
Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 1

HEART: Unrelated Parallel Machines Problem with Precedence

Constraints for Task Scheduling in Cloud Computing using Heuristic

and Meta-Heuristic Algorithms

Amit Kumar Bhardwaj
1,2

, Yuvraj Gajpal
2
, Chirag Surti

3
, Sukhpal Singh Gill

4

1L.M. Thapar School of Management, Thapar Institute of Engineering & Technology, Dera Bassi Campus, Punjab, India
2Supply Chain Management, Asper School of Business, University of Manitoba, Canada

3
Dept. of Information System, Analytics and Supply Chain Management, Rider University, USA

4School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK
akbhardwaj@thapar.edu, yuvraj.gajpal@umanitoba.ca, cssurti@gmail.com, s.s.gill@qmul.ac.uk

Abstract

Cloud computing is becoming a profitable technology because of it offers cost-effective IT solutions

globally. A well-designed task scheduling algorithm ensures the optimal utilization of clouds resources and

reducing execution time dynamically. This research paper deals with the task scheduling of inter-dependent

subtasks on unrelated parallel computing machines in a cloud computing environment. This paper considers

two variants of the problem-based on two different objective function values. The first variant considers the

minimization of the total completion time objective function while the second variant considers the

minimization of the makespan objective function. Heuristic and meta-heuristic (HEART) based algorithms

are proposed to solve the task scheduling problems. These algorithms utilize the property of list scheduling

algorithm of unrelated parallel machine scheduling problem. A Mixed Integer Linear Programming (MILP)

formulation has been provided for the two variants of the problem. The optimal solution is obtained by

solving MILP formulation using A Mathematical Programming Language (AMPL) software. Extensive

numerical experiments have been performed to evaluate the performance of proposed algorithms. The

solutions obtained by the proposed algorithms are found to out-perform the existing algorithms. The

proposed algorithms can be used by cloud computing service providers (CCSPs) for enhancing their

resources utilization to reduce their operating cost.

Keywords: Scheduling; Heuristics; Resource Optimization; Cloud Computing; Metaheuristic.

1. Introduction

Cloud computing is gaining popularity due to its ability for delivering cost-effective cloud services which

can bring a win-win situation for the end users as well as for the service providers (Khiat et al. (2020)). In

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 2

the cloud computing environment, the remote users can obtain computational resources over the Internet in

scalable fashion based on their requirement (Gabriel and Moallemi (2020)). Cloud computing has become a

backbone for the IT infrastructure of different industries and organizations viz. education, weather

forecasting, hedge funding, e-commerce and big data solution (Gill et al. 2019, Kaur et al. 2019). Kochan

et al. (2018) used a cloud computing based framework in the domain of hospital supply chain to enhance the

performance of demand and supply of healthcare items (Gill et al. 2019, Buyya et al. 2018, Islam et al.

2020).

According to the enterprise cloud computing survey, the top four cloud service providers are Microsoft

Azure with 23% share, Amazon Web Services (AWS) with 22% share, Google Cloud with 21% share, and

IBM Cloud with 17% share (Enterprise Cloud Computing Survey (2016)). This survey forecast that about

90% of enterprises will increase their annual spending on cloud computing. Also, SaaS-based applications

are expected to grow by 18%, and Infrastructure/ Platform as a service is expected to grow by 27%

annually. The survey further indicates the increases in the efficiency of the enterprises through the use of

cloud computing solutions. According to the Forbes magazine report, the total turnover of the cloud

computing industry was $67 Billion in 2015, which is expected to grow by $162 billion in 2020 (The

Changing Faces of the Cloud (2017)). The report further reveals that Cloud Computing will impact the

business considerably in near future. The Cloud Computing Services Providers (CCSPs) are competing with

each other to capture the market share (Bowen et al. (2015)). Hence, the success of a CCSP depends upon

the cost-effective offerings to their clients (Casini et al. (2020)).

In a cloud computing environment, a cloud is considered as a cluster of many distributed computers

(Germain & Rana (2009), Tuli et al. (2020)). A physical computer can have more than one Virtual

Machines (VMs) residing on it for a parallel execution of different tasks (Gill et al. (2020)). Thus, the cloud

computing system can be considered as a system of parallel VMs (Saif et al. (2020)). An end user can use

the cloud resources in the form of a lease from the cloud service providers (Srirama and Ostovar (2018)).

The VMs can be leased at the price of 10 cents per hour (Li et al. (2012)). In a cloud computing

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 3

environment, millions of users submit their billions of tasks for processing on unrelated virtual parallel

machines environment (Deming and Liu (2020)). In unrelated parallel machines environment, the execution

time of a task is considered to be different for different machines (Vallada et al. (2019)). An unequal

execution time of tasks over different machines arises because each machine has different processing speed,

memory or complexity (Ezugwu (2019)). This paper deals with the design of efficient algorithms to achieve

the cost-effective solution for cloud computing task scheduling problem using precedence constraints.

1.1 Motivation and Our Contributions

The main motivation behind this research work is to consider a scheduling problem where unrelated VMs are

responsible for processing independent tasks. A task consists of a series of subtasks (Tsai et al. (2013)). A

successor subtask can be started only after the completion of its predecessor subtask. The subtasks can be

executed independently in the same machine or in a different machine. The execution time of each machine is

known in advance. Each machine has known release time (i.e., the available time for execution of existing

tasks) due to the ongoing process of other jobs. In this research paper, we have considered two problem

variants for two different objective functions. The first variant of the problem considers the minimization of

the total completion time objective while the second variant of the problem considers the minimization of the

makespan objective. A Mixed Integer Linear Programming (MILP) formulation has been provided for the

proposed variants of the problem. The MILP formulation is solved to obtain an optimal solution for small

problem instances. We proposed HEuristics and metA-heuRisTic (HEART) algorithms to solve the bigger

problem instances. The proposed algorithms are compared with the similar algorithms available in the

literature. The benchmark problem instances are introduced to perform the numerical experiments. These

problem instances can be used in future research to compare the performance of different algorithms.

1.2 Article Organization

The rest of the paper is organized as follows. Section 2 provides a literature review of related research work

on task scheduling in cloud computing domain along with the literature review of parallel machines

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 4

scheduling problems. Section 3 provides the problem description and formulation of the proposed problem,

whereas Section 4 describes the proposed algorithms. In Section 5, the results of the proposed algorithms are

compared with the existing algorithms. Finally, Section 6 provides the conclusion of this research paper.

2. Related Work

The related work section is divided into two subsections: 1) task scheduling and 2) unrelated parallel

machines.

2.1 Task Scheduling in Cloud Computing

In the last decade, application of scheduling algorithms in the cloud computing environment took the

momentum with the aim of improving the resource utilization (Bhatt et al. (2020)). Gill & Buyya (2018)

discussed the resource provisioning for workloads in the parallel computing environment of clouds. Fang et

al. (2010) discussed the load balancing problem in cloud computing environment to meet the Quality of

Service (QoS) requirements. Many researchers considered the genetic algorithm to solve QoS-oriented

scheduling problems in cloud computing (Dutta & Joshi (2011), Jang et al. (2012), Liu et al. (2013), and Li &

Peng (2011)). Pandey et al. (2010) used Particle Swarm Optimization (PSO) for job scheduling to minimize

the computation and data transmission costs. Tsai et al. (2013) considered parallel cloud computing services

with different processing capacity to perform subtasks. They included processing and receiving cost in their

model with the aim to minimize the cost and makespan simultaneously. These research papers indicate the

popularity of scheduling issues in cloud computing environment due to its ability to improve resource

utilization. Also, there are many algorithms available in the literature to solve the scheduling problem in the

production environment. However, the above-mentioned paper did not utilize the existing

algorithms/properties form a production scheduling problem to solve the cloud computing scheduling

problem. One of the aims of this paper is to relate the existing scheduling model from the production

environment to the scheduling model in the cloud computing environment.

The problem considered in this paper resembles with the parallel machine scheduling problem. The parallel

machine scheduling problem has been proved to be NP-hard (Cook (1971) and Garey Johnson (1979)). The

parallel machine problem can be classified under three categories on the basis of machine configuration:

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 5

uniform machine configuration, heterogeneous machine configuration and unrelated machine configuration.

In uniform machine configuration, the processing time of a task is the same for all machines. In

heterogeneous machine configuration, the processing time of a task depends on machine speed. In unrelated

machine configuration, the processing time of a task is different for different machines. The problem

considered in this paper resembles with unrelated parallel machine problems, therefore, the remainder of the

literature review discusses only unrelated parallel machine scheduling problems.

2.2 Unrelated Parallel Machine Scheduling

Luis & Ruiz (2010) and Lin et al. (2011) proposed metaheuristics to solve the unrelated parallel machine

problems to minimize the makespan objective. Luis & Ruiz (2010) proposed iterative greedy local search

based metaheuristic to solve the problem. Lin et al. (2011) proposed an artificial immune system, which

combines the feature of the artificial immune system and simulated annealing. Lin et al. (2013) extended their

work for the multi-objective problem by proposing a Genetic Algorithm (GA) to find the non-dominated

solutions to minimize the makespan, the total weighted completion time, and the total weighted tardiness

objectives. Other research papers in literature (Ezugwu et al. (2019), Vallada et al. (2019), Lei and Liu

(2020)) considered variants of unrelated parallel machine problems such as setup time, batch processing,

additional resources etc.

Jose et al. (2017) proposed Job Scheduling Technique (JST) considered non-identical job sizes and unequal

ready times over the unrelated parallel batch processing machines to minimize makespan objective. They

developed many scheduling heuristics based on first-fit, best-fit and earliest job ready time rules to solve the

problem. Shahvari & Logendran (2017) proposed an enhanced Tabu Search Algorithm (TSA) to solve the

problem and considered batch processing in unrelated parallel machines to minimize a linear combination of

total weighted completion time and the total weighted tardiness objectives. Joo & Kim (2015) considered

setup time and production-availability in unrelated parallel machines to minimize the total completion time

objective. They proposed a hybrid genetic algorithm to solve the problem. Cheng & Huang (2017) addressed

an unrelated parallel machine scheduling problem for jobs with distinct due dates and dedicated machines to

minimize the total earliness and tardiness objectives. They developed a modified GA with a distributed

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 6

release time control mechanism to solve the problem. Rodney et al. (2015) considered unrelated parallel

machines with sequence dependent setup times to minimize the makespan. They developed a Variable

Neighborhood Descent (VND) metaheuristic to solve the problem. Luis et al. (2017) considered unrelated

parallel machine problem with additional resources to minimize the makespan objective. They proposed a

mathematical model based on linear programming formulation to solve the problem. Further, they combined

metaheuristic strategies with a linear programming model to solve the bigger problem instances. Oleh & Lars

(2016) considered scheduling problems in flexible job shops in an unrelated parallel machines environment

to minimize the total weighted tardiness objective. They proposed an iterative local search to solve the

problem.

Wang et al. (2020) developed an Optimal Charging Scheduling (OCS) technique for electric vehicles

considering the impact of renewable energy sources, which uses MILP to optimize execution time. Deng et

al. (2020) proposed a MILP based Two-Stage Load (TSL) scheduling approach for building load’s peak-to-

average ratio reduction and improves execution time. These prior works such as Wang et al. (2020) and

Deng et al. (2020) use MILP with a limited perspective. None of them considered precedence constraints in

their problem. The unrelated parallel machine problem, with precedence constraints, is considered by

Herrmann et al. (1997), Liu & Yang (2011), Afzalirad & Rezaeian (2016) and Gacias et al. (2010). The

problem presented in this paper considers that many independent tasks consist of numerous inter-dependent

subtasks. Each subtask can be processed independently but it can be started only after processing of

predecessor subtask. Thus, the problem discussed in this paper can be considered as a special case of

unrelated parallel machine scheduling problem with precedence constraints. Gacias et al. (2010) considered

scheduling problem with precedence constraints and sequence-dependent setup times to minimize the total

completion time and maximum lateness objectives independently. They proposed a branch-and-bound based

exact algorithm and limited discrepancy based heuristic method to solve the problem. Afzalirad & Rezaeian

(2016) considered resource constrained unrelated parallel machine scheduling problem with sequence-

dependent setup time, precedence constraints and machine eligibility restrictions to minimize the makespan

objective. They developed a GA and artificial immune system (AIS) to solve the problem.

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 7

Herrmann et al. (1997) considered unrelated parallel machine scheduling problem with precedence

constraints to minimize makespan objective. Herrmann et al. (1997) highlighted the problem as an

application of office scheduling problem where workers perform different interdependent tasks with different

skill sets for each subtask. They proposed a look-ahead based HH heuristic to solve the problem. The HH

heuristic is based on scheduling a task in each iteration, which could lead to a late schedule of some tasks in

the future. Liu and Yang (2011) proposed a serial schedule (SS) heuristic to solve unrelated machine

problem with precedence constraints for minimizing the makespan objective. The SS heuristic assigns a task

to the earliest available machine iteratively. They compared SS algorithm with HH algorithm of Herrmann et

al. (1997). Their numerical experiment showed the better performance of SS heuristic as compared to the HH

heuristic.

The algorithm proposed by Gacias et al. (2010) and Afzalirad & Rezaeian (2016) cannot be used to solve the

problem considered in this paper because they considered additional constraints. However, the algorithm

proposed by Herrmann et al. (1997) and, Liu & Yang (2011) can be used to solve the problem considered in

this paper. We propose a simple heuristic and ant colony based metaheuristic to solve the problem. In the

numerical experiment, we compare the performance of proposed algorithms with the SS heuristic of Liu &

Yang (2011) and HH heuristic of Herrmann et al. (1997).

2.3 Critical Analysis

As discussed above, none of the above-mentioned papers considered precedence constraints in their unrelated

parallel machines problem. Existing works are considering tasks independently, which leads to poor

scheduling decisions, as shown in the evaluation section. Wang et al. (2020) and Deng et al. (2020) use MILP

without considering. Hence, the precedence constraints-based MILP and heuristic/meta-heuristic approaches

out-perform the baseline models. The current work shows a proof-of-concept of the novel approach and

establishes that the proposed approach out-performs in a fundamental computing platform. This research

work performs task scheduling of inter-dependent subtasks on unrelated parallel computing machines in a

cloud computing environment using heuristic and meta-heuristic algorithms. We have performed the

evaluation of our research work by considering all the possible performance parameters. Table 1 shows the

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 8

comparison of proposed work (HEART) with existing techniques based on important parameters.

Table 1: Comparison of our proposed work (HEART) with related works

Work Heuristic

Optimization

Multi-

Scale

System

Dataset Unrelated

Parallel

Machines

Precedence

Task

Constraints

Heuristic and

Meta-Heuristic

Algorithms

Cloud

Computing

Evaluation Parameters

MKS TCT RPD CPU PG ST

HH Heuristic (Herrmann et

al. (1997))

√ √ Small √ √

SS Heuristic (Liu & Yang

(2011))

√ Small √ √ √

JST (Jose et al. (2017)) √ Small √ √

TSA (Shahvari &

Logendran (2017))

 Small √ √

OCL (Wang et al. (2020)) √ Small √

TSL (Deng et al. (2020)) √ Small √

HEART (this work) √ √ Small and Large √ √ √ √ √ √ √ √ √ √

Abbreviations: MKS: Makespan value produced by an algorithm, TCT: Total completion time value produced by an algorithm, RPD: Relative

percentage deviation of an algorithm from the best solution, CPU: CPU time consumed by an algorithm, PG: Percentage gap of an algorithm form
the optimal solution and ST: Scheduling Time

3. System Model and Problem Formulation

The section discusses the cloud model and problem formulation.

3.1 Cloud Model

The proposed algorithms in this paper can be deployed in real cloud platforms to allow efficient task

scheduling in unrelated machines. This is quite evident in modern systems due to variation in compute

performance, bandwidth availability and dynamic resource consumption statistics. Thus, we describe a

large-scale distributed cloud platform model suitable for the proposed heuristic and meta-heuristic

algorithms. The system model is shown in Figure 1. The design strategy as illustrated in the figure is as

follows: The data is acquired from the Data Acquisition layer which consists of API gateways, IoT

devices including sensors and Point of Scale (PoS) systems (AVAC, Tuli et al. 2020). This data is

encapsulated in a task using gateways to be sent to Computing and Communication layer. Herein, the

cloud nodes communicate using light-weight message passing approaches like MQTT to share task data

and computational meta-data. MQTT is a machine-to-machine (M2M)/”Internet of Things” connectivity

protocol (Hunkeler et al. 2008). The Analytics layer resides in one of the cloud nodes which handles the

complete system and is responsible for monitoring and scheduling of tasks and cloud machines. The final

task results are sent to the end user from the Analytics layer using alerts, web-portals or gateway

applications (Mancini et al. 2019).

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 9

Data Acquisition

Layer

Computing and

Communication Layer

Analytics Layer Consumers

API Gateways

IoT Devices

PoS Systems

Manufacturing

Cloud Computing

MQTT

ACS Model

Scheduler Service

Monitoring Service

Database

Alerts

Portal

Apps

Figure 1: System Model

3.2 Problem Formulation

The problem considered in this paper deals with a situation in which a cloud computing scheduler receives n

independent tasks for executing at m resources. Each task consists of a series of subtasks and is acceptable

for processing on any resources. The cloud computing scheduler wants to assign nt inter-dependent subtasks

from set  1 2 3 , , , , ,i ntT T T T T T   to m available resources 1 2(, ,...,)mR R R R . A task i consists of

in inter-dependent series of subtasks denoted by set , = (,)il

i

l n
T T T


 where lT and ll n

T


are the first and

last subtask for the task l. There is a temporal relationship among subtasks of task i, viz. all subtasks are

performed in a sequential series. The subtask 1lT  can be started only after completion of the sub-task lT ; the

subtask 2lT  can be started only after completion of the subtask 1lT  and so on. Each subtask has just one

predecessor except the first subtask of a task. Let ()ipred T denote the predecessor of task iT , which can be

defined as follows.

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 10

1 1

0

()
i j j

i

T if subtasksT and T belongs tothe same job
pred T

T otherwise

 
 


Here 0T is an imaginary subtask with zero process time. We assume that this subtask has already been

completed. A subtask iT can be executed to any cloud resources kR R , however, it can be started only

after the completion of predecessor subtask ()ipred T .

The process time ikP for executing the subtask iT on resource kR is known in advance. A resource kR is

available for processing any subtask only after time kt because the resources are assumed to be, at the time,

executing previously assigned subtask. A subtask-preemption is not allowed and resources are not allowed to

process more than one subtask at a time. A subtask is executed on a single resource at a time and the given

resources are available continuously. The problem involves assigning subtasks to appropriate resources in

such a way that the specified objective function is minimized. A MILP formulation is provided for the two

variants of the problem. The first variant of the problem considers the minimization of the total completion

time objective function and the second variant of the problem considers the minimization of the Makespan

objective. The first problem is denoted as Problem 1 and the second problem is denoted as Problem 2. Two

variants of the problem are formulated using the following decision variables.

 Decision variables:

jkF Completion time on resource j for a subtask scheduled at position k,

ijkX Binary variable taking value 1 if subtask i is assigned to resource j at position k; 0 otherwise,

 iC Completion time of task i,

maxC Makespan of the optimal solution.

Problem 1: Minimization of total completion time

 Min
1

n

i

i

Z C


 (1)

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 11

 Subject to

1 1

1
m n

ijk

j k

X i T
 

   (2)

1

1 ,
n

ijk

i

X j R k L


    (3)

1 1

1

;
n

j j ij ij

i

F t X P j R


     (4)

1 1

1

, 2
n

jk j k ij ij

i

F F X P j R k



      (5)

(1) , ,i jk ijkC F M X i T j R k L        (6)

 ()

1 1
i

m n

i pred T ij ijk

j k

C C p X i T
 

    (7)

 0 0C  (8)

 {0,1}, , ,ijkX i T j R k L     (9)

Equation (1) provides the expression for the minimization of the total completion time. Equation (2) ensures

that a task iT is scheduled on one resource and one position only. Equation (3) ensures that a maximum one

subtask can be assigned for a given resource at a given position. Equation (3) also implies the possibility of

not assigning any subtask in a given resource at a given position. Equation (4) calculates the completion time

for the task scheduled at first position on resource j, while the equation (5) calculates the completion time for

other positions. Equation (6) provides the completion time calculation for task i. Equations (7) and (8)

preserve the predecessor constraints among different subtasks. Finally, equation (9) enforces binary condition

for decision variable Xijk.

Problem 2: Minimization of Makespan

 Min maxZ C (10)

 Subject to

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 12

1 1

1
m n

ijk

j k

X i T
 

   (11)

1

1 ,
n

ijk

i

X j R k L


    (12)

1 1

1

n

j j ij ij

i

F t X P j R


     (13)

1 1

1

, 2
n

jk j k ij ij

i

F F X P j R k



      (14)

 (1) , ,i jk ijkC F M X i T j R k L        (15)

 ()ii pred T ijC C P i T    (16)

 0 0C  (17)

 max iC C i T   (18)

{0,1}, , ,ijkX i T j R k L     (19)

Equation (10) provides expression for the minimization of Makespan objective. Equations (11) to (17) are

same as equations (2) to (8). The additional constraints (18) provide the calculation of Makespan. Finally,

equation (19) enforces the binary constraints for decision variable Xijk.

4. Proposed Algorithms

In this paper an optimal solution is generated for the total completion time and the Makespan objective using

the MILP formulation provided in the previous section. ‘A Mathematical Programming Language (AMPL)’

software is used to solve the MILP formulation. The MILP formulation can only be solved for small problem

instances because the CPU time increases exponentially with increase in problem size. Furthermore, a

heuristic and a meta-heuristic are proposed to solve the cloud resource allocation problem for the large

problem instances.

The proposed algorithms utilize the list-scheduling dominant property of the unrelated scheduling problem

with precedence constraints. A list-scheduling algorithm is an assignment rule that finds a feasible schedule

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 13

for a given order of tasks. The assignment rule considers the tasks one by one from the given list of tasks for

assigning them to the machine on the basis of the partial schedule given by the previous scheduled tasks. In

the list-scheduling algorithm, decision of scheduled tasks is not changed in future. If a list schedule algorithm

evaluates all the feasible schedules related to all possible order of tasks and one of these feasible schedules is

guaranteed to find an optimal solution for the problem, then it is said that the list algorithm produces

dominant set of solution (Hurnick & Knust (2001)). In literature, it is said that a list scheduling algorithm

finds an optimal solution if it produces a dominant set of solutions. The parallel machine scheduling literature

has mainly two list scheduling algorithm: 1) list scheduling algorithm with earliest available machine-

assignment-rule and 2) list scheduling algorithm with earliest completion time of task-assignment-rule. In the

earliest available machine assignment rule based list-scheduling algorithm, next task from the given order of

tasks is scheduled on a first available machine. In the earliest completion-time of task-assignment-rule based

list-scheduling-algorithm, next task from the given order of tasks is scheduled on a machine where the task

completes earliest.

It has been proven that both list scheduling algorithms find an optimal solution for uniform parallel machine

scheduling problem with precedence constraints and makespan objective P||Cmax (Hurink & Knust (2001),

Gacias et al. (2010)). However, literature is silent about the list-scheduling algorithm for the total

completion-time objective. To the best of our knowledge, optimal list scheduling algorithm for total

completion time objective is not available in literature. It can be easily seen that both list scheduling

algorithms will produce the same feasible schedule for a given order of tasks in uniform parallel machine

problem. However, they will produce different feasible solutions for the unrelated parallel machine

scheduling problem with precedence constraints.

Consider an instance with 3 tasks and 2 machines with precedence constraint J1 < J3 (i.e., task J1 precedes

task J3). The process time of tasks on two machines are given in Table 2.

Table 2: Process time of jobs on two machines

 Task /Machine M1 M2

J1 10 4

J2 6 10

J3 2 10

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 14

The optimal solution for this instance is obtained by scheduling task J1 in M2 and tasks J2 and J3 in M2. The

Gantt chart representing optimal solution with Makespan 8 is shown in figure 2.

M1 J2 (6) J3 (2)

6 8

 M2 J1 (4)

4

Figure 2: Gantt Chart of Optimal Solution

There can be only three possible lists for the problem satisfying precedence constraints; {J1-J2-J3}, {J1-J3-J2}

and {J2-J1-J3}. The schedule obtained by list scheduling algorithm with earliest available machine

assignment rule is given in Figure 3.

M1 J2 (6)

6

 M2 J1 (4) J3 (10)

4 14

a) Schedule for list {J1-J2-J3}

 M1 J3 (2)

2

 M2 J1 (4) J2 (10)

4 14

b) Schedule for list {J1-J3-J2}

 M1 J2 (6)

6

 M2 J1 (4) J3 (10)

4 14

c) Schedule for list {J2-J1-J3}

Figure 3: Schedules for list scheduling algorithm with earliest available machine assignment rule

 It is clear from Figure 3 that list scheduling algorithm with earliest available machine assignment rule does

not produce a dominant set of solution. The schedule obtained by list scheduling algorithm with the earliest

completion time of task assignment rule is shown in Figure 4. It appears that the list scheduling algorithm

with the earliest completion time of task assignment rule produces a dominant solution. However, we could

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 15

not provide a formal proof of this property. The formal proof is an open-ended research question for future

research. We use this property in our proposed algorithms to solve the problem.

M1 J2 (6) J3 (2)

6 8

 M2 J1 (4)

4

a) Schedule for list {J1-J2-J3}

M1

J3 (2) J2 (6)

6 12

 M2 J1 (4)

4

b) Schedule for list {J1-J3-J2}

 M1 J2 (6) J3 (2)

6 8

 M2 J1 (4)

4

 c) Schedule for list {J2-J1-J3}

Figure 4 : Schedule for list scheduling algorithm with earliest completion time of task assignment rule

This problem instances can also be used for completion time objective. It can be easily shown that the earliest

available machine assignment rule is non-dominant for total completion time objective as well.

4.1 Earliest Completion Time (EST) based Heuristic

A heuristic solution method is developed to solve the unrelated parallel machine scheduling problem with

precedence constraint. The heuristic partially utilizes the list-scheduling algorithm based on earliest

completion time of tasks assignment rule. The proposed heuristic assigns tasks iteratively until all the

subtasks are scheduled. In each iteration, all unassigned feasible subtasks i.e., subtasks with assigned

predecessor, are evaluated on all the resources. An unassigned subtask with the lowest completion time is

selected for the assignment. The detailed description of the heuristic algorithm (Algorithm 1) is provided

below.

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 16

Algorithm 1: Earliest Completion Time (EST) based Heuristic Algorithm

Step 0: Initialize the available time of all the resources as their ready time (i.e., ; 1,...,k kA t k m ) and

completion time of all subtasks to be infinite (i.e. ; 1,...,iC i nt ). Set the completion time of 0th

subtask to be zero (i.e., C0 = 0). Initialize unscheduled subtasks set S = {T1, T2,…, Tnt}.

Step 1: Build the feasible set of subtasks Ω from the unscheduled subtasks set S whose predecessor subtask has

already been scheduled.

Step 2: Evaluate the earliest completion time iE for subtask iT from set Ω.

()min{max(,) }

ii pred T k ik
k M

E F A P


  (20)

Step 3: Select the task for scheduling that has minimum earliest completion time iE . Determine the resource in

which this task can be scheduled for minimum completion time. Assume that subtask iT provides

earliest completion time at resource Rk.

Step 4: Schedule the subtask iT at resource Rk for processing at time Pr ()max(,)
ied T kt CT A . Update the

available time kA of resource Rk and the completion time iC of task iT as follows.

 k ikA t P  (21)

i ikC t P  (22)

Step 5: Remove task iT from set S.

Step 6: Go back to Step 1 if there is unscheduled task, otherwise stop.

4.2 Ant Colony System (ACS) Algorithm

This paper uses the Ant Colony System (ACS) algorithm to solve the problems under consideration. The

ACS algorithm is used in many parallel machine scheduling problems. Arnaout et al. (2010) proposed an

ACS based algorithm to minimize the Makespan in the parallel machine environment. Behnamian et al.

(2009) proposed a hybrid meta-heuristic for a Makespan minimization scheduling problem. They considered

the ACS and Variable Neighborhood Search (VNS) algorithms to solve the parallel machine problem. Gao et

al. (2013) designed a multi-objective ACS algorithm for the VM placement in the cloud computing

environment for the purpose of improving server utilization and power efficiency. Hua et al. (2010) proposed

an ACS algorithm for optimizing computing resources allocation problem. Gajpal & Rajendran (2006) used

ACS for minimizing the completion-time variance of jobs in flowshops. Zhang et al. (2018) used ACS in

electric vehicle routing problem with recharging stations for minimizing energy consumption. Thiruvady et

al. (2013) used ACS in mining domain for a shared resource constrained scheduling problem. Ting & Chen

(2013) used a Multiple Ant Colony Optimization (MACO) algorithm to solve the location-routing problem

with capacity constraints on depots and routes. ACS is also used by Thepphakorn et al. (2014) for an

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 17

academic time tabling problem. Hong et al. (2018) used an ACS based heuristic an efficent algorithm for a

two-stage supply chain problem with fixed costs. The successful application of ant colony algorithm on

solving different combinatorial optimization problem motivated us to use ACS for solving unrelatted parallel

machine problem with precedence constraints.

In the ACS algorithm, artificial ants are created to find better solutions to a particular problem by using the

information from the solutions of previous iterations. At the end of each iteration, the solutions are stored in

the trail intensity of each path. Finally, the ant solutions are generated by using current trail intensity.

Detailed explanations and descriptions of the application of ACS can be found in Stützle and Hoos (2000).

The fundamental procedure of ACS is shown in Algorithm 2:

Algorithm 2: Ant Colony System (ACS) Algorithm

Step 1: Initialize the trail intensities and parameters

 Step 2: While (termination condition is not met) do the following:

 Generate an ant solution for each ant using the trail intensities.

 Improve ant solution using local search.

 Update trail intensities using elitist ants.

Step 3: Return the best solution found so far.

The trail intensities is denoted as ik , which determines the intensity of assigning task Ti to

resource Rk. We initialize the trail intensity 0.01, ,ik i T k R     .

4.2.1 Generate an Ant Solution

In classical, ant colony algorithm a task is selected for scheduling on the basis of trail intensity ik for

assigning task Ti to resource k. The earliest completion time-based list scheduling property seems to provide

the optimal solution for the problem considered in this paper. Hence, the proposed ACS utilizes this property

for building the ant solution along with the trail intensity of ant algorithm. An ant solution is generated in a

similar way of heuristic algorithm is described in Section 4.1 All the steps of generating an ant solution in

ACS is similar to the heuristic algorithm except in step 3. In step 3 of heuristic algorithm, subtask Ti is

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 18

chosen from set Ω for assignment to resource Rk. The subtask Ti is chosen on the basis of earliest completion

time rule. In the proposed ACS, a subtask is chosen using the combination of earliest completion time rule

and trial intensity rule. The rules are selected randomly with 90% probability of earliest completion time rule

and 10% probability on trial intensity rule. The earliest completion time rule is described in step 2 and step 3

of the heuristic algorithm. The trail intensity rule of ant algorithm uses the following probability for selecting

task Ti.

P ik
ik

lk

l









 (23)

4.2.2 Local Search

Once the solution is constructed by the ant, the ant solution is improved by local search. In the proposed local

search scheme, a randomly selected subtask is removed from its original position and re-inserted in all other

feasible position. If the best insertion position improves the current solution, then the move is accepted for

future evaluation. All the subtasks are evaluated for possible improvement through insertion. The process is

repeated if at least one subtask is relocated with improved solution. The process is stopped when none of the

subtask insertion is able to improve the solution. The local search uses a speed up mechanism to reduce CPU

time by avoiding the evaluation of infeasible insertions. This paper uses two simple properties to identify

infeasible insertion places. The first property states that the insertion of a subtask is not feasible anywhere

before its immediate predecessor’s subtask. The second property states that the insertion of a subtask is not

feasible anywhere after its successor’s subtask (not only the immediate successor task but all the successor’s

subtasks).

4.2.3 Updating trail intensity

After all ants have constructed their solutions, the trail intensities are updated using the solution of  elitist

ants. The elitist ants are defined as the  best ant solution found so far. Elitist ants are updated by comparing

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 19

the present elitist ant solutions with the current ant solutions. While updating elitist ants, the algorithm

ensures that the solutions of elitist ants are distinct from each other. The trail intensity of assigning task Ti to

resource Rk is updated using elitist ants as follows:

1

, 1,2,..., ; 1,2,..., .new old

ik ik ik i nt k m






   


      (24)

Here  is the called evaporation factor, taking value between 0 and 1. The first term in equation (24)

represents evaporations of existing trail intensity. The second term represents the deposition of pheromone by

 elitist ant where

1/ if task isassigned to resouce i n the eltist ant

0 otherwise

th

i k

ik

L T R
 




  


 (25)

Here L
 is the objective function value for the

th elitist ant solution. Our ACS algorithm has a

computation complexity of O(n^2), much better than the prior work baselines with complexity of O(n^2 *

log(n)).

5. Performance Evaluation

This section presents numerical experiment and evaluation of proposed algorithms. The optimal solution for

small problem instances is obtained by solving MILP formulation. ‘A Mathematical Programming Language’

(AMPL) software with CPLEX solver is used to solve the MILP formulation. The software can solve the

problem size of 10 subtasks within 15 minutes. In this section, we provide the experiment for small instances

as well as the large problem instances. All the algorithms (i.e., heuristics and meta-heuristic) are

implemented in same simulation environment, coded in C Language and run on an AMD Opteron 2.6 GHz

PC with 16 GB memory on Unix OS. The HH and SS heuristic are coded on the basis of pseudo code

available in those papers. We used the following notations for reporting results.

HH: HH algorithm of Herrmann et al., (1997)

SS: SS algorithm of Liu & Yang (2011)

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 20

EST: EST based proposed heuristic algorithm

ACS: Ant colony algorithm based solution

MKS: Makespan value produced by an algorithm

TCT: Total completion time value produced by an algorithm

RPD: Relative percentage deviation of an algorithm from the best solution

CPU: CPU time (in seconds) consumed by an algorithm

PG: Percentage gap of an algorithm form the optimal solution

n: Independent tasks received by a cloud computing service provider at a particular time

m: number of virtual machine/commodity computers available to process above n at a particular time

nt: total number of inter-dependent subtasks of n tasks

The performance of proposed solution method is evaluated through PG and RPD value. The formula used to

calculate the PG and RPD is given below.

PG = {(AS - Opt)*100}/Opt (27)

RPD = {(AS - Best)*100}/Best (28)

Where, AS represents the solution of the algorithm, Opt represents the optimal solution and Best represents

the best solution among all the solutions used for evaluation.

5.1 Experiments on Small Instances

The small instances are generated to find the optimal solution. In small instances, the number of tasks

considered is 2, 3, 4 and 5 and the numbers of resources considered are 2, 3 and 4. Thus, a total of 12 groups

of problem instances are generated. These groups are represented by AY1 to AY12. We generated 10

problem instances for each group and thus the total of 120 small problem instances is generated. The number

of subtasks for each task are generated from a uniform distribution in the range of [2 , 3]. The process time of

tasks are generated from a uniform distribution in the range of [10, 25].

5.1.1 Experiments on small instances for total completion time objective

The results of HH heuristic, SS heuristics and EST heuristics, and Ant colony algorithm for small instances

are reported in Table 3 for the total completion time objective. The average total completion time obtained

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 21

for HH heuristic, SS heuristics, EST heuristics and ACS meta-heuristic are shown in Table 3 along with their

Percentage Gap (PG) value. The average percentage gap for 12 groups of problem instances are reported in

the bottom of the Table 3. The average PG of HH and SS heuristic from optimal solution is noted as 10.7%

and 4.26 % respectively. The results show that the solution is far away from the optimal solution for existing

heuristics. The average PG of EST heuristic is noted as 2.46%, which is good as compare to the existing HH

heuristic and SS heuristic. The PG from the optimal solution for ACS is noted as 0.29% which is close to the

optimal solution. Moreover, ACS metaheuristic gives the best results for all 120 small instances problem as

compare to HH heuristic, SS heuristics and EST heuristics.

The CPU time of HH heuristic, SS heuristics and EST heuristics and ACS meta-heuristic is also reported in

Table 3. The comparison of CPU is fair because all the algorithms are executed on the same simulation

environment. The CPU time of optimal method is on average 1079.91 seconds for 120 problem instances. It

can be observed that the CPU time for optimal method increases exponentially with increase in problem size.

The exponential increase in CPU time makes the use of optimal method practically impossible for solving

bigger problem instances. This observation also justifies the use of EST heuristic and ACS metaheuristic

over HH heuristic and SS heuristics for solving the task scheduling problem.

Table 3: Experimental results of small instances for total completion time objective

Instance
No.

n m nt
Optimal Solution HH Heuristic SS Heuristic EST Heuristic ACS

TCT CPU TCT CPU PG TCT CPU PG TCT CPU PG TCT CPU PG

AY1 2 2 6 319.2 0.2 337.5 < 1 5.34 328.80 < 1 2.95 322.40 < 1 0.86 320.40 < 1 0.41

AY 2 2 3 5 212.30 0.18 222.30 < 1 5.76 217.80 < 1 2.44 217.90 < 1 2.39 213.30 < 1 0.43

AY 3 2 4 5 138.60 0.21 141.20 < 1 1.80 148.80 < 1 7.43 141.10 < 1 1.29 139.50 < 1 0.97

AY4 3 2 8 431.00 4.47 474.9 < 1 10.96 454.4 < 1 6.46 450.1 < 1 4.77 432 < 1 0.35

AY5 3 3 8 330.30 6.01 376.20 < 1 14.13 344.30 < 1 4.02 337.30 < 1 2.16 331.10 < 1 0.27

AY6 3 4 8 316.30 11.34 335 < 1 5.80 337 < 1 6.39 323.5 < 1 2.20 316.3 < 1 0

AY 7 4 2 10 732.40 37.47 830.7 < 1 15.57 752.6 < 1 3.17 748.6 < 1 2.46 733.3 < 1 0.14

AY 8 4 3 10 611.80 123.92 686.7 < 1 12.62 631.1 < 1 3.52 631.4 < 1 3.52 612.7 < 1 0.16

AY 9 4 4 10 416.50 78.80 462.1 < 1 11.38 436 < 1 4.71 432.9 < 1 3.88 417 < 1 0.13

AY10 5 2 12 1173.10 1582.59 1345.7 < 1 15.85 1202 < 1 2.48 1183.5 < 1 0.88 1174.7 < 1 0.10

AY11 5 3 12 848.30 3348.49 967.3 < 1 14.87 870.4 < 1 2.79 865 < 1 2.26 850.6 < 1 0.22

AY 12 5 4 13 667.70 7765.25 761.8 < 1 14.76 700.20 < 1 4.95 685.6 < 1 2.64 670 < 1 0.32

Average 516.46 1079.91 578.45 < 1 10.74 535.28 < 1 4.28 528.28 < 1 2.44 517.58 < 1 0.29

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 22

Figure 5 depicts that the performance of ACS is better than the performance of HH, SS and EST heuristic.

ACS obtains nearby results to optimal solution for total completion time objective.

Figure 5: Percentage Gap of Algorithms with TCT objective function for small data set.

5.1.2 Experiments on small instances for Makespan objective

The performance results of HH, SS, EST and ACS for Makespan objective problem for small instances are

reported in Table 4 and Figure 6. Table 4 reports the RPD value of HH heuristics, SS heuristics, EST

heuristics and ACS meta-heuristic viz. 10.03%, 13.12%, 9.19% and 1.31 respectively. The PG value of HH

heuristics, SS heuristics and EST heuristics is far away from the optimal solution for Makespan objective.

The PG from the optimal solution for ACS is noted as 1.37%, which is very near to the optimal solution.

Table 4: Experiment results of small instances for Makespan objective problem

Instance

no.
n m nt

Optimal

Solution
HH Heuristic SS Heuristic EST Heuristic ACS Heuristic

MKS CPU MKS CPU PG MKS CPU PG MKS CPU PG MKS CPU PG

AY1 2 2 6 77 0.19 78.6 < 1 1.95 82 < 1 6.64 80.8 < 1 4.41 77 < 1 0

AY 2 2 3 5 55.8 0.16 57.5 < 1 3.03 60.1 < 1 7.39 60.3 < 1 7.32 56 < 1 0.31

AY 3 2 4 5 39 0.10 39.8 < 1 2.09 43 < 1 10.29 40.2 < 1 2.46 39.5 < 1 1.14

AY4 3 2 8 82.1 0.62 90.6 < 1 10.29 93.9 < 1 16.39 92.5 < 1 11.34 82.9 < 1 0.97

5.34 5.76

1.8

10.96

14.13

5.8

15.57

12.62

11.38

15.85
14.87 14.76

0.86

2.39
1.29

4.77

2.16 2.2 2.46
3.52 3.88

0.88

2.26 2.64

0

2

4

6

8

10

12

14

16

18

AY1 AY 2 AY 3 AY4 AY5 AY6 AY 7 AY 8 AY 9 AY10 AY11 AY 12

P
G

Instance No.

HH SS EST ACS

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 23

AY5 3 3 8 60.3 0.59 66.8 < 1 10.92 68.6 < 1 13.95 66.6 < 1 9.18 61.1 < 1 1.27

AY6 3 4 8 55.4 0.77 57.3 < 1 3.44 64.4 < 1 15.37 60.9 < 1 8.09 55.6 < 1 0.40

AY 7 4 2 10 110 3.02 124.4 < 1 14.10 122.2 < 1 11.74 120.1 < 1 8.61 111.4 < 1 1.17

AY 8 4 3 10 81.1 4.03 91.3 < 1 12.87 92.4 < 1 14.11 92.7 < 1 12.11 82.1 < 1 1.09

AY 9 4 4 10 59 3.01 65.8 < 1 12.50 68.9 < 1 17.60 69.3 < 1 14.48 60.3 < 1 2.23

AY10 5 2 12 140.9 11.44 158.5 < 1 13.03 156.2 < 1 11.17 149.1 < 1 5.39 142.3 < 1 0.86

AY11 5 3 12 94.4 18.64 110.2 < 1 16.74 104.9 < 1 11.13 105.7 < 1 10.77 96.6 < 1 2.22

AY 12 5 4 13 72.2 20.72 85.8 < 1 19.40 87.6 < 1 21.69 86.4 < 1 16.16 75.3 < 1 4.02

Average 77 5.27 85.55 < 1 10 87 < 1 13.1 85 < 1 9.2 78 < 1 1.3

Figure 5 depicts that the performance of metaheuristic (ACS) is better than the HH, SS and EST. ACS

generates the solution close to the optimal solution for Makespan objective. An interesting observation about

the CPU time of optimal solution can be made from Table 3 and Table 4. The CPU time of Makespan

objective is considerably lower than the CPU time of the total completion time objective. The results indicate

that solving Makespan objective problem is easier than solving the total completion time objective problem.

Figure 6: Percentage Gap of Algorithms with Makespan objective function for small data set

5.2 Experiment results of large instance

This section provides the numerical analysis for large problem instances. The number of tasks (n) considered

are 15, 30, 45, 60, 75, 90, 105, 120, 135 and 150 and the number of resources (m) considered is 2, 5 and 7.

1.95
3.03

2.09

10.29 10.92

3.44

14.10
12.87 12.50 13.03

16.74

19.40

6.64
7.39

10.29

16.39

13.95
15.37

11.74

14.11

17.60

11.17 11.13

21.69

4.41

7.32

2.46

11.34

9.18
8.09 8.61

12.11

14.48

5.39

10.77

16.16

0.00 0.31
1.14 0.97 1.27

0.40
1.17 1.09

2.23
0.86

2.22

4.02

0

5

10

15

20

25

AY1 AY2 AY3 AY4 AY5 AY6 AY7 AY8 AY9 AY10 AY11 AY12

p
g

instance no.

HH SS EST ACS

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 24

Thus, the total of 30 groups of problem instances is generated. In a given problem instance, the number of

subtasks for a given task is generated in the range of [2, 15]. The process time of subtasks are generated from

a uniform distribution in the range of [10, 25].

5.2.1 Experimental results on large instances for total completion time objective

Table 5 reports the experimental results of total completion time objective for the large problem instances.

Table 5: Numerical results for heuristics and meta-heuristics for total completion time objective problem

Instance

No.
n m nt

HH Heuristic SS Heuristic EST Heuristic ACS

TCT CPU RPD TCT CPU RPD TCT CPU RPD TCT CPU RPD

BG1 15 2 51 23234.7 < 1 16.62 20378.2 < 1 1.04 20349.5 < 1 0.93 20171.30 0.70 0

BG2 15 5 49 8141.1 < 1 16.39 7149.4 < 1 1.78 7102.0 < 1 1.15 7023.20 1.10 0

BG3 15 7 54 7312.5 < 1 18.24 6285.4 < 1 1.69 6245.2 < 1 1.08 6180.30 1.70 0

BG4 30 2 103 92248.5 < 1 16.42 80250.5 < 1 0.94 80165.9 < 1 0.83 79531.90 10.50 0

BG5 30 5 101 33339.9 <1 22.33 27646.0 <1 0.93 27554.1 <1 0.61 27399.90 13.60 0

BG6 30 7 106 27342.9 <1 19.66 23123.7 <1 1.08 23009.6 <1 0.54 22883.00 18.50 0

BG7 45 2 152 210796.4 <1 18.25 181339.4 <1 0.81 181030.5 <1 0.61 179964.00 41.40 0

BG8 45 5 150 80986.1 <1 21.52 67609.4 <1 0.60 67447.2 <1 0.37 67213.70 49.00 0

BG9 45 7 153 57569.0 <1 20.06 48784.9 <1 0.78 48541.1 <1 0.25 48424.60 58.10 0

BG10 60 2 205 359178.1 <1 20.09 303241.2 <1 0.82 302909.2 <1 0.70 300843.50 106.90 0

BG11 60 5 205 141010.1 < 1 20.16 118385.3 < 1 0.57 118197.8 < 1 0.40 117731.20 134.60 0

BG12 60 7 206 101209.1 < 1 21.05 84537.5 < 1 0.61 84246.8 < 1 0.27 84034.90 152.70 0

BG13 75 2 254 684446.9 < 1 15.57 598368.9 < 1 0.55 597737.5 < 1 0.44 595122.00 217.20 0

BG14 75 5 257 232465.4 < 1 22.21 193354.5 < 1 0.47 192926.7 < 1 0.24 192495.50 281.70 0

BG15 75 7 257 153139.5 < 1 21.83 127408.5 < 1 0.56 127013.2 < 1 0.24 126709.30 319.70 0

BG16 90 2 303 804813.9 < 1 19.95 681828.7 < 1 0.73 680945.6 < 1 0.59 676930.60 379.90 0

BG17 90 5 300 300210.3 < 1 22.76 247651.6 < 1 0.50 247176.3 < 1 0.29 246482.80 467.10 0

BG18 90 7 305 215329.1 < 1 20.86 179634.3 < 1 0.47 179158.3 < 1 0.20 178809.40 579.20 0

BG19 105 2 367 1250548.4 < 1 17.49 1075103.5 < 1 0.62 1073774.6 < 1 0.49 1068609.60 689.70 0

BG20 105 5 360 411214.1 < 1 24.53 333454.4 < 1 0.44 333115.2 < 1 0.33 332017.50 846.80 0

BG21 105 7 360 309928.5 < 1 20.40 258690.6 < 1 0.45 257913.3 < 1 0.14 257550.20 962.10 0

BG22 120 2 405 1456331.2 < 1 19.49 1235319.1 < 1 0.63 1234693.6 < 1 0.56 1228088.40 972.90 0

BG23 120 5 407 565726.7 < 1 22.46 465574.8 < 1 0.46 464651.3 < 1 0.26 463463.00 1245.40 0

BG24 120 7 409 415008.3 < 1 20.55 347439.6 < 1 0.42 346619.2 < 1 0.16 346069.00 1452.60 0

BG25 135 2 459 1898078.2 < 1 20.70 1612879.8 < 1 0.58 1611788.4 < 1 0.51 1604489.00 1538.40 0

BG26 135 5 459 736659.2 < 1 22.02 608457.3 < 1 0.43 607255.0 < 1 0.23 605897.90 1937.60 0

BG27 135 7 461 519861.5 < 1 22.14 429560.2 < 1 0.41 428478.9 < 1 0.14 427871.40 2175.90 0

BG28 150 2 508 2285765.6 < 1 20.39 1929552.9 < 1 0.57 1928130.1 < 1 0.48 1919198.30 2171.40 0

BG29 150 5 509 880779.3 < 1 23.09 723195.0 < 1 0.42 721789.1 < 1 0.23 720166.60 2635.40 0

BG30 150 7 515 643509.3 < 1 20.87 536226.5 < 1 0.34 535015.5 < 1 0.12 534410.90 2984.40 0

Average 83 5 281 496872.8 < 1 20.3 418414.4 < 1 0.69 417832.7 < 1 0.45 416192.76 748.21 0

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 25

The average RPD value over 300 problem instances indicate that the ACS has the best performance followed

by EST heuristic, SS heuristic and then by HH heuristic. The average RPD of ACS, EST heuristic, SS

heuristic and HH heuristic are 0%, 0.45%, 0.69% and 20.3% respectively.

Figure 7 visualizes the RPD value of all four algorithms for 30 problem groups. The performance of ACS is

better than the performance of other algorithms. The performance of HH heuristic is poor, which is indicated

in small problem instances as well. One of the reasons for poor performance of the heuristic is that it did not

use any list algorithm property of the problem. The performance of SS heuristic is close to the proposed EST

heuristic but still inferior than the EST heuristic. The SS heuristic uses earliest available machine assignment

rule. We have shown in Section 4 that the earliest machine assignment rule does not provide dominant

solution of the problem. This is one of the reason for the poor perforamnce of SS heuristic as compared to the

EST heuristic.

Figure 7: RPD of Algorithms with TCT objective function for large data set.

Figure 8 shows the comparison of scheduling time for algorithms with small dataset and ACS performs better

than EST, SS and HH. ACS has 13%, 15.5% and 21% less than EST, SS and HH respectively. The reason

0

5

10

15

20

25

30

B
G

1

B
G

2

B
G

3

B
G

4

B
G

5

B
G

6

B
G

7

B
G

8

B
G

9

B
G

1
0

B
G

1
1

B
G

1
2

B
G

1
3

B
G

1
4

B
G

1
5

B
G

1
6

B
G

1
7

B
G

1
8

B
G

1
9

B
G

2
0

B
G

2
1

B
G

2
2

B
G

2
3

B
G

2
4

B
G

2
5

B
G

2
6

B
G

2
7

B
G

2
8

B
G

2
9

B
G

3
0

R
P

D

instance no.

HH SS EST ACS

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 26

behind better performance of ACS is the implementation of precedence task constraints during task

scheduling.

Figure 8: Comparison of scheduling time for algorithms with small dataset

5.2.2 Experimental results on large instances for Makespan objective problem

Table 6 and Figure 9 report the performace of HH, SS, EST & ACS in large problem instances for Makespan

objective.

Table: 6 Experiment results of large instance for Makespan objective

Job

Instance
n m nt

HH Heuristic SS Heuristic EST Heuristic ACS

MKS CPU RPD MKS CPU RPD MKS CPU RPD MKS CPU RPD

BG1 15 2 51 671.1 < 1 13.4 613.30 < 1 3.49 608.50 < 1 2.69 593.10 < 1 0.0

BG2 15 5 49 242.30 < 1 13.7 235.20 < 1 10.07 229.80 < 1 7.88 213.40 0.80 0.0

BG3 15 7 54 200.8 < 1 17.5 188.20 < 1 10.35 186.20 < 1 9.28 170.80 1.20 0.0

BG4 30 2 103 1366.5 < 1 13.2 1238.40 < 1 2.43 1229.80 < 1 1.67 1209.20 4.00 0.0

BG5 30 5 101 501.3 <1 18.9 441.10 <1 4.26 440.40 <1 4.25 423.30 7.80 0.0

BG6 30 7 106 386.1 <1 15.6 353.4 <1 5.74 353.5 <1 5.64 334.30 10.4 0.0

BG7 45 2 152 2086.8 <1 15.3 1845.9 <1 1.70 1838.1 <1 1.20 1815.40 13.2 0.0

BG8 45 5 150 796.9 <1 18.8 692.6 <1 3.01 690.4 <1 2.68 672.40 24.3 0.0

BG9 45 7 153 551.3 <1 16.6 490.8 <1 3.74 483.5 <1 2.15 473.50 27.6 0.0

BG10 60 2 205 2735.6 <1 16.7 2391.7 <1 1.80 2382.3 <1 1.40 2349.80 31.4 0.0

BG11 60 5 205 1036.7 < 1 17.3 904.9 < 1 2.43 907 < 1 2.57 884.40 58.4 0.0

BG12 60 7 206 724.6 < 1 16.8 642.4 < 1 3.36 634.3 < 1 2.18 621.40 67.3 0.0

BG13 75 2 254 3876 < 1 14.1 3439.3 < 1 1.14 3428.6 < 1 0.80 3401.80 58.8 0.0

BG14 75 5 257 1332.9 < 1 19.5 1143.4 < 1 2.19 1136.6 < 1 1.54 1119.40 118.9 0.0

BG15 75 7 257 892.7 < 1 18.2 781 < 1 3.16 774.7 < 1 2.38 757.50 119.7 0.0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

AY1 AY2 AY3 AY4 AY5 AY6 AY7 AY8 AY9 AY10 AY11 AY12

S
ch

ed
u
li

n
g
 T

im
e

(s
ec

o
n
d

s)

Instance No.

HH SS EST ACS

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 27

BG16 90 2 303 4105.4 < 1 16.6 3580.2 < 1 1.20 3572.9 < 1 1.01 3537.90 99.2 0.0

BG17 90 5 300 1515.5 < 1 19.3 1298.1 < 1 1.98 1290.4 < 1 1.35 1273.70 173.4 0.0

BG18 90 7 305 1055 < 1 17.9 915.7 < 1 2.27 911.4 < 1 1.82 895.60 198.4 0.0

BG19 105 2 367 5188.7 < 1 14.9 4577.2 < 1 1.22 4568.3 < 1 1.03 4522.20 167.5 0.0

BG20 105 5 360 1762.3 < 1 19.3 1503.8 < 1 1.60 1498.7 < 1 1.22 1480.60 298.5 0.0

BG21 105 7 360 1281 < 1 17.7 1106.2 < 1 1.53 1102.9 < 1 1.21 1089.40 302.4 0.0

BG22 120 2 405 5551.9 < 1 16.1 4850.2 < 1 1.16 4844.3 < 1 1.02 4796.60 226.4 0.0

BG23 120 5 407 2098.2 < 1 20.5 1762.1 < 1 1.08 1762.9 < 1 1.13 1743.40 417 0.0

BG24 120 7 409 1483.4 < 1 17.8 1284.8 < 1 1.82 1280.4 < 1 1.42 1262.30 460.4 0.0

BG25 135 2 459 6292.6 < 1 16.7 5489.2 < 1 1.08 5476.6 < 1 0.85 5431.50 334.6 0.0

BG26 135 5 459 2395.3 < 1 18.6 2043.8 < 1 1.18 2034.1 < 1 0.69 2020.40 602.4 0.0

BG27 135 7 461 1668 < 1 18.5 1425.7 < 1 1.08 1423.9 < 1 0.92 1411.10 629.7 0.0

BG28 150 2 508 6937 < 1 17.0 6020.8 < 1 1.09 6007.4 < 1 0.87 5956.60 453.9 0.0

BG29 150 5 509 2602.4 < 1 19.4 2211 < 1 1.18 2204.6 < 1 0.90 2184.60 840.8 0.0

BG30 150 7 515 1849.4 < 1 18.1 1590.2 < 1 1.38 1581.7 < 1 0.83 1568.9 893.8 0.0

Average 83 5 281 2106.3 < 1 17.1 1835.4 < 1 2.66 1829.5 < 1 2.15 1807.2 221.4 0

The average RPD over 300 problem instances indicates that the ACS and EST has the best performance over

the existing SS heuristic and HH heuristic. The average RPD of ACS and ETS heuristic is noted as 0% and

2.15 % whereas the RPD value of SS heuristic and HH heuristic are noted as 2.66% and 17.1% respectively.

Figure 9: RPD of Algorithms with Makespan objective function for large data set.

0

5

10

15

20

25

B
G

1

B
G

2

B
G

3

B
G

4

B
G

5

B
G

6

B
G

7

B
G

8

B
G

9

B
G

1
0

B
G

1
1

B
G

1
2

B
G

1
3

B
G

1
4

B
G

1
5

B
G

1
6

B
G

1
7

B
G

1
8

B
G

1
9

B
G

2
0

B
G

2
1

B
G

2
2

B
G

2
3

B
G

2
4

B
G

2
5

B
G

2
6

B
G

2
7

B
G

2
8

B
G

2
9

B
G

3
0

R
P

D

Instance no.

HH SS EST ACS

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 28

The performance of ACS is better compared to the performance of EST, SS and HH heuristics in all 120

problem instances. Another interesting observation about the CPU time of ACS can be made from Tables 5

and 6. The CPU time of ACS for Makespan objective is lower than the TCT objective. The similar trend is

also observed for the CPU time of optimal solution for solving Makespan and TCT objective function. These

results indicate that solving Makespan objective is easier than solving TCT objective.

Figure 10 shows the comparison of scheduling time for algorithms with large dataset and ACS performs

better than EST, SS and HH. ACS has 16%, 18% and 19% less than EST, SS and HH respectively. The

reason behind better performance of ACS is the implementation of precedence task constraints during task

scheduling.

Figure 10: Comparison of scheduling time for algorithms with large dataset

6. Conclusions and Future Scope

A cloud computing scheduling problem is considered in this paper where jobs are processed in the parallel

computing resources with precedence constraints. The tasks consist of many interdependent subtasks that

can be processed in one of the unrelated parallel computing resources. This kind of problem is considered as

an NP hard problem. For NP- hard problem, the heuristics and metaheuristics solutions become an obvious

0

1

2

3

4

5

6

7

B
G

1

B
G

2

B
G

3

B
G

4

B
G

5

B
G

6

B
G

7

B
G

8

B
G

9

B
G

1
0

B
G

1
1

B
G

1
2

B
G

1
3

B
G

1
4

B
G

1
5

B
G

1
6

B
G

1
7

B
G

1
8

B
G

1
9

B
G

2
0

B
G

2
1

B
G

2
2

B
G

2
3

B
G

2
4

B
G

2
5

B
G

2
6

B
G

2
7

B
G

2
8

B
G

2
9

B
G

3
0

S
ch

ed
u
li

n
g
 T

im
e

(s
ec

o
n
d

s)

Instance No.

HH SS EST ACS

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 29

choice as heuristics and metaheuristics promise a suitable solution method. In this paper, two existing

heuristic HH and SS are considered as most relevant heuristics for this specific problem domain. The

existing heuristic did not utilize the scheduling algorithm property of unrelated parallel machine scheduling

problem. The SS heuristic use earliest available machine assignment rule. This paper shows that the earliest

available machine assignment rule is non dominant for the unrelated parallel machine problem with

precedence constraints. This paper proposes an EST heuristic and an ACS metaheuristic which utilize the

list scheduling algorithm property of the problem. The experimental results reveal the superior performance

of proposed EST heuristic over existing heuristics. The use of list scheduling algorithm helps proposed

heuristic to perform better than existing heuristic. The experimental results also indicate that solving

Makespan objective is easier than solving TCT objective. The performance of ACS is found to be best for

minimizing the Makespan objective as well as minimizing the total completion time objective and

scheduling time. ACS shows the promising results which will help the cloud computing service providers

to render the quality services for its end user cloud service users.

Future directions include implementation and testing in a distributed Fog-Cloud setup using FogBus

framework provided by Tuli et al. (2019). To achieve this, data sharing techniques need to be tested to ensure

that the ACS algorithm works seamlessly in a distributed setup. We also propose to extend this work to more

sophisticated environments wherein we consider the myriad of factors crucial in a large-scale cloud/grid

setup. Such factors include geographic distance, costs of the machine, network bandwidth for

communication, resource utilization, etc. We will explore scalability and model limitations of proposed work

in the future. Further research directions include integration of ensemble methods (Tuli et al. 2020) to

achieve low scheduling times and explore other optimization methods like the ones using Pareto efficiency to

test the robustness of the proposed algorithms.

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 30

Acknowledgements

We thank Prof. Satish N. Srirama (Editor) and anonymous reviewers for their valuable comments and

suggestions for improving our research paper. This research is partially supported by NSERC discovery

Grant 318689.

References

Afzalirad M. & Rezaeian J. (2016). Resource-constrained unrelated parallel machine scheduling problem

with sequence dependent setup times, precedence constraints and machine eligibility restrictions, Computers

& Industrial Engineering 98 (2016) 40–52.

Buyya, Rajkumar, Satish Narayana Srirama, Giuliano Casale, Rodrigo Calheiros, Yogesh Simmhan, Blesson

Varghese, Erol Gelenbe et al. "A manifesto for future generation cloud computing: Research directions for

the next decade." ACM computing surveys (CSUR) 51, no. 5 (2018): 1-38.

Arnaout, J.-P., Rabadi, G., & Musa, R. (2010). A two-stage ant colony optimization algorithm to minimize

the makespan on unrelated parallel machines with sequence-dependent setup times. Journal of Intelligent

Manufacturing, 21(6), 693-701.

Tuli, Shikhar, and Shreshth Tuli. "AVAC: A Machine Learning based Adaptive RRAM Variability-Aware

Controller for Edge Devices." arXiv preprint arXiv:2005.03077 (2020).

Behnamian, J., Zandieh, M., & Ghomi, S. F. (2009). Parallel-machine scheduling problems with sequence-

dependent setup times using an ACO, SA and VNS hybrid algorithm. Expert Systems with Applications,

36(6), 9637-9644.

Cheng C.Y. & Huang L.W. (2017) Minimizing total Earliness and Tardiness through Unrelated parallel

Machine scheduling Using distributed Release time Control, Journal of Manufacturing Systems 42 (2017) 1–

10

Gill, Sukhpal Singh, Shreshth Tuli, Minxian Xu, Inderpreet Singh, Karan Vijay Singh, Dominic Lindsay,

Shikhar Tuli et al. "Transformative effects of IoT, Blockchain and Artificial Intelligence on cloud computing:

Evolution, vision, trends and open challenges." Internet of Things 8 (2019): 100118.

Cook, S. A. (1971). The complexity of theorem-proving procedures. Paper presented at the Proceedings of

the third annual ACM symposium on Theory of computing.

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 31

Dutta, D., & Joshi, R. (2011). A genetic: algorithm approach to cost-based multi-QoS job scheduling in cloud

computing environment. Paper presented at the Proceedings of the International Conference & Workshop on

Emerging Trends in Technology.

Fang, Y., Wang, F., & Ge, J. (2010). A task scheduling algorithm based on load balancing in cloud

computing. Paper presented at the International Conference on Web Information Systems and Mining.

Gajpal, Y., Rajendran, C. (2006). An ant-colony optimization algorithm for minimizing the completion-time

variance of jobs in flowshops, International Journal of Production Economics, 101(2), 259-272.

Tuli, Shreshth, Shashikant Ilager, Kotagiri Ramamohanarao, and Rajkumar Buyya. "Dynamic Scheduling for

Stochastic Edge-Cloud Computing Environments using A3C learning and Residual Recurrent Neural

Networks." Transaction on Mobile Computing 2020. https://doi.org/10.1109/TMC.2020.3017079

Gao, Y., Guan, H., Qi, Z., Hou, Y., & Liu, L. (2013). A multi-objective ant colony system algorithm for

virtual machine placement in cloud computing. Journal of Computer and System Sciences, 79(8), 1230-1242.

Gacias B, Artigues C & Lopez P. (2010). Parallel machine scheduling with precedence constraints and setup

times, Computers & Operations Research, 37(12), pp. 2141-2151.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-

completeness. 1979. San Francisco, LA: Freeman, 58.

Germain-Renaud, C., Rana, O. (2009).The convergence of clouds, grids, and autonomics, IEEE Internet

Computing 13 (6).

Herrmann, J., Proth, M., & Sauer, N. (1997). Heuristics for unrelated machine scheduling with precedence

constraints, European Journal of Operational Research, (102), 528–537.

Hong, J., Diabat, A., Panicker, V., V., Rajagopalan, S.,(2018). A two-stage supply chain problem with fixed

costs: An ant colony optimization approach, , International Journal of Production Economics, Vol. 204, 214-

226.

Hua, X.-y., Zheng, J., & Hu, W.-x. (2010). Ant colony optimization algorithm for computing resource

allocation based on cloud computing environment [J]. Journal of East China Normal University (Natural

Science), 1(1), 127-134.

Hurink, J., Knust, S. (2001). List scheduling in a parallel machine enviornment with precedence constraints

and setup times, Operation Research Letters, (29), 231-239.

Islam, Muhammed Tawfiqul, Satish Narayana Srirama, Shanika Karunasekera, and Rajkumar Buyya. "Cost-

efficient dynamic scheduling of big data applications in apache spark on cloud." Journal of Systems and

Software 162 (2020): 110515.

https://www.sciencedirect.com/science/article/pii/S0925527305000320#!
https://www.sciencedirect.com/science/article/pii/S0925527305000320#!
https://www.sciencedirect.com/science/journal/09255273
https://www.sciencedirect.com/science/journal/09255273/101/2
https://www.sciencedirect.com/science/journal/09255273

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 32

Jang, S. H., Kim, T. Y., Kim, J. K., & Lee, J. S. (2012). The study of genetic algorithm-based task scheduling

for cloud computing. International Journal of Control and Automation, 5(4), 157-162.

Joo C.M., Kim B.S., (2015). Hybrid genetic algorithms with dispatching rules for unrelated parallel machine

scheduling with setup time and production availability, Computers & Industrial Engineering, (85),102-109.

Jose Elias C. , Joseph Y., T. Leung. (2017) Scheduling unrelated parallel batch processing machines,

Computers & Operations Research, (78), 117–128.

Kaur, Amanpreet, V. P. Singh, and Sukhpal Singh Gill. "The future of cloud computing: opportunities,

challenges and research trends." In 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile,

Analytics and Cloud) pp. 213-219. IEEE, 2019.

Kochan, C., G., Nowicki, D., R., Sauser, B., Randall, W., S., (2018), Impact of cloud-based information

sharing on hospital supply chain performance: A system dynamics framework, International Journal of

Production Economics, Vol. 195, 168-185.

Li, J.-F., & Peng, J. (2011). Task scheduling algorithm based on improved genetic algorithm in cloud

computing environment. Jisuanji Yingyong/ Journal of Computer Applications, 31(1), 184-186.

Li j., Qiu, M., Mingb, Z., Quan, G., Qin, X., and Gu, Z. (2012). Online optimization for scheduling

preemptable tasks on IaaS cloud systems, J. Parallel Distrib. Comput. 72 (2012) 666–677.

Lin, Y. K., Pfund, M. E., & Fowler, J. W. (2011). Heuristics for minimizing regular performance measures in

unrelated parallel machine scheduling problems. Computers & Operations Research, 38(6), 901–916.

Lin, Y. K., Pfund, M. E., & Fowler, J. W. (2013). Multiple-objective heuristics for scheduling unrelated

parallel machines, European Journal of Operational Research 227 (2013) 239–253.

Liu, J., Luo, X.-G., Zhang, X.-M., Zhang, F., & Li, B.-N. (2013). Job scheduling model for cloud computing

based on multi-objective genetic algorithm. International Journal of Computer Science Issues, 10(1), 134-

139.

Liu, C., & Yang, S. (2011). A heuristic serial schedule algorithm for unrelated parallel machine scheduling

with precedence constraints, Journal of Software, Vol. 6, No. 6, pp 1146-1153.

Luis, F-P., Ruiz, R. (2010). Iterated greedy local search methods for unrelated parallel machine scheduling.

European Journal of Operational Research 207, (2010) 55–69.

Luis F-P., Perea, F., & Ruiz, R. (2017). Models and matheuristics for the unrelated parallel machine

scheduling problem with additional resources, European Journal of Operational Research, 260 (2017) 4 82–4

93.

https://www.sciencedirect.com/science/journal/09255273
https://www.sciencedirect.com/science/journal/09255273

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 33

Oleh Sobeyko, Lars Mönch Heuristic approaches for scheduling jobs in large-scale flexible job shops,

Computers & Operations Research 68 (2016) 97–109

Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010). A particle swarm optimization-based heuristic for

scheduling workflow applications in cloud computing environments. Paper presented in the Advanced

information networking and applications (AINA), 24th IEEE international conference.

Tuli, Shreshth, Redowan Mahmud, Shikhar Tuli, and Rajkumar Buyya. "Fogbus: A blockchain-based

lightweight framework for edge and fog computing." Journal of Systems and Software 154 (2019): 22-36.

Rodney Oliveira Marinho Diana, Moacir Felizardo de França Filho, Sérgio Ricardo de Souza, João Francisco

de Almeida Vitor. (2015) An immune-inspired algorithm for an unrelated parallel machines’ scheduling

problem with sequence and machine dependent setup-times for makespan minimisation, Neurocomputing,

Volume 163, 2015, pp. 94-105.

Saif U. R. Malik, Hina Akram, Sukhpal Singh Gill, Haris Pervaiz, Hassan Malik. EFFORT: Energy efficient

framework for offload communication in mobile cloud computing. Software: Practice and Experience –

Wiley, 2020;1–14. https://doi.org/10.1002/spe.2850

Shahvari O., Logendran R., An Enhanced tabu search algorithm to minimize a bi-criteria objective in

batching and scheduling problems on unrelated-parallel machines with desired lower bounds on batch sizes,

Computers & Operations Research, 77, (2017), 154-176.

Sukhpal Singh Gill & Rajkumar Buyya. Resource Provisioning Based Scheduling Framework for Execution

of Heterogeneous and Clustered Workloads in Clouds: from Fundamental to Autonomic Offering, J Grid

Computing (2019). Volume 17, Number 3, Pages: 385-417, 2019

Thomas Stützle, T., Hoos, H., H. (2000). Max-Min ant System, Future generation computer systems, 16(8),

889-914.

Thepphakorn, T., Pongcharoen, P., Hicks, C., (2014). An ant colony based timetabling tool, International

Journal of Production Economics, Vol. 149, 131-144.

Tuli, Shreshth, Nipam Basumatary, Sukhpal Singh Gill, Mohsen Kahani, Rajesh Chand Arya, Gurpreet Singh

Wander, and Rajkumar Buyya. "Healthfog: An ensemble deep learning based smart healthcare system for

automatic diagnosis of heart diseases in integrated iot and fog computing environments." Future Generation

Computer Systems 104 (2020): 187-200.

Thiruvady, D., Singh, G., Ernst, A., T., Meyer, B., (2013). Constraint-based ACO for a shared resource

constrained scheduling problem, International Journal of Production Economics, Vol. 141, 230-242.

https://www.sciencedirect.com/science/journal/09255273
https://www.sciencedirect.com/science/journal/09255273
https://www.sciencedirect.com/science/journal/09255273

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 34

Ting, C., J., and Chen, C., H., (2013). A multiple ant colony optimization algorithm for the capacitated

location routing problem, International Journal of Production Economics, Vol. 141, 34-44.

Tsai, J.T., Fang, J., & Chou, J.H. (2013). Optimized task scheduling and resource allocation on cloud

computing environment using improved differential evolution algorithm. Computers & operations research,

40, 3045-3055.

Zhang, S., Gajpal, Y., Appadoo, Abdulkader, M.M.S. (2018). Electric vehicle routing problem with

recharging stations for minimizing energy consumption, International Journal of Production Economics, Vol.

203, 404-413.

Enterprise Cloud Computing Survey, https://clutch.co/cloud#survey, accessed 9 June 2017.

The Changing Faces of the Cloud,

http://www.bain.com/Images/BAIN_BRIEF_The_Changing_Faces_of_the_Cloud.pdf, accessed 9 June 2017.

Wang, Wang, and Yu Cheng. "Optimal Charging Scheduling for Electric Vehicles Considering the Impact of

Renewable Energy Sources." In 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE),

pp. 1150-1154. IEEE, 2020.

Deng, Runze, Fengji Luo, Gianluca Ranzi, Zehua Zhao, and Yan Xu. "A MILP Based Two-Stage Load

Scheduling Approach for Building Load’s Peak-to-Average Ratio Reduction." In 2020 5th Asia Conference

on Power and Electrical Engineering (ACPEE), pp. 771-775. IEEE, 2020.

Gill, Sukhpal Singh, Shreshth Tuli, Adel Nadjaran Toosi, Felix Cuadrado, Peter Garraghan, Rami Bahsoon,

Hanan Lutfiyya et al. "ThermoSim: Deep learning based framework for modeling and simulation of thermal-

aware resource management for cloud computing environments." Journal of Systems and Software.

166 (2020): 110596.

Srirama, Satish Narayana, and Alireza Ostovar. "Optimal cloud resource provisioning for auto-scaling

enterprise applications." International Journal of Cloud Computing 7, no. 2 (2018): 129-162.

Zhou, Bowen, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Satish Narayana Srirama, and Rajkumar Buyya.

"mCloud: A context-aware offloading framework for heterogeneous mobile cloud." IEEE Transactions on

Services Computing 10, no. 5 (2015): 797-810.

Casini, Daniel, Alessandro Biondi, and Giorgio Buttazzo. "Timing isolation and improved scheduling of

deep neural networks for real‐time systems." Software: Practice and Experience. (2020).

https://doi.org/10.1002/spe.2840

Khiat, Abdelhamid, Abdelkamel Tari, and Tom Guérout. "MFHS: A modular scheduling framework for

heterogeneous system." Software: Practice and Experience (2020). https://doi.org/10.1002/spe.2827

https://www.sciencedirect.com/science/journal/09255273
https://www.sciencedirect.com/science/article/pii/S0925527318302810#!
https://www.sciencedirect.com/science/article/pii/S0925527318302810#!
https://www.sciencedirect.com/science/article/pii/S0925527305000320#!
https://www.sciencedirect.com/science/article/pii/S0925527318302810#!
https://www.sciencedirect.com/science/journal/09255273
https://www.sciencedirect.com/science/journal/09255273/203/supp/C
https://www.sciencedirect.com/science/journal/09255273/203/supp/C

Preprint Accepted in Journal of Software Practice and Experience Aug 2, 2020 35

Wainer, Gabriel, and Mohammad Moallemi. "Designing real‐time systems using imprecise discrete‐event

system specifications." Software: Practice and Experience (2020). https://doi.org/10.1002/spe.2831

Bhatt, Ashutosh, Priti Dimri, and Ambika Aggarwal. "Self‐adaptive brainstorming for jobshop scheduling in

multicloud environment." Software: Practice and Experience (2020). https://doi.org/10.1002/spe.2819

Ezugwu, Absalom E. "Enhanced symbiotic organisms search algorithm for unrelated parallel machines

manufacturing scheduling with setup times." Knowledge-Based Systems 172 (2019): 15-32.

Vallada, Eva, Fulgencia Villa, and Luis Fanjul-Peyro. "Enriched metaheuristics for the resource constrained

unrelated parallel machine scheduling problem." Computers & Operations Research 111 (2019): 415-424.

Lei, Deming, and Meiyao Liu. "An artificial bee colony with division for distributed unrelated parallel

machine scheduling with preventive maintenance." Computers & Industrial Engineering 141 (2020): 106320.

Hunkeler, Urs, Hong Linh Truong, and Andy Stanford-Clark. "MQTT-S—A publish/subscribe protocol for

Wireless Sensor Networks." In 2008 3rd International Conference on Communication Systems Software and

Middleware and Workshops (COMSWARE'08), pp. 791-798. IEEE, 2008.

