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Abstract

Stable structures of layered SnS and SnSe and their associated electronic and vibrational spectra are
predicted using first-principles DFT calculations. The calculations show that both materials undergo a
phase transformation upon thinning whereby the in-plane lattice parameters ratio a/b converges
towards 1, similar to the high-temperature behaviour observed for their bulk counterparts. The
electronic properties of layered SnS and SnSe evolve to an almost symmetric dispersion whilst the gap
changes from indirect to direct. Characteristic signatures in the phonon dispersion curves and surface
phonon states where only atoms belonging to surface layers vibrate should be observable
experimentally.

Introduction

Chalcogenides are a remarkable family of layered materials, displaying an extensive range of optical, electronic,
thermal and mechanical effects [1]. They are used as phase-change materials in rewritable data storage [2], as
high performance thermoelectrics [3, 4], and as absorbing layers in photovoltaic cells [5-7]. Lead (Pb)
chalcogenides and their alloys have been heavily studied for their excellent thermoelectric properties [8—11] but
the presence of toxic chemical elements is a major industrial disadvantage. Great efforts have been invested
recently in a less toxic analogue: Tin chalcogenides (SnX with X = §, Se, Te).

Emerging properties in 2D confined systems can be exploited in a wide variety of applications [12—15]. To
date, typical 2D materials such as graphene, transition metal dichalcogenides (TMD) and phosphorene have
been investigated for applications in FETs [16, 17], solar cells [18], lithium batteries [19], caloritronic devices
[20]. Monochalcogenides are naturally layered compounds. In comparison with other 2D materials,
monochalcogenides exhibit a greater interaction between the layers. They can, nevertheless, be grown in the
form of flakes of only a few mono-atomic layers thick [21] with exfoliation energy of the order of graphene [22].
Chalcogenides slabs are semiconductors with low band gap and high mobility and are stable at room
temperature [23]. This differentiate them from other 2D materials and open the field of potential applications to
electronic nanodevices such as high-performance FET [17]. The lower symmetry of the chalcogenides
monolayers, compared to TMDs, might also induce properties such as ferroelectricity and a phase transition
between different polarization states [23].

The reduction of the dimensionality of the crystal (3D to 2D ) has an impact on the geometry of the layers
and hence on elastic, electronic and vibrational properties, which vary with the number of layers. Recent
theoretical studies of electronic structure changes in few-layer SnX have been reported, indicating that the
band gap expands significantly (from 1.32 eV indirect to 2.72 eV direct) as the number of layers is decreased
[24]. Deb and Kumar reproduced this study taking into account the relaxation of the atomic positions and
the unit cell [25]. Mehboudi et al and Gomes et al also studied electronic and optical properties for mono and
bilayers [26, 27].

©2019 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Layered orthorhombic (Pnma) bulk crystal structure of SnX (X = S, Se): red and green circles represent Sn and X,
respectively. Projection of the YZ (left) and XZ (right) planes for both compounds (slabs and bulk) shifted to align the atoms in the
upper left corner. In the YZ plane, the accordion-like bonds are stretched as the number of layers are increased. The angle departs from
90° and the layer evolves towards the Prnma positions as the number of layers increases. The puckering of the surface differs when
comparing SnS and SnSe. In SnSe, the puckering of the surfaceincreases with thickness, while in SnS the difference in relative height of
the atoms remains constant with the number of layers.

In what follows, the structural, vibrational and electronic properties of SnS and SnSe are studied to gain
insight into the behaviour of these compounds in few-layer form. In particular, we focus on the possible
structural transformations, variations of the vibrational spectra and electronic structure resulting from
reduction of the dimensionality of the crystal. Both Raman spectroscopy and reflectivity measurements offer
easy and non-destructive characterization methods: a comparison with the computationally predicted spectra
can be used to assess the material thickness. We represent the results as a function of 1/n where # is number of
layers. This gives us a easy way of including the bulk properties (n = 00) and visually appreciate the convergence
of the different properties towards this limit.

Few-layer structures

Tin chalcogenides exist in an orthorhombic (Pnma) bulk structure comprising weakly coupled layers of
covalentlybound Sn—X (X = S or Se) atomic bilayer units (figure 1). Both materials can be isolated in few-layer
form [28]. In the following, ‘layer’ will refer to the natural atomic bilayer unit. We consider the structural
distortions appearing when this compound is isolated in free standing slabs, with thicknesses from 1 to 6 layers,
and compare the geometry of the slabs with the bulk. The binding energy of SnS and SnSe layerss are 30 and
10 meV A2 respectively (see supplemental information available online at stacks.iop.org/JPMATER /2/
044005/mmedia) which classifies these compounds as ‘easily/potentially exfoliable’ according to the criteria
used in Mounet et al [29].

We perform density functional theory (DFT) calculations where the exchange correlation terms are
calculated within the generalized gradient approximation (GGA) of Perdew et al [30]. The structures of Sn—X
bulk are obtained by fully relaxing the internal positions and the shape of the unit-cell. Relaxed and experimental
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Figure 2. a/b ratio as a function of the inverse of the number of layers.

Table 1. Relaxed and experimental lattice parameters of
bulk Sn—X. Computed results overestimate the
experimental ones by 1% to 2%, which is expected in

DFT-GGA.
ady bAoA
SnS Computed 4.06 4.41 11.40
Exp[31] 3.98 433 11.18
SnSe Computed 4.21 4.50 11.72
Exp[3] 4.13 4.44 11.49

lattice constants are specified in table 1. These results slightly overestimate (within 2%) the experimental values,
which is within the error expected for semi-local DFT calculations with the GGA.

Few-layer structures are relaxed, and the lattice parameters are allowed to vary in the in-plane directions.
Details of the calculations can be found in the Methods section. As can be seen in figure 2, when reducing the
number of layers, the in-plane lattice parameters (a and b) converge, and are almost identical for the monolayer
case of SnSe. This behaviour mirrors experimental studies on heterostructures containing SnSe slabs [32] and
the high-temperature behaviour of both compounds [3, 4]. The monolayer of SnS also rectifies, but its a/b ratio
does not converge to 1: we find a small dynamical instability for perfect square in-plane parameters (see
Supplemental information). Condensing these unstable modes at I" creates a distortion on the atomic
coordinates along the a axis, breaks the symmetric 0.25,/0.75 reduced coordinates, and leads to a/b = 1.
Although the in-plane lattice parameters are closer to each other in the monolayer case with respect to bulk, the
anisotropy of the X and Y direction is kept. Indeed, unlike in the high-temperature CmCm phase, we still
observe a zigzag pattern in the Y direction. The resulting symmetry of the crystal is triclinic. The difference in
total energy between the two structures is 9 meV /f.u., and it is entirely possible that epitaxy or other substrate
constraints will stabilize the square lattice of the SnS monolayer as well. The results for monolayers compare well
with other theoretical studies [23, 27, 33, 34].

The internal coordinates and the interlayer distance of the atoms also evolve with the slab thickness. To visualize the
evolution of the internal coordinates of the atoms, their projections on the Y.Zand XZ planes have been superimposed
in figure 1. The positions of the upper left atoms have been aligned and only the innermost layer of the slab is shown.
The YZ projection shows that the bond angles deviate from 90° when the number of layers increases, to acquire the
familiar accordion shape of bulk. The change in the XZ plane is much weaker. The internal coordinates show surface
effects already in the 3 layer case, and inner layers converge towards the shape of the bulk (figure 1) as the thickness of
the slab increases. Surface layers converge, instead, towards coordinates between those of the bulk and the monolayer.

Because of the attractive electrostatic interaction between the layers, the interlayer distance decreases with
the number of layers following a 1/nlaw (figure 3). The interlayer gap is significantly smaller in the SnS case, and
varies less. The interlayer distances are measured between closest atoms belonging to adjacent layers as depicted
in the right panel of figure 3. Starting from 4 layers, differences can be seen between those on the edge and those
in the centre of the slab. The distances reported in figure 3 correspond to the central ones.
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Figure 3. Interlayer distance between of SnX layers. Right panel: the distance is measured between the atoms closest to each other in
adjacent layers (Sn atoms).

We notice a subtle difference between the two compounds: the puckering of the surface (Sn and X atoms are
not on the same plane of the surface of a layer) slowly disappears when reducing the number of layers in SnSe
while it stays constant in SnS. This difference shows distinct hybridization of the (on average) half-filled p
orbitals at the surface, which is closer to pure p, . in SnSe, leading to the in-plane lattice parameters ratio a/b
being closer to 1 than for SnS, as in a-Po [35, 36] or high pressure Ca [37]. This may be linked to the size of the
surface lone pairs, or to the relative alignment of the orbital energy levels.

Electronic bandstructures

Electronic band structures are calculated for bulk and few-layer materials using the relaxed lattice parameters
reported above. Comparison with experimental bulk values shows an underestimation of the fundamental gap,
which is expected for DFT calculations, but can often be corrected with a constant factor. Optical measurements
are reported by numerous authors [38—43], and, for SnS, Malone et al synthetized and renormalized them to
compare with 0 K results [6]. They show that measurements spread from 1.16 eV to 1.5 eV for SnS and from
0.90 eV t0 0.95 eV for SnSe, while our results yield 0.85 eV and 0.57 eV respectively.

Figure 4 shows the fundamental and optical gaps of the SnX compounds as a function of the number of
layers. The band gap increases for thinner layers, due to quantum confinement effects. Nevertheless, the
fundamental gap remains indirect in our calculations, except for the monolayer were the gap is almost direct (the
difference between fundamental and optical gap is less than 0.03 eV). The reduced energy difference between
indirect and direct band gaps will result in a sharper onset of optical absorption.

A comparison between our band structures for relaxed lattice parameters and fixed bulk lattice parameters
[24], shows that the X-M-Y path presents a higher degree of symmetry in the relaxed case. This is directly related
to our prediction that the in-plane lattice parameters converge as the number of layers is reduced. Globally, we
are able to tune the band gap over a large range (0.6 and 0.4 eV for SnS and SnSe, respectively) by changing the
thickness of these compounds, which is very useful in optoelectronic applications. The electronic dispersions for
both compounds can be found in supplemental information.

Electronic band structures are also calculated for bulk and few-layer materials using the Tran—Blaha
modified Becke-Johnson (TB-mBJ) meta-GGA functional [44, 45] using the relaxed lattice parameters reported
above. In general, the band gap predicted by the TB-mBJ functional is comparable to more computationally
demanding techniques such as GW or hybrid functionals [46]. Comparison with experimental bulk values
shows an excellent agreement. Our result for SnS bulk yields 1.32 eV, which compares well with other theoretical
predictions (GW 1.26 eV [47], HSE06 1.24 eV [27]). Predicted SnSe bulk band gap, 1.00 eV, is exactly the same
result as with hybrid functional HSE06 [27] and slightly overestimate the GW corrected gap (0.829 eV [48]). The
results with the TB-mB]J meta-GGA functional are presented in supplemental informations.

Raman and reflectivity spectra

Phonon dispersion curves were calculated for the bulk and the few layer compounds. In the monolayer case, we
find a small unstable phonon mode at I that breaks the 1/4-3 /4 symmetry of the reduced coordinates in the X
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Figure 4. Electronic gaps of the multilayer and bulk SnX compounds, as a function of the inverse of the number of layers n and
calculated with GGA PBE functional. The gap is proportional to 1/n. In both compounds, the gap of the monolayer is almost direct.
Stars shows experimental results [38—43].
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Figure 5. Phonon band structure of a 4 layer SnS slab. Colours represent the contributions of the different atoms to the modes. Sn
atom in green, S atoms from inner layers in blue, S atoms of surface layers in red. A mix of these three primary colours shows modes
with contributions from different atoms. We identify a surface state at 120 cm ™' with lower energy than the corresponding bulk
mode. Also, the two modes of highest energy involve only surface atoms.

axis. In the other structures, the absence of any imaginary values confirms the dynamical stability of our
predicted structures. The band structures split between low- and high-frequency manifolds. This is a signature
of binary compounds where the masses of the two atoms are sufficiently different [49]. In SnS, the gap in the
phonon dispersion curves is more pronounced than in SnSe, due to the larger difference in mass between the
two atoms.

By projecting the mode eigenvectors over the atoms and using a colour code (figure 5), we identify surface
modes which are not present in the bulk compound. The red curves in the phonon spectra represent modes
from the S atoms at the surface. We clearly identify the red curves as modes where only S atoms from the surface
dominate. At T, several surface modes are isolated from the bulk manifold, around 120, 140, 230 and 280 cm .

A useful input for experimental characterization is the prediction of Raman and IR reflectivity spectra.
Figure 6 shows the comparison of our simulated Raman spectra for bulk compounds and the experimental
results of Chandrasekhar et al[50], showing good agreement with calculated frequencies within 13% of the
experimental ones. We also find agreement within 1% between the thickest SnS flake presented in the work of
Li etal[21]and our theoretical study of the bulk compounds. B;,and B,, phonon modes do not appear in the
experimental work of Li etal[21]. In our work, their relative Raman intensities is lower than the intensity of
other modes. They might be hidden on a unified graph. Figure 7 shows the evolution of the Raman spectra with
the thickness. The spectra change drastically between the 1- and 2-layer cases, and there are fewer active peaks in
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Figure 7. Simulated powder averaged Raman spectra for SnX slabs. The surface modes, indicated by a black arrow, can be related to
the B, mode of SnS and SnSe bulk spectra at respectively 103 cm™'and 173 cm ™" and shows a large parallel component compared to
the other Raman active modes.

the monolayer. The surface states are also visible as they are Raman active. These modes are indicated by a black
arrow in figure 7. The frequency of the surface modes appear to be converged already for 3- and 4-layer slabs.
However, the relative intensity of the mode will most likely decrease with thickness, as can already be observed
between 3 and 4 layers. We can relate the surface modes with the bulk B;; mode of SnS and SnSe at respectively
103 cm™'and 173 cm ™' by comparing their eigenvectors. The equivalence of the induced atomic displacements
are shown in the supplemental information. This is also the only mode whose intensity in perpendicular
polarization is much larger than for parallel polarization, giving an easy way to identify it, with a depolarization
ratio p = %is larger than 0.75.
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Figure 8. In-plane components of the electronic dielectric tensor for SnS and SnSe. The comparison with the experimental results of
Chandrasekhar et al[50] is shown on the left of the figure.

In supplemental information, we show the reflectivity of IR frequency waves normal to the surface, with
electric field along the two optical axes of the crystal (as defined in [51]). The different peaks correspond to polar
phonon modes in resonance with the incident electric field. In all spectra, the general shape is dictated by the
resonance with one mode at about 225-250 cm ™', More polar modes resonate when the number of layers
increases. Also, the difference between the in-plane components of the IR reflectivity tensor evolves with the
number of layers: for the 1-layer slab, the in-plane components are almost identical. However, with increasing
number of layers, the difference between the X and Y component spectra becomes significant as phonon modes
of SnS (SnSe) with frequencies around 100 cm ™' (75 cm ™ ') resonate only with the polarized electric field.
Tancogne-Dejean et al demonstrated that standard ab initio formalisms fail for the out-of-plane optical response
ina 2D system [52], and we do not present here the Z component of the reflectivity.

Born effective charges, Bader charges and dielectric tensor

We now turn to the dielectric response and the electronic density distribution of the SnX slabs. The Born

effective charge quantifies the variation of a material’s polarization when the atoms are displaced, and is
defined as:

o O _ 0P _OF

= =— == (D
0E0T or 0&

with E the total energy, & the electric field, 7 an atomic displacement, P the electrical polarization, and F the force
on the atom. The Z* also govern the frequency split between longitudinal and transverse optical modes. We find
that the Born effective charge tensors stay roughly constant as a function of the number of layers (see SI). This
implies that the local electronic configuration of the atoms and the fundamental bonding nature do not change
significantly when the number oflayers varies.

To complete our analysis of the electronic density distribution, we also calculate the Bader charges [53],
which confirm that the (static) electronic charge is not redistributed by nanostructuring. The Bader charges
increase slightly with the number of layers in the slab, showing a more ionic character in the bulk (see SI). As Sis
more electronegative than Se, the transfer of charge is larger in SnS compared to SnSe.

Dielectric constant measurements are easy to perform and give crucial information on the electronic
response of materials. Our bulk values (figure 8) compare well with previous experimental works [50]. The
computation of dielectric properties in 2D systems requires care as our calculations are performed with
periodically repeated slabs separated by vacuum. In this periodic approach, the calculated dielectric tensor
contains both the contribution of the slab and of the vacuum. For 2D materials of geometrical thickness ¢
computed in a cell of cross-plane lattice parameter ¢, an effective dielectric constant e, can be derived as
ép =1+ (eprr — 1) ¢/t from the dielectric constant computed in the periodically repeated approach epgr
[27, 54-56], to be able to compare the different 2D and 3D results. We choose the geometrical thickness tyeqp, as
the distance between the two outermost atoms in a slab, plus one bulk interlayer distance—a common choice in
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figure 8, as tefr # fgeom + constant).

TMDs, where ¢, is relatively insensitive to t. For both SnX compounds, however, the variation with fis much
stronger: the calculated effective electronic dielectric tensor €,p, presented in figure 8, increases with 1/n. This
behaviour is counter-intuitive, as € should vary as 1 / \/fg [57], and Eg increases with thinning.

This effective dielectric constant model has been applied successfully on numerous systems including
TMDs [55] but has also been found to fail for monochalcogenides by Gomes and Carvalho in [27] without an
explanation. In our case the gap decreases and the 3D DFT bare dielectric constant increases with thickness, as
expected, but the variations do not follow a square root law with a constant prefactor, and the model dielectric
constant can be smaller in the bulk than in the monolayer. In practice, this means that the effective dielectric
thickness is not a simple function of the geometric thickness, and is super-linear for thin slabs which we saw is
not reflected in the Bader or Born charges. We have verified that this is not simply correlated to the extension
of the electronic density outside the surface, which is very similar in all slabs. In figure 9(a), we present a
comparison of the geometrical thickness tg.,m and an effective thickness t.¢ defined as the minimum thickness
of the different layers required to retrieve the linearity between €,p and 1 / \/Fg .In figure 9(b), we also present
the resulting electronic dielectric constant rescaled with f.¢, which recovers (by construction) the intuitive
relation between € and E,. For the same reasons as for the reflectivity, we do not report the out-of-plane
component of €.
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Summary and conclusions

We calculate electronic and phononic properties of SnS/SnSe slabs from 1 to 4 monolayers in order to pinpoint
spectroscopic signatures of 2D material thickness. We propose several simple non-invasive techniques to
discriminate mono and few layer Sn chalcogenide samples. The behaviour of these two iso-electronic
compounds is globally similar upon nanostructuring, but presents subtle differences. We identify structural
distortions of the unit cell, as the thickness of the slab is reduced, leading to the in-plane lattice parameter ratio
a/bbeing closer to 1 for the monolayers. The structural evolution of the unit cell with nanostructuring drives the
transition from indirect to direct band gap as the number of layers is reduced, and the optical band gap expands.
Surface phonon modes are identified and can be associated to a Bs, bulk mode through a comparison of the
eigenvectors of the respective phonon modes. The unique depolarization ratio of these modes allows us to
identify them in the Raman spectra. Furthermore, the monolayer spectra show a specific feature: the number of
active modes are reduced compared to thicker layers, which can then be used to distinguish between a
monolayer, a few-layer slab or a thicker sample. Reflectivity spectra show a similar evolution and can also be used
to determine the thickness. The local electronic environment of the atoms are almost independent of layer
number, as quantified by the Bader (static) and Born (dynamical) charges. Finally, the electronic gap and
phononic properties have a strong thickness dependence, and common models for the effective 2D dielectric
constant break down, due to a super-linear variation of the effective dielectric thickness. The results have the
potential to enable fast recognition of ultrathin chalcogenide samples, and we hope to stimulate experimental
work on the dielectric properties of these systems.

Methods

DFT calculations are performed using the ABINIT package [58, 59], which implements the plane-wave
methodology (here using norm-conserving pseudopotentials). The exchange-correlation energy is given by the
GGA of Perdew, Burke and Ernzerhof [30]. Norm-conserving Troullier—Martins type pseudo-potentials
generated with thi98PP code are used to describe interactions between atomic cores and valence electrons of
SnSe and we use an ONCVPSP [60] generated pseudo-potential for SnS. Both produce lattice parameters that
compare well with experiment [3, 50].

We have checked that including Van der Waals interactions within the Grimme D3 approximation [61] does
not affect the interlayer distance significantly, and it is not employed for the results above.

The wave functions are represented in a plane-wave basis with a cutoff energy of 30 Ha for SnSe and 40 Ha
for SnS. The reciprocal space of SnSe bulk is sampled witha4 x 4 x 4 Monkhorst—Pack-type grid [62], whereas
an8 x 8 x 8unshifted grid is used for SnS bulk. The total energy is converged to within 3 meV per unit cell
with respect to the k-point grid and cutoff kinetic energy of the plane waves used as a basis set. Atomic positions
and lattice parameters are relaxed using a Broyden [63] algorithm until the maximal absolute force on the atoms
is less than 10 ¢ Ha/Bohr. The phonon band structure along high symmetry lines is obtained by standard
methods based on response function calculations and density functional perturbation theory [64]. Ten
irreducible g-points from an unshifted 4 x 4 x 4 grid are used for the calculation of dynamical matrices.
Vibrational properties are also checked for higher k-point grid (upto 16 x 16 x 16)and we have a convergence
on phonon mode eigenvalues of 0.1 cm ™. Electron band structures are also calculated using the TB-mB]J meta-
GGA functional [44, 45,65].a« = —0.012and 3 = 1.023 Bohr!'/? are the parameters that are used in our
calculation. Electron band structures are also calculated on a finer 24 x 24 x 24 k-point grid. For few layer
calculations, convergence with respect to the size of the vacuum in the unit cell is also performed, to within
1 meV with a vacuum gap of 20 Bohr. Also, the dispersion along the vacuum is suppressed by considering
k-point and q-point grids with only one point along the Z axis.

Raman intensities are computed using perturbation theory to calculate the third derivative of the energy
with respect to two electric fields and one atomic displacement [66]. In our simulations, the energy of the
incident light is chosen to be 2.41 eV (514,8 nm) and the temperature 300 K [67]. We use a common
approximation of calculating the third derivative only within the local density approximation. The width of the
Raman peaks is mainly determined by anharmonic scattering, which limits the phonon lifetime. We do not
consider this effect here, and broaden the peaks with a Lorentzian function having a fixed width of 5 x 10 °Ha.
The Raman tensor is averaged to represent a powder sample as in [68].
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