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Abstract—Audio-to-score alignment aims at generating an
accurate mapping between a performance audio and the score of
a given piece. Standard alignment methods are based on Dynamic
Time Warping (DTW) and employ handcrafted features, which
cannot be adapted to different acoustic conditions. We propose
a method to overcome this limitation using learned frame
similarity for audio-to-score alignment. We focus on offline audio-
to-score alignment of piano music. Experiments on music data
from different acoustic conditions demonstrate that our method
achieves higher alignment accuracy than a standard DTW-based
method that uses handcrafted features, and generates robust
alignments whilst being adaptable to different domains at the
same time.

Index Terms—Music Information Retrieval, Audio-to-Score
Alignment, Siamese networks, Convolutional Neural Networks,
Dynamic Time Warping

I. INTRODUCTION

The significance of neural networks for signal processing
was pointed out early by [1], [2], and their efficacy for Music
Information Retrieval (MIR) has been demonstrated for a
variety of tasks like music generation [3], music transcription
[4] as well as music alignment [5]. Audio-to-score alignment is
the task of finding the optimal mapping between a performance
and the score for a given piece of music. Dynamic Time
Warping (DTW) [6] has been the de facto standard for this
task, typically incorporating handcrafted features [7]–[9]. The
primary limitation of handcrafted features lies in their inability
to adapt to different acoustic settings and thereby model real
world data in a robust manner, in addition to not being
optimized for the task at hand.

This paper presents a novel method for DTW-based audio-
to-score alignment, which does not depend on handcrafted
features, but learns them directly from the music data at the
frame level. We propose learning a frame similarity matrix
using neural networks which is then passed on to a DTW
algorithm that computes the optimal warping path through the
matrix, yielding the alignment. We propose the use of twin
Siamese networks [10] each containing a Convolutional Neural
Network (CNN) [11] architecture for learning frame similarity.
The advantage of our method is that it is is efficiently able to
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learn meaningful representations for DTW directly from data
and is thereby adaptable to different acoustic settings.

We conduct experiments on piano music using our ap-
proach and test its performance on the Mazurka dataset
[12], which contains recordings from different eras spanning
various acoustic conditions; and demonstrate improvements
over MATCH [13], a standard DTW-based method that uses
handcrafted features. We additionally explore two methods
to improve the performance of our baseline models, namely
salience representations [14] and data augmentation.

To the authors’ knowledge, this is the first method to employ
learned frame similarities using Siamese CNNs for audio-
to-score alignment. Additionally, this is the first method to
incorporate pitch salience for audio-to-score alignment to the
authors’ knowledge. The rest of the paper is organized as
follows: We describe prior work and our relation to it in
Section II. Section III details our proposed method and model
pipeline. The experimentation conducted and results obtained
using our method are described in Section IV. We present
the conclusions of the present research and highlight possible
directions for future work in Section V.

II. RELATED WORK

Early works on feature learning for Music Information
Retrieval (MIR) employ algorithms like Conditional Random
Fields [15] or deep belief networks [16], whereas recent
work in this direction is moving towards the usage of deep
neural networks [17]. Work specifically on learning features
for audio-to-score alignment has focused on the evaluation
of current feature representations [18], learning features for
alignment using a Multi Layer Perceptron [19], and learning
a mapping several common audio representations based on
a best-fit criterion [20]. Recently, transposition-invariant fea-
tures were proposed for music alignment [21], however these
features while being robust to transposition, are sensitive to
large tempo variations and underperform in such situations.
[22] is a recent work on score following, a task related to
audio-to-score alignment. While they employ reinforcement
learning to train a score follower in real time, we focus on
robust offline alignment across various acoustic conditions
using frame similarity learning.



Fig. 1: Model Pipeline
convi : ith convolution layer poolj : jth pooling layer

flatten : Flatten layer dense : Fully connected layer

Another direction which sets the context for our work is
sound similarity; approaches to which include capturing music
segment similarity using two-dimensional Fourier-magnitude
coefficients [23], similarity network fusion to combine differ-
ent frame-level features for hierarchy identification of repeated
sections in music [24], and application of Siamese Neural
Networks for content-based audio retrieval [25]. The closest
work to ours which employs the notion of learned sound sim-
ilarity for music alignment is [19], to the authors’ knowledge.
While they use a Multi-Layer Perceptron to compute if two
frames are the same or not, we compute frame similarity using
Siamese CNNs. In addition to using an enhanced framework
which is suitable for the similarity detection task, our work
differs from them in that we also compute the extent of
similarity in the form of non-binary distances and use this
distance (or dissimilarity) matrix further for alignment. We ad-
ditionally employ deep salience representations, which prove
to be an effective method to improve alignment accuracy over
our baseline models.

III. PROPOSED METHODOLOGY

We propose a novel method for DTW-based audio-to-score
alignment that uses Siamese neural networks. We addition-
ally employ deep salience representations [14] to improve
model performance in data-scarce conditions. We describe the
method in detail in the subsequent subsections.

A. Siamese Convolutional Neural Networks

The standard feature representation choice for music align-
ment is a time-chroma representation [26] generated from
the log-frequency spectrogram, which is not trainable on real

data, and thereby not adaptable to different acoustic settings.
We override the feature engineering step and focus on learn-
ing frame similarity using Convolutional Neural Networks
(CNNs), since they can jointly optimize the representation of
input data conditioned on the similarity measure being used.
We employ a Siamese Convolutional Neural Network, a class
of neural network architectures that contains two or more
identical subnetworks [10] for this task.

We train a Siamese CNN, akin to that prototyped in [27],
to compute a frame similarity matrix Sm to be fed to DTW
to generate alignment. Figure 1 gives an overview of our
model pipeline. In order to keep the modality constant, we
first convert the MIDI files to audio through FluidSynth [28]
using piano soundfonts. The two audio inputs are converted to
a low-level spectral representation using a Short Time Fourier
Transform, with a hop size of 23 ms and a hamming window
of size 46 ms. Our training data contains synchronized audio
and MIDI files, so it is straightforward to extract matching
frame pairs. For each matching pair, we randomly select a
non-matching pair (using MIDI-information) in order to have
a balanced training set. The inputs to the Siamese network
are labelled frame pairs from the performance audio and the
synthesized MIDI respectively. We employ the contrastive
loss function [29] while training our models. We choose this
formulation over a standard classification loss function like
cross entropy since our objective is to differentiate between
two audio frames. Let X = (X1, X2) be the pair of inputs
X1 and X2, W be the set of parameters to be learnt and
Y be the target binary label (Y = 0 if they match and 1 if
otherwise). Task-specific loss functions have shown promising
results in the fields of image processing and natural language



processing [30], [31]. The contrastive loss function for each
tuple is computed as follows:

L(W,X, Y ) = (1−Y )
1

2
(DW )2+(Y )

1

2
{max(0,m−DW )}2

(1)
where m is the margin for dissimilarity and DW is the
Euclidean Distance between the outputs of the subnetworks.
Pairs with dissimilarity greater than m do not contribute to
the loss function. More formally, DW can be expressed as
follows:

DW (X) =
√
{GW (X1)−GW (X2)}2 (2)

where GW is the output of each twin subnetwork for the inputs
X1 and X2. Since it is a distance-based loss, it tries to ensure
that semantically similar examples are embedded close to each
other, which is a desirable trait for extracting alignments.

The Siamese network thus learns to classify the sample
pairs as similar or dissimilar. This is done for each audio
frame pair and the similarity matrix thus generated is then
passed on to a DTW-based algorithm to generate the alignment
path. DTW generates an alignment between two sequences
A= (a1, a2, ..., am) and B = (b1, b2, ..., bn) by comparing
them using a local cost function, at each point, with the goal
of minimizing the overall cost. The path which yields this
minimum overall cost is then the optimal alignment between
the two sequences. Formally, it can be represented as follows:

D(i, j) = d(i, j) +min


D(i, j − 1)

D(i− 1, j)

D(i− 1, j − 1)

(3)

where d(i, j) is the distance measure (local cost) between
points ai and bj ; and D(i, j) is the total cost for the path
which generates the optimal alignment between the sequences
A1..i and B1..j . We employ Euclidean distance as our distance
measure and the DTW framework from [32] to compute the
warping paths.

B. Deep Salience Representations

Fig. 2: Salience representations to address data sparsity

We employ deep salience representations [14] for effective
training of our models. These are time-frequency represen-
tations aimed at estimating the likelihood of a pitch being
present in the audio. Figure 2 shows an example of a salience
representation.

The primary motivation behind using such a representation
is that it de-emphasizes non-pitched content and emphasizes

harmonic content, thereby aiding training in data-scarce con-
ditions. We employ the model proposed by [14], trained to
learn a series of convolutional filters, constraining the target
salience representation to have values between 0 and 1, with
larger values corresponding to time-frequency bins where
fundamental frequencies are present. The model is trained to
minimize the cross entropy loss as follows:

L(y, ŷ) = −ylog(ŷ)− (1− y)log(1− ŷ) (4)

where both y and ŷ are continuous values between 0 and 1.
We compare the performance obtained using salience rep-

resentations with that obtained using the Short-Time Fourier
Transform (STFT) and Constant-Q Transform (CQT) of the
raw audios. We employ these input representations for compar-
ative purposes. We employ a hop size of 23 ms and a hamming
window of size 46 ms. We employ a CQT with 24 bins per
octave, with the first bin corresponding to frequency 65.4 Hz
(midi note C2).

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

We employ the MAPS database [33], the Saarland database
[34] and the Mazurka dataset [12] for our experiments.
From the original MAPS database, which contains synthesized
MIDI-aligned audio for a range of acoustic settings, we select
the subset MUS containing complete pieces of piano music,
and append it to the Saarland database. We split the resultant
database comprising 288 recordings randomly into sets of
230 and 58 recordings. These sets form our training and
validation sets respectively. We test the performance of our
models on the Mazurka dataset [12], which contains recordings
of Chopin’s Mazurkas dating from 1902 to the early 2000s,
thereby spanning across various acoustic settings. This dataset
contains annotations of beat times for five Mazurka pieces.
The alignment error for these pieces has a standard deviation
of 11 ms.

TABLE I: Architecture of our model

Type of layer Input size Kernels Kernel size

Convolution 128 ∗ 128 ∗ 3 64 5 ∗ 5

Max-Pooling 128 ∗ 128 ∗ 64 1 2 ∗ 2

Convolution 64 ∗ 64 ∗ 64 128 5 ∗ 5

Max-Pooling 64 ∗ 64 ∗ 128 1 2 ∗ 2

Convolution 32 ∗ 32 ∗ 128 256 3 ∗ 3

Max-Pooling 32 ∗ 32 ∗ 256 1 2 ∗ 2

Convolution 16 ∗ 16 ∗ 256 512 3 ∗ 3

Flatten 16 ∗ 16 ∗ 512 - -

Fully Connected 131072 - -

Our Siamese model has four convolutional layers of varying
dimensionality followed by a fully connected layer to generate
the similarity output. The outputs of each layer are passed
through rectified linear units in order to add non-linearity,



TABLE II: Results of our models

Model Binary Matrix Distance Matrix
<25ms <50ms <100ms <200ms <25ms <50ms <100ms <200ms

MATCH [13] - - - - 64.8 72.1 77.6 83.7

DTWChroma - - - - 62.9 70.5 76.3 82.4

MLPSemigram [19] 63.8 69.5 77.2 83.4 - - - -

SCNNSTFT 65.6 71.9 78.1 84.8 67.2 73.4 78.7 85.6

SCNNCQT 66.4 73.1 78.7 85.3 68.1 74.8 80.1 86.7

SCNNChroma 67.1 74.6 79.2 86.1 69.4 75.1 80.7 87.2

SCNNSal 68.2 75.3 81.4 87.8 70.3 76.7 82.1 88.4

SCNNCQT+DA 67.9 74.4 80.8 86.7 69.6 75.4 81.6 87.9

SCNNSal+DA 69.4 76.4 81.2 87.5 71.7 78.2 83.3 90.1

followed by batch normalization before being passed as inputs
to the next layer. The detailed architecture of our model is
given in Table I.

We conduct experiments using two different mechanisms
for computing the similarity matrix Sm:

• Using binary labels: We directly employ the outputs of
the Siamese CNN, whereby 0 and 1 correspond to similar
and dissimilar pairs respectively.

• Using distances: We employ the distance DW computed
as part of the loss, which directly corresponds to the
dissimilarity between the two inputs.

We generate an alignment path through this matrix using DTW,
through a readily available implementation in Python [32].
For our Siamese models trained without data augmentation,
the naming convention we employ is SCNNx , where x is
the feature representation used during training. We also report
results obtained using data augmentation. We generate 20%
additional training samples by employing a random pitch shift
of up to ±30 cents, using librosa [35]. These models are
named SCNNCQT+DA and SCNNSal+DA for the CQT and
the salience representations respectively.

B. Results and Discussion

We compare the performance of our models with MATCH
[13]; a DTW algorithm using Chroma features [26];
and the Multi-Layer Perceptron Model proposed by [19]
(MLPSemigram). We compute the error ei = ti

e - tir, defined
as the time difference between the alignment positions of
corresponding events in the reference ti

r and the estimated
alignment time ti

e for score event i. We show results for
accuracy in percentage for events which are aligned within an
error of up to 25 ms, 50ms, 100ms and 200ms respectively.
The results obtained by our models are given in Table II.

Our models outperform DTW-based algorithms that employ
handcrafted features as well as an MLP framework which
learns binary similarity labels (Table II, rows 1-5). The
CQT representation (SCNNCQT ) yields better results than the
STFT representation (SCNNSTFT ), we argue that this is due
to the nature of the CQT, which is a more musically mean-
ingful representation. Our Siamese model trained using the

Chroma representation (SCNNChroma ) outperforms the DTW-
based method using the same representation (DTWChroma),
suggesting that frame similarity learnt from real data is effec-
tive at generating robust alignment. Additionally, we observe
the trend that the models trained using a non-binary distance
matrix outperform those trained on binary matrices (Table II,
columns 6-9). We speculate that thresholding the similarity
into binary labels discards potentially useful information and
the distances facilitate the DTW algorithm to take better long-
term decisions. Both salience representations (SCNNSal ) and
data augmentation (SCNNDA) prove to be effective to improve
the performance of our model over SCNNCQT , with salience
representations contributing to greater improvements. We posit
that using salience representations makes it easier for the
model to learn meaningful features from the input represen-
tations, since it emphasizes pitched content. Improvements
using data augmentation can be attributed to the fact that
pianos are not always tuned to A = 440Hz in the real world,
and often the relative intervals are also not tuned perfectly,
hence comparison with MIDI files in such cases might lead to
false negatives. Data augmentation ensures that the disparity
between our training and test conditions is minimized by
simulating more real-world like conditions in our training data.
A combination of distance matrix, salience representations and
data augmentation yields the best results (SCNNSal+DA), as
can be seen from Table II, row 8, columns 6-9.

Our results demonstrate that frame similarity learning using
Siamese neural networks is a promising method for audio-to-
score alignment. The principal advantage of this approach over
traditional feature choices (like chroma features or MFCCs) is
the ability to learn directly from data, which provides higher
relevance and adaptability. Both the Siamese network and the
pitch salience network are trainable, and thereby adaptable to
real world conditions. We plan to explore domain adaptation
of our models in the future. A limitation of our method is that
it cannot handle structural changes, since DTW generates a
monotonically increasing warping path. This could potentially
be mitigated by employing an enhanced DTW framework like
jump-DTW [36] alongside our Siamese model.



V. CONCLUSION AND FUTURE WORK

We presented a novel method for offline audio-to-score
alignment using learned similarities via a Siamese convolu-
tional network architecture. We demonstrated that our ap-
proach is capable of generating robust alignments for piano
music across various acoustic conditions. Our models outper-
form traditional methods based on Dynamic Time Warping
that rely on handcrafted features, as well as a Multi Layer
Perceptron model which learns binary similarity between au-
dio frames. We also demonstrated that salience representations
and data augmentation are effective techniques to improve
alignment accuracy. In the future we plan to incorporate
attention into the convolutional models to aid training and
improve performance. We would also like to explore other
model architectures and work on learning the features as well
as the alignments in a completely end-to-end manner.
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