
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

k-Anonymity on Graphs using the
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Abstract—Graph anonymization aims at reducing the ability of an attacker to identify the nodes of a graph by obfuscating its structural
information. In k-anonymity, this means making each node indistinguishable from at least other k− 1 nodes. Simply stripping the nodes
of a graph of their identifying label is insufficient, as with enough structural knowledge an attacker can still recover the nodes identities.
We propose an algorithm to enforce k-anonymity based on the Szemerédi regularity lemma. Given a graph, we start by computing a
regular partition of its nodes. The Szemerédi regularity lemma ensures that such a partition exists and that the edges between the sets
of nodes behave quasi-randomly. With this partition to hand, we anonymize the graph by randomizing the edges within each set,
obtaining a graph that is structurally similar to the original one yet the nodes within each set are structurally indistinguishable. Unlike
other k-anonymization methods, our approach does not consider a single type of attack, but instead it aims to prevent any
structure-based de-anonymization attempt. We test our framework on a wide range of real-world networks and we compare it against
another simple yet widely used k-anonymization technique demonstrating the effectiveness of our approach.

Index Terms—Privacy, Anonymity, Social networks, Graph, Regularity lemma.
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1 INTRODUCTION

In an era where both private companies and gov-
ernments are aggressively seeking to profile users based
on their online behavior, developing effective methods to
anonymize datasets of users interactions before making
them public is of paramount importance [14], [26], [28],
[30]. These interactions are often represented using graphs
that, despite potentially containing sensitive information,
are made publicly available for various purposes, including
research ones [6], [19], [21].

Unfortunately, a naive anonymization that simply strips
the elements of a dataset of their identity (e.g., the user
names) has been shown to be easily circumvented, as a com-
bination of data attributes and external knowledge can help
a malicious attacker to uniquely identify each element of
the dataset [1]. Indeed, it is possible to disclose the identity
of an individual participating in the network with minimal
external background information. One common example is
that of a user for which the number of connections in the
network is known (i.e., the number of friends on Facebook)
and this number happens to be unique for that individual.
In other words, this piece of information alone would be
sufficient to identify that user among the rest of the nodes.
Most importantly, once the identity is revealed, other po-
tentially sensitive pieces of information can be inferred. For
instance, the individual may turn out to belong to a group of
nodes labeled with a certain sensitive attribute, e.g., health
condition.

For these reasons, the problem of anonymizing graph
data is becoming an increasingly studied one [17], [22], [26],
[29]. A common anonymity model is k-anonymity, which
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aims to ensure that each node in a network is structurally
indistinguishable from at least other k nodes. Different
works have focused on different definitions of “structurally
indistinguishable”. Liu and Terzi [22] considered the case
of k-degree anonymous graphs, where k-degree anonymity
guarantees that each node of the graph shares the same
degree of at least k other nodes. Successive works attempted
to reduce the total running time of Liu and Terzi [22] to
make it feasible to scale up to large networks [17]. Rossi et
al. [29], on the other hand, extended the concept of k-degree
anonymity to multi-layer and time-varying graphs. Other
researchers considered different structural distinguishability
criteria where the attacker has increasing levels of informa-
tion available to de-anonymize the nodes [5], [17], [40], how-
ever the main issue with these approaches lies in the need
to add increasing amounts of noise as increasingly complex
structural information needs to be obfuscated. More recently
Rousseau [31] considered the problem of anonymizing a
graph maximizing the amount of preserved community
information. Finally, Qian et al. [26] and Ma et al. [23] looked
at the complementary problem of de-anonymizing a graph
in the case where the attacker has access to richer features
as well as structural information.

While most of the previous k-anonymity approaches
assume that the attacker has access only to a certain level
of structural information (from the degree of a node, to its
immediate neighborhood or even the whole graph), Foffano
et al. [11] have recently proposed a k-anonymization frame-
work where the resulting graph is not susceptible to any
particular structure-based attack. Their approach is based on
the Szemerédi regularity lemma [7], a well-known result of
extremal graph theory. The Szemerédi regularity lemma has
been successfully applied to several problems, from graph
theory [18] to computer vision and pattern recognition [25],
[34]. The lemma roughly states that every sufficiently large
and dense graph can be approximated by the union of
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Fig. 1: Our anonymization framework consists of the following pipeline: 1) given an input graph, 2) we compute the
Szemerédi partition of its nodes, and 3) we randomly re-wire the edges within each group of nodes and between each
irregular pair to 4) obtain the anonymized graph. In this toy example V1, V2, and V3 denote the three groups of nodes of
the partition, Vi, Vj form an irregular pair, and the dashed edges denote those edges that can be added/deleted during the
rewiring step.

random-like bipartite graphs called regular pairs. Crucially,
the lemma was later extended to account for sparse graphs
as well [15]. The idea underpinning the work of Foffano et
al. [11] is that the groups of nodes that form regular pairs can
be anonymized by rewiring the intra-group edges according
to an Erdös-Rényi process [8]. Thanks to the theoretical
guarantees of the Szemerédi regularity lemma, this has min-
imal effect on the overall graph structure and, together with
the random-like behavior of the inter-groups connections,
ensures that the each group of nodes is anonymous.

While the seminal work of Foffano et al. [11] provides
a limited theoretical and experimental analysis of their
method, in this paper we propose to go one step further
by making the following contributions:

• we perform a theoretical analysis of the level of
anonymity provided by our method;

• we devise a comprehensive experimental setting to
evaluate the loss of structural information in the
anonymized graphs. This involves both selecting a
set of suitable metrics, as well as doing a more
extensive exploration of the parameters space over
a larger number of datasets;

• we compare the results obtained in this experimental
setting with those achieved by another well-known
k-anonymization approach, i.e., k-degree anonymity.
Despite the latter being one of the least invasive
anonymization approaches (as it only obfuscates lo-
cal structural information, i.e., the nodes degree), we
show that our method yields anonymized graphs
that are significantly closer to the original ones, de-
spite building large anonymity groups.

It should be noted that our work bears similarities with
that of Hay et al. [16], who propose to anonymize graphs
by randomly removing a subset of the existing edges and
randomly adding a number of new edges. The idea of ran-
domizing the structure is similar to yours, however crucially
we provide a principled method to randomize only selected
parts of the graph so as to try and minimize the structural
information loss. Other similar works [4], [27], [35] are based
on the idea of finding a partition of the nodes such that
each group vertices contains at least k vertices and where
the amount of noise needed to anonymize each group is
minimum. The difference between these works and ours lies
in the choice of the vertex partitioning algorithm, where we

choose to rely on a well-studied and theoretically robust
result from graph theory instead of a new heuristic.

Finally, it should be noted that in this paper we do not
consider a scenario where the attacker knows the original
structure of the graph as well as the node identities. In
such a scenario, the attacker may be able to map the known
identities from the original graph to the anonymized one,
especially for small anonymization groups where the struc-
tural deviation from the original graph is minimal. With this
information to hand, the attacker could then transport any
node attribute that is present in the anonymized graph to the
known one. However this is a different scenario from that
considered in this paper, where we make the assumption
that structure and identities are not available to the attacker
and are instead the information to be protected. Scenarios
where the attacker has access to both the original structure
as well as the node identities could instead be handled
adding structural noise [36] to the inter-group connections
of ε-regular pairs (see Section 3).

The remainder of the paper is organized as follows. We
start by introducing the key graph theoretical concepts un-
derpinning our work in Section 2. In Section 3 we describe
the anonymization method based on the Szemerédi regular-
ity lemma and in Section 4 we evaluate our framework on
six different real-world datasets. Finally, Section 5 concludes
the paper.

2 SZEMERÉDI REGULARITY LEMMA

Let G = (V,E) be an undirected graph with no self-loops,
where V is the set of nodes and E is the set of edges. If Vi
and Vj are two disjoint subsets of V , the edge density of the
pair (Vi, Vj) is defined as

d(Vi, Vj) =
|E(Vi, Vj)|
|Vi||Vj |

, (1)

where E(Vi, Vj) is the set of edges connecting nodes in
Vi to nodes in Vj . Note that the edge density satisfies
0 ≤ d(Vi, Vj) ≤ 1.

Definition 2.1 (ε-regular pair). Given a positive real number
ε > 0, a pair of node sets Vi and Vj is called ε-regular if for
all subsets Ui ⊆ Vi and Uj ⊆ Vj such that |Ui| ≥ ε|Vi| and
|Uj | ≥ ε|Vj |, we have |d(Vi, Vj)− d(Ui, Uj)| ≤ ε.

It follows from the above definition that the distribution
of the edges between two sets forming a ε-regular pair is
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TABLE 1: Summary of datasets statistics.

Dataset Nodes Density Edges Clust. Coeff. Trans.

Twitch PT 1912 0.0171 31299 0.320 0.1309
Tv shows 3892 0.0023 17262 0.374 0.5906
Facebook 4039 0.0108 88234 0.606 0.5191
Twitch ES 4648 0.0055 59382 0.222 0.0842
Politicians 5908 0.0024 41729 0.385 0.3011
Government 7057 0.0036 89455 0.411 0.2238

TABLE 2: From partition (l) to group cardinality (k).

Dataset l = 4 l = 8 l = 16 l = 32 l = 64 l = 128 l = 256

Twitch PT 478 239 120 60 30 14 7
Tv shows 973 487 243 122 61 30 15
Facebook 1010 505 252 126 63 31 15
Twitch ES 1162 581 290 145 73 36 18
Politicians 1477 739 369 185 92 46 23
Government 1764 882 441 221 110 55 27

almost uniform, i.e., the graph over Vi ∪ Vj behaves like
a random bipartite graph. Stated otherwise, the number of
edges between Vi and Vj can be seen as sampled from a
binomial distribution with success probability d(Vi, Vj).

Definition 2.2 (ε-regular partition). Let the node set V be di-
vided into a partition P of l sets V0, V1 · · · , Vl. P is an ε-regular
partition if: 1) it is equitable, i.e., |V1| = |V2| = · · · = |Vl|,
2) |V0| < ε|V |, and 3) all except at most εl2 pairs (Vi, Vj)
(1 ≤ i < j ≤ l) are ε-regular.

Note that the function of the exceptional set V0 in the
previous definition is merely technical, i.e., it allows all the
other classes to have the same number of vertices. With
these definitions to hand, we can finally state the following.

Lemma 2.3 (Szemerédi regularity lemma). For every positive
real ε > 0 and every positive integer m, there exist positive
integers N = N(ε,m) and M = M(ε,m) such that, if
G = (V,E) is a graph with |V | ≥ N nodes, there is an ε-regular
equitable partition of V into l groups, where m ≤ l ≤M .

The Szemerédi regularity lemma states that the nodes of
a graph can be grouped in such a way that the distribution
of the edges between each pair of node sets is close to being
random, with the exception of no more than εl2 irregular
pairs. In the words of Komlós and Simonovits [18], the
lemma shows that every graph can be approximated by
generalized random graphs. The implication of this is that
by computing the ε-regular partition of a graph we are
effectively separating structural information from noise [10].

Consider in fact a graph G and an ε-regular partition
of its nodes. A reduced version of G with fewer nodes and
edges can be constructed by replacing each pair of ε-regular
groups with two nodes connected by an edge. As shown
by the Key lemma [18], the reduced graph inherits many of
the fundamental structural properties of the original graph,
to the point that the graph obtained by simply replacing
each pair of connected nodes of the reduced graph with a
complete bipartite graph over 2t nodes yields a new graph
that can be used as a surrogate of the original one, where
t ≥ 1 is an integer. In the next section we will show how to
exploit the node partition given by the Szemerédi regularity
lemma to randomize the structure in selected parts of the
graph and enforce k-anonymity while minimizing the loss
of structural information.

3 ANONYMIZATION FRAMEWORK

Recall that the aim of this paper is to anonymize a graph
G = (V,E) by grouping V into sets of k structurally
indistinguishable nodes. To achieve structural anonymity
within these k-anonymous groups, one needs to change
the connectivity of the graph so that an attacker armed
with externally acquired knowledge of the graph structure
cannot distinguish among the nodes belonging to each
group. For instance, rewiring all the edges of a graph with a
certain probability (i.e., replacing the graph with an Erdös-
Rényi graph on the same set of nodes) would yield an
anonymized graph where the structural information has
been rendered useless for identification purposes. However
this would have come at the cost of losing most all the
structural information of the original graph, thus rendering
the anonymized version worthless.

Rather than achieving anonymity by disrupting the en-
tire structure of the graph, we propose to do it selectively
by making use of the Szemerédi ε-regular partition. As
discussed in the previous section, the Szemerédi regular-
ity lemma states that the node set of each graph can be
partitioned to reveal a random-like structure, where pairs
of groups of k nodes are randomly connected. That is, for
the purpose of graph de-anonymization, the connections
between two groups of nodes forming a ε-regular pair do
not contain any information on the identity of the nodes be-
longing to the two groups as they are randomly distributed.

Other edges, on the other hand, can be still exploited to
de-anonymize the nodes. These are the intra-group edges
and those between a small number of irregular pairs. These
are the only connections that we need to randomize in
order enforce k-anonymity. Most importantly, the Szemerédi
regularity lemma and the fact that the reduced graph (where
the intra-group connections are lost) preserves the funda-
mental structural properties of the original graph imply
that these intra-group connections are small in number and
structurally negligible. Indeed, one way to anonymize the
graph while trying to preserve its structure would be to
compute its reduced version and then expand it as described
in the Key lemma [18]). However, taking the particular
nature of the anonymization problem into account, in this
section we show that we can achieve k-anonymity in each
group of the ε-regular partition without the need to lose all
the intra-group structural information by passing through
the reduced graph.

Our approach works as follows: 1) we first find a regu-
lar partition using the regularity lemma; 2) we randomize
the groups’ intra-connections; 3) finally, we randomize the
edges connecting irregular pairs. More specifically:

In the first step we compute the ε-regular partition of the
input graph using the algorithm implemented by Fiorucci
et al. [9], [10]. The authors propose two different heuristic
procedures where the node set is recursively split into two
groups until a desired cardinality is met and the partition
is sufficiently close to an ε-regular one. The two heuristics
differ in the way the groups are split: 1) the degree based
heuristic groups together nodes with similar degree, while
2) the indeg guided heuristic splits a sparse (dense) partition
into two sparse (dense) partitions. We use the latter heuristic
in our experiments as it has been shown to achieve better
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Fig. 2: Upper-bound vs observed KL divergence for varying levels of p on an ε-regular pair from the Twitch ES dataset (see
Section 4). The cross and circle mark two values of p for which we show the density fY (t) and the observed distribution of
the d(Ui, Uj)s, respectively in (b) and (c). (b) and (c) are annotated with the corresponding value of the divergence.

results [11]. Note that due to the nature of the algorithm the
cardinality of the final partition is a power of 2.

With this partition to hand, the second step involves
randomly rewiring the connections within each group of
vertices. To this end, for each group we add or delete
an edge with a probability p equal to the density of the
subgraph spanned by the nodes in the group. Note that
we only change the internal connections of the group, so
we are not altering the ε-regularity relations. The resulting
subgraph has the same density of the original one, however
its structural information will not be of any use when trying
to de-anonymize its nodes.

The third step and final step is needed to randomize
the connections between groups forming an ε-irregular pair.
Let (Vi, Vj) be one such pair, with total number of nodes
n. Consider the bipartite subgraph H = (Vi ∪ Vj , Eij)
where we only consider the set of edges Eij connecting
nodes in Vi with nodes in Vj . In order to render the struc-
tural information contained in these edges unusable for de-
anonymization purposes, we randomly rewire each pair of
nodes (u, v), with u ∈ Vi and v ∈ Vj , by adding (deleting)
and edge to Eij with probability p equal to |Eij |/|Vi||Vj |.

Fig. 1 shows a toy graph as it goes through the three
steps of our anonymization framework. First, the node set of
the graph is partitioned into 3 groups, V1, V2, and V3 (high-
lighted in blue, green, and red, respectively). Then edges
within these groups as well as those between irregular pairs
((V1, V2), in this toy example) are randomly rewired while
preserving the graph density. The result is an anonymized
graph with 3 anonymity groups.

3.1 Quantifying the Graph Anonymity

Recall from Section 2 that given a graph G = (V,E) and
two disjoint sets of nodes Vi ⊆ V and Vj ⊆ V , the density
d(Vi, Vj) denotes the proportion of edges connecting the
nodes of Vi to the nodes of Vj . In this context, ε provides an
upper bound on the absolute difference between d(Vi, Vj)
and d(Ui, Uj), where Ui and Uj are subsets of Vi and Vj ,
respectively, with cardinality proportional to ε. In other
words, ε is a measure of how much the ε-regular pair
(Vi, Vj) deviates from a bipartite graph where the number of
edges is sampled from a binomial distribution with success
probability d(Vi, Vj). Keeping this interpretation in mind, in
this section we will show how to measure the amount of

information an attacker can obtain about the identity of the
nodes of a graph anonymized with our method.

Consider a graph G and two groups forming an ε-
regular pair (Vi, Vj) over k nodes each with density θi,j =
d(Vi, Vj). Let Ui and Uj be two subsets of Vi and Vj respec-
tively, each over pk nodes, where according to the definition
of ε-regular partition ε < p < 1, i.e., p is the fraction of
nodes of Vi (Vj) in Ui (Uj). Then X ∼ Binomial(p2k2, θVi,Vj )
is a Binomially distributed random variable representing the
number of edges between Ui and Uj . Let Y = X

p2k2 − θi,j .
The probability to observe a density d(Ui, Uj) = X

p2k2 that is
at most t far from θVi,Vj is

P (Y ≤ t) = P (X − p2k2θi,j ≤ tp2k2)

= P

(
Z ≤ tpk√

θi,j(1− θi,j)

)
, (2)

where in the last step we approximated the Binomial
distribution of the random variable Z = X−E[X]√

V ar(X)
=

pk√
θi,j(1−θi,j)

Y with a standard Normal. The density func-

tion of Y is then

fY (t) =
pk√

θi,j(1− θi,j)2π
e
− 1

2
t2p2k2

θi,j(1−θi,j) . (3)

Now consider an attacker attempting to de-anonymize
the nodes participating in the ε-regular pair (Vi, Vj). The
degree to which the distribution of the d(Ui, Uj)s observed
by the attacker deviates from the theoretical distribution
given by Eq. 3 can be seen as a measure of the amount
of structural information leaked by the anonymized graph.
Note that any amount of leaked information is limited to the
connections between the two groups and not necessarily all
related to the nodes identity. Specifically, with Eq. 3 to hand,
we measure the number of leaked bits as the Kullback-
Leibler (KL) divergence between the observed distribution
and the model distribution. We can give an upper bound for
this quantity by considering the worst-case scenario where
all the observed probability mass is equally distributed over
−ε and +ε. Recall that given two distributions p and q, their
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Fig. 3: Average absolute difference between the average clustering coefficient (ACC) of the original and anonymized graphs,
for our method and k-degree.

4 8 16 32 64 128 256
l

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Av
g 

ab
so

lu
te

 d
iff

er
en

ce
 (T

R) Our
KDegree

(a) Twitch PT

4 8 16 32 64 128 256
l

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Av
g 

ab
so

lu
te

 d
iff

er
en

ce
 (T

R) Our
KDegree

(b) Tv shows

4 8 16 32 64 128 256
l

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Av
g 

ab
so

lu
te

 d
iff

er
en

ce
 (T

R) Our
KDegree

(c) Facebook

4 8 16 32 64 128 256
l

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Av
g 

ab
so

lu
te

 d
iff

er
en

ce
 (T

R) Our
KDegree

(d) Twitch ES

4 8 16 32 64 128 256
l

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Av
g 

ab
so

lu
te

 d
iff

er
en

ce
 (T

R) Our
KDegree

(e) Politician

4 8 16 32 64 128 256
l

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Av
g 

ab
so

lu
te

 d
iff

er
en

ce
 (T

R) Our
KDegree

(f) Government

Fig. 4: Average absolute difference between the transitivity (TR) of the original and anonymized graphs, for our method
and k-degree.

KL divergence is KL(p||q) =
∑
x p(x) log2

(
p(x)
q(x)

)
. Then,

leaked bitsVi,Vj (p) = log2

(1
2

)
− log2

(
f(ε)

p2k2

)
= −1 + 3 log2(k)− log2(2(θi,j(1− θi,j))

+ log2 p+
ε2p2k2

2 ln(2)θi,j(1− θi,j)
. (4)

Fig. 2 (a) shows the value of the upper-bound of Eq. 4 as
function of p for a regular pair computed on the Twitch
ES dataset (see Section 4). Specifically, given an ε-regular
partition of this graph, we chose the pair (Vi, Vj) with the
highest density and we sampled 10, 000 subgroups Ui ⊆ Vi
and Uj ⊆ Vj . We then estimated the distribution of the
densities d(Ui, Uj) and we computed the KL divergence
between this and fY (t) (Eq. 3). The cross and circle mark
two values of p for which we show the corresponding
observed and model distributions.

In this example, k = 239 and thus approximately 8
bits are necessary to identify one node belonging to a k-
anonymity group (with approximately 1888 bits required
to de-anonymize the entire group). However note that the
maximum value of the divergence we observe (marked with
a cross) is approximately 3.8 bits. Moreover, we stress again
that the bits we are measuring here refer to the information
on the connections between the two groups and thus are not
necessarily all useful toward identifying the nodes.

4 EXPERIMENTAL EVALUATION

We evaluate our anonymization framework on 6 real-world
networks: 1) Twitch PT and 2) Twitch ES [32] are Twitch
user-user networks representing friend relations between
gamers streaming in Portuguese and Spanish, respectively;
3) Facebook combined [20] is a network representing Face-
book friend relations; 4) TV Shows, 5) Politician and 6)

Government [33] are represent blue verified Facebook page
networks of different categories, where the nodes are the
pages and edges are mutual likes. Table 1 shows a summary
of the structural characteristics of these 6 datasets.

For each graph, we compute the corresponding
anonymized version and we measure the amount of
structural information lost with respect to the original
graph. More specifically, we track the changes of both
network-level and vertex-level descriptors. We compute
these changes for different levels of k-anonymity corre-
sponding to different choices of the partition cardinality
l. Recall in fact that in a graph with n nodes an ε-regular
partition groups the vertices into l sets of cardinality k ≈ n

l .
We compare our method with the well-known k-degree

method [22]. Recall that k-degree only enforces anonymity
at degree level, which is easily breached by an attacker
with access to higher-order structural information. How-
ever for the same reason this is also one of the methods
that incurs in the least amount of structural information
loss. To the best of our knowledge, there is no available
implementation of the k-degree method that accounts for
all edge edit operations (additions, swaps, and removals).
For this reason, we created our own Python implementa-
tion of the algorithm of Liu and Terzi, which is available
at https://github.com/blextar/graph-k-degree-anonymity.
Our implementation is based on the dynamic-programming
algorithm to anonymize the degree sequence described in
section 8 of [22] and the graph construction algorithm Prior-
ity described in section 6.2 of [22]. It should be noted that we
also attempted to compare our method to the k-symmetry
model of Wu et al. [39], however the only implementation
of it that we could find (available at https://github.com/
Keinang/K-Anonymity) was not able to cope with the large
anonymity groups considered in this paper.

With both anonymization methods to hand, we proceeds
as follows. For each dataset and a given value of k, we
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Fig. 5: From top to bottom, cosine similarity of: 1) degree, 2) betweenness, 3) closeness, 4) and page rank centrality.

compute 50 anonymized graphs. For a given value of k and
an input graph with degree sequence d, the k-degree al-
gorithm attempts to build a k-anonymous degree sequence
d̂. If the algorithm fails to find a graph with the required
d̂, it increments the lowest values of the original degree
sequence d and then repeats the anonymization and graph
construction steps. Specifically, we increment each of the 10
lowest values of the degree sequence by 1. This process is
iterated until a k-anonymous graph is successfully created.

On the other hand, given a value of l our method
searches for the ε-regular partition with the minimum value
of ε in the range 0.01 to 0.26, with steps of 0.002. We repeat
this search 10 times and we keep the ε-regular partition with
the lowest value of ε. If two or more partitions share the
same value of ε, we keep the one with the smallest number
of irregular pairs. Finally, recall from Definition 2.2 that
an ε-regular partition contains an exceptional set V0 with
cardinality at most ε|V |. This is used to allow the other
sets to have an equal number of nodes whenever |V | is
not a multiple of l. By definition, the exceptional set forms
an irregular pair with every other set Vi in the partition,
resulting in l additional irregular pairs that need to be
anonymized. We deal with this by adding enough isolated
nodes to the original graph so that the total number of nodes
is exactly divisible by l, thus reducing the cardinality of V0 to
zero and avoiding the need to introduce additional irregular
pairs.

Note that our framework receives l, the value of the ε-
partition cardinality we seek, in input, rather than a value
of k. The value of k itself, on the other hand, depends on
both the number of nodes of the graph n and the partition

cardinality l. Table 2 has been included to help the reader
map the values of l to the corresponding values of k on
each dataset.

Finally, we want to stress that in these experiments we
chose not to enforce the connectivity of the anonymized
graphs produced by our method, preferring instead to let
the algorithm explore a larger and less constrained op-
timization space in search of an optimal value of ε. A
Python implementation of our method is available at https:
//github.com/blextar/graph-sz-anonymity.

4.1 Clustering coefficient and transitivity

We commence by characterizing the structure of both the
original and the anonymized graphs using the following
network-level descriptors: 1) clustering coefficient [38] and
2) transitivity [37].

Fig. 3 shows the how the absolute difference between the
average clustering coefficient of the original graph and the
anonymized one varies for increasing values of l (decreasing
values of k). Recall that the average clustering coefficient is
proportional to the number of triangles in a network. These
structures in turn are likely to be broken by the Erdös-Rényi
rewiring steps, particularly when the size of the anonymity
group is very large. Indeed, as k decreases, less structural
noise is injected in the anonymized graph and therefore the
closer its clustering coefficient is to the one of the original
graph. Interestingly, we note that as far as this quantity is
concerned, for small values of k the k-degree method seems
to fair better than ours (with the exception of the Twitch
datasets). It should be stressed however that large groups,
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Fig. 6: From top to bottom, RMS of: 1) degree, 2) betweenness, 3) closeness, 4) and page rank centrality.

where our method has a clear advantage over k-degree,
are preferable to small groups due to the higher level of
anonymity they enforce.

Fig. 4 shows the comparison between the two methods in
terms of graph transitivity, i.e., the ratio between the number
of closed triplets in a graph over the maximum number of
possible closed triplets, with our method performing better
on the TV shows and Politicians datasets and comparably
on the others.

4.2 Vertex centralities

Having focused on global network characteristics, we then
look at how the vertex-level structural information of the
original graphs is distorted by the anonymization proce-
dure. Specifically, we compute the following vertex-level
descriptors: 1) degree centrality, 2) betweenness central-
ity [3], 3) closeness centrality [13], and 4) PageRank [24].
Given two graphs G and G̃ and their corresponding
vertex-level descriptors x and x̃, we compare them using
the following measures: 1) cosine similarity CS(x, x̃) =
xT x̃
||x||||x̃|| and 2) Root Mean Square (RMS) RMS(x, x̃) =√

1
n

∑n
i=1(xi − x̃i)2, where xi is the value of the centrality

for the vertex vi of G and x̃i is the value of the centrality for
the vertex vi of G̃.

Figs. 5 and 6 show how these measures vary as we
increase k, for different datasets (columns) and different cen-
tralities (rows).With some exceptions, once again reducing
the value of k results in better approximations, although this
comes at the expense of decreased anonymity. In all cases,

however, we see that our method yields anonymized graphs
that are significantly closer to the original ones in terms of
vertex centrality when compared to the k-degree method.
This in turns shows that our framework can generate very
large anonymity groups with minimal information loss, as
far as vertex centrality measures are concerned. Note that
the occasional drops (increases) of the cosine similarity
(RMS) for the k-degree method when k is small are due to
the injection of noise in the original graph degree sequence
that follow an unsuccessful graph construction given an
anonymized degree sequence.

4.3 Degree distribution and edge intersection

Finally, we consider two last structural properties of the
graphs, namely the degree distribution and the edge inter-
section between the original and the anonymized graphs,
where the latter is defined as the ratio of original edges that
are also in the anonymized graph [22].

Fig. 7 shows the log-log plots of the degree distributions
of a selected number of graphs. In particular, we plot the
degree distributions of the original graphs (green) and the
graphs anonymized with our method (blue) and k-degree
(red) for varying levels of k. The scatter plots show that our
method is significantly better at approximating the original
degree sequence. This is not surprising, in fact in order
to build large anonymity groups the k-degree anonymity
requires grouping together a large number of nodes to
which the same degree is assigned, effectively generating
a markedly different degree distribution from the original
graph. This should be contrasted with our approach, which
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Fig. 7: Degree distributions of the original graphs (green) and graphs anonymized with our method (blue) and k-degree
(red) for varying levels of k (columns) and on the 1) Twitch PT, 2) Twitch ES, 3) Politicians, 4) Facebook combined, and 5)
Government datasets (rows, top to bottom).

is able to create large anonymity groups while maintaining
an anonymized degree distribution that closely resembles
the one of the original graph.

In an attempt to better quantify the distortion of the
degree distributions, we compare the distributions com-
puted on the original graphs and the ones computed on
the anonymized graphs in terms of Jensen-Shannon diver-
gence (JSD), a well-known dissimilarity measure between
probability distributions. The JSD is a symmetrized and
smoothed version of the Kullback-Leibler divergence and
takes values between 0 and 1. Fig. 8 shows how the JSD
varies for increasing size k of the anonymity groups. Recall
that a lower value of the JSD between the (normalized)
degree distributions means a lower dissimilarity and thus a
higher similarity between the degree sequences. Once again,
our method preserves the degree information significantly
better than k-degree.

Fig 9 shows instead how the edge intersection between
original and anonymized graphs varies as we increase the
value of k. The plot illustrates well the fact that selecting
the portions of the graphs to randomize using the ε-regular
partition as a guide provides an effective way to achieve

anonymity while minimizing the number of edges that need
to be deleted or added with respect to the original graph.

4.4 Runtime analysis

As a final experiment, we analyse the runtime of our
method. Table 3 shows the average runtime (± standard
error) in seconds for increasing values of l and for each
dataset. For each value of l and each choice of dataset,
the average is computed over the 50 realisation of the
anonymized graph. All runtimes are computed on a 4 cores
Xeon 5122 @ 3.60GHz with 192GB of RAM. As expected,
the runtime increases monotonically with l as well as the
vertex set cardinality. The only exception to this monotonic
increase is observed in the Twitch PT dataset when l = 32.
This appears to be due to the particular nature of this
dataset, where a significant percentage of the nodes are hubs
connected to at least 10% of the remaining nodes, as well
as the difficulty of distributing them among the l groups,
which results in a higher number of iterations needed to
find a ε-regular partition.
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Fig. 8: The Jensen-Shannon divergence between the degree distributions. Datasets: (a) Twitch PT, (b) Tv shows, (c) Facebook
combined and (d) Twitch ES.
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Fig. 9: Edge intersection between original and anonymized graphs. Datasets: (a) Twitch PT, (b) Tv shows, (c) Facebook
combined and (d) Twitch ES.

TABLE 3: Average runtime (in seconds) of our method on
the datasets considered in this study, for increasing values
of l.

Dataset l = 4 l = 8 l = 16 l = 32 l = 64 l = 128 l = 256

Twitch PT 1.28 1.85 3.91 21.58 9.99 17.57 54.84
Tv shows 8.76 12.42 16.81 37.63 48.83 67.79 106.35
Facebook 14.83 20.45 30.82 40.00 52.41 68.19 173.78
Twitch ES 19.25 26.72 36.35 51.55 61.74 93.91 190.27
Politicians 36.00 48.97 72.40 88.68 111.02 139.88 187.72
Government 49.15 76.57 111.85 158.40 199.93 247.71 312.03

5 CONCLUSION

We introduced a novel framework for the structural
anonymization of nodes participating in a network. Our
framework is based on the Szemerédi regularity lemma,
a well-know theoretical result from graph theory. The key
idea behind our approach is that of achieving k-anonymity
by selectively randomizing certain portion of the graphs
identified by the ε-regular pairs. This allows us to create
anonymous groups that are resilient to any type of structural
attack while minimizing the structural information loss. We
validated our framework by performing an extensive set
of experiments on a large number of popular real-world
datasets and considering a variety of structural measures.
The experimental evaluation confirmed the efficacy of our
approach in generating large anonymity groups with signif-
icantly lower information loss when compared to a widely
used alternative, namely k-degree anonymity.
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