed algorithms utilize the list-scheduling dominant property of the unrelated scheduling problem 

with precedence constraints. A list-scheduling algorithm is an assignment rule that finds a feasible schedule 
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for a given order of tasks. The assignment rule considers the tasks one by one from the given list of tasks for 

assigning them to the machine on the basis of the partial schedule given by the previous scheduled tasks. In 

the list-scheduling algorithm, decision of scheduled tasks is not changed in future. If a list schedule algorithm 

evaluates all the feasible schedules related to all possible order of tasks and one of these feasible schedules is 

guaranteed to find an optimal solution for the problem, then it is said that the list algorithm produces 

dominant set of solution (Hurnick & Knust (2001)).  In literature, it is said that a list scheduling algorithm 

finds an optimal solution if it produces a dominant set of solutions. The parallel machine scheduling literature 

has mainly two list scheduling algorithm: 1) list scheduling algorithm with earliest available machine-

assignment-rule and 2) list scheduling algorithm with earliest completion time of task-assignment-rule. In the 

earliest available machine assignment rule based list-scheduling algorithm, next task from the given order of 

tasks is scheduled on a first available machine. In the earliest completion-time of task-assignment-rule based 

list-scheduling-algorithm, next task from the given order of tasks is scheduled on a machine where the task 

completes earliest.  

It has been proven that both list scheduling algorithms find an optimal solution for uniform parallel machine 

scheduling problem with precedence constraints and makespan objective P||Cmax (Hurink & Knust (2001), 

Gacias et al. (2010)). However, literature is silent about the list-scheduling algorithm for the total 

completion-time objective. To the best of our knowledge, optimal list scheduling algorithm for total 

completion time objective is not available in literature. It can be easily seen that both list scheduling 

algorithms will produce the same feasible schedule for a given order of tasks in uniform parallel machine 

problem. However, they will produce different feasible solutions for the unrelated parallel machine 

scheduling problem with precedence constraints.   

Consider an instance with 3 tasks and 2 machines with precedence constraint J1 < J3 (i.e., task J1 precedes 

task J3). The process time of tasks on two machines are given in Table 2. 

Table 2: Process time of jobs on two machines 

 Task /Machine M1 M2 

J1 10 4 

J2 6 10 

J3 2 10 
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The optimal solution for this instance is obtained by scheduling task J1 in M2 and tasks J2 and J3 in M2. The 

Gantt chart representing optimal solution with Makespan 8 is shown in figure 2.  

M1 J2 (6) J3 (2)   

  

 

6 8   

  M2 J1 (4) 

     

 

4 

     

 

Figure 2: Gantt Chart of Optimal Solution 

   

There can be only three possible lists for the problem satisfying precedence constraints; {J1-J2-J3}, {J1-J3-J2} 

and {J2-J1-J3}. The schedule obtained by list scheduling algorithm with earliest available machine 

assignment rule is given in Figure 3.  

M1 J2 (6) 

    

   

6 

    M2 J1 (4) J3 (10) 

 

4 14 

 

a) Schedule for list {J1-J2-J3} 

        M1   J3 (2) 

    

   

2 

    M2 J1 (4) J2 (10) 

 

4 14 

 

b) Schedule for list {J1-J3-J2} 

        M1 J2 (6) 

    

 

6 

 

  

  M2 J1 (4) J3 (10) 

 

4 14 

 

c) Schedule for list {J2-J1-J3} 

 

Figure 3: Schedules for list scheduling algorithm with earliest available machine assignment rule 

 It is clear from Figure 3 that list scheduling algorithm with earliest available machine assignment rule does 

not produce a dominant set of solution. The schedule obtained by list scheduling algorithm with the earliest 

completion time of task assignment rule is shown in Figure 4. It appears that the list scheduling algorithm 

with the earliest completion time of task assignment rule produces a dominant solution. However, we could 
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not provide a formal proof of this property. The formal proof is an open-ended research question for future 

research. We use this property in our proposed algorithms to solve the problem.   
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Figure 4 : Schedule for list scheduling algorithm with earliest completion time of task assignment rule 

 

This problem instances can also be used for completion time objective. It can be easily shown that the earliest 

available machine assignment rule is non-dominant for total completion time objective as well.  

4.1 Earliest Completion Time (EST) based Heuristic   

A heuristic solution method is developed to solve the unrelated parallel machine scheduling problem with 

precedence constraint. The heuristic partially utilizes the list-scheduling algorithm based on earliest 

completion time of tasks assignment rule. The proposed heuristic assigns tasks iteratively until all the 

subtasks are scheduled. In each iteration, all unassigned feasible subtasks i.e., subtasks with assigned 

predecessor, are evaluated on all the resources. An unassigned subtask with the lowest completion time is 

selected for the assignment. The detailed description of the heuristic algorithm (Algorithm 1) is provided 

below.  
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Algorithm 1: Earliest Completion Time (EST) based Heuristic Algorithm 

Step 0: Initialize the available time of all the resources as their ready time (i.e., ; 1,...,k kA t k m  ) and 

completion time of all subtasks to be infinite (i.e. ; 1,...,iC i nt  ). Set the completion time of 0th

subtask to be zero (i.e., C0 = 0). Initialize unscheduled subtasks set S = {T1, T2,…, Tnt}. 

Step 1: Build the feasible set of subtasks Ω from the unscheduled subtasks set S whose predecessor subtask has 

already been scheduled.   

Step 2: Evaluate the earliest completion time iE  for subtask iT from set Ω. 

 
( )min{max( , ) }

ii pred T k ik
k M

E F A P


        (20) 

Step 3: Select the task for scheduling that has minimum earliest completion time iE . Determine the resource in 

which this task can be scheduled for minimum completion time. Assume that subtask iT  provides 

earliest completion time at resource Rk.  

Step 4: Schedule the subtask iT  at resource Rk for processing at time Pr ( )max( , )
ied T kt CT A . Update the 

available time kA  of resource Rk and the completion time iC  of task iT as follows. 

  k ikA t P            (21) 

i ikC t P             (22) 

Step 5: Remove task iT from set S.  

Step 6: Go back to Step 1 if there is unscheduled task, otherwise stop. 

 

4.2 Ant Colony System (ACS) Algorithm 

This paper uses the Ant Colony System (ACS) algorithm to solve the problems under consideration. The 

ACS algorithm is used in many parallel machine scheduling problems. Arnaout et al. (2010) proposed an 

ACS based algorithm to minimize the Makespan in the parallel machine environment. Behnamian et al. 

(2009) proposed a hybrid meta-heuristic for a Makespan minimization scheduling problem. They considered 

the ACS and Variable Neighborhood Search (VNS) algorithms to solve the parallel machine problem. Gao et 

al. (2013) designed a multi-objective ACS algorithm for the VM placement in the cloud computing 

environment for the purpose of improving server utilization and power efficiency. Hua et al. (2010) proposed 

an ACS algorithm for optimizing computing resources allocation problem. Gajpal & Rajendran (2006) used 

ACS for minimizing the completion-time variance of jobs in flowshops. Zhang et al. (2018) used ACS in 

electric vehicle routing problem with recharging stations for minimizing energy consumption. Thiruvady et 

al. (2013) used ACS in mining domain for a shared resource constrained scheduling problem. Ting & Chen 

(2013) used a Multiple Ant Colony Optimization (MACO) algorithm to solve the location-routing problem 

with capacity constraints on depots and routes. ACS is also used by Thepphakorn et al. (2014) for an 
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academic time tabling problem.  Hong et al. (2018) used an ACS based heuristic an efficent algorithm for a 

two-stage supply chain problem with fixed costs.  The successful application of ant colony algorithm on 

solving different combinatorial optimization problem motivated us to use ACS for solving unrelatted parallel 

machine problem with precedence constraints.  

In the ACS algorithm, artificial ants are created to find better solutions to a particular problem by using the 

information from the solutions of previous iterations. At the end of each iteration, the solutions are stored in 

the trail intensity of each path. Finally, the ant solutions are generated by using current trail intensity. 

Detailed explanations and descriptions of the application of ACS can be found in Stützle and Hoos (2000). 

The fundamental procedure of ACS is shown in Algorithm 2:  

Algorithm 2: Ant Colony System (ACS) Algorithm 

Step 1: Initialize the trail intensities and parameters  

 Step 2: While (termination condition is not met) do the following: 

 Generate an ant solution for each ant using the trail intensities. 

 Improve ant solution using local search. 

 Update trail intensities using elitist ants.  

Step 3: Return the best solution found so far. 

The trail intensities is denoted as ik , which determines the intensity of assigning task Ti to 

resource Rk. We initialize the trail intensity 0.01, ,ik i T k R     .  

 

4.2.1 Generate an Ant Solution 

In classical, ant colony algorithm a task is selected for scheduling on the basis of trail intensity ik  for 

assigning task Ti to resource k.  The earliest completion time-based list scheduling property seems to provide 

the optimal solution for the problem considered in this paper. Hence, the proposed ACS utilizes this property 

for building the ant solution along with the trail intensity of ant algorithm. An ant solution is generated in a 

similar way of heuristic algorithm is described in Section 4.1 All the steps of generating an ant solution in 

ACS is similar to the heuristic algorithm except in step 3. In step 3 of heuristic algorithm, subtask Ti is 
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chosen from set Ω for assignment to resource Rk. The subtask Ti is chosen on the basis of earliest completion 

time rule. In the proposed ACS, a subtask is chosen using the combination of earliest completion time rule 

and trial intensity rule. The rules are selected randomly with 90% probability of earliest completion time rule 

and 10% probability on trial intensity rule. The earliest completion time rule is described in step 2 and step 3 

of the heuristic algorithm. The trail intensity rule of ant algorithm uses the following probability for selecting 

task Ti.     

P ik
ik

lk

l









          (23) 

4.2.2 Local Search 

Once the solution is constructed by the ant, the ant solution is improved by local search. In the proposed local 

search scheme, a randomly selected subtask is removed from its original position and re-inserted in all other 

feasible position. If the best insertion position improves the current solution, then the move is accepted for 

future evaluation.  All the subtasks are evaluated for possible improvement through insertion. The process is 

repeated if at least one subtask is relocated with improved solution. The process is stopped when none of the 

subtask insertion is able to improve the solution. The local search uses a speed up mechanism to reduce CPU 

time by avoiding the evaluation of infeasible insertions. This paper uses two simple properties to identify 

infeasible insertion places. The first property states that the insertion of a subtask is not feasible anywhere 

before its immediate predecessor’s subtask. The second property states that the insertion of a subtask is not 

feasible anywhere after its successor’s subtask (not only the immediate successor task but all the successor’s 

subtasks).  

4.2.3  Updating trail intensity 

After all ants have constructed their solutions, the trail intensities are updated using the solution of   elitist 

ants. The elitist ants are defined as the   best ant solution found so far. Elitist ants are updated by comparing 
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the present elitist ant solutions with the current ant solutions. While updating elitist ants, the algorithm 

ensures that the solutions of elitist ants are distinct from each other. The trail intensity of assigning task Ti to 

resource Rk is updated using elitist ants as follows: 

1

, 1,2,..., ; 1,2,..., .new old

ik ik ik i nt k m






   


            (24) 

Here   is the called evaporation factor, taking value between 0 and 1. The first term in equation (24) 

represents evaporations of existing trail intensity. The second term represents the deposition of pheromone by 

  elitist ant where  

1/ if task isassigned to resouce i n the eltist ant 

0 otherwise                                                                   

th

i k

ik

L T R
 




  


 (25) 

Here L
 is the objective function value for the 

th  elitist ant solution. Our ACS algorithm has a 

computation complexity of O(n^2), much better than the prior work baselines with complexity of O(n^2 * 

log(n)). 

5. Performance Evaluation   

This section presents numerical experiment and evaluation of proposed algorithms. The optimal solution for 

small problem instances is obtained by solving MILP formulation. ‘A Mathematical Programming Language’ 

(AMPL) software with CPLEX solver is used to solve the MILP formulation. The software can solve the 

problem size of 10 subtasks within 15 minutes. In this section, we provide the experiment for small instances 

as well as the large problem instances. All the algorithms (i.e., heuristics and meta-heuristic) are 

implemented in same simulation environment, coded in C Language and run on an AMD Opteron 2.6 GHz 

PC with 16 GB memory on Unix OS. The HH and SS heuristic are coded on the basis of pseudo code 

available in those papers. We used the following notations for reporting results. 

HH:      HH algorithm of Herrmann et al., (1997)   

SS:       SS algorithm of Liu & Yang (2011) 
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EST:    EST based proposed heuristic algorithm  

ACS:   Ant colony algorithm based solution 

MKS:  Makespan value produced by an algorithm 

TCT:  Total completion time value produced by an algorithm 

RPD:  Relative percentage deviation of an algorithm from the best solution 

CPU:  CPU time (in seconds) consumed by an algorithm 

PG:   Percentage gap of an algorithm form the optimal solution 

n:   Independent tasks received by a cloud computing service provider at a particular time  

m:  number of virtual machine/commodity computers available to process above n at a particular time 

nt: total number of inter-dependent subtasks of n tasks 

The performance of proposed solution method is evaluated through PG and RPD value. The formula used to 

calculate the PG and RPD is given below.  

PG = {(AS - Opt)*100}/Opt          (27) 

RPD = {(AS - Best)*100}/Best          (28) 

Where, AS represents the solution of the algorithm, Opt represents the optimal solution and Best represents 

the best solution among all the solutions used for evaluation. 

5.1  Experiments on Small Instances 

The small instances are generated to find the optimal solution. In small instances, the number of tasks 

considered is 2, 3, 4 and 5 and the numbers of resources considered are 2, 3 and 4. Thus, a total of 12 groups 

of problem instances are generated.  These groups are represented by AY1 to AY12. We generated 10 

problem instances for each group and thus the total of 120 small problem instances is generated. The number 

of subtasks for each task are generated from a uniform distribution in the range of [2 , 3]. The process time of 

tasks are generated from a uniform distribution in the range of [10, 25].   

5.1.1 Experiments on small instances for total completion time objective 

The results of HH heuristic, SS heuristics and EST heuristics, and Ant colony algorithm for small instances 

are reported in Table 3 for the total completion time objective. The average total completion time obtained 
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for HH heuristic, SS heuristics, EST heuristics and ACS meta-heuristic are shown in Table 3 along with their 

Percentage Gap (PG) value. The average percentage gap for 12 groups of problem instances are reported in 

the bottom of the Table 3. The average PG of HH and SS heuristic from optimal solution is noted as 10.7% 

and 4.26 % respectively. The results show that the solution is far away from the optimal solution for existing 

heuristics. The average PG of EST heuristic is noted as 2.46%, which is good as compare to the existing HH 

heuristic and SS heuristic. The PG from the optimal solution for ACS is noted as 0.29% which is close to the 

optimal solution. Moreover, ACS metaheuristic gives the best results for all 120 small instances problem as 

compare to HH heuristic, SS heuristics and EST heuristics.  

The CPU time of HH heuristic, SS heuristics and EST heuristics and ACS meta-heuristic is also reported in 

Table 3. The comparison of CPU is fair because all the algorithms are executed on the same simulation 

environment. The CPU time of optimal method is on average 1079.91 seconds for 120 problem instances. It 

can be observed that the CPU time for optimal method increases exponentially with increase in problem size. 

The exponential increase in CPU time makes the use of optimal method practically impossible for solving 

bigger problem instances. This observation also justifies the use of EST heuristic and ACS metaheuristic 

over HH heuristic and SS heuristics for solving the task scheduling problem.   

Table 3: Experimental results of small instances for total completion time objective 

Instance 
No. 

n m nt 
Optimal Solution HH Heuristic SS Heuristic EST Heuristic ACS 

TCT CPU TCT CPU PG TCT CPU PG TCT CPU PG TCT CPU PG 

AY1 2 2 6 319.2 0.2 337.5 < 1 5.34 328.80 < 1 2.95 322.40 < 1 0.86 320.40 < 1 0.41 

AY 2 2 3 5 212.30 0.18 222.30 < 1 5.76 217.80 < 1 2.44 217.90 < 1 2.39 213.30 < 1 0.43 

AY 3 2 4 5 138.60 0.21 141.20 < 1 1.80 148.80 < 1 7.43 141.10 < 1 1.29 139.50 < 1 0.97 

AY4 3 2 8 431.00 4.47 474.9 < 1 10.96 454.4 < 1 6.46 450.1 < 1 4.77 432 < 1 0.35 

AY5 3 3 8 330.30 6.01 376.20 < 1 14.13 344.30 < 1 4.02 337.30 < 1 2.16 331.10 < 1 0.27 

AY6 3 4 8 316.30 11.34 335 < 1 5.80 337 < 1 6.39 323.5 < 1 2.20 316.3 < 1 0 

AY 7 4 2 10 732.40 37.47 830.7 < 1 15.57 752.6 < 1 3.17 748.6 < 1 2.46 733.3 < 1 0.14 

AY 8 4 3 10 611.80 123.92 686.7 < 1 12.62 631.1 < 1 3.52 631.4 < 1 3.52 612.7 < 1 0.16 

AY 9 4 4 10 416.50 78.80 462.1 < 1 11.38 436 < 1 4.71 432.9 < 1 3.88 417 < 1 0.13 

AY10 5 2 12 1173.10 1582.59 1345.7 < 1 15.85 1202 < 1 2.48 1183.5 < 1 0.88 1174.7 < 1 0.10 

AY11 5 3 12 848.30 3348.49 967.3 < 1 14.87 870.4 < 1 2.79 865 < 1 2.26 850.6 < 1 0.22 

AY 12 5 4 13 667.70 7765.25 761.8 < 1 14.76 700.20 < 1 4.95 685.6 < 1 2.64 670 < 1 0.32 

Average  516.46 1079.91 578.45 < 1 10.74 535.28 < 1 4.28 528.28 < 1  2.44 517.58 < 1 0.29 
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Figure 5 depicts that the performance of ACS is better than the performance of HH, SS and EST heuristic. 

ACS obtains nearby results to optimal solution for total completion time objective.  

 

Figure 5: Percentage Gap of Algorithms with TCT objective function for small data set. 

5.1.2 Experiments on small instances for Makespan objective 

The performance results of HH, SS, EST and ACS for Makespan objective problem for small instances are 

reported in Table 4 and Figure 6.  Table 4 reports the RPD value of HH heuristics, SS heuristics, EST 

heuristics and ACS meta-heuristic viz. 10.03%, 13.12%, 9.19% and 1.31 respectively. The PG value of HH 

heuristics, SS heuristics and EST heuristics is far away from the optimal solution for Makespan objective. 

The PG from the optimal solution for ACS is noted as 1.37%, which is very near to the optimal solution.  

 

Table 4: Experiment results of small instances for Makespan objective problem 

 

Instance 

no. 
n m nt 

Optimal 

Solution 
HH Heuristic SS Heuristic EST Heuristic ACS Heuristic 

MKS CPU MKS CPU PG MKS CPU PG MKS CPU PG MKS CPU PG 

AY1 2 2 6 77 0.19 78.6 < 1 1.95 82 < 1 6.64 80.8 < 1 4.41 77 < 1 0 

AY 2 2 3 5 55.8 0.16 57.5 < 1 3.03 60.1 < 1 7.39 60.3 < 1 7.32 56 < 1 0.31 

AY 3 2 4 5 39 0.10 39.8 < 1 2.09 43 < 1 10.29 40.2 < 1 2.46 39.5 < 1 1.14 

AY4 3 2 8 82.1 0.62 90.6 < 1 10.29 93.9 < 1 16.39 92.5 < 1 11.34 82.9 < 1 0.97 
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AY5 3 3 8 60.3 0.59 66.8 < 1 10.92 68.6 < 1 13.95 66.6 < 1 9.18 61.1 < 1 1.27 

AY6 3 4 8 55.4 0.77 57.3 < 1 3.44 64.4 < 1 15.37 60.9 < 1 8.09 55.6 < 1 0.40 

AY 7 4 2 10 110 3.02 124.4 < 1 14.10 122.2 < 1 11.74 120.1 < 1 8.61 111.4 < 1 1.17 

AY 8 4 3 10 81.1 4.03 91.3 < 1 12.87 92.4 < 1 14.11 92.7 < 1 12.11 82.1 < 1 1.09 

AY 9 4 4 10 59 3.01 65.8 < 1 12.50 68.9 < 1 17.60 69.3 < 1 14.48 60.3 < 1 2.23 

AY10 5 2 12 140.9 11.44 158.5 < 1 13.03 156.2 < 1 11.17 149.1 < 1 5.39 142.3 < 1 0.86 

AY11 5 3 12 94.4 18.64 110.2 < 1 16.74 104.9 < 1 11.13 105.7 < 1 10.77 96.6 < 1 2.22 

AY 12 5 4 13 72.2 20.72 85.8 < 1 19.40 87.6 < 1 21.69 86.4 < 1 16.16 75.3 < 1 4.02 

Average 77 5.27 85.55 < 1 10 87 < 1 13.1 85 < 1 9.2 78 < 1 1.3 

   

Figure 5 depicts that the performance of metaheuristic (ACS) is better than the HH, SS and EST. ACS 

generates the solution close to the optimal solution for Makespan objective.  An interesting observation about 

the CPU time of optimal solution can be made from Table 3 and Table 4. The CPU time of Makespan 

objective is considerably lower than the CPU time of the total completion time objective. The results indicate 

that solving Makespan objective problem is easier than solving the total completion time objective problem. 

 

Figure 6: Percentage Gap of Algorithms with Makespan objective function for small data set  

5.2  Experiment results of large instance    

This section provides the numerical analysis for large problem instances. The number of tasks (n) considered 

are 15, 30, 45, 60, 75, 90, 105, 120, 135 and 150 and the number of resources (m) considered is 2, 5 and 7. 
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Thus, the total of 30 groups of problem instances is generated. In a given problem instance, the number of 

subtasks for a given task is generated in the range of [2, 15]. The process time of subtasks are generated from 

a uniform distribution in the range of [10, 25].   

5.2.1 Experimental results on large instances for total completion time objective  

Table 5 reports the experimental results of total completion time objective for the large problem instances. 

Table 5: Numerical results for heuristics and meta-heuristics for total completion time objective problem 

Instance 

No. 
n m nt 

HH Heuristic SS Heuristic EST Heuristic ACS 

TCT CPU RPD TCT CPU RPD TCT CPU RPD TCT CPU RPD 

BG1 15 2 51 23234.7 < 1 16.62 20378.2 < 1 1.04 20349.5 < 1 0.93 20171.30 0.70 0 

BG2 15 5 49 8141.1 < 1 16.39 7149.4 < 1 1.78 7102.0 < 1 1.15 7023.20 1.10 0 

BG3 15 7 54 7312.5 < 1 18.24 6285.4 < 1 1.69 6245.2 < 1 1.08 6180.30 1.70 0 

BG4 30 2 103 92248.5 < 1 16.42 80250.5 < 1 0.94 80165.9 < 1 0.83 79531.90 10.50 0 

BG5 30 5 101 33339.9 <1 22.33 27646.0 <1 0.93 27554.1 <1 0.61 27399.90 13.60 0 

BG6 30 7 106 27342.9 <1 19.66 23123.7 <1 1.08 23009.6 <1 0.54 22883.00 18.50 0 

BG7 45 2 152 210796.4 <1 18.25 181339.4 <1 0.81 181030.5 <1 0.61 179964.00 41.40 0 

BG8 45 5 150 80986.1 <1 21.52 67609.4 <1 0.60 67447.2 <1 0.37 67213.70 49.00 0 

BG9 45 7 153 57569.0 <1 20.06 48784.9 <1 0.78 48541.1 <1 0.25 48424.60 58.10 0 

BG10 60 2 205 359178.1 <1 20.09 303241.2 <1 0.82 302909.2 <1 0.70 300843.50 106.90 0 

BG11 60 5 205 141010.1 < 1 20.16 118385.3 < 1 0.57 118197.8 < 1 0.40 117731.20 134.60 0 

BG12 60 7 206 101209.1 < 1 21.05 84537.5 < 1 0.61 84246.8 < 1 0.27 84034.90 152.70 0 

BG13 75 2 254 684446.9 < 1 15.57 598368.9 < 1 0.55 597737.5 < 1 0.44 595122.00 217.20 0 

BG14 75 5 257 232465.4 < 1 22.21 193354.5 < 1 0.47 192926.7 < 1 0.24 192495.50 281.70 0 

BG15 75 7 257 153139.5 < 1 21.83 127408.5 < 1 0.56 127013.2 < 1 0.24 126709.30 319.70 0 

BG16 90 2 303 804813.9 < 1 19.95 681828.7 < 1 0.73 680945.6 < 1 0.59 676930.60 379.90 0 

BG17 90 5 300 300210.3 < 1 22.76 247651.6 < 1 0.50 247176.3 < 1 0.29 246482.80 467.10 0 

BG18 90 7 305 215329.1 < 1 20.86 179634.3 < 1 0.47 179158.3 < 1 0.20 178809.40 579.20 0 

BG19 105 2 367 1250548.4 < 1 17.49 1075103.5 < 1 0.62 1073774.6 < 1 0.49 1068609.60 689.70 0 

BG20 105 5 360 411214.1 < 1 24.53 333454.4 < 1 0.44 333115.2 < 1 0.33 332017.50 846.80 0 

BG21 105 7 360 309928.5 < 1 20.40 258690.6 < 1 0.45 257913.3 < 1 0.14 257550.20 962.10 0 

BG22 120 2 405 1456331.2 < 1 19.49 1235319.1 < 1 0.63 1234693.6 < 1 0.56 1228088.40 972.90 0 

BG23 120 5 407 565726.7 < 1 22.46 465574.8 < 1 0.46 464651.3 < 1 0.26 463463.00 1245.40 0 

BG24 120 7 409 415008.3 < 1 20.55 347439.6 < 1 0.42 346619.2 < 1 0.16 346069.00 1452.60 0 

BG25 135 2 459 1898078.2 < 1 20.70 1612879.8 < 1 0.58 1611788.4 < 1 0.51 1604489.00 1538.40 0 

BG26 135 5 459 736659.2 < 1 22.02 608457.3 < 1 0.43 607255.0 < 1 0.23 605897.90 1937.60 0 

BG27 135 7 461 519861.5 < 1 22.14 429560.2 < 1 0.41 428478.9 < 1 0.14 427871.40 2175.90 0 

BG28 150 2 508 2285765.6 < 1 20.39 1929552.9 < 1 0.57 1928130.1 < 1 0.48 1919198.30 2171.40 0 

BG29 150 5 509 880779.3 < 1 23.09 723195.0 < 1 0.42 721789.1 < 1 0.23 720166.60 2635.40 0 

BG30 150 7 515 643509.3 < 1 20.87 536226.5 < 1 0.34 535015.5 < 1 0.12 534410.90 2984.40 0 

Average 83 5 281 496872.8 < 1 20.3 418414.4 < 1 0.69 417832.7 < 1 0.45 416192.76 748.21 0 
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The average RPD value over 300 problem instances indicate that the ACS has the best performance followed 

by EST heuristic, SS heuristic and then by HH heuristic. The average RPD of ACS, EST heuristic, SS 

heuristic and HH heuristic are 0%, 0.45%, 0.69% and 20.3% respectively.  

Figure 7 visualizes the RPD value of all four algorithms for 30 problem groups. The performance of ACS is 

better than the performance of other algorithms. The performance of HH heuristic is poor, which is indicated 

in small problem instances as well. One of the reasons for poor performance of the heuristic is that it did not 

use any list algorithm property of the problem. The performance of SS heuristic is close to the proposed EST 

heuristic but still inferior than the EST heuristic. The SS heuristic uses earliest available machine assignment 

rule. We have shown in Section 4 that the earliest machine assignment rule does not provide dominant 

solution of the problem. This is one of the reason for the poor perforamnce of SS heuristic as compared to the 

EST heuristic.  

 

Figure 7: RPD of Algorithms with TCT objective function for large data set. 

Figure 8 shows the comparison of scheduling time for algorithms with small dataset and ACS performs better 

than EST, SS and HH. ACS has 13%, 15.5% and 21% less than EST, SS and HH respectively. The reason 
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behind better performance of ACS is the implementation of precedence task constraints during task 

scheduling.  

 

Figure 8: Comparison of scheduling time for algorithms with small dataset 

5.2.2 Experimental results on large instances for Makespan objective problem 

Table 6 and Figure 9 report the performace of HH, SS, EST & ACS in large problem instances for Makespan 

objective.  

Table: 6 Experiment results of large instance for Makespan objective  

Job 

Instance 
n m nt 

HH Heuristic SS Heuristic EST Heuristic ACS 

MKS CPU RPD MKS CPU RPD MKS CPU RPD MKS CPU RPD 

BG1 15 2 51 671.1 < 1 13.4 613.30 < 1 3.49 608.50 < 1 2.69 593.10 < 1 0.0 

BG2 15 5 49 242.30 < 1 13.7 235.20 < 1 10.07 229.80 < 1 7.88 213.40 0.80 0.0 

BG3 15 7 54 200.8 < 1 17.5 188.20 < 1 10.35 186.20 < 1 9.28 170.80 1.20 0.0 

BG4 30 2 103 1366.5 < 1 13.2 1238.40 < 1 2.43 1229.80 < 1 1.67 1209.20 4.00 0.0 

BG5 30 5 101 501.3 <1 18.9 441.10 <1 4.26 440.40 <1 4.25 423.30 7.80 0.0 

BG6 30 7 106 386.1 <1 15.6 353.4 <1 5.74 353.5 <1 5.64 334.30 10.4 0.0 

BG7 45 2 152 2086.8 <1 15.3 1845.9 <1 1.70 1838.1 <1 1.20 1815.40 13.2 0.0 

BG8 45 5 150 796.9 <1 18.8 692.6 <1 3.01 690.4 <1 2.68 672.40 24.3 0.0 

BG9 45 7 153 551.3 <1 16.6 490.8 <1 3.74 483.5 <1 2.15 473.50 27.6 0.0 

BG10 60 2 205 2735.6 <1 16.7 2391.7 <1 1.80 2382.3 <1 1.40 2349.80 31.4 0.0 

BG11 60 5 205 1036.7 < 1 17.3 904.9 < 1 2.43 907 < 1 2.57 884.40 58.4 0.0 

BG12 60 7 206 724.6 < 1 16.8 642.4 < 1 3.36 634.3 < 1 2.18 621.40 67.3 0.0 

BG13 75 2 254 3876 < 1 14.1 3439.3 < 1 1.14 3428.6 < 1 0.80 3401.80 58.8 0.0 

BG14 75 5 257 1332.9 < 1 19.5 1143.4 < 1 2.19 1136.6 < 1 1.54 1119.40 118.9 0.0 

BG15 75 7 257 892.7 < 1 18.2 781 < 1 3.16 774.7 < 1 2.38 757.50 119.7 0.0 
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BG16 90 2 303 4105.4 < 1 16.6 3580.2 < 1 1.20 3572.9 < 1 1.01 3537.90 99.2 0.0 

BG17 90 5 300 1515.5 < 1 19.3 1298.1 < 1 1.98 1290.4 < 1 1.35 1273.70 173.4 0.0 

BG18 90 7 305 1055 < 1 17.9 915.7 < 1 2.27 911.4 < 1 1.82 895.60 198.4 0.0 

BG19 105 2 367 5188.7 < 1 14.9 4577.2 < 1 1.22 4568.3 < 1 1.03 4522.20 167.5 0.0 

BG20 105 5 360 1762.3 < 1 19.3 1503.8 < 1 1.60 1498.7 < 1 1.22 1480.60 298.5 0.0 

BG21 105 7 360 1281 < 1 17.7 1106.2 < 1 1.53 1102.9 < 1 1.21 1089.40 302.4 0.0 

BG22 120 2 405 5551.9 < 1 16.1 4850.2 < 1 1.16 4844.3 < 1 1.02 4796.60 226.4 0.0 

BG23 120 5 407 2098.2 < 1 20.5 1762.1 < 1 1.08 1762.9 < 1 1.13 1743.40 417 0.0 

BG24 120 7 409 1483.4 < 1 17.8 1284.8 < 1 1.82 1280.4 < 1 1.42 1262.30 460.4 0.0 

BG25 135 2 459 6292.6 < 1 16.7 5489.2 < 1 1.08 5476.6 < 1 0.85 5431.50 334.6 0.0 

BG26 135 5 459 2395.3 < 1 18.6 2043.8 < 1 1.18 2034.1 < 1 0.69 2020.40 602.4 0.0 

BG27 135 7 461 1668 < 1 18.5 1425.7 < 1 1.08 1423.9 < 1 0.92 1411.10 629.7 0.0 

BG28 150 2 508 6937 < 1 17.0 6020.8 < 1 1.09 6007.4 < 1 0.87 5956.60 453.9 0.0 

BG29 150 5 509 2602.4 < 1 19.4 2211 < 1 1.18 2204.6 < 1 0.90 2184.60 840.8 0.0 

BG30 150 7 515 1849.4 < 1 18.1 1590.2 < 1 1.38 1581.7 < 1 0.83 1568.9 893.8 0.0 

Average 83 5 281 2106.3 < 1 17.1 1835.4 < 1 2.66 1829.5 < 1 2.15 1807.2 221.4 0 

 

The average RPD over 300 problem instances indicates that the ACS and EST has the best performance over 

the existing SS heuristic and HH heuristic. The average RPD of ACS and ETS heuristic is noted as 0% and 

2.15 % whereas the RPD value of SS heuristic and HH heuristic are noted as 2.66% and 17.1% respectively.  

 

Figure 9: RPD of Algorithms with Makespan objective function for large data set. 
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The performance of ACS is better compared to the performance of EST, SS and HH heuristics in all 120 

problem instances. Another interesting observation about the CPU time of ACS can be made from Tables 5 

and 6. The CPU time of ACS for Makespan objective is lower than the TCT objective. The similar trend is 

also observed for the CPU time of optimal solution for solving Makespan and TCT objective function. These 

results indicate that solving Makespan objective is easier than solving TCT objective.     

Figure 10 shows the comparison of scheduling time for algorithms with large dataset and ACS performs 

better than EST, SS and HH. ACS has 16%, 18% and 19% less than EST, SS and HH respectively. The 

reason behind better performance of ACS is the implementation of precedence task constraints during task 

scheduling. 

 

Figure 10: Comparison of scheduling time for algorithms with large dataset 

 

6. Conclusions and Future Scope  

A cloud computing scheduling problem is considered in this paper where jobs are processed in the parallel 

computing resources with precedence constraints. The tasks consist of many interdependent subtasks that 

can be processed in one of the unrelated parallel computing resources. This kind of problem is considered as 

an NP hard problem. For NP- hard problem, the heuristics and metaheuristics solutions become an obvious 
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choice as heuristics and metaheuristics promise a suitable solution method. In this paper, two existing 

heuristic HH and SS are considered as most relevant heuristics for this specific problem domain. The 

existing heuristic did not utilize the scheduling algorithm property of unrelated parallel machine scheduling 

problem. The SS heuristic use earliest available machine assignment rule. This paper shows that the earliest 

available machine assignment rule is non dominant for the unrelated parallel machine problem with 

precedence constraints.  This paper proposes an EST heuristic and an ACS metaheuristic which utilize the 

list scheduling algorithm property of the problem. The experimental results reveal the superior performance 

of proposed EST heuristic over existing heuristics. The use of list scheduling algorithm helps proposed 

heuristic to perform better than existing heuristic. The experimental results also indicate that solving 

Makespan objective is easier than solving TCT objective. The performance of ACS is found to be best for 

minimizing the Makespan objective as well as minimizing the total completion time objective and 

scheduling time.  ACS shows the promising results which will help the cloud computing service providers 

to render the quality services for its end user cloud service users.  

Future directions include implementation and testing in a distributed Fog-Cloud setup using FogBus 

framework provided by Tuli et al. (2019). To achieve this, data sharing techniques need to be tested to ensure 

that the ACS algorithm works seamlessly in a distributed setup. We also propose to extend this work to more 

sophisticated environments wherein we consider the myriad of factors crucial in a large-scale cloud/grid 

setup. Such factors include geographic distance, costs of the machine, network bandwidth for 

communication, resource utilization, etc. We will explore scalability and model limitations of proposed work 

in the future. Further research directions include integration of ensemble methods (Tuli et al. 2020) to 

achieve low scheduling times and explore other optimization methods like the ones using Pareto efficiency to 

test the robustness of the proposed algorithms. 
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