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We propose a tractable epidemic model that includes containment measures. In the absence
of containment measures, the epidemics spread exponentially fast whenever the infectivity rate is
positive, λ > 0. The containment measures are modeled by considering a time-dependent modulation
of the bare infectivity λ leading to effective infectivity that decays in time for each infected individual,
mimicking for instance the combined effect of the asymptomatic onset of the disease, testing policies
and quarantine. We consider a wide range of temporal kernels for effective infectivity and we
investigate the effect of the considered containment measures. We find that not all kernels are able
to push the epidemic dynamics below the epidemic threshold, with some containment measures only
able to reduce the rate of the exponential growth of newly infected individuals. We also propose a
pandemic model caused by a growing number of separated foci.

I. INTRODUCTION

The World is much more connected than ever. This
greatly simplifies the spread of pandemics. On the other
hand, the quick introduction of various containment mea-
sures [1–3], the wide of testing and immunization policies
[4–7] and modern ways of analyzing data [8, 9] help to
fight the pandemics as never before. Here we introduce
and analyze a simple model of epidemic spreading mim-
icking containment measures that can help to shed light
on the dynamics at the onset of a pandemic.

The study of epidemics has a long and fascinating his-
tory [10, 11]. Epidemic modeling goes back to Daniel
Bernoulli who modeled the spread of smallpox [12].
The modeling literature grows rapidly as the new chal-
lenges ranging from HIV [13, 14] and COVID-19 [1–
9, 15–19] to computer viruses [20] and rumor spreading
[21–24] continue to emerge. Epidemic spreading pro-
cesses are described not only in mathematical biology
books [25–29], but also in statistical physics [30] and
network theory textbooks [31–34] and topical reviews
[35]. The Susceptible-Infected (SI), Susceptible-Infected-
Susceptible (SIS), and Susceptible-Infected-Recovered
(SIR) are especially popular epidemic models. These
models have been mostly studied in well-mixed popula-
tions where every individual can be in contact with any
other [25–29, 36], but also on networks [35] or in a meta-
population framework [37] formed by several well-mixed
populations interacting through a network [38]. In all
these models when the infectivity λ exceeds the thresh-
old value λc, the spread is exponentially fast in time at
the onset of the epidemic outbreak [31]. When λ < λc,
the epidemics quickly dies out. The range λ ≈ λc is
particularly interesting; the behaviors in this regime are
not fully understood even in the realm of the classical
models such as SIR [39–46], but at least it is well estab-
lished that such epidemics cannot affect a finite fraction
of population.

The containment measures successfully stop the spread
of the epidemic if they can raise the value of the epidemic

threshold to λc > λ. For epidemic spreading models
defined on networks, the epidemic threshold depends on
the network topology [31–35]. Here we take a well-mixed
population approach to model the evolution of a single
focus (hot spot) of the epidemics. This is reasonable
for airborne diseases spreading through contact networks
that are highly random and dense, particularly in urban
centers. The topology of these contact networks is likely
to be quite different from the topology of social networks
in which links indicate a social tie and the data about
these networks is not very rich, with the only exception
of studies investigating face-to-face interactions in setting
such as schools or hospitals [47, 48].

Here we study the role of containment measures in
mitigating and ultimately halting the epidemics. At the
level of a single foci, the containment measures are of two
types: measures that aim to reduce the average number
of contacts between individuals of the population, and
measures that aim to detect and isolate/cure rapidly the
new cases. While the first class of containment measure
strongly depends on the network of contacts, the second
class of containment measures only depend on how fast
new cases are detected and isolated. In this article, we
exclusively consider the latter containment measures. In
order to have a simple and analytically tractable model,
we neglect the network effects. To model epidemics in
presence of these containment measures we consider a
well-mixed epidemic model in infinite population. We do
not intend to model real data; rather, we want to math-
ematically clarify, in a completely solvable model, how
timely detection and isolation of the cases can mitigate
or even stop the spread by pushing the dynamics in the
subcritical regime.

As in the SIR, we have subpopulations of susceptible
individuals, infected individuals who spread the infection
and removed individuals who had the infection, and per-
haps still have, but cannot spread it any longer. The
epidemic dynamics is very simple as the only relevant
transition is from the susceptible to the infected state if
it is in contact with an infected individual. At each time
step infected individuals have a non-zero probability to
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become removed, when they are detected and isolated
by the tracking of the spread. Thus on average, the in-
fectivity of infected individuals decreases in time. This
suggests to model the effect of different containment mea-
sures by introducing a temporal kernel F (τ) that modu-
lates the infectivity of each infected individual. This ker-
nel results from containment policies aiming to isolate
and track cases. In particular, we assume that the ef-
fective infectivity λF (τ) of an infected individual decays
with the time τ that has elapsed after the individual got
infected. Depending on the functional form of the tem-
poral kernel F (τ) we investigate the critical properties
of the epidemic spreading process, characterize the epi-
demic threshold of the model with containment measures
and the asymptotic scaling of the number n(t) of infected
individuals with time t. We determine when the con-
tainment measures are effective in pushing the dynamics
in the subcritical regime, with λ < λc. Additionally,
we show that in the subcritical regime the total number
N(t) of infected individuals is constant asymptotically in
time indicating that the spread of the epidemics has been
halted. In the critical regime, it is possible to observe a
polynomial growth of N(t) of a given epidemic focus.
When the containment measures are too mild to achieve
the halting of the epidemics, i.e. λ > λc, we quantify the
impact of the adopted measures in reducing the rate of
the exponential growth.

We also briefly examine a multi-foci version. We model
the geographic spread of the epidemic by assuming that
it is caused by the combined effects of different epidemic
foci. In real scenarios, one might consider take into ac-
count commuting patterns between the epidemic foci, as
this is the ultimate cause for the establishment of new
foci. Our stylized model neglects the network effects de-
pending on details of the particular situation which are
also easily perturbed during the lockdown. We assume
instead that these commuting patterns have the global
effect of increasing the number of epidemic foci in time.
Our results show that the total number of cases across
different foci of the epidemics can grow either exponen-
tially when the system is in the supercritical regime or as
a power-law of time is the system is in the critical regime.

The paper is structured as follows. In Sec. II we show
that our single focus epidemic model with containment
dynamics captures the average behavior of an underly-
ing stochastic model. We also list the temporal kernels
F (τ) that we use to mimic the containment measures.
In Sec. III we provide the exact solution of the model
for an arbitrary kernel F (τ) using the generating func-
tion formalism. In Secs. IV–VII we discuss in detail the
solution of the model for the four considered temporal
kernels: the constant kernel, the power-law kernel, the
exponential kernel, and the generalized exponential ker-
nel; in Sec. VIII we discuss the multi-foci generalization
of the SI dynamics. In Sec. IX we characterize the total
number of infected individuals in the multi-foci model.
Conclusions are presented in Sec. X. Some details of cal-
culations are relegated to Appendices.

II. SINGLE FOCUS EPIDEMIC MODEL WITH
CONTAINMENT DYNAMICS

A. Underlying stochastic model

In a typical Susceptible-Infected-Removed (SIR) epi-
demic model, the infectivity λ of an infected individual
does not change with time as long as the infected individ-
ual is contagious. It is also assumed that each infected
individual is removed from the population with a prob-
ability that does not depend on time. Therefore in the
SIR model in the well-mixed infinite population limit, the
density of infected individuals increases exponentially in
the supercritical regime.

Here we consider an alternative approach and study a
model in which an infected individual has a reproductive
number that changes with time starting from the time τ
counted from the moment when an individual has become
infectious. The constant infectivity λ is thus replaced by
time-dependent infectivity,

λ→ λF (τ), (1)

where F (τ) is a decreasing function of τ . This decay of
the effective infectivity can be due to different causes in-
cluding asymptomatic onset, early testing policies, and
containment measures enforced once the infection be-
comes symptomatic.

To motivate this model, we mention a specific stochas-
tic model whose average behavior is captured by the dy-
namics of our model. Consider an individual infected
at time τ = 0. At time step τ > 0, this individ-
ual can be removed from the population (meaning iso-
lation/recovery/death) with probability p(τ). Therefore
the probability that at time τ the individual is still in-
fecting other individuals in the population is

P (τ) =

τ∏
τ ′=1

p(τ ′). (2)

Additionally, we assume that at time τ an infected and
not yet removed individual infects in average λm(τ) other
individuals. In this stochastic model in the infinite pop-
ulation limit, an individual infected at time τ = 0 infects
in average

λF (τ) = λP (τ)m(τ) (3)

other individuals at time τ > 0. It follows that F (τ) acts
as an over-all dressing of the infectivity that captures
timely detection, tracking and isolation.

B. Deterministic model

In this work, we focus on the deterministic version of
the model discussed in the previous paragraph. Starting
at time t = 0 from a single infected individual n(0) = 1,
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the average number n(t) of individuals infected at time
t ≥ 1 is given by

n(t) = λ

t−1∑
t′=0

F (t− t′)n(t′), (4)

where F (τ) is the temporal kernel that describes how
the effective infectivity of an infected individual decays
as a function of time τ elapsed since his infection. This
equation is called the renewal equation. In addition to
n(t), we analyze the behavior of the total number N(t)
of individuals infected up to time t:

N(t) =

t∑
t′=0

n(t′). (5)

We consider the following temporal kernels F (τ):

• Constant kernel.
In this case the effective infectivity of an infected
individual remains constant in time:

F (τ) = 1. (6)

In this case there are no containment measures
and the epidemic model reduces to the standard
SI model.

• Power-law kernel.
In this case the effective infectivity of an an infected
individual decays as a power-law of time:

F (τ) =
1

τα
, (7)

with α ≥ 0. For α = 0 we recover the constant
kernel.

• Exponential kernel.
In this case the effective infectivity of an an infected
individual decays exponentially in time:

F (τ) = exp [−γτ ] , (8)

with γ ≥ 0. For γ = 0 we recover the constant
kernel.

• Generalized exponential kernel.
In this case the effective infectivity of an an infected
individual decays in time as

F (τ) = exp
[
−γτ b

]
, (9)

with γ > 0. For b = 1 we recover the exponential
kernel. For b > 1 the decay of this temporal kernel
is faster than exponential, for b < 1 it is slower than
exponential.

III. GENERAL SOLUTION OF THE SINGLE
FOCUS MODEL

A. Exact solution

The best way of analyzing recurrences such as Eq. (4) is
via generating functions. Indeed, the generating function

N(x) =
∑
t≥0

n(t)xt (10)

converts the recurrence Eq. (4) into a linear equation for
the generating function,

N(x) = 1 + λF(x)N(x), (11)

with

F(x) =
∑
τ≥1

F (τ)xτ (12)

being the generating function of the temporal kernel.
Hence Eq. (10) admits the solution

N(x) =
1

1− λF(x)
. (13)

The generating function F(x) is well-defined for x < R,
where R is the radius of convergence. The convergence
radius has an obvious lower bound, R ≥ 1, in the rel-
evant situations when the temporal rate F (τ) is a non-
increasing function of τ .

The generating function N(x) typically has a pole at a
certain x = e−µ < R. The location of the pole is found
from

λF(e−µ) = 1. (14)

The pole must be simple since F(x) is a strictly in-
creasing function of x, in the non-pathological case when
F (τ) ≥ 0. Applying the theorem of residues to Eq. (13)
we deduce the exponential asymptotic,

n(t) ' Aµ eµt , (15)

for t � 1, with growth rate µ determined by Eq. (14)
and

Aµ = eµ
F(e−µ)

F′(e−µ)
, (16)

where F′ = dF
dx . If the condition x = e−µ < R is valid and

µ > 0, the number of newly infected individuals grows
exponentially with time t; for µ = 0, it remains constant
in time; if µ < 0, it decays exponentially with time. In
the interesting regimes with µ ≥ 0, the total number of
infected individuals N(t) grows as

N(t) '

{
Aµ(eµ − 1)−1eµt µ > 0,

A0 t µ = 0.
(17)
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When µ < 0, the total number of infections saturates.
Thus if the growth rate of new infections is positive,

µ > 0, the total number of infected individuals grows ex-
ponentially in time at the same rate as the number of new
infections. In the critical case, µ = 0, the total number
of infected individuals N(t) increases linearly with time.
The amplitude in this situation has a neat form:

A0 =
F(1)

F′(1)
=

∑
τ≥1 F (τ)∑
τ≥1 τF (τ)

. (18)

If the condition x = e−µ < R is no longer valid, the
scaling of the number n(t) of newly infected individuals
and the scaling of the total number N(t) of infected in-
dividuals can deviate significantly from the exponential
behavior indicated in Eq. (15) and Eq.(17) respectively.
Explicit cases where these deviations are observed will be
discussed in detail in the next sections.

In this article we employ the discrete-time formulation.
We remark that the renewal equation can be defined in
the continuous time framework, and it is also amenable
to an exact analytic solution by making use of Lagrange
transforms instead of generating functions.

B. Epidemic threshold and dynamical regimes

From the exact solution of N(x) given by Eq. (13) we
deduce that the SI epidemic model defined by Eq. (4) has
the epidemic threshold given by

λc = lim
x→1−

1

F(x)
. (19)

Equation (13) further implies that our epidemic model
exhibits different behaviors depending on whether λ is
larger, equal, or smaller than λc.

In the supercritical regime, λ > λc, the generating
function N(x) given by Eq. (14) has a simple pole at
x = e−µ with µ > 0. Hence the number of newly in-
fected individuals exhibits a purely exponential asymp-
totic growth. In some special cases, it is possible to get
exact results n(t). For instance, for the constant ker-
nel and exponential kernels, the exponential behavior is
exact, i.e. valid for all t ≥ 1.

The rate µ approaches to zero when λ → λ+c . The
behavior is particularly simple when F(x) is differentiable
at x = 1 so that the zeroth and first moments of the
temporal rate F (τ) are well-defined, i.e. F(1) and F′(1)
are finite. In this situation, we expand Eq. (14) and find

µ ' D(λ− λc), (20)

with neat general expressions for the epidemic threshold
λc and amplitude D:

λc =
1

F(1)
, D =

1

λ2cF
′(1)

. (21)

For temporal kernels with the radius of convergence
R = 1 and F′(1) = ∞, the behavior of µ in the λ → λ+c

limit can be more surprising. In the majority of cases,
we have observed an algebraic behavior,

µ ' D(λ− λc)β , (22)

characterized by the dynamical exponent β ≥ 1. Alter-
natively, the linear scaling law (20) can acquire a loga-
rithmic correction.

The critical regime, λ = λc, separates the supercritical
regime from the subcritical regime. If R > 1, then n(t)
saturates according to Eq. (15). If R = 1, the asymp-
totic behavior of n(t) can be extracted from an asymp-
totic expansion of N(x) for 0 < 1− x� 1; the emerging
asymptotic behavior of n(t) could be rich and varied de-
pending on the kernel F (τ) as we shall demonstrate in
the following sections.

In the subcritical regime, λ < λc, the number of new
infections decreases with time. Indeed, the generating
function N(x) remains finite at x = 1,

N(1) =
1

1− λ/λc
<∞. (23)

By definition

N(1) =
∑
t≥0

n(t), (24)

so the number of new infections n(t) converges to zero:

lim
t→∞

n(t) = 0. (25)

If R = ∞, the number of new infections n(t) exhibits
an asymptotic exponential decay according to Eq. (15).
When the convergence radius is finite and obeys R > 1,
more complicated behaviors can occur as we shall demon-
strate.

The definition of our epidemic spreading model implies
that the number of newly infected individuals n(t) cannot
decay faster than F (t). Indeed Eq. (4) yields

n(t) =

t−1∑
t′=1

F (t− t′)n(t′)

= n(1)F (t− 1) + n(2)F (t− 2) + . . . , (26)

and truncating the sum at the first term, we have

n(t) ≥ F (t− 1) ' F (t) (27)

for t� 1.
In the following sections, we demonstrate how the gen-

eral exact approach described above applies to the four
kernels we analyze in detail. We will show that if there
are no containment measures, F (τ) = 1, the exponential
growth emerges for any λ > 0. Thus for the constant ker-
nel, the model reduces to the SI model and it is always in
the supercritical regime. We will also show that contain-
ment measures modeled by sufficiently quickly decaying
kernels F (τ) can be efficient in containing the epidemic
spread by pushing the dynamics in the subcritical regime.
Less stringent containment measures are not always able
to drive the model in the subcritical regime, and they
merely decrease the rate µ of the exponential growth.
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IV. CONSTANT KERNEL

For the constant kernel, F (τ) = 1, Eq. (4) becomes

n(t) = λ

t−1∑
t′=0

n(t′). (28)

The initial condition is n(0) = 1. Equation (28) can be
also written as

n(t) = (1 + λ)n(t− 1), (29)

which is solved to yield

n(t) = λ(1 + λ)t−1 =
λ

1 + λ
eµt (30)

with

µ = ln(1 + λ). (31)

For any infectivity λ > 0, the rate µ is always positive.
The number of new infections n(t) exhibits a pure expo-
nential growth. The total number of infected individuals
N(t) also grows exponentially with time:

N(t) =

t∑
t′=0

n(t′) = (1 + λ)t = eµt. (32)

Therefore for any λ > 0 the system is in the supercritical
regime.

The above qualitative predictions can be also deduced
from our general formalism. Indeed, for the constant ker-
nel F (τ) = 1, we have F(x) = x

1−x and Eq. (19) implies
that the epidemic threshold is vanishes: λc = 0. We also
notice that for 0 < λ � 1, the exponential rate µ given
by Eq. (31) is asymptotically

µ = λ+O(λ2). (33)

Thus the rate µ follows the power-law scaling (22) with
λc = 0, D = 1 and β = 1.

V. POWER-LAW KERNEL

The power-law kernel exemplifies kernels with a slow
decay in time. Below we show that for α ≤ 1, the epi-
demic threshold vanishes, λc = 0, and n(t) exhibits an ex-
ponential asymptotic growth for any value of λ > λc = 0.
Therefore the containment measures can be effective in
pushing the dynamics in the subcritical regime only if
α > 1. For any α > 1, the epidemic threshold is indeed
positive, λc > 0, so the containment measures bring the
epidemics to the subcritical regime when λ < λc.

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

c

FIG. 1: The epidemic threshold λc versus the exponent α
characterizing the power-law kernel (7). The epidemic thresh-
old vanishes, λc = 0, for 0 < α ≤ 1; when α > 1, the epidemic
threshold is an increasing function of α obeying λc ≤ 1.

A. Epidemic threshold

We tacitly assume that α > 0 since α = 0 reduces to
the constant kernel. When F (τ) = τ−α, the generating
function F(x) is a polylogarithmic function of order α:

F(x) = Liα(x) =
∑
n≥1

xn

nα
. (34)

According to the general solution of the model given in
Sec. III A the generating function N(x) becomes

N(x) =
1

1− λLiα(x)
, (35)

and the epidemic threshold of this model is given by

λc = lim
x→1−

1

Liα(x)
. (36)

Figure 1 shows the plot of the epidemic threshold λc
versus the power-law exponent α.

Since Liα(x) diverges at x = 1 when α ≤ 1, we con-
clude that λc = 0 when 0 ≤ α ≤ 1. The most gentle log-
arithmic divergence occurs in the marginal case of α = 1
when Li1(x) = − ln(1 − x). Thus for any λ > 0, the
epidemic is in the supercritical regime when 0 < α ≤ 1.
According to Eq. (15), the number n(t) of new infected
individuals grows exponentially with time at rate µ > 0
given by Eq. (14). The larger the decay exponent α,
the more stringent are the containment measures, so the
rate µ is a decreasing function of α. Hence for 0 < α < 1
the containment measures mitigate the spread of the epi-
demics but cannot stop its exponential growth.

For α > 1, the finite epidemic threshold is finite:

λc =
1

Liα(1)
=

1

ζ(α)
> 0, (37)
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where ζ(α) =
∑
n≥1 n

−α is the zeta function. Thus for
λ < λc, the containment measures push the dynamics in
the subcritical regime stopping the exponential growth.
Since ζ(α) > 1 for all α > 1, the epidemic threshold λc
is bounded from above, viz.

λc < 1. (38)

The zeta function has a simple pole at α = 1, and near
the pole it admits an expansion

ζ(α) =
1

α− 1
+ γE +O(α− 1) (39)

where γE = 0.5772156649 . . . is the Euler-Mascheroni
constant. Using this expansion one deduces the scaling
of the epidemic threshold when 0 < α− 1� 1:

λc = α− 1− γE(α− 1)2 +O[(α− 1)3]. (40)

We now discuss in detail the supercritical, critical and
subcritical regimes for the power-law kernel with decay
exponent α > 0.

B. Supercritical regime

The general solution of the model, Sec. III A, implies
that in the supercritical regime the number of individuals
infected at time t obeys the asymptotic scaling

n(t) ' Aµ eµt (41)

with µ > 0 satisfying Eq. (14) which becomes

1 = λLiα(e−µ) . (42)

The amplitude Aµ in (41) is given by (16) which gives

Aµ = eµ
Liα(e−µ)

Liα−1(e−µ)
. (43)

In Fig. 2(a) we provide numerical evidence of the ex-
ponential grow of n(t) in the supercritical regime λ > λc.
Both n(t) and N(t) exhibit the exponential growth with
the same growth rate and only amplitudes differ:

N(t) ' Ceµt, (44)

with C = Aµ/(e
µ − 1).

The growth rate µ > 0 depends on α and λ. For
α 6= 1, the rate µ is implicitly determined by Eq. (42).
This transcendental equation does not admit a general
explicit solution. One exception is the marginal case
of α = 1 when the polylogarithmic function becomes
Li1(x) = − ln(1 − x). Combining this with Eq. (42) we
extract an explicit expression

µ = − ln(1− e−1/λ) (45)

in the marginal case of α = 1.
We now present various asymptotic expansion of µ for

different values of α. In particular, we analyze the scaling
of µ for λ→∞ and for λ→ λ+c at α ≥ 0.

α 0 < α < 1 α = 1 1 < α < 2 α = 2 α > 2

µ Dλ
1

1−α e−
1
λ D(λ− λc)

1
α−1 −D (λ−λc)

ln(λ−λc) D(λ− λc)

TABLE I: The growth rate µ characterizing the exponential
asymptotic behavior of the number of infected individuals,
n(t) ∼ eµt, for the power-law kernel, F (τ) = 1/τα, in the
supercritical regime λ > λc.

1. Scaling of µ for λ→∞

For the constant temporal kernel, the growth rate reads
µ = ln(1 +λ), see Eq. (31), so it diverges logarithmically
as λ → ∞. The presence of non-trivial power-law con-
tainment measures (α > 0), the rate µ also diverges log-
arithmically as we now demonstrate. Indeed, combining
the definition (34) of the polylogarithmic function,

Liα(e−µ) = e−µ + 2−αe−2µ + . . . ,

with Eq.(42) we find

µ = ln(1 + λ)− 1− 2−α

λ
+O(λ−2). (46)

This analytical prediction is supported by numerical re-
sults, see Fig. 3 where we plot ln(1 + λ)− µ versus α. In
the limit λ → ∞ we observe the same leading term as
for α = 0 with an α-dependent sub-leading correction of
order of 1/λ. Thus the containment measures lead only
to sub-leading corrections to a diverging value of µ.

2. Scaling of µ when λ→ λ+
c

Here we examine the behavior of the growth rate µ in
the λ → λ+c limit. The linear scaling (20) occurs when
α > 2. A more general scaling law (22) with dynamical
exponent β > 1 occurs in the range 0 < α < 2. There
are two anomalies: when α = 1, the exponent β diverges,
while when α = 2, there is an additional logarithmic
correction to the linear scaling (20).These scalings are
summarized in Table V B. We now derive these results
and establish the dependence of the amplitude D and the
exponent β on α.

(a) Case 0 ≤ α < 1.
From the definition (34) of the polylogarithmic
function one extracts the expansion

Liα(x) = (1− x)α−1Γ(1− α) +O(1) (47)

when x → 1−. Substituting this expansion into
Eq. (42) we obtain

µ ' Dλ
1

1−α , D = [Γ(1− α)]1/(1−α). (48)

Thus λc = 0 and β = (1− α)−1.



7

100 102 104

t

10-10

10-5

100

n
(t

)

100 102 104

t

10-2

10-1

100

n
(t

)

0 25 50
t

100

102

104

106

n
(t

)

=1.5
=2.0
=2.5

(b) (c)(a)

FIG. 2: The number n(t) of newly infected individuals for the power-law kernel (7) is plotted versus time t for α = 1.5, 2.0, 2.5.
Panel (a) refers to the supercritical regime with λ = 1.5λc; panel (b) refers to the critical regime with λ = λc; panel (c) refers
to the subcritical regime with λ = 0.5λc.
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FIG. 3: The discrepancy ln(1 + λ) − µ between the growth
rate µ and its universal leading behavior is plotted versus λ for
the model with power-law kernel (7). The results for different
values of the exponent α = 0.7, 1.0, 1.4, 2.0, 2.5 are shown.

(b) Case α = 1.
The epidemic threshold also vanishes in this case,
λc = 0, and the explicit solution (45) leads to the
exponential scaling

µ = e−1/λ +O(e−2/λ). (49)

Thus the exponent β is effectively infinite.

(c) Case 1 < α < 2.
The epidemic threshold is λc = 1/ζ(α). The poly-
logarithmic function admits the asymptotic expan-
sion

Liα(x) = ζ(α) + (1− x)α−1Γ(1− α) + . . . (50)

when x → 1−. By inserting this expansion into
Eq. (42) we arrive at Eq. (22) with

β =
1

α− 1
, D =

[
− ζ2(α)

Γ(1− α)

]1/(1−α)
(51)

(d) Case α = 2.
The polylogarithmic function Li2(x) admits the
asymptotic expansion

Li2(x) = ζ(2) + (1− x)[ln(1− x)− 1] + . . . (52)

when x → 1−. By inserting Eq. (52) into Eq. (42)
and recalling that λc = 1/ζ(2) = 6/π2, we get

µ ' −D (λ− λc)
ln(λ− λc)

, D = ζ2(2) =
π4

36
. (53)

Thus when α = 2 the rate µ acquires a logarithmic
correction to the linear in λ− λc scaling.

(e) Case α > 2.
From the definition (34) of the polylogarithmic
function one extracts the expansion

Liα(x) = ζ(α)− (1− x)ζ(α− 1) + o(1− x). (54)

Inserting this expression into Eq. (42) we find

µ ' D(λ− λc), D =
ζ2(α)

ζ(α− 1)
. (55)

Thus the dynamical exponent is universal, β = 1,
for all α > 2. The prediction (55) can be also
deduced by specializing the general result (21) to
the power-law kernel with α > 2.

Figure 4 shows numerical results providing evidence
for the asymptotic scaling behaviors of the growth rate
µ as a function of λ− λc discussed above.
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FIG. 4: The growth rate µ versus λ − λc for the power-law
kernel (7) with different values of the exponent α.

C. Critical region: α > 1 and λ = λc

An asymptotic analysis (see Appendix A for details)
shows that at the epidemic threshold, λ = λc = 1/ζ(α),
the number of newly infected individuals n(t) exhibits
the following asymptotic behaviors:

n(t) '


A tα−2 for 1 < α < 2,

A/ln t for α = 2,

A for α > 2.

(56)

The amplitude A in Eq. (56) actually depends on α:

A =


−ζ(α)/ [Γ(α− 1) Γ(1− α)] for 1 < α < 2,

ζ(2) for α = 2,

ζ(α)/ζ(α− 1) for α > 2.

(57)

Thus the average number of new cases remains constant
when α > 2; otherwise, the number of newly infected
individuals decays with time. The predictions of Eq. (56)
are confirmed by the direct numerical integration of the
dynamics dictated by Eq. (4) in the critical regime λ =
λc, see Fig. 2(b). By using the asymptotic expression for
n(t) in Eq. (56) we deduce the scaling of the total number
N(t) of infected individuals at time t, given by

N(t) '


C tα−1 for 1 < α < 2,

C t/ln t for α = 2,

C t for α > 2,

(58)

Kernel λ > λc λ = λc λ < λc

F (τ) = 1/τα Ceµt Ctω C

F (τ) = exp
(
−γτβ

)
Ceµt Ct C

TABLE II: Scaling of the total number of infected individuals
N(t) for the power-law kernel and for the generalized expo-
nential kernel. Here ω ∈ (0, 1) is an exponent depending on
the value of α with ω = α − 1 for α ∈ (1, 2) and ω = 1 for
α > 2. The constant C also depends on parameters. For the
power-law kernel F (τ) = 1/τα with α = 2, the critical behav-
ior develops a logarithmic correction defined in Eq. (58) and
not captured by the present table.

with

C =


ζ(α)/ [Γ(α− 1) Γ(2− α)] for 1 < α < 2,

ζ(2) for α = 2,

ζ(α)/ζ(α− 1) for α > 2.

(59)

Thus in the critical regime, λ = λc with α > 1, the to-
tal number of infected individuals grows linearly in time
when α > 2 and sub-linearly when 1 < α ≤ 2.

D. Subcritical region: α > 1 and λ < λc

In this subcritical regime, the asymptotic behavior of
newly infected individuals is algebraic

n(t) ' A t−α , A =
λ

[1− λ ζ(α)]2
. (60)

Thus the asymptotic behavior is dominated by the time
dependence of the power-law kernel F (τ). One can es-
tablish (60) by performing an asymptotic analysis of the
behavior of N(x) as x → 1−, which in turn requires the
knowledge of the behavior of Liα(x) as x→ 1−. The de-
tails are presented in Appendix B. The analysis is rather
straightforward in the range 1 < α ≤ 2, but becomes
more and more tedious as the exponent α increases. We
have verified (60) in details when α < 3, and we have ar-
gued for the validity of the simple general prediction (60),
although our proof quickly becomes unwieldy, e.g. it re-
quires the asymptotic expansion till order k and k−fold
differentiations when k < α ≤ k + 1. Our numerical re-
sults, see Fig. 2(c), are in excellent agreement with the
theoretical prediction (60) for all values α > 2 where we
have performed simulations.

Using Eq. (60) we find that the total number of infected
individuals N(t) saturates to a constant value

N(t) = A

[
ζ(α)− 1

α− 1
t1−α

]
+O(t−α). (61)

VI. EXPONENTIAL KERNEL

Let us assume that the effective infectivity of an in-
dividual decays exponentially with time, F (τ) = e−γτ .
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The constant kernel corresponds to γ = 0, so we tacitly
assume that γ > 0. Equation (4) can be written as the
recurrence

n(t) = e−γ(1 + λ)n(t− 1) (62)

valid for any t ≥ 2, with initial condition n(1) = λe−γ .
The solution to the above recurrence reads

n(t) =
λ

1 + λ
eµt, (63)

with

µ = ln(1 + λ)− γ. (64)

For the exponential kernel, the generating function

F(x) = Gγ(x) =

∞∑
m=1

(
xe−γ

)m
=

e−γx

1− xe−γ
. (65)

has the radius of convergence R = eγ > 1. The epidemic
threshold is

λc =
1

Gγ(1)
= eγ − 1. (66)

Thus the containment measures suppress the spreading
of the epidemic when λ < λc = eγ − 1.

We now use Eq. (64) and Eq. (66) to derive the prop-
erties of the three different regimes. In the supercritical
phase, λ > λc, the growth rate (64) is smaller than for
the constant kernel (corresponding to γ = 0). Close to
the critical point the scaling of µ is similar to the scaling
in for the constant kernel, namely it is linear in λ− λc:

µ = D(λ− λc), D = e−γ . (67)

In the critical phase, the number of new cases is con-
stant in time. In the subcritical phase, the number of
new cases decays exponentially. The total number N(t)
of infected individuals is determined by Eq. (17) for any
value of λ, with µ given by Eq. (64).

The scalings of the total number N(t) of infected indi-
viduals in the supercritical, critical and subcritical regime
are summarized in Table V D.

VII. GENERALIZED EXPONENTIAL DECAY

In this section, we consider a two-parameter class of
generalized exponential decay kernels

F (τ) = exp
[
−γτ b

]
, γ > 0 and b > 0. (68)

In this case, the generating function F(x) becomes

F(x) = Gγ,b(x) =
∑
m≥1

xm e−γm
b

. (69)

From the general solution presented in Sec. III A we
find that the generating function N(x) of the number of
new infected individuals reads

N(x) =
1

1− λGγ,b(x)
(70)

and the epidemic threshold is given by

λc =
1

Gγ,b(1)
=

[ ∞∑
m=1

e−γm
b

]−1
. (71)

In Fig. 5 we plot the epidemic threshold λc as a function
of b for generalized exponential kernels with γ = 1.

For all b > 0, values of Gγ,b(1) and G′γ,b(1) are finite,
therefore the growth rate µ exhibits the linear scaling
(20)–(21) in the λ → λ+c limit. Specializing Eq. (21) to
the kernel (68) we get Eq. (71) with

D =
[Gγ,b(1)]2

G′γ,b(1)
=

[∑
m≥1 e

−γmb
]2

∑
m≥1me−γmb

(72)

0 1 2 3 4
b

0

2

4

6

8
c

=0.5
=1.0
=2.0

FIG. 5: The epidemic threshold λc for generalized exponential
kernel (68) is plotted versus b for γ = 0.5, 1.0, 2.0.

The sums appearing in Eqs. (71)–(72) cannot be gen-
erally expressed through known special functions. One
exception is the b = 2 case when recalling the definition
of the Jacobi theta function

θ3(q) =

∞∑
n=−∞

qn
2

(73)

we re-write the epidemic threshold as

λc =
2

θ3
(
e−γ

)
− 1

. (74)

In the general case of arbitrary b > 0, the asymptotic
behaviors of the sums in Eq. (71) and Eq. (72) can be
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established when γ → 0+. In this situation, we replace
the summation by integration and arrive at the following
leading behaviors

λc '
γ1/b

Γ
(
1 + 1

b

) , D ' 2
Γ2
(
1 + 1

b

)
Γ
(
1 + 2

b

) . (75)

The number of newly infected individuals follows dif-
ferent scaling behaviors depending on whether b > 1 or
b < 1. The kernel F (τ) decays faster than exponential if
b > 1, so the generating function Gγ,b(x) has an infinite
radius of convergence in this situation and n(t) follows
Eq. (15). The growth rate µ is determined by Eq. (14)
that for the kernel (68) becomes

λGγ,b(e
−µ) = 1. (76)

In Fig. 6, we show numerical results for the number
of newly infected individuals for b = 1.25 > 1 in the
supercritical, critical and subcritical regime. The total
number N(t) of infected individuals for b > 1 follows
Eq. (17) for any value of λ, with µ given by Eq. (76).

When b < 1, the kernel F (τ) decays slower than expo-
nential and the radius of convergence of Gγ,b(x) is R = 1.
Therefore we might expect deviations from the exponen-
tial scaling described by Eq. (15) in the critical and sub-
critical regimes. Here we summarize the asymptotic be-
haviors in these regimes (see Appendix C for the deriva-
tions). In the critical regime, the asymptotic analysis
shows that the number of newly infected individuals n(t)
saturates asymptotically for large times t (see Figure 6),
with limit given by

lim
t→∞

n(t) =
Gγ,b(1)

G′γ,b(1)
. (77)

Therefore in the critical regime, the total number N(t) of
infected individuals grows linearly with time for t� 1.

In the subcritical regime, the asymptotic scaling anal-
ysis (see Appendix C) implies that n(t) decays faster
than t−2. Our numerical analysis indicates that n(t) de-
cays like F (t), see Fig. 6(c). Therefore in the subcritical
regime, the total number N(t) of infected individuals for
sufficiently long times saturates to a constant value. The
scalings of the total number N(t) of infected individuals
in the supercritical, critical and subcritical regime are
summarized in Table V D.

VIII. MULTI-FOCI SI MODEL

An epidemic outbreak in one region of the world can
spread to other regions also in the presence of contain-
ment measures forming several foci of the epidemics. We
thus consider a model in which the pandemic is formed
by a set of separated foci i where the outbreak starts at
different times ti. A realistic meta-population model of
this sort may account for the mobility of the individuals

across the different locations utilizing transportation net-
works. Here we employ a simplified mean-field approach
and assume that the number of new foci at time t = ti
is a deterministic function of ti indicated by ρ(ti). We
consider two functional forms for ρ(ti):

(A) A power-law functional form for ρ(ti)

ρ(ti) = Btγi , (78)

where γ ≥ 0 and B > 0. A constant number of new
foci as a function of time corresponds to γ = 0; if
γ > 0, the number of new foci increases with time.

(B) An exponential functional form for ρ(ti)

ρ(ti) = Beθti (79)

with θ ≥ 0 and B > 0. If θ > 0, the number of new
foci increases exponentially as a function of time.

In both scenarios the total number of cases I(t) at time
t calculated across all the foci is given by

I(t) =
t−1∑
1

Ni(t− ti)ρ(ti), (80)

where Ni(t− ti) is the total number of cases of the foci i
at time t. In principle, at every foci different containment
measures could be applied, but we focus on the simplest
situation when each focus follows the same dynamics and
has the same parameters.

IX. TOTAL NUMBER OF INFECTED IN THE
MULTI-FOCI MODEL

In this section, we calculate the total number of in-
fected individuals I(t) in the multi-foci meta-population
approach. Since we assume that every foci follows the
same dynamics, I(t) is given by Eq. (80) with Ni being
the same and just shifted to the activation time ti, that
is Ni(t− ti) = N(t− ti) at time t.

For the kernels which we employ, the asymptotic be-
havior of N(t) at large time can be cast in two major
classes: the exponential behavior and the power-law be-
havior. We now separately consider these two cases.

A. Exponential case

Consider an exponential dependence of N(t), i.e.

N(t) ' Ceµt, (81)

where without loss of generality we consider µ > 0.

(A) If the number of new foci increases as a power-law,
Eq. (78), by putting Eq. (81) into Eq. (80) and
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FIG. 6: The number n(t) of newly infected individuals is plotted versus time t for the generalized exponential kernel F (τ)
given by Eq. (68) with γ = 1 and b = 0.50, 0.75, 1.00, 1.25. Panel (a) refers to the supercritical regime with λ = 1.5λc, panel
(b) refers to the critical regime λ = λc, and panel (c) refers to the subcritical regime λ = 0.5λc.

limiting ourselves to the situation when the growth
of N(t) is exponential, µ > 0, we obtain

I(t) ' CLi−γ(e−µ) eµt, (82)

where C = BC and where Lia(x) is a polylogarithm
with index a. Therefore for µ > 0 the presence of
different foci does not change the exponential trend
and I(t) and N(t) differ only by a constant.

(B) If the number of new foci increases exponentially,
Eq. (79), we put Eq. (81) into Eq. (80) to yield

I(t) '


Ceµt if µ > θ,

Cteµt if µ = θ,

Ceθt[eθ−µ − 1]−1 if µ < θ,

(83)

where C = BC. Thus the presence of different foci
changes the exponential trends if and only if θ ≥ µ.

B. Power-law case

We now consider the case in which the total number of
infected individuals N(t) in each focus of the epidemics
scales as a power-law,

N(t) = Ctν , (84)

for t � 1. We can assume that ν ≥ 0. Indeed, the
definition of the total number N(t) of infected individuals
in a given focus, given by Eq. (5) implies that N(t) is
non-decreasing function of time, with N(t) ≥ n(0) = 1.

(A) We now insert Eq. (84) into Eq. (80) and approxi-
mate the sum by an integral in the long time limit.
Computing the integral we obtain

I(t) ' C B(1 + γ, 1 + ν) t1+γ+ν , (85)

where B(a, b) is the Euler beta function

B(a, b) =

∫ 1

0

dxxa−1(1− x)b−1. (86)

The replacement of the sum by an integral is
asymptotically justifiable when γ > −1. Note
that both I(t) and N(t) grow algebraically. The
presence of different foci accelerates the growth,
1 + γ + ν > ν when γ > −1. If γ ≤ −1, we es-
timate the sum in Eq. (80) more carefully and get

I(t) ' Ctν ×

{
ln t γ = −1,

ζ(−γ) γ < −1.
(87)

(B) If the number of new foci increases exponentially,
Eq. (79), we put Eq. (84) into Eq. (80) to yield

I(t) ' CLi−ν(e−θ)eθt (88)

where C = BC and the polylogarithm function
Lia(x) is defined in Eq. (34). Therefore in this case
the total number of infected across all the foci is
growing exponentially with rate θ. In other words,
I(t) growth in time is dominated by the rate at
which new foci are established.

X. CONCLUSIONS

We proposed an epidemic model with time-dependent
infectivity that mimics different types of containment
measures. This model allows one to study the onset of
epidemics and the role that time-dependent infectivity
can have on the spread of the disease. We demonstrated
that different containment measures can either lead to a
slowing down of the exponential spread by modulating
the growth rate µ, or can bring the epidemic to a halt
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when they push the dynamics in the subcritical regime.
In particular, exponential and generalized exponential
temporal kernels always induce a finite epidemic thresh-
old λc, so they stop epidemics provided that λ < λc.
Sufficiently steep power-law temporal kernels also induce
a non-vanishing epidemic threshold — this happens when
the decay exponent characterizing the kernel satisfied ex-
ceeds unity: α > 1. In the supercritical regime, λ > λc,
the total number of infected individuals grows exponen-
tially with a characteristic time scale that diverges at
the critical point following different universality classes
depending on the kernel; in the subcritical regime, the to-
tal number of infected individuals saturates to a constant;
in the critical regime, the number of infected individuals
grows in time linearly or sub-linearly. These results have
been obtained assuming a well-mixed approximation and
by considering a single focus of the epidemic.

We also briefly investigated the multi-foci version in
the simplest situation when each focus follows the same
dynamics. We showed that if the number of new foci in-

creases as a power-law of time, in the supercritical regime
the total number of cases across different foci scales like
the total number of cases in each focus. In the critical
and subcritical regimes, the total number of cases across
different foci can grow faster than linearly. Qualitatively
different behaviors emerge also in the supercritical regime
when the number of new foci increases exponentially with
rate exceeding the “bare” rate µ.

There are many avenues for future work. An obvious
important challenge is to model stochastic characteristics
and account for large fluctuations observed in pandemics.
Stochastic characteristics are difficult to describe even in
the classical SIR model in the critical regime [39–46],
and they may play an important role in our model. Fi-
nally, the multi-foci meta-population approach could be
expanded by considering the effect of social and trans-
portation networks.

We thank R. M. Ziff for useful discussions.
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Appendix A: Derivation of Eq. (56)

In this Appendix we derive the announced asymptotic
behaviors (56) of the number of new infected individual
n(t) in the critical regime for the power-law kernel. We
also derive the predictions (57) for the amplitude, and
additionally compute the sub-leading term in the spe-
cial case of α = 2 when the convergence to the leading
asymptotic is anomalously slow.

Our starting point is Eq. (35) that we rewrite as

N(x) =
1

1− λc Liα(x)
. (A1)

We keep in mind known relations λ = λc = 1/ζ(α) char-
acterizing the critical regime of the power-law kernel in
the α > 1 range.

To establish Eq. (56) we expand the right-hand side of
Eq. (A1) in the region x→ 1−; the asymptotic behavior
of n(t) follows from this expansion. The polylogarithmic
function Liα(x) exhibits different asymptotic behaviors in
the x → 1− limit depending on whether different values
of α is smaller or larger than 2. Therefore we separately
treat the cases of 1 < α < 2, α = 2 and α > 2.

1. Case 1 < α < 2

In this range, the polylogarithmic function Liα(x) ad-
mits the asymptotic expansion (50) which we insert into
Eq. (A1) and arrive at

N(x) ' − ζ(α)

Γ(1− α)
(1− x)1−α (A2)

as x→ 1−. Thus∑
t≥0

n(t)xt ' − ζ(α)

Γ(1− α)
(1− x)1−α (A3)

which implies the large time behavior

n(t) ' − ζ(α)

Γ(α− 1) Γ(1− α)
tα−2 (A4)

stated in Eqs. (56)–(57) when 1 < α < 2. Using the
Euler identity Γ(y)Γ(1 − y) = π/ sin(πy), one can also
re-write (A4) as

n(t) ' (α− 1)ζ(α) sin[π(α− 1)]

π
tα−2 (A5)

As a simple “physical” confirmation of Eq. (A4), one
can substitute Eq. (A4) into the sum in the left-hand side
of Eq. (A2), notice that in the x→ 1− limit the summa-
tion can be replaced by integration; computing the inte-
gral, one recovers the right-hand side of (A2). A rigorous
derivation of the asymptotic of the coefficients from the
singular behavior of the generating function can be done
by a variety of techniques, e.g. by using Tauberian theo-
rems [49] or complex analysis [50]; see the textbook [51]
for numerous examples.

2. Case α = 2

The polylogarithmic function Li2(x) has the asymp-
totic expansion (52) which we insert into Eq. (A1) and
obtain

N(x) ' ζ(2)

1− ln(1− x)

1

1− x
, (A6)

from which we deduce the leading asymptotic behavior
reported in (56)–(57) at α = 2. The presence of log-
arithms often implies that the sub-leading term is just
logarithmically smaller than the leading term, and then
the sub-sub-leading term is another logarithmic factor
smaller. The derivation of these sub-leading terms is a
bit long, but it uses standard techniques [50, 51]; alter-
natively, it can be also extracted from the general re-
sults presented in [51]. Keeping just the leading and
sub-leading terms yield the following asymptotic

n(t) ' ζ(2)

ln t+ γE + 1
(A7)



14

where γE is the Euler-Mascheroni constant and we have
dropped the terms of the order (ln t)−3. Using Eq. (A7)
we obtain a slightly more precise version of Eq. (58) at
α = 2:

N(t) ' ζ(2) t

ln t+ γE
(A8)

3. Case α > 2

When α > 2, the polylogairthmic function Liα(x) ad-
mits the asymptotic expansion (54) which we insert into
(A1) and get

N(x) ' ζ(α)

ζ(α− 1)
(1− x)−1, (A9)

implying that the number n(t) of new infected individuals
saturates,

lim
t→∞

n(t) =
ζ(α)

ζ(α− 1)
, (A10)

as stated in Eqs.(56)–(57) at α > 2.

Appendix B: Derivation of Eq. (60)

In this Appendix, we derive the announced asymptotic
behavior (60) applicable in the subcritical regime. We
start with Eq. (35) that we rewrite here for convenience

N(x) =
1

1− λLiα(x)
. (B1)

The subcritical regime λ < λc = 1/ζ(α) is possible for
all α > 1. Since N(1) is finite, we consider the expansion
of N(1)−N(x) in the x→ 1− limit. By using Eq. (B1),
one can derive the asymptotic expression of n(t) in the
range1 < α ≤ 2. This is carried out below first when
1 < α < 2 and then at α = 2. In these cases we recover
the asymptotic scaling in Eq. (60). The same method in
principle applies to all α > 2, but our treatment is less
rigorous there as it is based on the analysis the 2 < α < 3
range, than the 3 < α < 4 range, etc. and it quickly
becomes cumbersome.

1. Case 1 < α < 2

In the 1 < α < 2 range, the deviation of Liα(x) from
Liα(1) = ζ(α) scales as

Liα(x)− Liα(1) ' Γ(1− α) (1− x)α−1 (B2)

when x → 1−. This is just the re-writing of Eq. (50).
Using Eqs. (B1) and (B2) we find

N(1)−N(x) ' − λΓ(1− α)

[1− λ ζ(α)]2
(1− x)α−1 . (B3)

Recalling the definition of the generating function N(x),
we get∑

t≥0

n(t)
[
1− xt

]
' − λΓ(1− α)

[1− λ ζ(α)]2
(1− x)α−1 . (B4)

Differentiating with respect to x to obtain∑
t≥0

t n(t)xt−1 ' (1− x)α−2
λΓ(2− α)

[1− λ ζ(α)]2
(B5)

leading to the announced asymptotic behavior (60) in the
1 < α < 2 range.

2. Case α = 2

When α = 2, we re-write (52) as

Li2(1)− Li2(x) ' (1− x)[ln(1− x)− 1]. (B6)

Using Eq. (B1) and Eq.(B6) we find

N(1)−N(x) ' (1− x)[ln(1− x)− 1]
λ

[1− λ ζ(2)]2
(B7)

from which we deduce∑
t≥0

t n(t)xt−1 ' − ln(1− x)
λ

[1− λ ζ(2)]2
(B8)

leading to the announced asymptotic (60) at α = 2.

3. Case α > 2

For α > 2, we re-write Eq.(54) as

Liα(1)− Liα(x) ' ζ(α− 1) (1− x). (B9)

Using Eq. (B1) and Eq. (B9) we find

N(1)−N(x) ' λ ζ(α− 1)

[1− λ ζ(α)]2
(1− x). (B10)

The same treatment as before gives∑
t≥0

t n(t) =
λ ζ(α− 1)

[1− λ ζ(α)]2
(B11)

which only implies that n(t) should decay faster than t−2.
To derive the announced asymptotic (60) for α > 2 one

should employ the expansion of Liα(1)− Liα(x) which is
more accurate than the leading term given by Eq. (B9).
Let us first consider the region 2 < α < 3. In this range,
the required more accurate form reads

Liα(1)− Liα(x) = ζ(α− 1) (1− x)

− B(1− x)α−1 + . . . (B12)



15

Differentiating Eq.(B12) twice with respect of x and us-
ing the identity

d2Liα(x)

dx2
=

Liα−2(x)− Liα−1(x)

x2
(B13)

we obtain

Liα−2(x)−Liα−1(x) ' B(α−1)(α−2)(1−x)α−3 (B14)

in the x → 1− limit. The leading behavior of the left-
hand side of Eq. (B14) is provided by the leading asymp-
totic of Liα−2(x) and it reads

Liα−2(x) ' Γ(3− α)(1− x)α−3 (B15)

Thus we fix the amplitude in (B14):

B =
Γ(3− α)

(α− 1)(α− 2)
. (B16)

Using Eq. (B1) and Eq. (B9) we obtain∑
t≥0

n(t)
[
1− xt

]
' λ ζ(α− 1)

[1− λ ζ(α)]2
(1− x)

− λ

[1− λ ζ(α)]2
B(1− x)α−1

which we differentiate twice with respect to x to yield∑
t≥0

t(t− 1)n(t)xt−2 ' (1− x)α−3
λΓ(3− α)

[1− λ ζ(α)]2
(B17)

where we have also used Eq.(B16). From the above ex-
pression we confirm the announced asymptotic (60) in
the range 2 < α < 3. The same tedious analysis using
allows one to confirm Eq.(60) at α = 3. In the range
3 < α < 4 one needs to use an extra term

Liα(1)− Liα(x) = ζ(α− 1) (1− x) +B2(1− x)2

− B3(1− x)α−1 + . . . (B18)

The most important is the singular term B3(1 − x)α−1,
with amplitude B3 found after differentiating Eq. (B18)
three times with respect of x. One then obtains∑

t≥0

t(t− 1)(t− 3)n(t)xt−2 ∼ (1− x)α−4 (B19)

from which one confirms Eq. (60) in the range 3 < α < 4.
The above tedious proof extends to all α > 2. The

simplicity of the final result, Eq. (60), hints on a possible
general derivation circumventing the consideration of the
infinitely many intervals k < α < k + 1 for all integers
k ≥ 1, and also the separate analysis of α = k with k ≥ 2
where the logarithms arise in the intermediate steps, but
disappear from the final formula given by Eq. (60).

Appendix C: Asymptotic analysis of the generalized
exponential kernel with b < 1

In this Appendix, we discuss the derivation of the
asymptotic expansion for n(t) for the generalized expo-
nential kernel with b < 1. In the critical regime, the
generating function N(x) satisfies

N(x) =
1

1− λcGγ,b(x)
. (C1)

In the x→ 1− limit we therefore obtain

N(x) ' Gγ,b(1)

G′γ,b(1)
(1− x)−1, (C2)

leading to the asymptotic behavior (77), namely

lim
t→∞

n(t) =
Gγ,b(1)

G′γ,b(1)
. (C3)

In the subcritical regime, λ < λc, we obtain

N(1)−N(x) '
λG′γ,b(1)

[1− λGγ,b(1)]2
(1− x) (C4)

as x→ 1−, which we treat as in Appendix B and find

∑
t≥1

t n(t) = C1 ≡
λG′γ,b(1)

[1− λGγ,b(1)]2
(C5)

telling us that n(t) decays faster than t−2.

To derive a more precise prediction one can use the
same trick as in Appendix B, namely to establish a more
precise expansion than Eq. (C4). One gets, however, the
regular expansion,

N(1)−N(x) ' C1(1−x)+ 1
2C2(1−x)2+ 1

6C3(1−x)3+ . . .

from which∑
t≥1

t(t− 1)n(t) = C2,
∑
t≥1

t(t− 1)(t− 2)n(t) = C3

etc. The first sum rule implies that n(t) decays faster
than t−3, the second tells us that n(t) decays faster than
t−4. Proceeding, one finds that n(t) seemingly decays
faster than any power of time. Recall, that for the power-
law kernel the decay of n(t) in the subcritical regime is
qualitatively the same as the decay of the kernel F (τ).
This may occur also for the generalized exponential ker-
nel, and our simulation results agree with this conjecture.
Theoretically, however, we only established that the de-
cay of n(t) is faster than any power law.
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