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Abstract  

Thiol-ene radical coupling is increasingly used for the biofunctionalisation of biomaterials 
and the formation of 3D hydrogels enabling cell encapsulation. Indeed, thiol-ene chemistry 
presents interesting features that are particularly attractive for platforms requiring specific 
reactions of peptides or proteins, in particular in situ, during cell culture or encapsulation: 
thiol-ene coupling occurs specifically between a thiol and a non-activated alkene (unlike 
Michael addition); it is relatively tolerant to the presence of oxygen; it can be triggered by 
light. Despite such interest, little is known about the factors impacting polymer thiol-ene 
chemistry in situ. Here we explore some of the molecular parameters controlling photo-
initiated thiol-ene coupling (with UV and visible light irradiation), with a series of alkene-
functionalised polymer backbones. 1H NMR spectroscopy is used to quantify the efficiency 
of couplings, whereas photo-rheology allows correlation to gelation and mechanical 
properties of the resulting materials. We identify the impact of weak electrolytes in regulating 
coupling efficiency, presumably via thiol deprotonation and regulation of local diffusion. The 
conformation of associated polymer chains, regulated by the pH, is also proposed to play 
an important role in the modulation of both thiol-ene coupling and crosslinking efficiencies. 
Ultimately, suitable conditions for cell encapsulations are identified for a range of polymer 
backbones and their impact on cytocompatibility is investigated for cell encapsulation and 
tissue engineering applications. Overall our work demonstrates the importance of polymer 
backbone design to regulate thiol-ene coupling and in situ hydrogel formation. 
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Introduction  

Thiol-ene radical coupling is now widely used for the development of biomaterials, and in 

particular for hydrogel design, from scaffolds for 3D cell culture and tissue engineering1, 2, 

to controlled release platforms3, 4 and for the functionalisation of biointerfaces5, 6 and 

biosensors7, 8. The simplicity with which thiol residues can be introduced in peptide 

sequences and on polymer backbones has enabled the integration of a wide range of 

polymer backbones including non-degradable poly(ethylene glycol)-based star polymers9, 10 

and glycosaminoglycans such as hyaluronic acid11 and chondroitin sulfate12, to degradable 

backbones such as gelatin13. This flexibility enables the design of multi-functional and 

responsive matrices, for example allowing the control of mechanical properties, matrix 

density, charge, cell adhesion or cell-mediated degradability14-16. In addition, the 

cytocompatibility of this coupling, even with UV initiated systems17, enables the temporal 

control of mechanical properties15, cell adhesion18 and patterning of biomaterials and 

hydrogels14, 19. 

Although parameters controlling the kinetics and reactivity of alkenes with thiol molecules 

have been explored extensively, in particular in the context of organic synthesis and 

hydrophobic resin curing20-23, the impact of environmental molecular factors on thiol-ene 

radical chemistry in aqueous media should be studied more extensively. Activated alkenes 

such as acrylates and methacrylates support radical thiol-ene mechanisms, however these 

can also result in competing chain growth polymerisations. In contrast, strained norbornene  

residues are particularly active with respect to thiol-ene propagation and chain transfer 

steps21, 23, followed by vinyl ethers and vinyl silazanes. The impact of thiol chemistry has 

received comparatively less attention, however it has emerged as an important factor 

regulating thiol-ene radical efficiency24, primarily through the modulation of the pKa of 

corresponding thiolates and transfer of radical to moieties, for example present in natural 
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amino acids. Therefore, such considerations may have a direct impact on the design of 

bioactive peptide sequences for coupling to biomaterials via thiol-ene coupling or Michael 

additions. In addition, although a restricted number of photoinitiators have been proposed 

for UV-light activation (i.e. mainly Irgacure 2959 and lithium acylphosphinate), initiators 

suitable for visible light activation have also been proposed25-28. Although these initiators, 

including Eosin Y, have the advantage of avoiding the use of UV light and to be very water 

soluble and cytocompatible, their efficiency for the promotion of radical thiol-ene coupling 

has not been extensively examined. However, their chemical structure predicts a very strong 

impact of the molecular environment and pH on their photo-active properties. 

In turn, some of the parameters regulating the mechanical properties of radical thiol-ene 

based hydrogels have been explored. As for other hydrogel design, the concentration of 

polymer and monomer solutions used during crosslinking has a criticial impact on the 

macroscopic mechanical properties of thiol-ene hydrogels, with moduli ranging from the 0.1-

100 kPa1, 29-31. In addition, the degree of functionalisation (either of thiols or alkene 

residues)32 and the molecular weight of the polymer backbones also regulate mechanical 

properties of these hydrogels, as altering the molar mass between crosslinks and regulating 

local crosslinking densities. In this respect, thiol-ene based networks display better control 

of local heterogeneity than their counterparts formed via chain growth polymerisation of 

acrylates and acrylamides (as in polyacrylamide and poly(oligoethylene glycol acrylate))33, 

at least prior to swelling, although loop defects are still expected to contribute to delay 

gelation and alter mechanical behaviours. Finally, the ratio of thiol and alkene residues has 

been shown to play an essential role in the control of thiol-ene hydrogel mechanics and 

gelation kinetics14, 27, 34, 35. Typically, stoechiometric alkene:thiol ratios typically lead to 

fastest gelation and highest shear moduli. However, it is often necessary to retain a 

significant fraction of free alkenes (or thiols, depending on the system) for functionalisation 

with mono-functional bioactive molecules such as cell adhesive peptides or growth factors. 
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Therefore, the study of off-stoehiometric hydrogels has important practical applications in 

the field of tissue engineering. 

Comparatively, the impact of macromolecular structure on thiol-ene radical coupling 

reactivity and how, in turn, this regulates crosslinking and, ultimately, mechanical properties 

should be further studied. For example, the presence of acidic and basic residues that may 

alter the charge density along polymer backbones, the local concentration of thiols, the local 

molecular diffusion and chain conformation, has received little attention with respect to its 

impact on thiol-ene coupling efficiency and mechanical properties. In this study, a range of 

alkene-functionalised polymer backbones has been synthesised, displaying polycationic, 

polyanionic and neutral hydrophilic structures. The impact of such architectures, combined 

to the pH of the medium, on thiol-ene coupling efficiency is quantified by NMR. In the case 

of norbornene derivatives, comparisons are made between UV- and visible-light initiated 

systems. In turn, the impact of this molecular environment on hydrogel mechanics is 

explored by photo-rheology (Figure 1) and compared to other factors regulating mechanical 

properties, such as polymer concentration. Finally, we investigate the use of these hydrogels 

for the encapsulation of endothelial cells and fibroblasts. 

 

Figure 1. Schematic representation of thiol-ene radical reaction and hydrogel formation based alkene-functionalised 
polymer backbones and dithiol terminated crosslinkers. The black and red arrows indicate local interactions between the 
alkene and thiol residues with the molecular structure of the polymer backbone, affecting the efficiency of the thiol-ene 
coupling. 
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Experimental section 

Materials. Methanol (99.9%), ethanol (99.5%), eosin Y (99 %), Triethanolamine (TEOA, 

99%, hydrochloric acid), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 

(EDC),  N-hydroxysuccinimide (NHS), 3-(trimethoxysilyl)propyl methacrylate (98%), N-

acetyl L-cysteine (99%), allylamine (98%), PBS tablets, Dulbecco's PBS, 2-hydroxy-4’-(2-

hydroxyethoxy)-2-methylpropiophenone (IRG2959, 98%), poly(ethylene glycol) dithiol 

(PEGDT, Mn 1000), triethylamine (99%), 4-pentenoyl chloride (98%), 5-bromo-1-pentene 

(95%), 2-(dimethylamino)ethyl methacrylate (containing 700-1000 ppm monomethyl ether 

hydroquinone as inhibitor, 98%), ethyl α-bromoisobutyrate (98%), ethanol (99.8%), 2,2'-

bipyridine (>99%), copper (I) chloride (>99.995% trace metals basis), poly(methyl vinyl ether 

alt-maleic anhydride) (Mw ~216 kg/mol average Mn ~80 kg/mol), 2-chloroethylamine 

hydrochloride (99%), 2-ethyl-2-oxzoline (99%), methyl p-toluenesulfonate (97%), sodium 

carboxymethyl cellulose (Mw 90 and 250 kg/mol, degree of substitution 0.7), allyl bromide 

(97%), anhydrous dimethylsulfoxide (>99.9), sodium hydroxide pellets, poly(acrylic acid) (Mv 

~450 kg/mol), deuterium oxide (99.9% atom% D), deuterium chloride solution (37 wt% in 

deuterium oxide, 99% atom% D), sodium deuteroxide (40% in deuterium oxide 99 atom% 

D), hydrochloric acid (37%), anhydrous magnesium sulphate (99.5%), sodium bicarbonate 

(99.7%), sodium chloride (99.5%), sodium hydroxide (97%), dichloromethane (99.5%), 

anhydrous acetonitrile (99.8%),  anhydrous dichloromethane (99.8%), anhydrous 

dimethylformamide (99.8%), methanol (HPLC 99.9%), tetrahydrofuran (99.9%), diethyl 

ether (99%), , acetonitrile (HPLC 99.9%), heptane (HPLC 99%), dimethylformamide 

(pharmaceutical secondary standard) and silica gel were obtained from Sigma Aldrich. 

Chloroform (AnalaR 0.6% of ethanol) and acetone (GPR) was purchased from VWR. 

Potassium permanganate (98%) was purchased from Alfa Aesar. Chloroform-D (99.8%) 
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was purchased from Cambridge Isotope Laboratories Inc. Sodium hyaluronic acid (HA, 200 

kDa) was purchased from Lifecore ltd. 5-norbornene-2-ethylamine was ordered from Tokyo 

Chemical Industry Co. Ltd. 

Instrumentation. 1H NMR spectroscopy was carried out using a Bruker AV 400 and AVIII 

400. Details of assignment of peaks can be found in the Supplementary Information. ATR- 

FTIR were produced using a Bruker Tensor 27 spectrometer equipped with a MCT detector. 

Results were acquired at a resolution of 16 cm-1 and a total of 128 scans per run in the 

region of 600-4000 cm-1. A Leica DMI4000B epifluorescent microscope fitted with a HCX PL 

FLUOTAR 10x/0.3 PJ1 objective and a Leica DFC300 FX CCD camera was used to image 

cells in 3D hydrogels. Rheological measurements were performed using a DHR-3 rheometer 

from TA Instruments fitted with a UV accessory and a 20 mm upper parallel plate. The UV 

curable gels were sandwiched between two coverslips glued to the plates of the rheometer 

at a fixed gap of 250 μm. Coverslips were functionalised with a monolayer of methacrylate 

as previously reported36: glass coverslips (20 mm) were plasma oxidised for 10 min and 

incubated in a solution of anhydrous toluene (30 mL) with 3-(trimethoxysilyl)propyl 

methacrylate (30 µL) and triethylamine (50 µL) for 24 h. The slides were washed with 

deionised water followed by ethanol and dried under a stream of nitrogen. The glass slides 

were glued to the quartz bottom plate and top geometry before rheology measurements. 

Oscillations were set to controlled strain mode at 1 % strain. For in situ monitoring of the 

progression of gelation, a time sweep was performed: 30 s of equilibrium without UV 

exposure, UV irradiation for 2 min and the UV light was turned off for the remaining part of 

the experiment. Frequency sweep and amplitude sweep measurements were carried out 

after UV curing.  A Thorlabs fiber light source (400-1300 nm) was used for visible light photo 

rheology and the light intensity was adjusted to 50 mW/cm2.  
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TGA measurements were performed using a TGA Q500 from TA instruments, 25-1000 ºC 

ramp, 3 ºC/min. TGA traces were analysed to calculate the percentage of water and swelling 

of the gels. The percentage of water in gels (W%) was calculated from the percentage of 

polymer in the gel (P) obtained from the TGA traces:	𝑊% = 100 − 𝑃 (equation 1). The 

degree of swelling of gels (Ws) was calculated from the percentage of water in the gel before 

(Wi) and after (Wf) swelling in PBS (or water, depending on the conditions): 𝑊𝑠	(%) =

(𝑊𝑓 −𝑊𝑖)/𝑊𝑖 (equation 2). GPC analysis was performed using an Agilent 1260 Infinity 

system equipped with a refractive index and variable wavelength detector, 2 PLgel 5 μm 

mixed-C column (300 x 7.5 mm), a PLgel 5 mm guard column (50 x 7.5 mm) operated in 

DMF with NH4BF4 (5 mM). The instrument was calibrated with poly(methyl methacrylate) 

standards (5.5 to 46.9 kg/mol). All samples were filtered through 0.2 μm nylon 66 before 

analysis. 

Statistical analysis. All data were analysed by Tukey's test and significance was 

determined by * p < 0.05, ** p < 0.01: *** p < 0.001. A full summary of statistical analysis is 

shown in Tables S1-4. 

Synthesis of polymers37. Synthesis and funtionalisation of alkene functional 

poly(dimethylamino ethyl methacrylate) (P1). The synthesis of PDMAEMA was modified 

from another protocol (Scheme S1)38. A solution of ethanol:deionised water (1:4) was 

prepared and degassed for 30 min. 2-(dimethylamino) ethyl methacrylate (0.0954 mol) was 

weighed into a flask containing ethyl α-bromoisobutyrate (0.00037 mol), dissolved in 

ethanol-water 1:4 (7.5 mL) and degassed for 30 min. Into a second flask, 2,2'-bipyridine (0. 

19 mmol) was weighed dissolved in ethanol-water 4:1 (7.5 mL) and degassed for 30 min. 

To the 2,2'-bipyridine solution was added copper (I) chloride (0.19 mmol), the brown solution 

was sonicated for 10 minutes. The catalyst solution was transferred to the monomer solution 

and the reaction was stirred under inert atmosphere for 5 h at 50 ºC. The ethanol was 
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evaporated prior to freeze-drying of the remaining solution. The obtained solid was dissolved 

in tetrahydrofuran and added to silica gel (20 g), agitated for 1 h, filtered and concentrated 

using a rotary evaporator, then precipitated in heptane, filtered and dried under reduced 

pressure. PDMAEMA characterisation: GPC, Mn 67.9 kg/mol, ÐM 1.6. 1H NMR, (400 MHz; 

D2O) δ 0.75-1.2 (3H, m), 1.7-2.0 (2H, m), 2.3 (6H, s), 2.6-2.8 (2H, m) and 4.1 (2H, m) (Figure 

S1a). FTIR, v/cm-1 2900 (w, C-H), 1720 (s, C=O), 1261 (m, C-N) and 1100 (s, C-O).  

 

Scheme 1. Chemical structure of the different alkene-functionalised polymers studied. 

 

PDMAEMA (1 eq., 1 g, 0.0064 mol) was then dissolved in dimethylformamide (10 mL), and 

5-bromo-1-pentene (2.5 eq., 0.015 mol) was added before the reaction mixture was stirred 

overnight at 70 ºC. The resulting polymer was precipitated in diethyl ether and the remaining 

solid was dissolved in methanol and precipitated in diethyl ether. The recovered polymer 

was precipitated from methanol twice more. The polymer (P1) was recovered and dried 

under reduced pressure. 1H NMR,  (400 MHz; D2O) δ 0.85-1.4 (3H, m), 1.9-2.1 (2H, m), 2.1-

2.3 (4H, m), 3.3 (6H, s), 3.4-3.5 (2H, m), 3.7-4.0 (2H, m), 4.3-4.6 (2H, m) 5.0-5.2 (2H, m) 

and 5.8-6.0 (1H, m) (Figure S1b). FTIR, v/cm-1 ~2900 (w, C-H), 1727 (s, C=O), 1643 (w, 
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C=C), 1243 (m, C-N) and 1137 (s, C-O) (Figure S2). GPC Mn 67.9 kg/mol, ÐM 1.60 measured 

in DMF with NH4BF4 (5 mM). The alkene functionalisation level was calculated as 100 %. 

Synthesis of 2-butenyl-2-oxazoline. The monomer 2-butenyl-2-oxazoline was synthesised 

following an adapted protocol reported by Gress et al (Scheme S2).39  2-chloroethylamine 

hydrochloride (1.2 eq., 0.092 mol) was transfered to a round bottom flask and purged with 

inert gas for 30 minutes. Anhydrous dimethylformamide (80 mL) was subsequently added, 

under inert atmosphere. The flask was placed into an ice bath under inert gas atmosphere 

and triethylamine (2.5 eq., 0.194 mol) was added, followed by dichloromethane (75 mL) and 

pentenoyl chloride (1 eq., 0.077 mol). The reaction was stirred in a water bath for 24 h under 

inert atmosphere. A brown solution and cream precipitate formed. The flask content was 

added into a separation funnel with dichloromethane (200 mL). With the addition of 

dichloromethane, the precipitate dissolved. The organic solution was extracted from 

hydrochloric acid (1M, 500 mL four times), saturated sodium carbonate (500 mL twice), then 

from brine (500 mL, four times). The organic layers were recovered and dried over 

magnesium sulphate. The organic layer was evaporated to yield a brown oil. 1H NMR, (400 

MHz; CDCl3) 2.2-2.35 (4H, m), 3.55 (4H, m), 4.9-5.0 (2H, m) and 5.7-5.9 (1H, m).  Crushed 

potassium hydroxide (1eq., 0.08 mol) was added to an oven-dried round bottom flask and 

the system was purged with inert gas for 30 min. Dry methanol (40 mL) was added, followed 

by N-(2-chloroethyl)-4-pentenamide (1eq.). The reaction was heated to 70 ºC for 24 h. The 

potassium chloride salt that precipitated was filtered and the remaining solution was 

evaporated. The content was distilled over calcium hydride to yield a clear oil. 1H NMR, (400 

MHz; CDCl3) 2.4 (4H, m), 3.8 (2H, t), 4.3 (2H, t), 5.0-5.1 (2H, m) and 5.8-5.9 (1H, m). FTIR, 

v/cm-1 ~2900 (w, C-H), 1675 (s, C=O), 1174 (w, C-N).  
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Synthesis of poly(2-butenyl-2-oxazoline)-co-(2-ethyl-2-oxazoline) (P2). 

2-Ethyl-2-oxazoline (distilled over calcium hydride, 80 eq., 0.08), 2-butenyl-2-oxazoline (20 

eq.) and anhydrous acetonitrile (20 mL) were added into a microwave flask containing a 

magnetic stirrer. Methyl p-toluenesulfonate (1 eq.) was then added against a flow of 

nitrogen. The reaction vessel was heated using a microwave reactor, 140 ºC for 30 

minutes.40 The reaction was terminated by addition of a drop of water and precipitated in 

cold diethyl ether three times. The remaining polymer (P2) was recovered and dried under 

reduced pressure. 1H NMR, (400 MHz; CDCl3) 1.1 (2H, m), 2.1-2.5 (8H, m), 3.4 (2H, m), 5.0 

(2H, m) and 5.8 (1H, m) (Figure S3). FTIR, v/cm-1 ~3400 (br, O-H), ~2900 (w, C-H), 1633 

(s, C=O), 1180 (w, C-N) (Figure S4). The copolymer composition was calculated as 15% of 

butenyl side chains. GPC Mn 6.3 kg/mol, ÐM 1.62 measured in DMF with NH4BF4 (5mM).  

Synthesis of allylamine functionalised poly(methyl vinyl ether alt-maleic anhydride) (P3). 

Allylamine (1 eq., 0.08 mol) was dissolved in acetonitrile (250 mL). Poly(methyl vinyl ether 

alt-maleic anhydride) (1eq.) was dissolved in acetonitrile (200 mL) in a second flask. The 

poly(methyl vinyl ether alt-maleic anhydride) solution was slowly added to the amine solution 

with vigorous stirring. On addition of poly(methyl vinyl ether alt-maleic anhydride) to the 

allylamine, a white precipitate formed. The mixture was stirred at 70 °C for 24 h and room 

temperature for 48 h. The acetonitrile was evaporated and dissolved in distilled water. The 

polymer (P3) was precipitated in acidic water and recovered by freeze drying (Scheme S3). 

1H NMR, (400 MHz; D2O) 1.3-2.2 (2H, m), 2.5-3.0 (2H, m), 3.1-3.5 (3H, m), 3.6-3.8 (2H, m), 

4.0-4.2 (1H, m), 5.0-5.3 (2H) and 5.6-5.9 (1H, m) (Figure S5). FTIR, v/cm-1 ~3400 (br, O-H), 

~2900 (w, C-H), 1556 (s, C=O), 1388 (w, C-N) and 1072 (w, C-O) (Figure S6). The 

functionalisation  ratio was found to be quantitative (100%). 

Synthesis of poly(acrylic acid-co-pentenyl acrylate) (P4). Poly (acrylic acid) (1 eq., 5 g, 0.069 

mol) was dissolved in a sodium hydroxide solution (1 mol/L, 52.5 mL). 5-bromo-1-pentene 
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(0.25 eq., 0.0174 mol) was dissolved in dimethylformamide (10 mL) and the resulting 

solution was then transferred to the poly (acrylic acid) solution. The mixture was heated to 

70 °C overnight. The cooled reaction mixture was precipitated in acetone: diethyl ether (3:1) 

redissolved in deionised water and precipitated in acetone again. The polymer P4 was dried 

under reduced pressure (Scheme S4). 1H NMR, (400 MHz; D2O) δ 1.5-1.7 (6H, m), 2.1 (1H, 

m), 4.0 (2H, m), 5.0 (2H, m), and 5.86 (1H, m) (Figure S7). FTIR, v/cm-1 ~3400 (w. O-H), 

~2900 (w, C-H), 1679 (m, C=O) and 1552 (s, C=O) (Figure S8). The functionalisation ratio 

was calculated as 5.2 %. 

Synthesis of carboxymethyl cellulose allyl ester (P5). Sodium carboxymethyl cellulose (1 

eq., 0.0048 mol) was dissolved in distilled water (50 mL) and a solution of allyl bromide (0.76 

eq., 0.00366 mol) in dimethylsulfoxide (50 mL) was added to this mixture, and stirred 

overnight at 70 °C. The resulting product P5 was purified by two successive precipitation in 

acetone and dried under reduced pressure (Scheme S5). 1H NMR, (400 MHz; D2O) δ 3.2-

4.6 (18H, m) 5.45 (2H, m) and 6.0 (1H, m) (Figure S9). FTIR, v/cm-1 ~3300 (m, O-H), ~2900 

(w, C-H), 1589 (s, C=O) and 1008 (s, C-O) (Figure S10). The functionalisation  ratio was 

calculated as 13.4%. 

Synthesis of functionalised norbornene-carboxymethyl cellulose (P6) and norbornene-

functionalised hyaluronic acid (P7). Functionalised CMC-NB (P6) was synthesised following 

a protocol adapted from the literature41. In brief, 0.25 g (1.2 mmol of repeat units) of sodium 

CMC (CMC 90 kDa was used for NMR experiment whereas CMC 250 kDa was used for 

rheology and gelation studies) were dissolved in 25 mL deionized water. 0.148 g (0.77 

mmol) EDC and 89 mg (0.77 mmol) NHS were added to the solution, prior to 0.1 mL (0.8 

mmol) of 5-norbornene-2-ethylamine. The solution became cloudy and was left to stir for 18 

to 24 h at room temperature. The solution was added dropwise to 250 mL ice-cold acetone 

containing sodium chloride (0.75 g) and stirred for an hour at room temperature. Acetone 
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was decanted to yield a white precipitate. The precipitate was dissolved in 22 mL of 

deionized water and dialyzed for 3 d prior to removing water by lyophilization, affording a 

white powder of purified CMC-NB P6. 1H NMR (400 MHz; D2O) δ 3.2-4.6 (18H, m) and 5.9-

6.4 (2H, m). The functionalisation ratio was calculated as 22.5%. HA-NB (P7) was 

synthesized following the same protocol. 1H NMR (400 MHz; D2O) δ 1.8 (3H, m) 5.9-6.4 (2H, 

m). The functionalisation ratio was calculated as 19%. 

Quantification of thiol-ene coupling efficiency via 1H-NMR. Thiol-ene coupling between 

the different polymers studied (P1-P3, 45 mM with respect to alkenes) and N-acetyl L-

cysteine (45.4 μmol, 45 mM) was quantified by 1H NMR, in deuterated-PBS (1 mL; see 

Scheme S6 for model reaction with P2). A stock solution for Irgacure 2959 was prepared in 

methanol (0.198 M, 0.0444 g/mL). 5 mol % (12.5 μL; final concentration of 2.25 mM) of 

photoinitiator were added to the polymer mixture from this stock solution. The pH of the 

solutions was adjusted using the NaOD or DCl. The samples were irradiated with UV (17 

mW/cm2, 350−500 nm) 300 s (power 5.10 J/cm2). The UV light source (strictly speaking blue 

to UV light) used to initiate reactions was an Omnicure series 1500 lamp. An ILT 1400-A 

radiometer photometer from international light technologies was used to measure the UV 

light intensity. 1H NMR was analysed (Figure S11 for examples for P2) and conversions 

were calculated via the consumption of the alkene peaks with respect to the formation of the 

product peaks.  

To study coupling with P4, a similar protocol was used, with the following changes: N-acetyl 

L-cysteine (14 µmol, 14 mM) and alkene-functionalised polymer (P4) (0.025 g, 14 µmol, 14 

mM) were dissolved in deuterated-PBS. To these thiol−ene solutions were added 1 mol % 

(final concentration, 140 µM) photoinitiator from the stock solution. The pH values of the 

solutions were adjusted prior to irradiation with UV light (300 s, 52 mW/cm2 15.6 J/cm2). For 

coupling with P5, N-acetyl L-cysteine (23.6 μmol, 23.5 mM) and the alkene-functionalised 
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polymer P5 (0.05 g, 23.5 μmol, 23.5 mM) were dissolved in deuterated-PBS (1 mL). To 

these thiol−ene solutions was added 4.4 mol % (1 mM final concentration) photoinitiator 

from stock solution. The pH values of the solutions were adjusted and irradiated with UV as 

above (300 s, 5.10 J/cm2). For coupling with P6, N-acetyl L-cysteine (34.5 μmol, 34.5 mM) 

and the norbornene-functionalised P6 (0.05 g, 34.5 μmol, 34.5 mM) were dissolved in 

deuterated-PBS (1 mL, 1:1 thiol:alkene ratio). To the thiol−ene solution was added 5 mol % 

(1.725 mM) of photoinitiator from a stock solution. The pH value of the solutions was 

adjusted and the resulting solutions were irradiated with UV as above (300 s, 5.10 J/cm2).  

Hydrogel preparation. To make hydrogels for mechanical characterisation and swelling, 

solutes were dissolved in PBS: polymer backbones (P1-P7), crosslinkers (PEGDT) and IRG 

2959 (from a 250 mg/mL solution in in methanol). Crosslinked hydrogels (thiol:ene 0.5:1 for 

P1-P4 and 0.64:1 for P5) were generated see Tables 1 and 2 for details. For P5, P6 and P7 

gels at different pH, solutions at 10 mg/mL were prepared and the pH of the gel mixture was 

altered using sodium hydroxide or hydrochloric acid. The gel mixtures were transferred to 

the rheology geometry (quartz plate), for characterisation of shear properties, and 8 mm 

cylindrical moulds for TGA and FTIR characteristion. Curing was carried out using an 

Omnicure series 1500 lamp 320-500 nm light source (17 mW/cm2, power 2.04 J/cm2). 

Samples for TGA and FTIR characterisation were cured for 120 s. Hydrogels cured using 

visible light (400-1300 nm, 50 mW/cm2) were irradiated for 150 s in the presence of 0.005% 

EY (w/v) and 0.1% TEOA (v/v) (see Table 3). Hydrogels were characterised by FTIR-ATR 

after dehydration (Figure S12), confirming the retention of the expected chemical structure 

and combination with bands associated with the crosslinker (poly(ethylene glycol) dithiol; C-

O stretching vibration at 1050-1100 cm-1).  
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Table 1. The concentrations of the components used to generate gels from P1-P3 in molar concentration and mg/mL. Gels 
were made using thiol:ene 0.5:1 mol ratio, 5 mol% photoinitiator and 120 s UV exposure (17 mW/cm2). Average modulus 
(kPa) and average time taken to reach maximum storage modulus  (Gt) have been reported (from experiments carried out 
at pH 7.4). 

Gel Alkene 
concn 
(mM) 

Thiol 
concn 
(mM) 

Thiol:ene 
ratio 

Alkene 
(mg/mL) 

PEGDT 
(mg/mL) 

IRG 2959 
(mg/mL) 

Modulus 
(kPa) 

Gt 
(s) 

P1S2 90 45 0.5:1 18.2 22.5 0.51 No gel - 
P1S3 135 67.5 0.5:1 27.3 33.8 0.76 0.480 101 
P1S4 180 90 0.5:1 36.4 45 1.01 2.35 100 
P1S5 225 112.5 0.5:1 45.5 56.3 1.27 7.47 97 
P2S2 90 45 0.5:1 60.7 22.5 0.51 0.429 100 
P2S3 135 67.5 0.5:1 91.1 33.8 0.76 5.11 63 
P2S4 180 90 0.5:1 121.5 45 1.01 11.09 62 
P2S5 225 112.5 0.5:1 151.8 56.3 1.27 16.38 60 
P3S2 90 45 0.5:1 19.2 22.5 0.51 0.155 118 
P3S3 135 67.5 0.5:1 28.8 33.8 0.76 1.41 111 
P3S4 180 90 0.5:1 38.4 45 1.01 5.3 107 
P3S5 225 112.5 0.5:1 48.0 56.3 1.27 11.08 97 
P4S2 90 45 0.5:1 154.7 22.5 0.51 3.22 112 
P4S3 135 67.5 0.5:1 232.0 33.8 0.76 17.75 111 
P4S4 180 90 0.5:1 309.3 45 1.01 No gel - 
P4S5 225 112.5 0.5:1 386.7 56.3 1.27 No gel - 

 

Table 2 The concentration of the components used to generate gels from P5-P7 in molar concentration and mg/mL.  Gels 
were generated using 120 s UV exposure exposure (17 mW/cm2). Average modulus (kPa) and average time taken to 
reach maximum storage modulus (Gt) are also reported (from experiments carried out at pH 7.4). 

Gel Alkene 
concn 
(mM) 

Thiol 
concn 
(mM) 

Thiol:ene 
ratio 

Alkene 
(mg/mL) 

PEGDT 
(mg/mL) 

IRG 2959 
(mg/mL) 

Modulus 
(kPa) 

Gt 
(s) 

P55 2.35 1.5 0.64:1 5 0.65 0.17 0.189 109 
P510 4.7 3.0 0.64:1 10 1.3 0.33 0.465 89 
P520 9.4 6.0 0.64:1 20 2.6 0.67 1.929 85 
P6uv 5.2 5.2 1:1 10 2.6 0.064 0.624 41 
P7uv 4.85 4.85 1:1 10 2.42 0.064 0.706 37 

 

Table 3 The concentration of components used to generate gels from P6-P7 via visible light mediated photo-initiation, in 
molar concentrations and mg/mL. Gels were cured for 120 s with visible light exposure (50 mW/cm2) in the presence of 
0.1 v/v% TEOA. Average modulus (kPa) and average time taken to reach maximum storage modulus (Gt) are also reported 
(from experiments carried out at pH 7.4). 

Gel Alkene 
concn 
(mM) 

Thiol 
concn 
(mM) 

Thiol:ene 
ratio 

Alkene 
(mg/mL) 

PEGDT 
(mg/mL) 

EY 
(w/v%) 

Modulus 
(kPa) 

Gt 
(s) 

P6EY 5.17 5.2 1:1 10 2.6 0.005 0.519 69 
P7EY 4.85 4.85 1:1 10 2.42 0.005 0.255 101 
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Cell culture in hydrogels. HUVECs (Lonza, C2519A) were routinely grown in EBM-2 

supplemented with ECGF. For fibroblast culture, HCA2 dermal fibroblasts were used42. Cells 

were routinely grown in DMEM supplemented with 10% FBS, 1% penicillin streptomycin and 

1% glutamine. The medium was changed every 2-3 days and cells were sub-cultured each 

week using trypsin/versene. Cells were maintained at 37ºC in a humidified atmosphere 

containing 5% CO2. Hydrogels for cell culture were generated from corresponding polymer 

solutions in PBS (refer to Table 4). Solutions in PBS were filtered through a 0.2 µm supor 

membrane pore for sterilisation. Cells were added (HUVECs passage 2-5, 1 million cells/mL 

gel; dermal fibroblasts, 0.5 million cells/mL gel) and cured using UV light (120 s, 17 mW/cm2, 

power 2.04 J/cm2). Gels with 3D encapsulated cells were washed with PBS and medium 

before adding medium and incubation for 24 h. The medium used for HUVECs was EBM-2 

and for dermal fibroblasts was DMEM. Live/dead assays were performed on the 3D 

encapsulated cells at 24 h to study the cell viability. Cells were stained green with calcein 

(0.5 µL/mL) and red with ethidium homodimer-1 (2 µL/mL) in medium (serum-free) for 20 

minutes, washed with medium and incubated 15 minutes before imaging. Epifluorescence 

images were produced using 10x objective and analysed using Image J. Penicillin 

streptomycin (5000 U/mL), Calcein was obtained from life technologies. FBS, South 

American Origin was purchased from Labtech. DMEM and calcein were obtained from life 

technologies. L-glutamine (200 mM), versene, trypsin (0.25%) phenol red and ethidium 

homodimer-1.were obtained from Thermo Fisher Scientific. HUVECs medium EBM-2 was 

purchased from Lonza. Custom peptides GCGGRGDSPG (RGD) and 

GCRDVPMS↓MRGGDRCG (VPM) (↓ indicates the cleavage site) were purchased from 

Proteogenix, France. 
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Table 4 The concentration of the components used  to generate P2 gels in molar concentration and weight percent. Gels 
were generated using a thiol:ene 0.5:1 ratio (for polymer and crosslinkers), 10 mol% RGD, 0.5 mol% PI and 120 s UV 
exposure. 

Gel 
VPM:PEGDT 

Alkene 
concn 
(mM) 

Thiol 
concn 
(mM) 

Thiol-ene 
ratio 

P2 
(mg/mL) 

PEGDT 
(mg/mL) 

VPM 
(mg/mL) 

RGD 
(mg/mL) 

IRG 2959 
(mg/mL) 

P2S3  135 67.5 0.5:1 91.1 33.8 0 12 0.76 
P2S4  135 67.5 0.5:1 91.1 33.8 0 12 0.76 
P2S5  135 67.5 0.5:1 91.1 33.8 0 12 0.76 

P2S3 100:0 135 67.5 0.5:1 91.1 0 57.3 12 0.76 
P2S3 75:25 135 67.5 0.5:1 91.1 8.5 42.9 12 0.76 
P2S3 50:50 135 67.5 0.5:1 91.1 16.9 28.6 12 0.76 
P2S4 75:25 180 90 0.5:1 121.5 11.3 57.3 16 1.01 
P2S5 75:25 225 112.5 0.5:1 151.8 14.1 71.6 19 1.27 

 

Results and dicussion 

Effect of the molecular environment on thiol-ene coupling efficiency. Given the 

importance of the protonation state of thiols to the formation of thiyl radicals24, 43, we first 

investigated the impact of pH on coupling efficiencies to the model thiol acetyl cysteine to a 

range of alkene-functionalised hydrophilic polymers (with thiol:olefin ratios of 1:1). We 

selected these polymers based on their neutrality (for the poly(2-alkyl-2-oxazoline) polymer 

P2) and their charge (positively charged as for the quaternized poly(dimethylaminoethyl 

methacrylate) P1 and negatively charged for the maleic anhydride copolymer P3, the 

functionalised poly(acrylic acid) P4 and carboxymethyl cellulose P5; see Scheme 1). 

Polyelectrolytes such as poly(acrylic acid), carboxymethyl cellulose and hyaluronic acid are 

often used as backbones for the formation of hydrogels via thiol-ene chemistry. By selecting 

a range of poly(anions) with a range of charge density (P3-P5), we aimed to investigate how 

such electrostatic environment would impact on thiol-ene coupling. 
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Figure 2. a) Impact of the backbone chemistry and pH of the reaction milieu on thiol-ene conversion with N-acetyl L-
cysteine (thiol:ene 1:1, 45µM, 5 mol% photoinitiator, 300 s UV exposure, 17 mW/cm2). Lines are only intended as a guide 
for the eye. b) 1H NMR spectra for the thiol-ene reaction of polymer P2 with N-acetyl L-cysteine, focusing on the alkene 
protons and those associated with the formation of thioether, at different pH.	 
 

To mimic the environment typically used for the in situ formation of hydrogels for cell 

encapsulation or tissue engineering, thiol-ene radical coupling was carried out in deuterated 

phosphate buffer saline and monitored by 1H NMR (Figure 2a and b, Scheme S6 and Figure 

S11) and initiated by Irgacure 2959. Advancement of these reactions at different pH was 

quantified via the integration of peaks associated with protons adjacent to the thiol and 

formed thioeter, compared to those of alkene protons. For P1 and P2, coupling was found 
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to be efficient (> 95 %) up to pH 7.0, prior to sharp decrease at higher pH, due to the 

predominance of the thiolate forms of acetyl cysteine in basic conditions (pKa of 9.524, 44). 

This is consistent with coupling efficiencies previously reported at different pH in PBS for 

model thiol-ene coupling reactions24. For terminal olefins, coupling was found to be efficient 

at low to neutral pH prior to sharply decreasing, depending on the pKa of the thiol involved. 

Hence it was identified that terminal cysteines are poorer anchors for radical thiol-ene 

coupling than acetyl or non-terminal cysteines, due to the reduction of their pKa. Consistent 

with this report, the polycation P1 displayed high reaction efficiencies as the olefin is 

sufficiently distant from the ammonium group to avoid overlap of the single occupied 

molecular orbital, centered on the carbon radical in the transition state, with the ammonium 

residue24. 

In contrast, coupling of acetyl cysteine to negatively charged polymers was substantially 

reduced (Figure 2a). Thiol-ene reaction efficiency was above 80% at pH below 7.0 for P3 

and P5, below the coupling observed for P1 and P2. However, the striking reduction in thiol-

ene efficiency observed at higher pH (> 8.0-9.0) for P1 and P2 occurred at lower pH in the 

case of P3 and P5. Strikingly, thiol-ene efficiency to the pentenyl-functionalised poly(acrylic 

acid) P4 was reduced to 60% at pH 4.0-5.0 and the drop observed at higher pH occurred as 

early as pH 6.0, with efficiencies below 30% at pH above 7.0. Therefore, an increase in the 

density of carboxylate groups is clearly associated with a reduction in thiol-ene efficiency. 

Despite local pH effects, which will result in a significant level of protonation even at neutral 

pH45, 46, a high negative potential is expected within polyanionic electrolytes. As a result, this 

local increase in negative charge density may alter the diffusion of negatively charged small 

molecules, such as acetyl cysteine, and prevent accessibility to alkene residues. 
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Figure 3. a) Series of alkene reacted with N-acetyl-L-cysteine (Thiol:ene 1:1, 45 µM). With UV irradiation: 5 mol% Irgacure 
2959, 300 s exposure at 17 mW/cm2. Blue, 5-Norbornene-2-carboxylic acid; Green, norbornene derivative 1. With visible 
light irradiation: 0.005% (w/v) Eosin Y and 0.1% (/v) TEOA, 300 s exposure at 50 mW/cm2. Red, 5-Norbornene-2-
carboxylic.  For Michael addition, PEG acrylate solutions were mixed with N-acetyl-L-cysteine solutions and allowed to 
react for 5 min prior to NMR characterisation. Purple, PEG acrylate. Lines are only intended as a guide for the eye. b) 
Examples of 1H NMR spectra (alkene peaks only) for the thiol-norborene reaction (UV initiated) between 5-Norbornene-2-
carboxylic acid and N-acetyl-L-cysteine, at different pH. c) Impact of pH on thiol-ene coupling between P6 (50 mg/mL, 90 
kDa) and N-acetyl-L-cysteine (thiol:ene 1:1, 45 µM, 5 mol% photoinitiator, 300 s UV exposure, 17 mW/cm2). d) 
Corresponding examples of 1H NMR spectra of alkene (norbornene). 

 

Scheme 2. Chemical structure of the different alkenes used in NMR experiments (see Figure 3). 

 

Impact of the molecular environment on thiol-ene coupling with nobornene 

derivatives. Norbornene-functionalised polymers have become widely used for the 

generation of hydrogels via thiol-ene radical coupling due to their high reactivity even in 

dilute conditions, in the presence of oxygen, and without significant unwanted chain growth 

radical polymerisation14, 35, 47, 48. These compounds can be introduced onto polymer 

backbones via ester, amide or ether bonds, however the impact of the local molecular 

environment and the pH of the media has not been systematically investigated in these 

systems. Hence we first examined the impact of the pH of the medium on thiol-ene radical 
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coupling to norbornene derivatives (initiated with UV light irradiation and Irgacre 2959; see 

Figure 3a and b). Similarly to the coupling of acetyl cysteine to non-activated terminal olefins, 

we observed high reaction effiencies in the case of 5-Norbornene-2-carboxylic acid at low 

to neutral pH, followed by a marked decrease at higher pH. However, efficiencies above 

99% were retained up to pH 9.0, likely due to the higher reactivity of this alkene, therefore 

enabling coupling even a pH for which significant thiolates are formed. In comparison, 

Michael addition of acetyl cysteine to a poly(ethylene glycol) acrylate was associated with a 

linear coupling efficiencies as the pH of the medium increased (Figure 3a), consistent with 

the importance of thiolates for this reaction. Surprisingly, a carbic anhydride derivative 

functionalised with hexane-1,6-diamine (compounds 1, Scheme 2) was found to display 

reduced efficiencies at lower pH (above pH 6.0). This may be due to a greater steric 

hindrance and potentially the increased hydrophobicity associated with this compound. 

In addition to their high reactivity in thiol-ene coupling initiated by UV-active photoinitiators 

such as Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate, reactive 

olefin-functionalised polymers have been cured via visible light initiated systems, for 

example using Eosin Y25, 28, 30. However, the impact of pH on this polymerisation system has 

not been studied. Therefore, we investigated the impact of Eosin Y initiated visible light 

activated radical coupling of acetyl cysteine to norbornene carboxylic acid (Figure 3a). 

Similarly to UV-initiated systems, reactivities were high (above 87%) within pH 6.0-8.0, 

confirming the potential of visible light curing for in situ hydrogel formation. Above this pH 

range, thiolates are again starting to dominate, leading to a reduction in coupling. However, 

below a pH of 6.0, we also observed a significant decrease in efficiency, presumably due to 

the protonation of Eosin Y. Hence visible light activated thiol-ene coupling to norbornene 

residues is expected to be stable within a reasonably wide range of pH, relevant to in situ 

cell encapsulation and loading within degradable hydrogels. 
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Finally, we investigated the coupling of acetyl cysteine to the norbornene-functionalised 

carboxymethyl cellulose P6 (Figure 3c and d). As for other polyanions tested, thiol-ene 

coupling decreased drastically at elevated pH (8.0 and above), due to thiolate prevalence. 

Coupling was optimal at pH 7.4, with efficiencies of 84%. At lower pH, a reduction of coupling 

down to 43% was also observed, in contrast to the radical thiol-ene coupling observed for 

P5 and the two low molar mass norbornene derivatives tested (Figure 3a and b). The origin 

of this behaviour is unclear, but may be due to the more hydrophobic character of 

norbornene residues compared to pentene side chains, leading to more shielded structures 

as carboxymethyl cellulose protonates at lower pH and collapses. Overall, our results clearly 

demonstrate the strong impact that the molecular structure of polymer backbones, coupled 

to their pH-responsive behaviour and the acid-base properties of thiols and initiator 

molecules, play in determining radical thiol-ene tethering efficiencies. 

 

Figure 4. Charcaterisation of the shear mechanical properties of thiol-ene hydrogels based on P5 (10 mg/mL) and PEGDT, 
at different pH. a) Evolution of the storage modulus as a function of time and (b) summary of the corresponding storage 
moduli measured at a frequency of 1 Hz and 1 % strain. The thiol:ene ratio was 1:1 in all cases, the exposure was 120 s 
at 17 mW/cm2 UV intensity, starting after 30 s of measurement (blue box). See Table 2 for further details. 

 

Impact of the pH of the medium on UV- and visible light initiated thiol-ene coupling. 

Having determined how the molecular environment impacts on thiol-ene coupling to a range 

of polymer backbones, we next investigated how such factors translated into changes in 

crosslinking and rheological properties of corresponding hydrogels. We first investigated the 

role of the pH on pentenyl-functionalised carboxymethyl cellulose P5, using photo-rheology. 
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Hydrogel mixtures (100 µL, containing P5, the crosslinker poly(ethylene glycol dithiol) 

(PEGDT) at a 1/2 thiol/alkene) were placed between two methacrylate-functionalised 

coverslips fixed to the geometries of the rheometer, to ensure chemical coupling and 

effective stress transmission at the interface36, followed by irradiation with UV light (360 nm). 

At pH 6.0, the storage shear modulus rose quickly following the start of photoinitiation and 

reached a plateau at 500 Pa (for a 10 mg/mL, 1 wt%, gel) within 2 min of irradiation (Figure 

4a). Although similar trends were observed at all pH tested, the ultimate modulus reached 

after 2 min of curing varied significantly with pH (Figures 4 and S14). At pH above 6.0, the 

modulus of the corresponding gels rapidly decreased below 100 Pa and gels above a pH of 

7.4 failed to gel properly, mirroring the sharp decrease in coupling of acetyl cysteine to P5 

at these pH. At lower pH, the storage shear moduli of hydrogels was more stable, although 

it reduced slightly from 464 ± 80 Pa to 198 ± 22 Pa, perhaps reflecting conformational 

changes and associated reduction in the hydrodynamic diameter of carboxymethyl cellulose 

at lower pH. Such changes in the conformation of polymer chains affects molecular diffusion, 

but could also have an impact on the degree of loop formation (and therefore network 

defects) resulting from increased intramolecular coupling. 

Similarly, the norbornene-functionalised carboxymethyl cellulose and hyaluronic acid P6 

and P7 displayed similar trends, with maxima in storage shear moduli near neutral pH 

(Figure 5). However, even at pH 11.0, hydrogels retained moduli above 148 ± 45 Pa and 

184 ± 22 Pa (for P6 and P7, respectively), in agreement with the residual coupling efficiency 

displayed at this pH (Figure 3c), compared to the absence of any reaction in the case of P5 

at the same pH (Figure 2a). The functionalisation levels achieved for P5, P6 and P7 (13.4, 

22.5 and 19.0 %, respectively) correspond to 137, 215 and 91 alkene moieties per polymer 

chains, respectively. Hence, at neutral pH, with a coupling efficiency of 88 %, P6 should 

display 189 crosslinks per chains, on average. At pH 11.0, with a coupling efficiency of 8.9 
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%, the number of crosslinks is predicted to decrease to 19, a number still sufficient to sustain 

the formation of a macroscopic gel. In contrast, P5 should not support the formation of 

crosslinks at this pH, based on its lack of reactivity with aceyl cysteine. Although reactivity 

with PEGDT is likely to differe to that of acetyl cysteine, due to reduction in thiol-ene 

efficiency observed for polymer-polymer coupling49, reactivity trends observed account for 

trends in shear mechanical properties of the resulting hydrogels. At lower pH, the shear 

moduli of the hydrogels generated also decreased (Figure 5a), in line with the observed 

coupling efficiency measured at pH below 7.0 (Figure 3c). This phenomenon was 

comparable in the case of P6 and P7 to the reduction in modulus observed in the same pH 

range for P5.  
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Figure 5. Charcaterisation of the shear 
mechanical properties of thiol-norbornene 
hydrogels based on P6 and P7 (10 mg/mL) and 
PEGDT, at different pH. a) Evolution of the 
storage modulus as a function of time for curing 
of P6 with UV light at different pH and (b) 
summary of storage moduli measured at a 
frequency of 1 Hz and 1 % strain at a wider 
range of pH for P6 and P7. The thiol:ene ratio 
was 1:1 in all cases, the exposure was 120 s at 
17  mW/cm2 UV intensity, starting after 30 s of 
measurement (blue box). c) Evolution of the 
storage modulus as a function of time for curing 
of P7 with visible light at different pH and (d) 
summary of storage moduli measured at a 
frequency of 1 Hz and 1 % strain at a wider 
range of pH for P6 and P7. The thiol:ene ratio 
was 1:1 in all cases, the exposure was 120 s at 
50  mW/cm2 visible intensity, starting after 30 s 
of measurement (purple box). See Tables 2 and 
3 for further details. 
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The crosslinking of P6 and P7 with visible light photo-initiation was next explored (Figure 5c 

and d). We compared these systems at identical polymer concentrations (10 mg/mL, 1 wt%), 

PEGDT crosslinker concentration (2.33 mg/mL for P6 and 3.45 mg/mL for P7, thiol:alkene 

1:1). Similary to the UV-initiated system, with Eosin Y and visible light initiation (400-1300 

nm), we observed maximum storage shear moduli at neutral pH (255 ± 60 and 519 ± 82 Pa 

for P6 and P7 respectively). These moduli are comparable to those measured with UV-light 

initiation, in line with the comparable coupling efficiency measured for norbornene carboxylic 

acid with acetyl cysteine at neutral pH in both initiation conditions (Figure 3a). Similarly to 

UV-initiated systems, shear moduli decreased at higher and lower pH, although remaining 

above 100 Pa. This is in agreement with the coupling efficiencies observed on the same pH 

range. The moduli measured for P6 were overall lower than those measured for P7, perhaps 

reflecting difference in conformation between these two polymers (and therefore changes in 

the formation of loops not contributing to networks). All hydrogels displayed frequency 

sweep and stress relaxation profiles typical of elastomeric networks (Figure S15). Hence, 

our results indicate that visible light initiation displays a comparable efficiency to UV-initiated 

systems for norbornene derivatives. However, we point out that visible light initiation failed 

to promote thiol-ene coupling with non-activated alkenes such as pentenoic acid (with 

coupling efficiencies below 18 % at all pH tested, using the same quantification protocole 

used for Figure 3a). Hence, this initiation system is found to be less permissive in terms of 

molecular structure and pH range, but to display comparable efficiencies at neutral pH with 

norbornene derivatives. 
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Figure 6. Charcaterisation of the shear mechanical properties of thiol-ene hydrogels based on P5 and P2 with PEGDT, at 
different polymer backbone concentrations. a) P5 gels at different concentrations. Evolution of the storage modulus as a 
function of time (frequency of 1 Hz and 1 % strain) and (b) corresponding strain sweeps (frequency of 1 Hz). The 
alkene/thiol ratio was kept at 1/1 in all cases, the exposure was 120 s at 17 mW/cm2 UV intensity, starting after 30 s of 
measurement (blue box). c) Hydrodgels formed from P2 at different polymer backbone concentrations (blue, S2, 90 mM; 
red, S3, 135 mM; green, S4, 180 mM; purple, S5, 225 mM; see Table 1 for full details). Evolution of the storage modulus 
as a function of time (frequency of 1 Hz and 1 %  strain). d) Corresponding strain sweeps (frequency of 1 Hz). The 
alkene/thiol ratio was kept at 2/1 in all cases, the exposure was 120 s at 17 mW/cm2 UV intensity, starting after 30 s of 
measurement (blue box). See Tables 1 and 2 for further details. 

 

Impact of the polymer composition and structure on hydrogel mechanics. Given the 

importance of polymer concentration on hydrogel mechanics, we confirmed that the 

macromolecule concentration significantly impacted the final moduli of thiol-ene hydrogels 

(Figure 6). Increasing the concentration of the neutral poly(2-alkyl-2-oxazoline) P2 from 22.5 

to 56.3 mg/mL resulted in an increase in storage shear modulus from 430 Pa to 16.4 kPa 

(Table 1). Similarly, increasing the concentration of the polyanionic carboxymethyl cellulose 

P5 from 5 to 20 mg/mL resulted in an increase in the storage shear modulus from 190 Pa to 

1.93 kPa (Table 2). Interestingly, although at an alkene concentration of 9.5 mM P5 led to a 

modulus of 1.93 kPa, at a concentration nearly ten times higher (90 mM), P2 led to a 

modulus of 430 Pa only. This may be due to some extent to a slight difference in thiol:alkene 
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ratios (0.64 and 0.5, respectively), but is also a direct reflection of the difference in 

macromolecular architecture of these two polymers. Hence, despite a molar mass of 1830 

g/mol per alkene residue, significantly higher for P5 than P2 (686 g/mol, 15 % alkene 

functionalisation), which should lead to an increase in mesh size, P5 was significantly stiffer, 

even at a lower concentration. However, the total number of alkenes per chains of P5 (137, 

compared to 9 for P2) and the predicted number of crosslinks per chain (62, compared to 

8.5 for P2) will be higher for the carboxymetyl cellulose based hydrogels. In comparison, at 

lower concentrations, comparable to those used for P5, P2 and P3 did not form macroscopic 

hydrogels. In addition, the more extended conformation expected from the negatively 

charged P5 and its higher overall molecular weight will promote the formation of more 

extended networks with fewer loop defects. Finally, the formation of secondary physical 

crosslinks, although not contributing significantly to network mechanics individually, may 

collectively result in a stiffening of associated materials. This is reflected in the increase in 

viscosity and shear moduli measured prior to crosslinking in the case of P5 (Figure 6a).  

We next examined the impact of the positively charged P1 and the negatively charged P3 

on the concentration dependent behaviour of corresponding hydrogels (Figure 7). In these 

cases too, the hydrogel storage shear modulus increased with the polymer concentration. 

However, at comparable polymer concentrations, the modulus of P1 and P3-based 

hydrogels was higher than that of P2 (e.g. 7.5 and 11.1 kPa for 45 and 48 mg/mL P1 and 

P3 gels compared to 430 Pa for P2 at 60 mg/mL; see Table 1). Hence the concentration of 

alkene moieties was a better predictor of the modulus of these materials, considering the 

relatively comparable crosslinking efficiencies measured for these three polymers at neutral 

pH (Figure 2). Further differences in moduli achieved are likely due to overall polymer 

concentrations required, differences in molecular weight of the corresponding polymers and 

their molecular conformation (more elongated for densely charged polymers), as well as 

repulsions between polymer chains. For example, despite a high number of alkene moieties 
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per chain for P1 (300 olefins per macromolecule), and a relatively high molecular weight (68 

kDa), it resulted in hydrogels with reduced storage shear moduli at the same alkene 

concentration. 

 

Figure 7. Summary of the storage moduli measured for gels based on backbones P1-P3, with different compositions (S2, 
blue; S3, red; S4, green; S5 purple). The alkene/thiol ratio was kept at 2/1 in all cases, the exposure was 120 s at 17 
mW/cm2 UV intensity, with 5 mol% photoinitiator.  

 

Cell encapsulation within thiol-ene based hydrogels. Having identified some of the 

factors regulating hydrogel formation via thiol-ene radical coupling, we then explored the 

use of these materials for cell encapsulation. We first examined the swelling of hydrogels 

P1-P5, quantified via the determination of water contents via TGA (Figure S13 and S16), 

owing to the importance of changes in water content after cell encapsulation on mechanical 

properties and cell survival29. Swelling levels correlated with the polymer contents 

introduced during the preparation of the solutions of precursors prior to gelation (Tables 1 

and 2). Hence the relatively low polymer densities associated with P5 hydrogels studied led 

to very limited swelling levels (Figure S16). In addition, swellings were found to be more 

pronounced in deionised water, in agreement with the associated increased osmotic 

pressure. Overall, the swelling levels measured for P1-P5 remained below 20% and were 

considered reasonable for cell encapsulation. 

To investigate eventual cytotoxic effects induced during encapsulation, human umbilical 

vein endothelial cells (HUVECs) were seeded in hydrogels generated from P1-P5 (Figure 

8). As these gels were designed to display an excess of alkenes, we were able to introduce 
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additional cysteine-bearing RGD peptides to promote cell adhesion. Viability levels were 

compared to those of  cells cultured on 2D tissue culture plastic (Ctrl.). Cells encapsulated 

in hydrogels based on the polycationic P1 died rapidly, due to its strong electrostatic charge 

density able to disrupt cell membranes. However, most cells seeded in the other hydrogels 

appeared to survive after 24 h of culture. We note that even cells seeded in P5, which was 

formed at a slightly lower pH (pH 6.0) to promote efficient network formation (prior to 

exchanging with medium shortly after curing of these hydrogels) remained viable. However, 

cells loaded in P4-based hydrogels displayed reduced viability levels, perhaps owing to the 

high charge density associated with this material and its stronger swelling, even in PBS 

(Figure S16). Considering the lack of cell-mediated degradability of these hydrogels, the 

lack of cell spreading was unsurprising. 

 

Figure 8. Viability of HUVECs encapsulated in non-degradable PEGDT crosslinked hydrogels with backbones P1-P5 after 
24h of culture (cell densities of 1 million cells/mL) and corresponding fluorescence microscopy images. Live cells were 
stained green and dead cells red. Gels P1-P3 were generated with alkene/thiol ratios of 2:1, 10 mol% RGD, 5 mol% 
photoinitiator and 120 s UV exposure. P4 and P5 were made with alkene ratio of 2:1, 10 mol% RGD, 5 mol% photoinitiator 
and 120s UV. Gels were made at the pH relevant to biological conditions and showing good conversion levels (Figure 2): 
P1, pH 7.4; P2, pH 7.4; P3, pH 7.4; P4, pH 7 and P5, pH 6.  
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We next examined the impact of hydrogel mechanics on cell viability, focusing on the 

poly(ethylene glycol) analogue P2-based system. HUVECs were seeded in hydrogels 

displaying shear storage moduli ranging from 430 Pa to 16.4 kPa (see Table 1, entries P2S2-

P2S5) and cultured for 24 h. Although cells remained rounded in these hydrogels (all were 

crosslinked with the non-degradable PEGDT) viabilities were high at all stiffnesses (Figure 

S17). To confirm the generality of these results, we investigated the viability of dermal 

fibroblasts in poly(2-ethyl-2-oxazoline) hydrogels with stiffnesses ranging from 5.1 to 16.4 

kPa and observed again high viabilities in all conditions (Figure S18). When the degradability 

of these networks was increased by replacing PEGDT with a di-cystein peptide bearing the 

enzymatically cleavable VPM sequence, high viabilities were retained (Figure S18c). 

Therefore, our results demonstrate the potential of poly(2-oxazoline) based hydrogels to 

safely encapsulate cells in matrices with controlled mechanics and degradation.  
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Conclusions 

Thiol-ene based hydrogels are particularly attractive for cell encapsulation as the mild 

character of this crosslinking chemistry has minor impact on cell viability and can be 

triggered with UV as well as visible light. Our work indicates the importance of the molecular 

microenvironment on the efficiency of radical thiol-ene coupling. However, we find that thiol-

ene efficiencies remain high at neutral pH for most polymer architectures tested, except 

those displaying particularly high negative charge densities. This was proposed to be due 

to changes in thiol densities and local diffusion, limiting coupling, although deprotonation of 

thiols by basic residues of the polymer backbone cannot be excluded. Therefore, the impact 

of peptide chemistry on such diffusion and associated polymer coupling and crosslinking 

should be investigated more systematically, to fully determine the freedom with which 

peptide sequences can be engineered independently of thiol-ene radical coupling. We also 

found that thiol-ene efficiencies in visible light-initiated systems remain high on a sufficiently 

broad pH range centered around neutral pH, providing that activated norbornene moieties 

are used, with minimal impact on the mechanics of the resulting matrices. The non-activated 

olefins tested were found to display very limited reactivity using this initiating system. Visible 

light initiation remains incompatible with classic fully supplemented cell culture media though 

and requires the use of media unsupplemented with phenol red, or PBS, at least for curing. 

Beyond a more thorough investigation of the impact of peptide sequence on polymer 

coupling and hydrogel crosslinking, the impact of molecular structure on the coupling of 

other macromolecules, mimicking other properties of the extra-cellular matrix or conferring 

additional properties such as drug delivery or nanoparticle coupling should be characterised 

systematically. 
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