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Abstract. The aim of this work is the study of the asymptotic
dynamical behaviour, of solutions that approach parabolic fixed
points in difference equations. In one dimensional difference equa-
tions, we present the asymptotic development for positive solu-
tions tending to the fixed point. For higher dimensions, through
the study of two families of difference equations in the two and
three dimensional case, we take a look at the asymptotic dynamic
behaviour. To show the existence of solutions we rely on the
parametrization method.

1. Introduction and main results

In studying difference equations, one interesting problem is to know
the asymptotic dynamical behaviour, of the positive solutions that ap-
proach equilibrium points. This question naturally arises, for instance,
when describing applications in biological or economical systems. See
[10, 19, 23, 24, 32, 36], for instance. In particular, how populations
evolve to equilibrium states and, more concretely, if they tend to rest
points in the same or different asymptotically way is of great interest
in mathematical modeling.

This problem appears not only in modeling real-life processes but
also in Celestial Mechanics ([16, 25, 18, 28, 30]), in complex analytical
dynamics ([26]) and in many more others fields where the subject is
concerned with the study of invariant submanifolds of fixed parabolic
points of maps.

Related to the determination of the complete asymptotic expansion
of solutions tending to fixed points in difference equations are the next
three examples appearing in the literature, in which this issue is un-
solved.
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The first one was proposed by Berg and Stević in 2002, see [6] and [33]
respectively, concerning the difference equation

xn+1 =
xn−k

1 + xn + · · ·+ xn−k+1

, (1)

for the case k = 1. In [6] the asymptotic expansion of xn is bounded as

2

n
+

2

n2
lnn+

a

n3
ln2 n ≤ xn ≤

2

n
+

2

n2
lnn+

b

n3
ln2 n,

where a < 2 < b. As a consequence, a proof of the existence of a
particular solution of this equation such that {xn}n → 0 is also given.

The second example concerns the difference equation (1) in the case
k = 2. In general, i.e. for each k ∈ N, Stević in 2006, see [37],
proved the existence of a positive solution, {xn}n, converging to zero,
by assuming that the first five terms in the asymptotic expansion of xn
have the following form:

xn ∼
a

n
+
b lnn+ c

n2
+
d ln2 n+ e lnn

n3
.

for some a, b, c, d, e ∈ R.
Finally, the third example concerns the difference equation

xn =
xn−k

1 + xn−1 . . . xn−k+1

, (2)

when k = 3. This equation was introduced by Berg in 2008 and by
Berg-Stević in 2011, see [8, 9] respectively. In these works the existence
of a solution such that {xn}n → 0 is proved for all k, by assuming that
the asymptotic expansion of xn is given by

xn ∼
1√
n

(
a+

b

n
+

1

n2
(c ln2 n+ d lnn+ e)

)
,

where the coefficients are fixed in such a way that xn is proved to be a
solution of equation (2).

In our work, we answer to the problem of determining the complete
asymptotic expansion of xn, for one dimensional difference equations
having a parabolic equilibrium point. As a consequence, we solve the
problem of giving the asymptotic development of the solution, xn, men-
tioned in the above first example. This problem is still open in the other
two previous examples.

It is worth mentioning some previous works that address the problem
of obtaining the first terms of asymptotic developments and motivated
our work. See, for instance, [5, 7, 20, 31, 35, 38, 39]. These articles,
using various tools, manage to obtain the first terms of the development
of some families related to those presented in our work. Among all these
references, due to their proximity to some of the techniques that we
use in our work, we want to highlight the article of Stević, [31], where
the first three terms of the asymptotic development are found.
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The study of the asymptotic development in terms of n, for positive
solutions, {xn}n∈N, approaching parabolic fixed points, of difference
equations is the general subject of our work. Since the topic is classical,
some of the results in this paper appear scattered in this or that form,
but we have not managed to find concrete references for all of them.
So we have decided to make our paper as self-contained as possible.

By assuming that the fixed point is at the origin, this problem can
be stated as follows.

Let us take the difference equation

xn+1 = F (xn), xn ∈ U, for all n ∈ N ∪ {0}, (3)

where F : U → Rk1 × Rk2 , F ∈ C∞(U), k1, k2 ≥ 0, k1 + k2 ≤ 3, is an
analytic function defined on an open subset of the origin, U ⊂ Rk1×Rk2 ,
with a parabolic fixed point at x = (0, 0).

Additionally, from now on, we will consider positive solutions of
equation (3), i.e. only solutions of the form {xn}n∈N, xn ∈ (R+)

k1+k2

will be considered.
At this point, we would recall that the origin of Rk1 × Rk2 is a par-

abolic fixed point of F if F (0, 0) = (0, 0) and DF (0, 0) = Id; i.e. that
map is tangent to the identity. Also, the set of points whose positive
iterates converge to the fixed point is invariant by the map and it is
called stable invariant set or stable invariant manifold.

To decide whether a parabolic fixed point has associated a stable or
unstable manifold is still, in general, an open problem. However, it is
worth mentioning the existence and uniqueness results in some cases.
See [1, 2, 3, 15, 17, 29], for instance. To develop algorithms for the
computation of local approximations of invariant manifolds of parabolic
fixed points is also of interest. See [4], for instance. Conditions implying
a kind of weak hyperbolicity for the fixed point will be specified later.

In this work we will prove that there are families of difference equa-
tions (3) such that, on the stable manifold of the origin, they present
positive solutions, tending to the fix point, with different asymptotic
behaviours.

We want to comment that, for system (3), we are not only interested
in to get the asymptotic development of positive solutions tending to
the fixed point located at the origin but also to prove that these are
all the positive sequences that tend to the origin. These results are
achieved by using the parameterization method [11, 12, 13, 21, 22],
in the simultaneous search for an invariant stable manifold, W s, of
the origin as an immersion K : V ⊂ Rk1 → Rk1 × Rk2 , and a map
R : V → V , where V is a domain which contains 0 on its boundary.
This is a novel approach for this type of problems.

We note that K is a parametrization of the manifold W s, and R is
a representation of the dynamics of F on W s, satisfying the invariance
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equation
F ◦K = K ◦R. (4)

We use the parametrization method in the proof of Theorem 1.3. We
also use the invariance equation in finding numerical evidences of how
W s can be, assuming that this invariant stable manifold of the origin
exists. The corresponding results are stated in Proposition 3.1.

Concerning the one dimensional case of the difference equation (3),
i.e. when k1 + k2 = 1, the asymptotic behaviour study of {xn}n∈N
satisfying that limn→∞ xn = 0, can be performed by taking

xn+1 = F (xn) = λxn +
∞∑

i=1

aix
k+i
n , (5)

for some k ≥ 1 with a1 6= 0, and 0 ≤ |λ| ≤ 1. As in the complex case,
by using conformally conjugate functions to F , it is possible reduce
this study to more simpler cases according λ. More specifically, the
use of the linearization theorem applies when 0 < |λ| < 1, meanwhile
the conjugation theorem can be used when λ = 0. In Section 2 we
prove an adapted theorem to the dynamics of the real case for these
values of λ.

In the particular case |λ| = 1, the asymptotic behaviour is known in
some cases. In complex dynamics, Resman, in [27, Prop. 3], considers
the difference equation defined by the parabolic diffeomorphism

F (z) = z +
∑

i≥1
aiz

k+i, z, ai ∈ C,

for some k ∈ N. In this setting, the asymptotic development of zn is
given by

zn =
k∑

i=1

gin
−i/k + gk+1n

− k+1
k lnn+ o(n−

k+1
k lnn),

where the coefficients gi = gi(k,A, a2, . . . , ai), i = 1, . . . , k + 1, are

complex-valued functions, and A = (−ka1)−
1
k .

When λ = 1, in the one dimensional real case, we present in next
theorem a key result giving the asymptotic development of the solution
of the difference equation (5). Although we have not found explicit
references, their results seem to be of common knowledge. In any case,
in next section we include a detailed proof.

As we will see, Theorem 1.1, together with the parametrization
method, give the clue for understanding the appearance of logarithms
in the asymptotic developments in some solutions of difference equa-
tions of order bigger than one, like for instance equations (1) or (2).

Theorem 1.1 (Asymptotic development of xn). Let us consider the
one dimensional difference equation (5), xn+1 = F (xn), where

F (x) = x+ a1x
k+1 + a2x

k+2 + . . . , a1 6= 0, (6)
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being k a positive integer number and x,ai ∈ R, for all i ≥ 1. Let x0
be an initial condition belonging to an attracting domain of the origin,
i.e. such that limn→∞ xn = 0. Then, for each positive integer m, the
asymptotic development of xn is given by

xn =
m∑

p=0

k∑

i=1

1

np+i/k

(
p∑

j=0

gi,jp lnj n

)
+O

(
1

nm+1+1/k

)
, (7)

where coefficients gi,jp = gi,jp (k, x0, a1, a2, . . . ) are real valued functions.

Remark 1.2. We note that, since we are just involved into the control
how the functions lni n/nj/k i = 0, 1, 2, . . . , j = 1, 2, . . . , emerge in
the asymptotic development of xn, we are not interested into fix the
coefficients gi,jp in the expression (7).

We also note that a related result to Theorem 1.1 can be found, for
example, in [27] for the complex case and in [31] for the real one.

To illustrate Theorem 1.1, its consequences, and the role of the pa-
rameter x0 in the asymptotic developments of its statement we consider
two simple examples:

(a) The sequence satisfying the bilinear difference equation

xn+1 =
xn

1 + xn
= xn − x2n + x3n +O(x4n),

with initial condition x0 near the origin, can be explicitly obtained by
introducing the new sequence yn = 1/xn. We get

xn =
x0

1 + nx0
=

1
n

1 + c
n

=
1

n
− c

n2
+
c2

n3
− c3

n4
+O

(
1

n5

)
,

where c = 1/x0. Hence the sequences tending to zero are always pa-
rameterized by one parameter c that in this example can be easily
related with x0. Moreover, notice that for this particular simple case,
all coefficients associated to logarithmic terms are zero.

(b) It is clear that the difference equation associated to the celebrated
logistic map

xn+1 = µxn(1− xn),

has a parabolic fixed point at the origin when µ = 1. For this special
case the sequences with initial conditions satisfying 0 < x0 < 1 tend to
the origin. From the above theorem we can compute their asymptotic
development at 0. For instance, we obtain that

xn =
1

n
+

1

n2
(c− ln(n))

+
1

n3

(
c2 + c+

1

2
− (1 + 2c) ln(n) + ln2(n)

)
+ o

(
ln2(n)

n3

)
.

In this case the dependence between c and x0 is not made explicit by
the theorem.
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For the case λ = −1, as a consequence of previous theorem, in Propo-
sition 3.1 we obtain a similar result.

At this point, we wonder if the previous asymptotic behaviour can
be extrapolated to higher dimensions. To give an insight on what hap-
pens in dimension higher than one, we present two results concerning
difference equations in two and three dimensions, see Theorem 1.3 and
Proposition 1.4, respectively.

In the two dimensional case we study a given family based on the
difference equation (1) when k = 1. In this case, equation (1) is the
first component of the two-dimensional scheme iteration F , where F is
defined through the shift function G as

F = G2 := G ◦G, G(x, y) =

(
y,

x

1 + y

)
.

In next theorem we study the difference equation given by F , and we
prove that in a open region of the first quadrant, the stable invariant
manifold of the origin is given by the graph of an analytic function K.

Even more, we also prove that on K the dynamics of the first com-
ponent of F is given by expression (7) and, in this sense, the dynamical
asymptotic behaviour on K is unique.

Before proving next theorem, let us introduce some notation. Con-
sider the two dimensional difference equation (3) when k1 = k2 = 1,
defined in a neighbourhood, U , of the origin. In this case, by way of
notation, we introduce the projectors π1(x, y) = x, and π2(x, y) = y
and, for each r > 0, we define

W s
V ={(x, y) ∈ U : π1Fm(x, y) ∈ V, π2Fm(x, y) > 0,m ≥ 0,

Fm(x, y)→ 0, as m→∞},

where V = (0, r), as the stable invariant manifold of the origin, for the
map F , restricted to the first quadrant.

In next theorem we summarize previous results.

Theorem 1.3. Let us consider the two dimensional difference equa-
tion (3) given by

F (x, y) =

(
x

1 + y
,
y(1 + y)

1 + x+ y

)
, (8)

defined in a neighbourhood of the origin U . Then, the origin, (0, 0), is
a parabolic fixed point for F . Moreover, there exist r > 0 and an open
region in the first quadrant on which

(1) the invariant manifold of the origin, W s
V , is the graph of an

analytic function, K, where

K(x) = x− 1

2
x2 +

1

2
x3 − 9

16
x4 +

5

8
x5 − 41

64
x6 +O(x7), (9)
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(2) the dynamics on W s
V is given by the analytic function R,

R(t) = t− t2 +
3

2
t3 − 5

2
t4 +

69

16
t5 − 15

2
t6 +O(t7), (10)

(3) on W s
V , the first terms of the asymptotic development of the

solutions corresponding to the difference equation

tn+1 = R(tn)

are given by

tn =
1

n
+

1

n2

(
−c+

1

2
lnn

)
+

1

n3

(
c2 − 1 + 4c

4
lnn+

1

4
ln2 n

)

+
1

n4

(
g1,03 + g1,13 lnn+ g1,23 ln2 n+ g1,33 ln3 n

)

+
1

n5

(
g1,04 + g1,14 lnn+ g1,24 ln2 n+ g1,34 ln3 n+ g1,34 ln4 n

)

+ o

(
ln4 n

n5

)
,

(11)

where

g1,03 = −c3 − 5

48
, g1,13 =

3

16
+

1

2
c+

3

2
c2, g1,23 = − 5

16
− 3

4
c, g3,33 =

1

8
,

g1,04 =
83

864
+

5

24
c+ c4, g1,14 = − 91

288
− 3

8
c− 3

4
c2 − 2c3,

g1,24 =
17

48
+

7

8
c+

3

2
c2, g1,34 = −13

48
− 1

2
c, g1,44 =

1

16
,

being c a constant parameter that is fixed by initial condition of
the orbit.

For three dimensional dynamics we present positive orbits, {xn}n∈N,
of equation (3), exhibiting different asymptotic behaviours when ap-
proaching the origin. We proceed by using the invariance equation, to
obtain the first terms of their asymptotic developments and so their
numerical approaches.

We remark that due to the facilities to implement the parametriza-
tion method, almost any computer algebra system (CAS) can be used
to obtain the rational coefficients appearing in the asymptotic expan-
sions given in the above theorem and in forthcoming Propositions 1.4
and 1.5. In our work we have used CAS Maple c©.

More concretely, we provide two families of difference equations (3).
For the former one, we give two positive orbits, {xn}n∈N, with different
asymptotic speeds developments in n when approaching the origin.
For the latter one, we obtain another asymptotic speed development
expression on n, for the dynamics of an orbit tending to the origin.

Both examples agree with the following scheme. Consider the family
of “shift” functions

G(x, y, z) = (y, z, g(x, y, z)) , (12)
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where g is an analytic function defined in a neighborhood of the origin,
with g(0, 0, 0) = 0. For each fixed function g, function G defines a
difference equation. We note that, even though the origin is a fixed
point of this difference equation, it is not a parabolic one. One way to
have a parabolic fixed point at the origin is to consider the difference
equation (3) given by

F = G3 := G ◦G ◦G, (13)

for some suitable function g.
In the three dimensional case we study two families of difference

equations based on the difference equations (1) and (2), where g is
given either by

g(x, y, z) =
x

1 + y + z
(14)

or

g(x, y, z) =
x

1 + yz
. (15)

We remark that the first component of the three-dimensional scheme
iteration defined by g as in (14), agrees with the difference equation (1)
when k = 2, proposed in [37], while the family defined by g as in (15)
is related to the difference equation (2) proposed in [8].

Next proposition shows the results obtained on the asymptotic be-
haviour for both families. In Section 3 we present, besides its proof,
some details on their dynamics.

Proposition 1.4. Let us consider the three dimensional difference
equation (3), defined in a neighbourhood of the origin, where F and
G are given by (13) and (12) with g as in (14). Then, there exist
numerical evidences on the following facts.

(1) there exist three invariant manifolds of dimension two, Ki(t, s),
i = 1, 2, 3, whose first analytic development terms are given by:

K1(t, s) =

(
t, t− 1

2
t2 + (

1

6
s+

1

4
)t3 +O(t4),

(
3

2
− s)t2 + (−2s2 +

17

2
s− 33

4
)t3 +O(t4)

)
, (16)

K2(t, s) =

(
(
3

2
− s)t2 + (−2s2 +

13

2
s− 21

4
)t3 +O(t4), t,

t− 1

2
t2 + (

1

6
s+

1

4
)t3 +O(t4)

)
, (17)

K3(t, s) =

(
(
3

2
− s)t2 + (−2s2 +

11

2
s− 15

4
)t3 +O(t4),

(t+
1

2
t2 + (−1

6
s+

1

4
)t3 +O(t4), t

)
, (18)
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such that the curve Ki(t, 3/2), i = 1, 2, 3, is a non-negative
solution of equation (3), the asymptotic behaviour of it agrees
with expression (11).

(2) there exists a positive solution of equation (3), defined in a
neighbourhood of the origin, analytically approached by

K(t) =

(
t, t− 2

3
t2 +

10

9
t3 − 58

27
t4 +O(t5),

t− 4

3
t2 +

28

9
t3 − 224

27
t4 +O(t5)

)
, (19)

(3) The dynamics on K is approached by the analytic function R,

R(t) = t− 2t2 + 6t3 − 182

9
t4 +

214

3
t5 − 20762

81
t6 + O(t7), (20)

(4) the first terms of the asymptotic development of R are given by

xn =
1

2n
+

1

4n2
(−2c+ lnn) +

1

8n3

(
1

9
+ 4c2 − (1 + 4c) lnn+ ln2 n

)

+
1

16n4

(
g1,03 + g1,13 lnn+ g1,23 ln2 n+ ln3 n

)

+
1

32n5

(
g1,04 + g1,14 lnn+ g1,24 ln2 n+ g1,34 ln3 n+ ln4 n

)
+ o

(
ln4 n

n5

)
,

where

g1,03 = −41

36
− 4

9
c− 8c3, g1,13 =

11

6
+ 4c+ 12c2, g1,23 = −5

2
− 6c,

g1,04 =
607

243
+

41

9
c+

4

3
c2 + 16c4, g1,14 = −353

54
− 70

9
c− 12c2 − 32c3,

g1,24 =
19

3
+ 14c+ 24c2, g1,34 = −13

3
− 8c,

(21)
being c a constant parameter that is fixed by initial condition of
the orbit.

Proposition 1.5. Let us consider the three dimensional difference
equation (3), defined in a neighbourhood of the origin, where where F
and G are given by (13) and (12) with g as in (15). Then, there exist
numerical evidences on the following facts.

(1) there exist a positive invariant curve, K(t), whose first analytic
development terms are given by:

K(t) =

(
t, t− 1

3
t3 +

1

3
t5 +O(t7), t− 2

3
t3 + t5 +O(t7)

)
, (22)

(2) The dynamics on K is approached by the analytic function R

R(t) = t− t3 + 2t5 − 41

9
t7 +

32

3
t9 − 2014

81
t11 + O(t13). (23)
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(3) the first terms of the asymptotic development of R are given by

xn =
1√
2n

(
1 +

1

n

(
− c

2
+

1

8
lnn

)
− 1

32n2

(
7

9
+ lnn

)

+
1

256n3

(
55

18
+

31

9
lnn− ln2 n

)

+
1

n4

(
g1,04 + g1,14 lnn+ g1,24 ln2 n+ g1,34 ln3 n

))
+ o

(
ln3 n

n9/2

)
,

where

g1,04 = − 847

62208
, g1,14 = − 37

6912
, g1,24 =

17

4608
, g1,34 = − 1

1536
,

(24)
being c a constant parameter that is fixed by initial condition of
the orbit.

This paper is organized as follows. In Section 2, in the one dimen-
sional real case, when λ = 1, we present the proof of Theorem 1.1. In
this section, we also study the case λ = −1, where some results on the
asymptotic dynamic behaviour of solutions are stated. See Proposi-
tion 2.3. In Section 3, we give the proofs of the Theorem 1.3, Proposi-
tion 1.4 and, Proposition 1.5.

2. Asymptotic dynamical properties in one dimension

In this section we present some properties about asymptotic dynamic
behaviour of the solutions, near the fix point at the origin, of the one
dimensional difference equation (5).

First, in Lemma 2.1, we introduce a result recalling the asymptotic
behaviour, except in the rationally neutral cases, i.e. except when
|λ| = 1.

In Theorem 1.1, the rationally neutral case λ = 1 is studied. Ad-
ditionally, in Lema 2.3 we present some results on the asymptotic dy-
namic behaviour for the λ = −1 case. For this value of λ, it is worth-
while to mention that the asymptotic behaviour of the solutions tending
to the origin of the difference equation (5) are studied by considering
the iterates of the difference equation

xn+1 = F 2(xn),

taking either x0 or F (x0) as the initial condition, as we detail later.

Lemma 2.1. Consider the difference equation (5). For each x0 close
to zero, the solution xn with initial condition x0 satisfies that:

(1) if 0 < |λ| < 1, then

xn = ϕ(y0λ
n) = α1y0λ

n + α2y0λ
2n +O(λ3n),

where α1 6= 0 and ϕ is an analytic diffeomorphism at 0 such
that ϕ(0) = 0, and y0 = ϕ−1(x0).
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(2) if λ = 0 and F (x) = apx
p + O(xp+1) with ap 6= 0 and p ≥ 2,

then

xn = ϕ(yp
n

0 ) = α1y
pn

0 + α2y
2pn

0 +O
(
y3p

n

0

)
,

where α1 6= 0 and ϕ is an analytic diffeomorphism at 0 such
that ϕ(0) = 0, and y0 = ϕ−1(x0).

Proof. In the case 0 < |λ| < 1, i.e. when the origin of equation (5) is
an attracting hyperbolic fixed point, following Koenigs Theorem (see
[14, Th. 2.1]), there is a unique, up to a scale factor, analytic one-
to-one real map y = φ(x), ϕ = φ−1, of a neighbourhood of the origin
onto itself, which conjugates F (x) to the linear function G(y) = λy;
what finishes the proof in this case because the sequences generated by
yn+1 = λyn are yn = y0λ

n.
In the λ = 0 case, the origin of equation (5) is a superattracting fixed

point and, following Boettcher result, see [14, Th. 4.1] for instance, we
get that there is a complex analytic map y = φ(x), with ϕ = φ−1, of
a neighbourhood of the origin onto itself which conjugates F (x) to yp.
So, the proof follows because the sequences generated by yn+1 = ypn are

yn = yp
n

0 . �
Next lemma is an easy technical result which is useful to prove The-

orem 1.1. Its proof is included for the sake of completeness.

Lemma 2.2. Given n0 ∈ N, let us consider the recurrence relation

un+1 − un = f(n) + o (f(n)) , n ≥ n0, n ∈ N, (25)

where f is a real and continuous non-negative function, defined on
R. Suppose, additionally, that un0 > 0 and that f is a monotonous
function on [n0,+∞). Consider a function F , F ∈ C1(R), such that

F ′(x) = f(x), x ≥ n0,

and suppose that one of the following hypotheses holds:

(1) limx→+∞ F (x) =∞ and limn→+∞ f(n)/f(n+ 1) = 1,
(2) limx→+∞ F (x) ∈ R

Then there exists a function G(x), x ≥ n0, such that G′(x) = f(x) and
satisfying

un = G(n) + o (G(n)) . (26)

Proof. To prove equality (26), let us prove the equivalent condition

lim
n→+∞

un
G(n)

= 1. (27)

By assuming hypothesis (1) and taking G(x) = F (x), we get that
limx→+∞G(x) = ∞. Hence, by applying the Stolz-Cèsaro criteria, to
prove (27), we must compute

lim
n→+∞

un+1 − un
F (n+ 1)− F (n)

.
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Straightforward calculations show that

un+1 − un
F (n+ 1)− F (n)

=
f(n) + o (f(n))

f(n)

f(n)

f(ξn)
, (28)

where ξn ∈ (n, n+ 1). By assuming that f is a monotonous decreasing
function on [n0,+∞), we have that

1 ≤ f(n)

f(ξn)
≤ f(n)

f(n+ 1)
,

for all n ∈ N. By considering the limiting case of former inequalities
sequence, when n tends to infinity, and by using the second hypothesis
of case (1), we conclude that the limit of expression (28) exists and,
hence, that desired conclusion follows. In the case when f is a monot-
onous increasing function on [n0,+∞), by using analogous arguments,
the same conclusion holds.

Assume now hypothesis (2). Since limx→+∞ F (x) = a ∈ R then, we
have that f is a monotonous decreasing to zero function, by one hand,
and that it is not restrictive to assume that a > 0, on the other.

Since, for all n ∈ N and for all p ∈ N, p ≥ n+ 1, we have that
p∑

k=n+1

f(k) ≤
∫ p

n

f(s) ds ≤
p−1∑

k=n

f(k), (29)

then, from the first inequality, then we also have that
∑∞

k=n+1 f(k)<∞.
Concerning the sequence {um}m∈N, since

up+1 − un+1 =

p∑

k=n+1

f(k) +

p∑

k=n+1

o (f(k)) =

p∑

k=n+1

f(k) + o (f(n+ 1)) ,

(30)
we get that {um}m∈N is a Cauchy sequence and, then there exists l ∈ R,
such that limp→∞ up = l.

By considering the limiting case of the inequalities sequence given
by (29), when p tends to infinity, using equality (30), we get

l − un+1 + o (f(n+ 1)) ≤ a− F (n) ≤ l − un + o (f(n)) .

From the first and second inequalities we get

l − a+ F (n− 1) + o (f(n)) ≤ un, un ≤ l − a+ F (n) + o (f(n)) ,

respectively. As a consequence,

G(n− 1) + o (f(n))

G(n)
≤ un
G(n)

≤ G(n) + o (f(n))

G(n)
, (31)

where G(n) = F (n) + l − a.
From the recurrence relation (25) and using the hypothesis, we have

that l > 0. Using this fact, it can be proved that

lim
n→+∞

G(n− 1)

G(n)
= 1.
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As a consequence, by considering the limiting case when n tends to
infinity in the expression (31), equality (27) holds. �

By using the previous lemma, we prove our main result on the as-
ymptotic development of the solution xn of the difference equation (5),
in the rationally neutral case λ = 1.

Theorem 1.1. Let us consider {xn}n∈N, a solution of

xn+1 = F (xn) = xn + a1x
k+1
n + a2x

k+2
n + . . . , (32)

where a1 6= 0, and satisfying that limn→∞ xn = 0. Let us consider the
change of variables

x = Aω−
1
k , where A = (−ka1)−

1
k . (33)

We remark that, since limn→∞ xn = 0, the case k even and a1 > 0
can not be taken into account. Hence, the change of variables is well
defined. Even more, the convergence to zero of xn means that we choose
the initial condition x0 ≈ 0 such that either, k is odd and x0a1 < 0, or k
is even and a1 < 0. As a consequence, we remark that the convergence
to zero only depends on a1, k and x0; that is,

∑

i≥1
aix

i
n → 0, (34)

as n goes to infinity, for all ai, i ≥ 2.
Using previous change of variables applied to the difference equa-

tion (32), we obtain the following recurrence relation for ωn

ωn+1 = ωn + 1 +
∞∑

i=1

ci

ω
i/k
n

, (35)

for some real values ci, depending on the initial coefficients aj. Recur-
rence (35) can be re-written as

ωn+1 − ωn = 1 + o(1),

because, from requirement (34), we have
∞∑

i=1

ci

ω
i/k
n

=
∞∑

i=1

ci
Ai
xin → 0,

as n goes to infinity.
By applying Lemma 2.2.1 to the recurrence on ωn, we get that

ωn = n+ o(n).

Let us define ω̃n = n. In this way, we introduce the recurrence

pn = ωn − ω̃n. (36)

In accordance with previous definition, we have

pn+1 − pn =
∞∑

i=1

ci

ω
i/k
n

=
∞∑

i=1

ci
(n+ o(n))i/k

=

q∑

i=1

di
ni/k

+ o(n−
q
k ),
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for some di real value, and where q is an arbitrary, but fixed, natural
number q � k. By applying Lemma 2.2.2 to the previous recurrence
on pn, we get that

pn =
k−1∑

i=1

ei
n(i−k)/k + ek ln(n) +

k(q+1)∑

i=k+1

ei
n(i−k)/k + o(n−q).

From equality (36), we obtain

ωn = ω̃n + pn = n+
k−1∑

i=1

ei
n(i−k)/k + ek ln(n) +

k(q+1)∑

i=k+1

ei
n(i−k)/k + o(n−q).

If we undo the change of variables (33) on previous expression of ωn,
we obtain

xn =
A

n1/k

(
1

1 + x

)1/k

, (37)

where

x =

k(q+1)∑

i=1
i 6=k

ei
ni/k

+ ek
1

n
lnn+ o(n−q−1).

Now, we are going to prove that if we use Taylor development for
expression (37), on the variable x, in a neighbourhood of the origin, up
to order p on x, then xn writes as

xn,p =

p∑

m=0

k∑

i=1

1

nm+i/k

(
m∑

j=0

gi,jm lnj n

)
+

1

np+1+1/k
g1,p+1
p+1 lnp+1 n+Rp(n),

(38)
for some coefficients gi,jp = gi,jp (k, x0, a1, a2, . . . ) which are real valued
functions; and where Rp(n) is a function including the Taylor remainder
term. Let us prove formula (38) by using mathematical induction on
p.

For p = 0, performing a Taylor expansion of first order on x in
expression (37), we get

xn =
A

n1/k

(
1− 1

k
x+R0(n)

)
,

where R0(n) is the Taylor remainder term. This expression agrees with
the one given by formula (38). We observe that, in this case,

R0(n) =
A

k


−

k(q+1)∑

i=k+1

ei
n(i+1)/k

+ o(n−q−1−1/k) +R0(n)


 .

Hence, we proved the base case of the induction process.
Let us prove the induction step, i.e. that if formula (38) holds for p,

then it holds for p+ 1.
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If we define the functions

γi,j(n) = lni n/nj/k, i = 0, 1, 2, . . . j = 1, 2, . . . ,

we note that, x and each xn,p is a linear combination of a subset of
them. For xn,p+1, let us check that we obtain the functions γi,j that
appear in expression (38).

To get xn,p+1 we need a Taylor expansion, of order p+ 2, of expres-
sion (37), including the xp+2 term. Hence, concerning the γi,j functions,
those appearing in xn,p+1 are the ones we had up to order xp+1 plus
the new ones coming from the xp+2 term. So, we need to check that
expression (38) for xn,p+1 includes these new functions, that are

{γi,k(p+1)+j(n), i = 0, 1, . . . , p+ 1 j = 1, 2, . . . , k} ∪ {γp+2,k(p+2)+1(n)}.
(39)

From the induction hypothesis, we can obtain xn,p+1 by multiplying
xn,p times x. We observe that the functions γi,j(n) involved in the
expression of xn,p, i.e. in the terms of the Taylor development, up to
order xp+1, are

{γi,j(n), i = 0, 1, . . . , p, j = 1, 2, . . . , k(p+ 1)} ∪ {γp+1,k(p+1)+1(n)},
(40)

at least, and the ones involved in the expression of x are

{γ0,j(n), j = 1, 2, . . . , k(q + 1) j 6= k} ∪ {γ1,k(n)}, (41)

at least. We note that the functions γi,j(n) given in expression (39)
can be obtained from the product of the ones given in expression (40)
by the ones given in expression (41), what finishes the proof.

�
In the next proposition, which is a sequel of Theorem 1.1, we present

some results on the asymptotic development of the solution xn of the
difference equation (5), in the rationally neutral case λ = −1.

We note that, we are only interested in those initial conditions be-
longing to the stable manifold of the fixed point at the origin, i.e. we
only consider x0 such that limn→∞ F n(x0) = 0. As a consequence, in
next result, the case k even and a1 < 0 is excluded.

Proposition 2.3. Consider the difference equation (5) with λ = −1,
that is

xn+1 = F (xn) = −xn +
∞∑

i=1

aix
k+i
n .

For each initial condition, x0, belonging to an attracting domain of
the origin, the corresponding solution xn satisfies that:

(1) if k is even, then

xn =
∞∑

p=0

k∑

i=1

1

np+i/k

(
p∑

j=0

gi,jp lnj n

)
, (42)
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(2) if k is odd, then

xn =
∞∑

p=0

k∑

i=1

1

np+i/k

(
p∑

j=0

gi,jp lnj n

)
, (43)

for some integer number k > k, where gi,jp = gi,jp (k, x0, a1, a2, . . . ) are
real valued functions.

Proof. We get the asymptotic behaviour of an orbit, {xn}n∈N, from the
study of the two sub-orbits {x2n}n∈N and {x2n+1}n∈N, i.e. from the
study of the behavior of the iterations through F 2, starting with initial
conditions x0 and F (x0), respectively.

We note that

F 2(x) = x+ a1((−1)k+1 − 1)xk+1 + a2((−1)k+2 − 1)xk+2 + o(xk+2).

In the case k even, since a1 6= 0, we apply Theorem 1.1 to the
iterations of F 2 on the corresponding initial conditions. Hence, the
asymptotic behaviours of {x2n}n∈N and {x2n+1}n∈N are, both, given by
expression (42).

In the case k odd, we observe that the coefficient of xk+1 in F 2

vanishes. Hence, either there exist a positive integer number j > 1 and
aj 6= 0, such that

F 2(x) = x+ ajx
k+j + o(xk+j), or F 2(x) = x.

Since x0 belongs to an attracting domain of the origin, the latter case
can not be. Whence, we can also apply Theorem 1.1 to the iterations
of F 2. Hence, the asymptotic behaviours of {x2n}n∈N and {x2n+1}n∈N
are, both, given by expression (43). We remark that, since j > 1, the
non-linear terms in F 2 are of order o(xk+1) and, hence, expression (43)
is taken with a certain k > k.

�

3. Some results in higher dimensions

In this section, to give an insight to the asymptotic behaviour in
higher dimensions, we prove Theorem 1.3, Proposition 1.4 and, Propo-
sition 1.5, concerned to two particular families of difference equations,
in two and three dimensions, respectively.

Next technical lemma give us some properties of the difference equa-
tion (3) by taking F as in (8).

Lemma 3.1. For k = 2, let us consider the two dimensional difference
equation (3), defined in a neighbourhood of the origin U , given by (8),
i.e. with

F (x, y) =

(
x

1 + y
,
y(1 + y)

1 + x+ y

)
.

Then, the following properties follow.
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(1) The origin, (0, 0), is a parabolic fixed point.
(2) Points on the coordinate axes are fixed points.
(3) V (x, y) = x2 + y2 is a Lyapunov function.

Proof of Theorem 1.3. Let us consider the two dimensional difference
equation (3), defined in a neighbourhood of the origin U , given by (8).

Let us prove statement (1) of this theorem. First, we remark that
from Lemma 3.1, the origin, (0, 0), is a parabolic fixed point. Now, let
us prove that the hypotheses of Theorem 4.1 of [1] are fulfilled and, as
a consequence, the invariant manifold of the origin, W s

V , is the graph
of an analytic function.

Following the notation in [1], for each r > 0, we write V (r) = (0, r) ⊂
R+. By way of notation, for each ρ > 0, we define V 1(ρ) = {ρ}.

In a neighbourhood of the origin, we observe that F is an analytic
function given by

F (x, y) =
(
x−xy+xy2+o(‖(x, y)‖3), y−xy+xy2+x2y+o(‖(x, y)‖3)

)
.

We apply the above mentioned theorem to the map F , after performing
the analytic change of variables ϕ, given by

x1 =
∞∑

i,j=1

ai,jx
iyj, y1 =

∞∑

i,j=1

bi,jx
iyj.

where

a0,1 + a1,0 > 0, b0,1 = −b1,0 = 2b0,2 + 2b1,1 + 2b2,0,

(2b0,2 + b1,1)b1,0 > 0.

If we take ρ > 0 such that

(2b0,2 + b1,1)ρ
2

(a0,1 + a1,0)2b1,0
< 2,

then the hypotheses, H1–H4 of [1, Theorem 4.1], are fulfilled for F (x1, y1).
Consequently, there exists r > 0 such that W s

V is the graph of an ana-
lytic function in V .

Undoing previous change of variables, we have that the first quadrant
of the (x1, y1)-plane corresponds to an open region of the (x, y)-plane
whose boundary is given by two disjoint curves. One of these curves is
concave and tangent to the y = x straight line at the origin. The other
one, reaches the origin with slope −a10/a01 > 1. Locally, both curves
bound an open region on which the invariant manifold of the origin,
W s

ϕ−1(V ), is the graph of an analytic function, h.

Since h is an analytic function, an approximation of its Taylor ex-
pansion is obtained as in expression (9).

To prove statement (2), i.e. to obtain a representation, R, of the
dynamics on the curve K, we use the parametrization method for one-
dimensional invariant manifolds of higher dimensional parabolic fixed
points introduced in [2]. We check that the hypotheses of Theorem 2.1
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of [2] are satisfied and, hence, there exist a C∞ map K which is a
parametrization of the one-dimensional invariant manifold of map F ,
and a polynomial R(t) such that

F ◦K = K ◦R. (44)

As in statement (1), we apply the above mentioned theorem to the map

F (x1, y1) =
(
F 1(x1, y1), F

2(x1, y1)
)
.

In this setting, we have F (0, 0) = 0, DF (0, 0) = Id, and

D2F 2(0, 0) = 0,
∂2F 1

∂x21
(0, 0) < 0,

∂3F 2

∂x21
(0, 0) = 0,

as we would prove. The computation of R is done by matching powers
of t in (44).

Statement (3) of this theorem follows from Theorem 1.1, applied to
the difference equation

tn+1 = R(tn),

where R is given by expression (10).
�

To give an insight on the three dimensional asymptotic behaviour,
next we present two examples of difference equations (3). By assuming
analytical behaviour of their solutions, we numerically approach them.
These examples exhibit different dynamical asymptotic development in
terms of n, for positive solutions, {xn}n∈N, tending to the origin.

Next Lemmas 3.2 and 3.3 are technical results useful to prove Propo-
sition 1.4 and Proposition 1.5, respectively.

Lemma 3.2. Let us consider the difference equation (3) where F and G
are given by (13) and (12) with g as in (14). Then the following prop-
erties follow.

(1) The origin, (0, 0, 0), is a parabolic fixed point and V (x, y, z) =
x2 + y2 + z2 is a Lyapunov function.

(2) The planes x = 0, y = 0 and z = 0 are invariants by the
iteration of the difference equation. Furthermore, all points of
the coordinate axes are equilibrium points.

(3) On each coordinate plane, the dynamical behaviour of F coin-
cides with the one given in Theorem 1.3.

Lemma 3.3. Let us consider the difference equation (3) where F and G
are given by (13) and (12) with g as in (15). Then the following prop-
erties follow.

(1) The origin, (0, 0, 0), is a parabolic fixed point and V (x, y, z) =
x2 + y2 + z2 is a Lyapunov function.

(2) All points of the coordinate planes: x = 0, y = 0 and z = 0, are
fixed points.
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Proof of Proposition 1.4. To prove statements (1) and (2) of this propo-
sition, let us take g as given in expression (14), and let us apply the
parameterization method for looking an invariant stable manifold of
the origin.

By imposing the invariant equation (4), we get the parameterization
of the first analytic development terms, of invariant stable curves, in
terms of an extra parameter, s, such that s ≤ 3/2. Let’s call Ki(t, s),
i = 1, 2, 3, to such non-negative curves as they are established in expres-
sions (16), (17) and (18) in the statement (1). We point out that, since
this method provides us a representation of the dynamics of F on the in-
variant stable curves, the asymptotic behaviour ofKi(t, 3/2), i = 1, 2, 3,
agrees with expression (11). Furthermore, from Lemma 3.2.(2) and (3),
by using Theorem 1.3, we get on each coordinate plane the existence
of an analytic solution given by expression (11).

Additionally, the parameterization method also provides us the first
analytic development terms of a positive invariant stable curve, K(t),
on the invariant stable manifold of the origin, as it is given in expres-
sion (19) in statement (2). Furthermore, and also as a consequence of
the application of the previous parametrization method, the first ana-
lytic terms of the dynamics on K, R, are approached by expression (20)
in the statement (3).

Finally, by applying Theorem 1.1 to the first analytic terms of R, we
get expression (21) in the statement (4).

�

Proof of Proposition 1.5. To prove statements (1) and (2) of this propo-
sition, we proceed as in the proof of Proposition 1.4. More concretely,
let us take g as it is given in expression (15) and, looking for an invari-
ant stable manifold of the origin, we use the parameterization method.
As a consequence, we get expression (22) giving the first analytical
terms of the invariant curve K(t) and, additionally, we also get the
approach of the dynamics on K, given by R(t), as in expression (23).
Then, by applying Theorem 1.1 to the first analytic terms of R, we get
expression (24).

�

In Figure 1, we locally depict the invariant surface (three leaves)
on which the solutions of the difference equation (3) where F and G
are given by (13) and (12) with g as in (14) present two different be-
haviours, according to their initial value. More concretely, solutions
tending to the origin and solutions going to the fixed points on the
axes. On the intersection of the three leafs given by K(t), given by
expression (19), there is a solution, {xn}n, having asymptotic expan-
sion given by expression (21); that is, this solution goes to the origin
as 1/(2n). On each coordinate plane, as it proved in Lemma 3.1, there
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is a solution {xn}n, whose asymptotic expansion is given by expres-
sion (11), that is a solution tending to the origin as 1/n. Finally,
solutions in between the two aforementioned ones, and on the invari-
ant surface, belong to the stable invariant manifold of the origin, W s

V .

Figure 1. According to Proposition 1.4, local depict
of the stable invariant manifolds, Ki(t, s) and K(t) (see
developments (16), (17), (18) and (19), respectively), of
the origin, of the difference equation (3), where F and G
are given by (13) and (12) with g as in (14). Different
perspectives. Two different speeds, 1/(2n) and 1/n, are
observed in the asymptotic developments.

In Figure 2, we locally depict the stable invariant manifold of the
origin, W s

V , of the difference equation (3), where F and G are given
by (13) and (12) with g as in (15). The manifold W s

V is depicted as
the invariant curve K(t) given by expression (22). On this curve the
solutions {xn}n tend to the origin as 1/

√
2n. Coordinate planes, as it

proved in Lemma 3.3, are fulfilled with equilibrium points.
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Figure 2. According to Proposition 1.5, local depict of
the stable invariant manifold curve, K(t), of the origin,
as it is given in expression (22). This is the case of the
difference equation (3), where F and G are given by (13)
and (12) with g as in (15). Speed 1/

√
2n is observed in

the asymptotic development.
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194, Astérisque, vol. 98, Soc. Math. France, Paris, 1982.

[30] D. L. Slotnick, Asymptotic behavior of solutions of canonical systems near a
closed, unstable orbit. “Contributions to The Theory of Non-linear Oscilla-
tions, Vol. IV” pp. 85–110, Annals of Mathematics Studies, no. 41, Princeton
University Press, Princeton, N.J., 1958.



ASYMPTOTIC DYNAMICS 23
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