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Abstract—The field of Quantitative Information
Flow (QIF) is concerned with quantifying infor-
mation leakage in systems. This work generalises
the QIF framework to the quantum setting, having
as foundations the recently developed g-leakage
framework. Next, some recent results of the field
of quantum statistical decision are presented and
translated in terms of the “quantum” g-leakage
framework, including a recently developed quan-
tum generalisation of the Coriasceous Theorem,
an important result for QIF.

1. Introduction

Recent advances on physical quantum com-
puting, like Google announcement of “quantum
supremacy” [1] seems to indicate that quantum
computers are getting closer to mainstream real
world applications. Security is a the heart of quan-
tum algorithms: as well known the implications of
a real-world implementation of the Shor algorithm
would be devastating for current cryptography. The
problem of analyzing security of quantum systems
is hence an important and timely problem.

In this work we describe a mathematical frame-
work to reason about leakage of confidential infor-
mation in the presence of quantum systems. The
main contribution of this paper is presenting a
generalisation of the framework commonly used in
the field of quantitative information flow capable of
covering both classical and quantum computation.

The field of quantitative information flow (QIF)
concerns itself with quantifying and minimising
information leakage in security systems. The most
popular framework in QIF describes systems as
a probabilistic mapping that takes as input some
secret value x from a set X and produces an ob-
servable y from a set Y. The leakage of infor-
mation is then taken w.r.t. an adversary whose
knowledge about the secret value is modelled by a
probability distribution over X . Being aware of the
inner workings of the system, he updates his prior
probability to a posterior probability distribution,
gaining information about the secret value. The
specifics on how to measure this leakage of infor-

mation (i.e., what “information-measuring” func-
tion to use) may depend both on the operational
aspects of the system and on the objectives and
capabilities of the adversary.

The simplest model for a system is that of a
(discrete memoryless) channel K, which can be
seen as a probabilistic transition matrix s.t. K(y|x)
is the conditional probability of the system yielding
y given that the secret value is x.

In this paper, we aim to explore the possible
connections between the field of Quantum Compu-
tation and Information Theory and of QIF. While
there seems to be little overlap between the types
of problems each field devotes itself to, this paper
shows deep connections, based on statistical deci-
sion theory.

Statistical decision theory [2] can be introduced
by looking at the following problem: A state of
nature generates a probability distributions over
a set of possible observations. An observer has to
make a decision based on such observations. His
decision is subject to a loss function and his overall
aim is to make the decision minimising his loss.

The stochastic mechanism by which a state of
nature generates a probability distributions over a
set of possible observations is often called an ex-
periment and can be presented as a row stochastic
matrix. A fundamental problem in the field was the
following: Are some experiments more informative
than other? That is: are some experiments always
allowing an observer a smaller loss than other ex-
periments no matter what loss function is chosen?

The answer is yes and remarkably Sherman [3]
and Blackwell [4] proved that this partial order of
information is completely characterized by matrix
multiplication of row stochastic matrices: that is
given experiments (i.e. row stochastic matrices)
E,E′, experiment E is more informative than E′

if and only if there exists another experiment E′′
s.t. E = E′E′′.

The theory of statistical decision and Blackwell
theorem have been independently recently redis-
covered in the field of Quantitative Information
Flow and gain functions [5]. Here the observer is
the attacker, the experiment is the secret depen-
dent system the attacker observes and the loss
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function is the gain function of the attacker which
model his objectives and capabilities.

A simple example is the setting of an at-
tacker observing the computational time of some
crypto operations, with the attacker’s objective be-
ing guessing the secret key.

The Blackwell theorem (rediscovered in QIF
as the Coriaceus theorem [6]) has here a natural
interpretation as characterizing the security order-
ing between systems in terms of “S leaks always
more than S′ for all gain functions”.

In recent work [7], Buscemi proved a generali-
sation of the Blackwell Theorem to the quantum
statistical decision theory framework. Motivated
by the applications the original Blackwell Theorem
finds in QIF, we provide a translation of Buscemi’s
result using the quantum framework we develop
in this paper, stating Buscemi’s result in terms of
a quantum generalisation of the g-leakage frame-
work [5], [8].

2. A short introduction to the formal-
ism of Quantum Theory

In this section we introduce some of the mathe-
matical tools and concepts used in quantum theory.
We do not attempt here to give much of the phys-
ical interpretation for these concepts, to this end
we refer to Nielsen and Chuang’s elucidative book
on the subject [9]. We also constrain our exposition
only to finite-dimensional Hilbert spaces.

In what follows we will introduce the neces-
sary definitions and results. Besides Nielsen and
Chuang’s book, this section also follows the succint
treatment given by Holevo, Efroimsky and Gam-
berg [10].

2.1. Hilbert Spaces, Vectors and Linear
Transformations

Definition 1. A Hilbert space H is a complex vec-
tor space with finite dimension d, together with an
inner product 〈 · | · 〉 such that, for all φ, ψ, σ ∈H ,
and all a, b ∈ C

1) 〈ψ|ψ〉 ≥ 0,
2) 〈ψ|ψ〉 = 0⇔ ψ = 0,
3) 〈φ|ψ〉 = 〈ψ|φ〉, where z is the complex con-

jugate of z,
4) 〈σ|aφ+ bψ〉 = a 〈σ|φ〉+ b 〈σ|ψ〉.

The norm of a vector is defined as ‖ψ‖ =
√
〈ψ|ψ〉.

Bra-ket notation:. A vector φ ∈ H will be
denoted by |φ〉, while 〈φ| represents the complex
function |ψ〉 7→ 〈φ|ψ〉 over H . That is, 〈φ| is the
adjoint of |φ〉 on the dual space H ∗.

In finite dimensions, it might be useful to think
of Hilbert spaces in terms of matrix notation. For
example, suppose we have a three dimensional
Hilbert space with orthonormal basis {|0〉 , |1〉 , |2〉}.

Let |φ〉 = 3 |0〉+2i |1〉+(1+ i) |2〉. We may represent
|φ〉 by the column vector 3

2i
1 + i

 . (1)

And its adjoint 〈φ| by the row vector[
3 −2i 1− i

]
.

Notice that in this representation, 〈φ| is the con-
jugate transpose of |φ〉. We denote this by writing
〈φ| = |φ〉†.
Definition 2. A vector |ψ〉 is called a pure state if
‖ψ‖ = 1.

We are also interested in linear operators from
one Hilbert space to another. Let HA, HB be
Hilbert spaces with basis {|i〉}{1,...,m}, {|j〉}{1,...,n}
respectively. A linear operator A : HA → HB can
be completely defined by

A =
∑
i,j

aj,i |j〉 〈i| .

where each coefficient aj,i is a complex number.
Henceforth, for brevity’s sake, we use operator as
a short-hand for linear operator.

Given the coefficients of A, the result of apply-
ing A to a vector can be easily calculated when-
ever we have the the basis is orthonormal (i.e., if
〈i|j〉 = 1 if i = j and 0 otherwise).

As an example, consider the vector |φ〉 = 3 |0〉+
2i |1〉 + (1 + i) |2〉 in HA, suppose an orthonormal
basis of HB is {|0〉 , |1〉} and that A is given by the
coefficients a0,0 = a1,1 = a1,2 = 1, a1,0 = a0,1 = 1/2
and a0,2 = 0. Then

A |φ〉 =
∑
j,k

ak,j |k〉 〈j|φ〉

=
∑
k

3ak,0 |k〉 〈0|0〉+
∑
k

2iak,1 |k〉 〈1|1〉+∑
k

(1 + i)ak,2 |k〉 〈2|2〉

=(3 + i) |0〉+
(
5

2
+ 3i

)
|1〉 .

The operator A is perhaps more easily under-
stood by thinking again in terms of matrices. The
effect of A can be thought as multiplying the vector
representation of |φ〉 (1), by the matrix with coeffi-
cients ak,j , i.e., [

1 1/2 0
1/2 1 1

]
.

We end this section with some important defi-
nitions and results. We say that an operator A is
defined on a Hilbert space H if its both domain
and codomain are H .

Definition 3. An operator A on H

• is called Hermitian if A = A†, where A† is
the conjugate transpose of A.



• is called positive, if ∀φ ∈ H , 〈φ|A |φ〉 ≥ 0.
In this case, we write A ≥ 0.

Proposition 1 ( [9]). Any positive operator on a
Hilbert space is Hermitian.

Theorem 1 ( [10, Theorem 1.2]). Given any Her-
mitian operator A, there is a orthonormal basis
{|i〉}i∈{0,...,m} and real numbers a1, . . . , am s.t.

A =

m∑
i=0

ai |i〉 〈i| .

We say that A is diagonal w.r.t. this basis, and that
the numbers ai are the eigenvalues of A.

It is easy to verify that an Hermitian operator
is positive if and only if all its eigenvalues are non-
negative.

Definition 4. Let A be an operator on H . Its trace
is defined as

tr(A) =
∑
i

〈i|A |i〉

where |i〉 is any orthonormal basis of H .

Any choice of orthonormal basis will yield the
same value for the trace of an operator, and thus
the definition above is sound.

2.2. The Density Operator

Instead of vectors in H , one can also use a
subset of linear operators from H to H to describe
quantum states. These operators are called density
operators. This alternative formalism is the one
mainly adopted in the majority of this paper.

In this formalism, a pure state |φ〉 is repre-
sented by the operator ρ = |φ〉 〈φ|. For example,
take the pure state

|ψ〉 = 1√
2
|0〉+ i√

3
|1〉 − 1√

6
|2〉 . (2)

Its respective density operator is

ρ =

 1/2 −i/
√
6 −1/

√
12

i/
√
6 1/3 −i/

√
18

−1/
√
12 i/

√
18 1/6

 . (3)

Notice that the trace of ρ is 1. In fact, this
property together with positiveness are sufficient
to characterize all valid density operators.

Definition 5. A density operator ρ is a positive
operator such that tr(ρ) = 1.

Any quantum state is completely described by
a density operator. Notice that this definition is
more permissive than Definition 2. Consider, for
example, the following operator

ρm =

[
1/2 0
0 1/2

]
.

It is not hard to see that there is no pure state
φ such that ρm = |φ〉 〈φ|. The state ρm is what we

call a mixed state, i.e. a (convex) mixture of the
pure states |0〉 〈0| and |1〉 〈1|.
Definition 6. A state ρ is called pure if tr(ρ2) = 1
(equivalently, if it has rank 1). If this is not the case
(i.e., tr(ρ2) < 1) the state is called mixed.

Notice that because all eigenvalues of a posi-
tive operator are non-negative, tr(ρ2) can never be
greater than 1.

2.3. Completely Positive Trace-
preserving Maps

It is sometimes necessary to define an opera-
tion that takes density operators on one Hilbert
space to density operators on another. This is often
accomplished by the use of a completely positive
trace-preserving map (CPTP) [9].

Definition 7. A linear map E from density op-
erators on HA to density operators on HB is a
completely positive trace-preserving map (CPTP)
if there is a family of linear operators {Ai}i from
HA to HB such that

• E(ρ) =
∑

iAiρA
†
i ,

•
∑

iA
†
iAi = I,

where I is the identity operator on HA (i,e. I =∑
j |j〉 〈j| for any orthonmormal basis {|j〉}j of HA).

2.4. Measurement and POVMs

Whenever one makes a measurement of a quan-
tum state ρ, the state “collapses” to one of possible
observable events, which depend on the measure-
ment being made. There is a myriad of different
formalisms for measurements in Quantum Theory,
but to our purposes we will present only the so-
called Positive Operator-Valued Measure (POVM).

Definition 8. A POVM is a collection of linear
operators E = {Ej} such that

• for all j, Ej ≥ 0,
•

∑
j Ej = I.

Each operator Ej represents an outcome (to
which we might give the name Ej or j), and the
probability of the quantum state ρ collapsing on
this observable is given by tr(ρEj). Notice that, as
the operators are positive and sum to 1, the values
{tr(ρEj)} are indeed a valid probability distribu-
tion.

As an example, consider the quantum state (3),
and the POVM given by the operators

E0 = |0〉 〈0| E1 = |1〉 〈1| E2 = |2〉 〈2| .

The probability of each observable would be:

Pr(E0) = tr(ρ |0〉 〈0|) = 〈0| ρ |0〉 = 1/2,

Pr(E1) = 1/3,

Pr(E2) = 1/6.

The state represented above by ρ is a pure state,
with vector |ψ〉 given by (2). This means that we



may construct a POVM that contains |ψ〉 〈ψ|, for
example:

{|ψ〉 〈ψ| , I − |ψ〉 〈ψ|}.

For which we have:

Pr(|ψ〉 〈ψ|) = tr(ρ |ψ〉 〈ψ|) = 〈ψ| ρ |ψ〉 = 1,

Pr(I − |ψ〉 〈ψ|) = 0.

As illustrated above, the probability distribu-
tion given by a state depends on the choice of
POVM.

2.5. Tensor Product

Tensor products are an important concept both
for linear algebra and quantum mechanics, but one
which is tricky to give a very formal definition.
Here we introduce the basic ideas and how they
work.

Let HA, HB be vector spaces of dimensions dA,
dB . Given |ψ〉 ∈ HA and |φ〉 ∈ HB , we denote by
|ψ〉 ⊗ |φ〉 what we call their tensor product.

The Hilbert space HA⊗HB is called the tensor
product of HA, HB , and it contains all elements
|ψ〉 ⊗ |φ〉 for |ψ〉 ∈ HA and |φ〉 ∈ HB , and their
linear combinations. If {|a0〉 , . . . , |am〉} is a basis
for HA and {|b0〉 , . . . , |bn〉} is a basis for HB , then
the set {|ai〉 ⊗ |bj〉 | i ≤ m, j ≤ n} is a basis for
HA ⊗HB .

For simplicity’s sake, we write |ψ〉 |φ〉 or |ψφ〉 to
mean |ψ〉 ⊗ |φ〉. Also, we may refer to HA, HB as
the systems A,B, and to HA⊗HB as the composite
system AB.

2.5.1. Manipulation Rules for Tensor Prod-
ucts. Now we introduce the rules to algebraically
manipulate tensor products and operators in these
spaces. These rules are as described in [9, Section
2.17].

For z ∈ C, |ψ1〉 , |ψ2〉 ∈HA and |φ1〉 , |φ2〉 ∈HB .

1) z(|ψ1〉 |φ1〉) = (z |ψ1〉) |φ1〉 = |ψ1〉 (z |φ1〉),
2) (|ψ1〉+ |ψ2〉) |φ1〉 = |ψ1〉 |φ1〉+ |ψ2〉 |φ1〉 ,
3) |ψ1〉 (|φ1〉+ |φ2〉) = |ψ1〉 |φ1〉+ |ψ1〉 |φ2〉 .

Let {Ai}, {Bi} be collections of operators over
HA⊗HB . Then, given a collection of complex num-
bers {ci}, the action of the operator

C =
∑
i

ciAi ⊗Bi

on vectors |ψ〉 |φ〉, where |ψ〉 ∈ H1, |φ〉 ∈ H2, is
defined as(∑

i

ciAi ⊗Bi

)
|ψ〉 |φ〉 =

∑
i

ci(Ai |ψ〉)⊗ (Bi |φ〉),

and extended by linearity to HA ⊗ HB . Finally,
given two vectors |σ〉 =

∑
i zi |ψi〉 |φi〉, |σ′〉 =∑

j z
′
j

∣∣ψ′j〉 ∣∣φ′j〉 belonging to HA ⊗HB , their inner
product is defined by

〈σ|σ′〉 =
∑
i,j

ziz
′
j

〈
ψi

∣∣ψ′j〉 〈φi∣∣φ′j〉 .

2.5.2. Partial trace. The operator algebra from
the previous section gives a natural way to think
about density operators in tensor product spaces.
An important notion is that of a partial trace.
Given an operator ρAB in a composite system AB,
it is natural to ask what ρAB means as a descrip-
tion of state A. This is obtained by the partial trace
operator

ρA = trB(ρ
AB),

where trB is defined as

trB(|ψ1〉 〈ψ2| ⊗ |φ1〉 〈φ2|) = |ψ1〉 〈ψ2| 〈φ1|φ2〉 (4)

if ρAB can be expressed as the tensor product of two
pure states. If that is not the case, trB is completely
defined as the linear operator that respects (4).

For interpretations of the partial trace, we refer
to Section 2.4.3 of [9].

3. Quantum QIF: the basic structure

In this section we introduce the basic frame-
work of Quantum Quantitative Information Flow.
This construction is similar to Quantum Statistical
Models in [7], but in this work we are interested
on limiting the set of feasible POVMs, as a way to
modelling possible attackers.

The setting is as follows. Consider a (nonempty,
finite) set of secret values X = {x1, . . . , xn}. Some
system takes a secret value x ∈ X as input and per-
forms a computation, producing a quantum state
ρx. A system is, thus, just a collection of states
ρX = {ρx}x∈X indexed by X (with possible repeti-
tions), that are density operators on some Hilbert
space H .

An adversary then makes a measurement on
ρx, selecting a POVM E = {Ey}y∈Y from a set
of “allowed” POVMs P. In doing so, he is able to
obtain information about the secret value. Notice
that each POVM is indexed by a (finite, nonempty)
set Y = {y1, . . . , ym}, which is akin to the output set
in classical QIF. This connection will be justified
later.

Remark 1. Albeit not used in this paper, another
way to succinctly represent the pair pX , ρX in our
framework is as a density operator that is classical
w.r.t. a Hilbert space with basis {|x〉}x∈X (see e.g.
[11, Section 2.1.3] and [7])

ρ =
∑
x

pX(x) |x〉 〈x| ⊗ ρx.

3.1. Quantifying Information on Quan-
tum QIF

The quantification of information in QQIF is
similar to the classical case, with the caveat
that the adversary has a choice between different
POVMs.

Our framework is based on g-vulnerabilities [5],
in which a gain function g is used to model the
interests and capabilities of the adversary.



The adversary has some prior knowledge about
the secret, modelled by a probability distribution
pX . He also has at his disposal a set of possible
actions W. Whenever the adversary takes action
w ∈ W and the secret value is x ∈ X , he obtains
a gain equal to g(w, x). The prior g-vulnerability is
then simply the expected gain of an optimal action.

Vg(pX) = max
w∈W

∑
x∈X

pX(x)g(w, x).

After the execution of the system, the attacker
chooses a POVM {Ey}y∈Y to perform a measure-
ment on the resulting quantum state, and then
chooses the action w ∈ W that maximises his gain.

The posterior g-vulnerability in the quantum
setting can then be expressed by

Vg,P(pX , ρ
X ) = max

E∈P

∑
y∈Y

max
w∈W

∑
x∈X

p(x)g(w, x)tr(ρxEy).

(5)

3.2. Recovering classical QIF

The first important point to be made regarding
QQIF is that it properly generalises the classical
QIF scenario.

In classical QIF, systems are modelled by infor-
mation theoretical channels K, with inputs in X
and outputs in Y. The probability of the system
outputting y when the secret value is x is K(y|x).
The classical posterior vulnerability is given by

V c
g (pX ,K) =

∑
y∈Y

max
w

∑
x∈X

p(x)g(w, x)K(y|x).

The system K above can be easily translated to
the quantum setting by
• Letting {|y〉}y∈Y be an orthonormal basis of

a |Y|-dimensional Hilbert space H ,
• Defining the quantum states as ρxK =∑

yK(y|x) |y〉 〈y|,
• Defining the set of allowed POVMs to be the

singleton P = {E}, such that Ey = |y〉 〈y|.
Then, (5) reduces to

Vg,P(pX , ρ
X
K)

=max
E∈P

∑
y∈Y

max
w∈W

∑
x∈X

p(x)g(w, x)tr(ρxKEy)

=
∑
y∈Y

max
w∈W

∑
x∈X

p(x)g(w, x)tr(ρxK |y〉 〈y|)

=
∑
y∈Y

max
w∈W

∑
x∈X

p(x)g(w, x)
∑
y′

K(y′|x) 〈y|y′〉 〈y′|y〉

=
∑
y∈Y

max
w∈W

∑
x∈X

p(x)g(w, x)K(y|x)

=V c
g (pX ,K).

Another way to see this connection it to inter-
pret ρxK as a description of the probability dis-
tribution on the corresponding row of K. Thus,
for the classical case, the system in QQIF is a
mapping from secrets to probability distributions
on outputs.

3.3. Quantum Framework as a Collection
of Classical Channels

In the last section it was shown how the quan-
tum setting generalises classical QIF. In making
this connection, it was seen that the chosen states
and POVM characterised the channel K.

This is in fact a general property: given a col-
lection ρX and a POVM E, there will be a channel
associated with ρX ,E.

To see this, recall from 2.4 that tr(ρxEy) is the
probability of outcome y when measuring state ρx.
Thus, letting KE(y|x) = tr(ρxEy), we have∑

y∈Y

max
w∈W

∑
x∈X

p(x)g(w, x)tr(Eyρ
x)

=
∑
y∈Y

max
w∈W

∑
x∈X

p(x)g(w, x)KE(y|x)

= V c
g (pX ,KE).

One possible interpretation of QQIF is thus
that the quantum states together with P generate
a space of possible channels from which the adver-
sary is able to choose from by selecting a POVM.

The quantum version of posterior g-
vulnerability is thus the maximum value
obtainable from the set of channels induced
by ρX and P.

Vg,P(pX , ρ
X ) = max

E∈P
V c
g (pX ,KE). (6)

As an example, let X = {x1, x2}, Y = {y1, y2}
and consider the system given by ρx1 = |0〉 〈0| and
ρx2 = |+〉 〈+|, where |+〉 = 1√

2
(|0〉+ |1〉). Finally, let

P = {E,E′}, with
• Ey1 = |0〉 〈0|, Ey2 = |1〉 〈1|,
• E′y1

= |+〉 〈+|, E′y2
= |−〉 〈−|, where |−〉 =

1√
2
(|0〉 − |1〉).

The choice of E, E′ induce the following chan-
nels.

KE y1 y2
x1 1 0
x2 1/2 1/2

KE′ y1 y2
x1 1/2 1/2
x2 1 0

In general, the optimal choice of POVM will
be dependent both on pX and on g. For example,
let gid(x, x′) = δx,x′ , where δx,x′ is the Kronecker
delta, and let p1 = (0.6, 0.4), p2 = (0.4, 0.6). Then,
V c
gid

(p1,KE) > V c
gid

(p1,KE′), whereas V c
gid

(p2,KE) <
V c
gid

(p2,KE′). An optimal adversary will thus
choose E for p1 and E′ for p2.

Fix now p = (1/2, 1/2) and let g1, g2 be given by

g1(x, x
′) =


2, if x = x′ = x1,

1, if x = x′ = x2,

0, otherwise.

g2(x, x
′) =


2, if x = x′ = x2,

1, if x = x′ = x1,

0, otherwise.

In this case, it is easy to check that V c
g1(p,KE) >

V c
g1(p,KE′) and V c

g2(p,KE) < V c
g2(p,KE′).



3.4. Using the QQIF Framework to Model
Classical Scenarios

3.4.1. Example: POVMs as different attacks.
One interesting application of the framework is
modelling situations in which multiple attacks are
possible.

Let X be the set of three-bit strings, perhaps
signifying the value of a cryptographic key. Define
the states of ρX by ρx = |x〉 〈x| — i.e., ρ000 =
|000〉 〈000|,ρ001 = |001〉 〈001| and so on, where the
hilbert space is the tensor product of three qubits.

Now, consider three possible attacks on the key:
observing the first bit, observing the XOR of the
first two bits of the string, and observing its ham-
ming weight. These can be modelled, respectively,
by the following POVMs.

• Observing the first bit:

– E1st

0 = |000〉 〈000| + |001〉 〈001| +
|010〉 〈010|+ |011〉 〈011|,

– E1st

1 = |100〉 〈100| + |101〉 〈101| +
|110〉 〈110|+ |111〉 〈111| .

• Observing the XOR of the first two bits:

– E⊕0 = |000〉 〈000| + |001〉 〈001| +
|110〉 〈110|+ |111〉 〈111| ,

– E⊕1 = |010〉 〈010| + |011〉 〈011| +
|100〉 〈100|+ |101〉 〈101| .

• Observing the hamming weight:

– EH
0 = |000〉 〈000| ,

– EH
1 = |001〉 〈001| + |010〉 〈010| +
|100〉 〈100| ,

– EH
2 = |011〉 〈011| + |110〉 〈110| +
|101〉 〈101|,

– EH
3 = |111〉 〈111| .

These different POVMs give rise, respectively,
to the following channels.

KE1st 0 1
000 1 0
001 1 0
010 1 0
011 1 0
100 0 1
101 0 1
110 0 1
111 0 1

KE⊕ 0 1
000 1 0
001 1 0
010 0 1
011 0 1
100 0 1
101 0 1
110 1 0
111 1 0

KEH 0 1 2 3
000 1 0 0 0
001 0 1 0 0
010 0 1 0 0
011 0 0 1 0
100 0 1 0 0
101 0 0 1 0
110 0 0 1 0
111 0 0 0 1

If the adversary can choose between any of
these three attacks, then the vulnerability of
the system is given by Vg,P(pX , ρ

X ), where P =

{E1st, E⊕, EH}. Notice that, because each of the
channels above cannot be obtained from postpro-
ceessing another, then for each POVM there is a
gain-function g and a pX such that said POVM is
strictly better than the others.

3.4.2. Using Quantum Notation to Represent
Programs. Consider the program P in Figure 1,
that takes as a secret input a value h ∈ {0, 1, 2, 3},
and alters a three digit binary string s.

1. s=000
2. if h<2 and coin(0.5) then
3. s=s|001
4. if h%2==0 then
5. s=s|010
6. if s>000 and coin(0.5) then
7. s=s|100

Figure 1. A probabilistic program that alters the value of s. The
Boolean function coin(p) returns True with probability equal
to p, and False otherwise.

The framework developed from Section 3 is use-
ful to model the leakage of and adversary that can
make a measurement on the variable s at some
point of the execution. This can be done by asso-
ciating, for each h and each line of the execution,
a state ρh

i composed of three qubits, modelling the
value of s after the execution of line i.

For example, consider the case h = 0. At line 1
we have ρ01 = |000〉 〈000|. At line three, there is a
fifty percent chance the bit is flipped, and we ob-
tain ρ03 = 1

2 |000〉 〈000|+
1
2 |001〉 〈001|. By proceeding

in similar fashion, one obtains ρ05 = 1
2 (|010〉 〈010|+

|011〉 〈011|) and ρ07 = 1
4 (|010〉 〈010| + |110〉 〈110| +

|011〉 〈011|+ |111〉 〈111|).
If, at any point of the execution, an adversary

measures the value of s, obtain the respective
channel can be obtained simply by applying the
appropriate POVM on the quantum states. For
example, suppose an attacker measures the ham-
ming weight of s after the execution of line 7, by
using the POVM EH described in Section 3.4.1.
The states at line 7 and the resulting channel are
depicted in Figure 2.

4. Blackwell Theorem for QQIF

One important notion in QIF is that of postpro-
cessing a program — i.e., executing a probabilis-
tic remapping on the outputs of a system. In the
language of information theoretical noisy channels,
this is captured by the degradedness relation [12],
which is a preorder over channels.1

Definition 9. Given channels K1 : X → Y, K2 :
X → Z, we say that K2 is degraded from K1, and
write K1 ≥d K2 if there is a channel W : Y → Z
such that

∀x ∈ X ,∀z ∈ Z, K2(z|x) =
∑
y

W (z|y)K1(y|x).

1. In the QIF literature, this relation is usually called the
refinement relation .



ρ07 =
1/4 |010〉 〈010|+ 1/4 |110〉 〈110|
+ 1/4 |011〉 〈011|+ 1/4 |111〉 〈111|

ρ17 =
1/4 |000〉 〈000|+ 1/4 |100〉 〈100|
+ 1/4 |001〉 〈001|+ 1/4 |101〉 〈101|

ρ27 = 1/2 |010〉 〈010|+ 1/2 |110〉 〈110|

ρ37 = |000〉 〈000|

P 7
EH 0 1 2 3

0 0 1/4 1/2 1/4

1 1/4 1/2 1/4 0

2 0 1/2 1/2 0

3 1 0 0 0

Figure 2. (top) Quantum states representing s after execution
of line 7 of program P .s (bottom) The channel P 7

EH obtained by
the POVM EH after the execution of the 7th line of program
P .

It is usual to write K2 = K1W to signify that
K2 is obtained by postprocessing K1 by W . This
notation is justified as the channel matrix of K2 is
equal to the product of the channel matrices of K1

and W .
An important result both for QIF and for

the study of comparison of experiments is the
Blackwell-Sherman-Stein Theorem [3], [4], [13].
This theorem is also known as the Coriaceous The-
orem in the QIF literature.

In our setting, the Blackwell Theorem may be
stated as follows.

Theorem 2. K1 ≥d K2 if, and only if, for all pX
and all g,

V c
g (pX ,K1) ≥ V c

g (pX ,K2).

In [7], Buscemi provided a result generalis-
ing the Blackwell theorem for quantum statistical
models, which are very similar to the QQIF frame-
work from Section 3. In this Section, we present
the results by Buscemi, and translate them to the
notation we have developed so far.

We first introduce some necessary definitions,
adapted from [7], and show how they translate to
our framework.

4.1. Quantum Statistical Models

Definition 10. A quantum statistical model
(QSM) is a triple R = (X ,H , ρX ), where H is a
Hilbert space and X , ρX are as defined in Section
3.

Definition 11. Given a QSM R, an action set W
and a gain function g, we define the maximum
expected payoff as

$g(R) = max
E

1

|X |
∑
x∈X

∑
w∈W

g(w, x)tr(ρxEw),

where the maximum is taken over all possible
POVMs indexed by elements in W.

The similarity between the framework devel-
oped by Buscemi and the one we introduced in
Section 3 is quite clear. The next proposition shows
how much these frameworks are related.

Proposition 2. Define a QSM R = (X ,H , ρX ), an
action set W and a gain function g. Let pu be the
uniform distribution over X , and P be all POVMs
in H . We have

$g(R) = Vg,P(pu, ρ
X ).

Proof: First, we prove that $g(R) ≥
Vg,P(pu, ρ

X ). We have

Vg,P(pu, ρ
X ) = max

E∈P

∑
y∈Y

max
w∈W

∑
x∈X

p(x)g(w, x)tr(ρxEy)

=
1

|X |
max
E∈P

∑
y∈Y

max
w∈W

∑
x∈X

g(w, x)tr(ρxEy).

Now, let wy be an action that maximizes∑
x∈X p(x)g(w, x)tr(ρ

xEy) for each y, and define
Yw = {y ∈ Y | wy = w}. We have

Vg,P(pu, ρ
X )

=
1

|X |
max
E∈P

∑
y∈Y

max
w∈W

∑
x∈X

g(w, x)tr(ρxEy)

=
1

|X |
max
E∈P

∑
w′∈W

∑
y∈Yw′

max
w∈W

∑
x∈X

g(w, x)tr(ρxEy)

=
1

|X |
max
E∈P

∑
w∈W

∑
y∈Yw

∑
x∈X

g(w, x)tr(ρxEy)

=
1

|X |
max
E∈P

∑
x∈X

∑
w∈W

∑
y∈Yw

g(w, x)tr(ρxEy)

=
1

|X |
max
E∈P

∑
x∈X

∑
w∈W

g(w, x)tr

ρx ∑
y∈Yw

Ey

 .

Now, let E′ maximize the double sum above,
and define E′′w =

∑
y∈Yw

E′y for each w ∈ W (if
Yw = ∅, then E′′w = 0). Then, E′′ = {E′′w}w∈W is
a POVM, and

Vg,P(pu, ρ
X ) =

1

|X |
∑
x∈X

∑
w∈W

g(w, x)tr

ρx ∑
y∈Yw

E′y


=

1

|X |
∑
x∈X

∑
w∈W

g(w, x)tr (ρxE′′w)

≤ 1

|X |
max
E

∑
x∈X

∑
w∈W

g(w, x)tr (ρxEw)

= $g(R).

To see that $g(R) ≤ Vg,P(pu, ρ
X ), just take Y =

W. Then∑
y∈Y

∑
x∈X

g(y, x)tr (ρxEy) ≤∑
y∈Y

max
w∈W

∑
x∈X

g(w, x)tr (ρxEy) .



And therefore,

$g(R) =
1

|X |
max
E

∑
y∈Y

∑
x∈X

g(y, x)tr (ρxEy)

≤ 1

|X |
max
E∈P

∑
y∈Y

max
w∈W

∑
x∈X

g(w, x)tr (ρxEy)

= Vg,P(pu, ρ
X ).

4.2. Statistical Models and the Quantum
Blackwell Theorem

Introduced by Buscemi [7], statistical mor-
phisms play, in the quantum version of the Black-
well Theorem, the role played by postprocessing
in the classical version. Before defining Statistical
morphisms and enuciating the quantum version
of Blackwell Theorem given by [7], we introduce
some necessary definitions. Let G(H ) be the set of
density operators in H , and L(H ) the set of linear
operators in H .

Definition 12. A family {Fw}w∈W of operators over
H is called a W-test on a subset G ⊂ G(H ) iff there
is a POVM E = {Ew}w∈W indexed by W such that
for all w ∈ W, ρ ∈ G, we have tr(ρFw) = tr(ρEw).

Definition 13 ( [7]). Let G ⊂ G(H ), G′ ⊂ G(H ′). A
linear map L : L(H )→ L(H ′) induces a statistical
morphism L : G → G′ if

1) for all ρ ∈ G, L(ρ) ∈ G′,
2) The dual transformation L∗ : L(H ′) →

L(H ) defined by trace duality (that is,
∀A ∈ L(H ′), B ∈ L(H ), tr(L∗(A)B) =
tr(AL(B))) maps W-tests on G′ to W-tests
in G.

In particular, every linear CPTP map (as de-
fined in Section 2.3) is a statistical morphism [7,
Remark 8].

Given a collection of states ρX , define the set
G(ρX ) = {ρx | x ∈ X}. We are now in position
to state the Quantum version of the Blackwell
Theorem.

Theorem 3 ( [7, Theorem 3]). Let R = (X ,H , ρX ),
S = (X ,H ′, σX ) be QSMs. Then,

$g(R) ≥ $g(S)

for all gain functions g if, and only if, there is a
statistical morphism L : G(ρX ) → G(σX ) such that
∀x ∈ X , L(ρx) = σx.

4.2.1. The Blackwell Theorem for QQIF, and
its Limitations. In QQIF terms, statistical mor-
phisms are transformations L with the following
property. Suppose two family of states ρX , σX such
that ∀x ∈ X , σx = L(ρx). Then, property 2 in Defi-
nition 13 guarantees that any channel obtainable
by a POVM in the system given by σX is also
obtainable by a suitable choice of POVM in the
system ρX . In particular, bearing in mind (6), this

implies that if the adversary is able to choose any
POVM, the vulnerability of σX is always going to
be lower than that of ρX .

We are now in position to state the the following
corollary, which is a rewording of Theorem 3 using
the quantum g-leakage framework, developed in
Section 3.

Corollary 1. Let P be the set of all possible
POVMs. Then, there is a statistical morphism L :
G(ρX ) → G(σX ) such that ∀x ∈ X , L(ρx) = σx if,
and only if, for all gain functions g and all pX ,

Vg,P(pX , ρ
X ) ≥ Vg,P(pX , σX ).

Proof. The result for uniform distributions follows
from Theorem 3 and Proposition 2. To see that it
holds for an arbitrary distribution pX , first elim-
inate states ρx, σx s.t. pX(x) = 0, which does not
alter the value of posterior g-vulnerability. Then,
the result follows by noticing that for each g, we
can define g′(w, x) = 1

pX(x)|X |g(w, x), for which
∀ρ, Vg,P(pX , ρ) = Vg′,P(pu, ρ

X ).

One of the interesting parts of the model de-
veloped in Section 3 is that, by limiting the set
P, one can model different channels, expliciting
different attacks and interests from adversaries.
As presented here, many scenarios of interest can
be modelled by taking a finite P. Such a restric-
tion means, however, that the result in Corollary
1 is not immediately applicable to the QQIF, as
the completeness of P — that is, the fact that P
contains all possible POVMs — is essential to the
result. Without it, it is possible for a statistical
morphism to increase information leakage.

To see why, consider the system with states
ρx1 = |+〉 〈+|, ρx2 = |−〉 〈−|, and let P contain only
one POVM, given by Ey1

= |0〉 〈0|, Ey2
= |1〉 〈1|.

Thus, for any g, (6) yields

Vg,P(pX , ρ
X ) = V c

g (px, 0) = Vg(pX),

where 0(y|x) = 1/2 for all x, y (that is, 0 is a null
channel). Therefore, this system leaks no informa-
tion.

Now, consider the following CPTP

L(ρ) = HρH, where H =
1√
2

[
1 1
1 −1

]
i.e., the Hadamard gate [9]. By applying this trans-
formation to the system above, we obtain a new
system σX in which

• σx1 = L(|+〉 〈+|) = |0〉 〈0|,
• σx2 = L(|−〉 〈−|) = |1〉 〈1|.

Suppose that the set P of allowed POVMs remain
unchanged. Then, we have

Vg,P(pX , σ
X ) = V c

g (px, I),

where I(yi|xj) = δi,j , and the system has maximum
leakage. In particular, if g = gid, we have

Vgid,P(pX , ρ
X ) = 1/2 and Vgid,P(pX , σ

X ) = 1



even though σX is obtained from ρX by a statistical
morphism.

This phenomenon of a statistical morphism “in-
creasing information leakage” is due to the limita-
tions of the observer, not an actual increase in the
amount of information in any fundamental sense.
In fact, ρX and σX are equivalent, up to a change
of basis. However, because we limit P to only one
POVM, the adversary is only able to obtain any
information on the latter system.

4.2.2. The Blackwell Theorem for QQIF is a
generalisation of the Coriaceous Theorem.
To see how the Coriaceous Theorem is a particular
case of Corollary 1, consider now a construction of
the quantum system from a classical channel simi-
lar to the one given in Section 3.2. Given a channel
K : X → Y, we let {|y〉}y∈Y be an orthonormal
basis for H , and ρxK =

∑
yK(y|x) |y〉 〈y|. This time,

however, instead of restricting only to the POVM
Ey = |y〉 〈y|, we let P be the set of all possible
POVMs. We claim that, for all pX and g

Vg,P(pX , ρ
X
K) = V c

g (pX ,K).

In fact, let {E′z}z∈Z be any POVM, indexed
by some finite set Z. Then, by the discussion in
Section 3.3, the channel induced by ρxK and E′ is
given by

KE′(z|x) = tr(ρxKE
′
z)

=
∑
y

〈y|

∑
y′

K(y′|x) |y′〉 〈y′|

E′z |y〉

=
∑
y

∑
y′

K(y′|x) 〈y|y′〉 〈y′|E′z |y〉

=
∑
y

K(y|x) 〈y|E′z |y〉

=
∑
y

K(y|x)tr(|y〉 〈y|E′z)

=
∑
y

K(y|x)RE′(z|y)

where RE′ is a channel, given by RE′(z|y) =
tr(|y〉 〈y|E′z) (i.e., the channel that gives the prob-
ability of output z given that the state is |y〉 〈y|).
Thus, K ≥d KE′ for any POVM E′ ∈ P, and (6)
yields

Vg(pX , ρ
X
K) = max

E∈P
V c
g (pX ,KE) = V c

g (pX ,K). (7)

As hinted by (7), whenever the states are con-
structed as above, the QQIF system behaves as in
classical QIF. This result is congruent to Remark
3 and Postulate 1 in [7], which states that abelian
QSMs are equivalent to classical models — which
thus shows that Theorem 3 is a generalisation of
the classical Blackwell Theorem.

For clarity, in Proposition 3 below, illustrating
how the classical Blackwell Theorem can be ob-
tained from its quantum version.

Proposition 3. Let K : X → Y, W : X → Z be
classical channels, {|y〉}y∈Y , {|z〉}z∈Z be orthonor-
mal basis of two hilbert spaces and let ρXK , σXW be
defined, for all x ∈ X , as

ρxK =
∑
y

K(y|x) |y〉 〈y| ,

σx
W =

∑
z

W (z|x) |z〉 〈z| .

Then, the following statements are equivalent

1) K ≥d W ,
2) There is a statistical morphism L such that

∀x ∈ X , L(ρxK) = σx
W ,

3) For all pX and g, Vg(pX , ρXK) ≥ Vg(pX , σXW ) ,
4) For all pX and g, V c

g (pX ,K) ≥ V c
g (pX ,W ).

Proof: (1⇒2) Suppose KR = W for some
channel R : Y → Z. Let Ayz =

√
R(z|y) |z〉 〈y|, and

define L as
L(ρ) =

∑
y,z

AyzρA
†
yz.

Notice that A†yz =
√
R(z|y) |y〉 〈z|. Thus, for all

x ∈ X

L(ρxK) =
∑
y,z

Ayzρ
x
KA
†
yz

=
∑
y,z

Ayz

∑
y′

K(y′|x) |y′〉 〈y′|

A†yz

=
∑
z

|z〉 〈z|
∑
y

R(z|y)K(y|x)

=
∑
z

W (z|x) |z〉 〈z| = σx
W

where the third equality follows from 〈y|y′〉 = δy,y′ .
Moreover,∑

y,z

A†y,zAy,z =
∑
y,z

R(z|y) |y〉 〈z|z〉 〈y|

=
∑
y

|y〉 〈y|
∑
z

R(z|y)

=
∑
y

|y〉 〈y| = I

where the penultimate equality follows from R
being a channel. Thus, L is a CPTP, and therefore
a statistical morphism.

(2⇒3) Follows from Theorem 3.
(3⇒4) From (7), the inequality

Vg,P(pX , ρ
X
K) ≥ Vg,P(pX , σXW )

is equivalent to the inequality

V c
g (pX ,K) ≥ V c

g (pX ,W ).

(4⇒1) Follows from Theorem 2.



5. Related Literature
In most of its early works, QIF made use of

information-theoretic measures, such as Shannon
entropy [14], [15], min-entropy [16], [17] and guess-
ing entropy [18]. Introduced in [5], the g-leakage
framework proved itself to be a versatile manner
to compute leakage of information in a myriad of
scenarios. The posterior development of the frame-
work made it clear the connection between QIF
and the theory of statistical decisions, as shown
by the independent proof in [6] of the Blackwell-
Sherman-Stein Theorem.

Beyond Buscemi’s work [7] the problem of find-
ing an optimal measurement that minimises a
quantum statistical decision theory problem was
already discussed in [19], [20]. More recently,
Konig et al [21] proved that conditional quantum
min-entropy [11] over a classical-quantum state
(as in Remark 1) is equal to the negative logarithm
of the probability of guessing with an optimal
POVM — that is, to − log Vgid,P where P is the set
of all POVMs.

5.1. Conclusions and further work

The main objective of this work was to give
a first generalisation of quantitative information
flow framework to the quantum setting. Having
established a connection with quantum statistical
decision theory allows leveraging of recent results
and tools from quantum information theory.

This connection is a first attempt into exploring
a possible generalisation of the g-leakage frame-
work, which has been widely adopted in QIF, to
quantum settings. The general framework here
presented aims to analyze and quantify confiden-
tiality in quantum systems.

Future work might explore such applications,
and study essential quantum phenomena like en-
tanglement of states, non locality, teleportation
within the developed framework.
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