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This study aims to analyze whether the efficiency of Ecuadorian public hospitals 
experiences spatial dependence. The paper explores the question of whether 
demand variations are affecting the public hospitals’ efficiency performance 
through direct and spillover effects, especially after the adoption of the new 
constitution in 2008. We exploit a two-stage approach, wherein the first stage we 
use an innovative panel-data DEA to estimate the hospital efficiency; a spatial 
econometric framework is then applied to disentangle direct and spillover effects. 
The results confirm positive spatial interactions among public hospitals’ 
efficiency, and positive direct and spillover effects coming from demand 
increases, that got reinforced after 2008. 
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1. Introduction 
 

In recent years, the assessment of the ability of public hospitals to optimally utilize 
their resources for the provision of healthcare (i.e. how efficiently they are 
performing) has become a topic of interest that has driven the attention of 
academics, healthcare managers, and policymakers on measures to contain 
healthcare costs. The attention in this matter has gained much relevance as 
spending in healthcare continues to rise exponentially, which drives policymakers 
to seek ways to pursue health objectives at the same time as containing cost 
pressures (Papanicolas and Smith, 2014). The increase in hospital expenditures 
has led to a series of reforms in developed economies to induce hospital 
efficiency improvements, e.g. the introduction of activity-based hospital budget 
(Pross et al., 2018).  
 
However, healthcare efficiency improvement is not just a concern of developed 
economies. The efficiency of public hospitals’ resource use is crucial in 
developing countries, given the pressing need for their proper allocation, due to 
its scarcity and limited health budget (James et al., 2005; Kumbhakar, 2010; 
Hafidz et al., 2018). The importance to care about it is highlighted by the World 
Health Organization (WHO, 2000) to decrease the gap of mortality between rich 
and poor countries, and within countries. It is also important to ensure that 
resources are well targeted to promote the goal of universal health coverage 
(UHC) and ensure equity of access to medical services (Hafidz, Ensor, and 
Tubeuf, 2018; WHO, 2010). 
 
Despite its importance, studies in healthcare efficiency have been mainly 
performed in developed economies (Hafidz et al., 2018), with a small but growing 
number of applied literature to developing countries (Hollingsworth, 2008). 
However, the methods to study healthcare efficiency in developing economies 
have had little consideration for other variables that are specific to their local 
setting (Au et al., 2014). Under this perspective, healthcare efficiency can be 
influenced by different factors that vary from socio-economic, environmental, 
political, structural and geographical (Hafidz et al., 2018).  
 
One important and common evidence shared by contribution in the literature is 
the relevance of the spatial dimension as a catalyst for the effectiveness of 
selected determinants in shaping the degree of efficiency achieved by the 
different healthcare providers. That spatial dependence can impact on the needs 
of the population and the behavior of healthcare providers across a wide 
geographical area, causing geographical concentration of needs and risk factors 
as well as the rise of network effects that are often detected in the data (Tosetti 
et al., 2018) and translates into a structure correlation, also known as spatial 
dependence (Anselin, 2010). 
 
In developing economies, this spatial structure can take the form of heavy 
territorial concentration that can derive in agglomeration economies.1 The 
presence of agglomeration economies would lead to interactions in the health 
system that could be related to this spatial pattern, generating some 
                                                
1 Here we will associate the concept of spatial unit to a region, or an area or a territory in an 
alternative manner. 
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complementarities and indivisibilities such as spillover effects (Behrens and 
Robert-Nicoud, 2015) that shape the healthcare behavior and efficiency 
performance of the system if they are proven to be significant (Bhattacharjee et 
al., 2014; Kinfu and Sawhney, 2015). But, once again, the literature on public 
healthcare efficiency that accommodates the analysis to include the spatial 
structure in the data for developing countries has been rather limited (Kinfu and 
Sawhney, 2015). In this respect, one of the contributions of this paper is to fill the 
existing gap in the literature of public healthcare efficiency for developing 
countries. To do so, we focus our analysis on hospital efficiency, and we apply it 
to the Ecuadorian context.2  
 
The Ecuadorian case represents an adequate context of analysis, since it is 
characterized by big territorial disparities and spatial dependence that arise due 
to the existence spillovers effects as it has been pointed out in recent studies  
(Szeles and Mendieta Muñoz, 2016; Mendieta Muñoz and Pontarollo, 2016). 
Ecuador has been facing a process of continuous deterioration (along with other 
Latin American countries) of its public healthcare system due to neoliberal 
reforms carried out in the 1990s (Homedes and Ugalde, 2005) and the crisis of 
2000. As a consequence, Ecuador suffered from a deep worsening of its 
healthcare equity and efficiency (widening the existing urban-rural and inter-
regional inequalities (De Paepe et al., 2012), and a structural segmentation and 
fragmentation of the healthcare system (Hartmann, 2016). These effects incurred 
in a significant technological heterogeneity between public healthcare institutions 
(Piedra Peña and Prior, 2019),3 being the hospitals with higher technology the 
ones that concentrate in the most developed cantons.4  
 
Given the deteriorated condition of the healthcare sector, the government of 
Rafael Correa carried out a series of political reforms, which introduced many 
changes towards equalitarian access to medical attention. These reforms started 
in 2008, with the new Constitution establishing the healthcare access as a right 
guaranteed by the state. The gratuity of health services provided by the Ministry 
of Health’s hospitals (widely advertised by government’s campaigns), jointly with 
new social security and criminal-code laws that made insurance coverage 
compulsory, are among the most salient country’s policies (De Paepe et al., 
2012). The new access to medical attention derived in a higher inflow of patients 
for public hospitals. According to the Public Ministry of Health (MSP), between 
2006 and 2010 the number of surgeries increased in 47%  while the hospital 
discharges reported an increase of 43% (Ministerio de Salud Pública, 2012).    

                                                
2 In this study, we intend hospital efficiency as the optimal use of hospital’s inputs in order to 
produce a given healthcare output. This is commonly understood in the healthcare efficiency 
measurement literature as technical efficiency (for a survey of the literature see Hollingsworth, 
2008). Additionally, hospital inputs mean hospital resources that are often measured as number 
of physicians, beds, medical equipment, etc. Whereas hospital outputs are viewed as the units of 
delivery of hospital services, that are usually measured as number of discharges, or procedures 
carried out.     
3 Here we consider technology as the set of constraints defining how one can combine or convert 
inputs into outputs in the production process. In this particular context, this can relate to the 
availability of human capital, infrastructure, etc.    
4 In Ecuador, cantons are the second level administrative divisions. The Republic of Ecuador is 
divided into 24 provinces, which in turn are divided into 221 cantons. The cantons in turn are 
subdivided into parishes. 



4 

 

 
In light of this evidence, we can expect that the potential increase of the demand 
has an effect on hospitals efficiency in the short-run. The rationale is the following: 
a higher amount of treated patients can lead to better use of hospitals’ resources, 
which are usually well endowed but inefficiently exploited in developing 
economies (Hafidz et al., 2018). In other words, hospitals account for spare 
resources that are not used to provide medical treatment. The increase in the 
bulk of patients would force the hospital managers to make use of these 
unexploited resources, hence, increasing hospital efficiency.  
 
However, the increase (decrease) of efficiency might not just affect a given 
hospital, but also those surrounding ones given that hospitals can have strategic 
interactions in terms of quality and efficiency (Longo et al., 2017) that is linked to 
the mobility of the demand.5,6 The intuition of these interaction effects is the 
following: when the new reforms decrease the barriers of access to healthcare, 
patients will seek treatment in hospitals where they perceive to benefit from  
higher quality services (which might be the high-tech hospitals) or they could also 
be referred from low-tech hospitals to receive treatment for a complex pathology. 
In Ecuador, the criteria for the distribution of public funding for healthcare services 
follow the health necessities and the size of served population (Villacrés and 
Mena, 2017). Hence, this system generates incentives for hospitals to attract 
more patients. As a consequence, within a bounded area, surrounding hospitals 
can perceive how bigger hospitals are behaving and adapting to a changing 
reality and can react by trying to capture some of this new-created demand by 
increasing their own quality (which will be constrained by their technological 
endowment). If the costs of providing more quality are increasing, then higher 
costs stemming from higher demand will reduce the incentives for cost control; 
hence, reducing hospital efficiency.7 Given that hospitals have to take a decision 
over their efficiency, they can also react by increasing or decreasing (strategic 
complements  and strategic substitutes, respectively) their efficiency in reaction 
to the changes in the efficiency of neighboring hospitals. 
 
Moreover, taking into account the technological differences of the healthcare 
system, an increase in the demand can lead to a congestion effect for high-
technology hospitals, which account for the vast majority of treated patients in 
Ecuador (Piedra Peña and Prior, 2019). If these hospitals cannot manage their 
resources efficiently, the increase in the number of patients can lead to a 
decrease in their performance (Cozad and Wichmann, 2013). Thus, surrounding 
hospitals could increase their quality to capture some of the demand that cannot 

                                                
5 The term “strategic interactions” is used in the literature to refer to the interdependence among 
features or actions of selected units stemming from the competition among those units. Strategic 
interactions arise due to the existence of spillover effects (Brueckner, 2003) that cause that the 
levels of the variables of one unit are affected by the levels of the same variables of neighbouring 
units.   
6 We make use of the hospital occupancy rate to measure the demand. The occupancy rate has 
been widely used as an index to show the actual utilization of an inpatient health facility for a 
given time period, and commonly applied in the literature to proxy medical resource utilization 
(Town and Vistnes, 2001; Herwartz and Strumann, 2014). 
7 In fact, according to Villacrés and Mena (2017) the current funding scheme of the country can 
generate inefficiencies, given that the hospitals have an incentive to attract patients and inflate 
the costs. 
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be met by high-tech ones, and this reaction, in turn, can affect their efficiency in 
the same manner aforementioned.  
 
In light of this evidence, the aim of this study is to analyze whether public hospitals 
in the Ecuadorian healthcare system adapt their efficiency in response to 
changes in the efficiency of neighboring hospitals. We tackle the question of 
whether demand variations are affecting the efficiency of public hospitals through 
direct and spillover effects, and whether that level of efficiency has significantly 
changed after 2008 (when the new constitution came into force). We make use 
of the hospital occupancy rate to measure the demand. The occupancy rate has 
been widely used as an index to show the actual utilization of an inpatient health 
facility for a given time period, and commonly applied in the literature to proxy 
medical resource utilization (Town and Vistnes, 2001; Herwartz and Strumann, 
2014). 
 
Our research covers the period 2006-2014 and we deal with hospital and 
cantonal data gathered from the public statistics of the Ecuadorian Institute of 
Statistics and Censuses (INEC) and the Ecuadorian Central Bank (BCE).   
 
We contribute to the existing literature by generalizing the approach by Longo et 
al. (2017) by means of the non-parametric efficiency measurement analysis that 
accounts for both the panel structure of the data and the technological differences 
of the healthcare system developed by Piedra Peña and Prior (2019) to obtain 
robust time-varying efficiency scores. By adopting efficiency measurement 
techniques, we can account for one efficiency measure that considers the use of 
multiple inputs to produce a given level of healthcare output, rather than relying 
on different productivity ratios that might produce mixed results. Also, we adopt 
spatial panel econometric techniques as a framework of analysis for performing 
our second part of the empirical analysis by taking into account the spatial 
dependence of the data and disentangle direct and spillover effects that can 
affect the hospitals’ efficiency performance.    
 
By doing so, we combine two strands of literature that have been little exploited 
jointly to implement our empirical framework referring to developing economies 
(Kinfu and Sawhney, 2015). If spatial autocorrelation in hospital efficiency is 
found, then the relevance of being able to assess spatial dependence stands in 
the importance in planning public policies. If so, hence when spatial dependence 
is identified,  policymakers cannot neglect the existence of spillover effects for 
achieving pre-established levels of efficiency when  implementing new healthcare 
public policies (Mobley et al., 2009). In this study, we bring new evidence to 
understand the way the spatial dimension may contribute to shape more effective  
actions for fueling the territorial healthcare access and the resource allocation, 
above all when dealing with very heterogeneous settings as the ones in 
developing countries.  
 
Our main results identify a positive significant spatial dependence among 
hospitals in Ecuador, suggesting that their healthcare services are perceived as 
complements in terms of efficiency. Also, the higher demand for medical 
treatments reflects a positive association with efficiency, regardless of the 
technological group; and, this demand is affecting the efficiency of those 
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surrounding hospitals as well, providing evidence of spillover effects. Both direct 
and spillover effects have significant increased after 2008. This result suggests 
that reforms carried out after the constitution boosted the efficiency of the public 
healthcare system.  
 
The organization of this paper is as follows. In Section 2, we outline short 
description of the institutional setting in Ecuador relevant to learn about the local 
healthcare system. The literature review is presented in Section 3. Section 4  
introduces the theoretical framework as developed by Longo et al. (2017), and 
the empirical strategy discussed in Section 5. Section 6 describes our dataset, 
while estimation results and conclusions are presented in Section 7 and Section 
8, respectively. 

2. Institutional Setting 
 
The Ecuadorian healthcare system accounts for public and private service 
sectors, being the former sector that accounts for most of the insured population. 
According to the Survey of Life Conditions (ECV) of INEC, around 66% of the 
population was covered by public insurance in 2014, while private insurance 
accounts for 6% only.  
 
The public healthcare sector is the result of the actions patronized by the MSP, 
Ministry of Social and Economic Inclusion (MIES), the municipal health services 
and social security institutions.8 The MSP provides health services for the whole 
population. The MIES and the municipalities establish and finance healthcare 
programs to guarantee medical treatment services to the uninsured citizens, 
which by 2014 represented around 33% of the national population, according to 
the ECV. Finally, social security institutions sponsor medical services to those 
covered by social insurance. (Lucio et al., 2011).  
 
As for the funding sources, public services are financed mainly through the 
general public budget, but they also receive funding from extra-budgetary 
sources, emergency and contingency funds, other contributions from national 
and international projects. The social security services for employees works on a 
contributive base and it is financed by the contributions of affiliated workers and 
are secured through the Social Security Law, as a right of protection for 
Ecuadorian workers (Organización Panamericana de la Salud, 2008).   
 
Since the approval of the new constitution in 2008, many reforms have been 
carried out to promote higher access to medical treatment to uninsured citizens. 
For instance, the gratuity of medical services provided by the MSP in 2008, the 
coverage for children under 18 years old in 2010, and the civil responsanility with 
penal charges for the employer who does not affiliate their employees within a 
maximum period of 30 days in 2011. After the implementation of these policies, 
there has been an increase in the annual growth rate of active beneficiaries 

                                                
8 Ecuadorian Social Security Institute (IESS), Social Security Institute of the Armed Forces 
(ISSFA) and Social Security Institute of the National Police (ISSPOL) 
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(Orellana et al., 2017),9 while the number of attended patients in public hospitals 
increased around 40% between 2006 and 2014 (Piedra Peña and Prior, 2019).  

3. Literature review 
 

The importance of healthcare services around the globe is widely recognized. 
The healthcare investment has been rapidly rising as well as healthcare costs as 
a proportion of GDP and, as a result, there is great policy emphasis on improving 
efficiency (Bloom et al., 2015). The territorial assessment of healthcare services 
is a key aspect, as there may be many sources of geographic variation that might 
produce different health outcomes according to the area of study (Chandra and 
Staiger, 2007; Allin et al., 2016;  Williams et al., 2016). Also, the recognition of 
significant geographical concentration for many health indicators has motivated 
an extensive use of spatial methods to analyze health economic issues (Moscone 
and Tosetti, 2014).    
 
In this strand of literature, there have been many applications related to different 
topics in health economics that address a spatial perspective; a complete  review 
for most of this literature can be found in Moscone and Tosetti (2014), Baltagi et 
al., (2018) and Tosetti et al. (2018).  
 
A wide body of this literature focuses on knowledge spillovers, hospital 
competition and agglomeration. Common findings suggest that agglomeration 
economies in healthcare market promote a faster learning process of a new 
innovation among firms, mainly hospitals (Chandra and Staiger, 2007; Cohen and 
Morrison Paul, 2008; Baicker et al., 2013; Goodman and Smith, 2018). It is the 
interaction and competition between these hospitals that impact some market 
variables like prices (Mobley, 2003; Mobley et al., 2009) or the quality and 
efficiency of services (Gravelle et al., 2014; Longo et al., 2017; Longo et al., 
2019). 
 
Although spatial economic methods have been largely applied in the literature, 
there is a lack of empirical research that addresses the spatial dependence in the 
healthcare efficiency analysis. The consideration of efficiency analysis under a 
spatial approach can provide several benefits to health providers, planners and 
policymakers alike. It can help decision-makers to identify geographic units that 
can attain a better outcome without increasing the allocation of resources. Also, 
it can provide information on the exogenous factors whose presence (or absence) 
affects the performance of services and hence health outcomes in the country 
(Kinfu and Sawhney, 2015). 
 
There are few and very recent papers that address a joint study of healthcare 
efficiency analysis under a spatial perspective. Herwartz and Strumann (2012) 
study whether the introduction of prospective hospital reimbursements based on 
diagnosis-related groups (DRG) has caused an increase in the negative spatial 
autocorrelation of hospitals´ efficiency due to the competition for low-cost 
patients. Using Data Envelopment Analysis (DEA) and Stochastic Frontier 
Analysis (SFA) methods to measure hospitals efficiency in a first stage, and 
                                                
9 Orellana et al. (2017) present descriptive data of social insurance beneficiaries and describe an 
annual growth rate of 10% after 2010, compared with a 7% growth rate of previous years.   
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Spatial Autoregressive Models with Autoregressive Disturbances (SARAR) in a 
second stage; they find a statistical significative presence of negative spatial 
autocorrelation among hospitals in Germany which significantly increase after the 
financial reform. Herwartz and Strumann (2014) extend the analysis in Germany 
in order to identify efficiency gains as a consequence of the same financial 
reform. They follow two different approaches. First, they consider a two-stage 
approach, starting with the decomposition of Malmquist index technical efficiency, 
and, then, they complete the analysis with a SARAR models. In the second 
approach, they use a one-step fixed effects SFA model, accounting for 
technological change and spatial dependence. Both methods fail to find any 
efficiency gains from the new incentive structure in Germany. Felder and 
Tauchmann (2013) also study the efficiency of healthcare provision in Germany, 
considering the spatial perspective, which they state is important due to the 
regional competition and patient migration. They adopt a longitudinal approach 
for German´s regions. Utilizing order-m DEA method to measure regional 
efficiency, and a spatial autoregressive model in a second step. Their findings 
show that accounting for spatial dependence increase the estimated effects of 
federal states on district efficiency. This may be a way to find a rationale why 
more efficient states are less affected by spillovers. Hence, introducing spatial 
dependence in the economic analysis clarifies the importance of health policy at 
the state level. Herwartz and Schley (2018) depart from these findings and 
consider socio-economic characteristics that influence the regional efficiency in 
the provision of healthcare services in Germany. By means of the SFA approach, 
they identify that income, unemployment, the share of immigrants and 
educational level have an effect in shaping the efficient provision of healthcare 
services in German districts.       
 
Martini et al. (2014) analyze the trade-offs between hospital health outcomes 
(such as mortality) and efficiency using a ward-level set of hospitals in Lombardy, 
Italy. Their findings support the existence of a trade-off between mortality rates 
and efficiency, where more efficient hospitals have higher mortality rates but 
lower readmission rates. Also, they point out the role of the spatial dimension, 
since mortality rates are higher for hospitals subject to a high degree of horizontal 
competition but lower for those hospitals having strong competition but high 
efficiency.10    
 
Most of the literature that referring to efficiency measurement and spatial 
structure has been elaborated for developed countries. To our knowledge, only 
one paper provides evidence about the change in efficiency for health institutions 
in developing countries. Kinfu and Sawhney (2015) estimate the determinants of 
the efficiency of institutional delivery of maternal care in India. They exploit SFA 
models accounting for spatial interactions and heterogeneity in a one-step 
approach, finding substantial inefficiencies in maternal care services between 
and within states.    
 
In this study, we contribute to this new emerging strand of literature and extend 
it for Latin American countries such as Ecuador. We depart from the  framework 
                                                
10 In their analysis, the authors claim that when there is a national health insurance, money prices 
are irrelevant for the consumer hospital choice. This makes competition among hospitals mainly 
focused on location, which they refer as horizontal competition (Tay, 2003). 
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proposed by Longo et al. (2017), but we extend its application by taking into 
account robust efficiency measures over time. Also, we consider hospital 
technological heterogeneity in a spatial panel econometric approach in order to 
account for different effects in the efficiency derived from hospital technological 
restrictions. This methodology represents an important advance in applied 
literature that can eventually be extended to other countries sharing realities 
similar to Ecuador. For example, the methodology that could be applied in other 
Latin American countries, considering that they share many socio-economic, 
political and cultural characteristics (Levy and Schady, 2013) as well as deep 
territorial disparities and spatial dependence (Cuadrado-Roura and Aroca, 2013).   

4. Theoretical Framework 
 
The building blocks of the theoretical model we refer to in this analysis grant to  
Gravelle et al. (2014) and Longo et al. (2017). Their theoretical model considers 
strategic interactions in hospital quality and efficiency arising from spillover 
effects within a geographical area. The intuition is that, if hospitals compete within 
a given area, they would attract patients by increasing their quality. If neighboring 
hospitals react by increasing (decreasing) their own quality, then we identify that 
hospitals are strategic complements (substitutes) in their quality. Furthermore, 
the reduction in a hospital demand that follows from an increase in their closest 
neighbor’s quality also has an effect on its efficiency. The cost of increasing the 
quality to attract higher demand might reduce incentives to control costs, 
reducing efficiency. So, hospitals can be also strategic complements (or 
substitutes) in their efficiency as higher neighboring hospital’s efficiency might 
induce an increase or decrease on its own efficiency.  
 
In order to present the framework in terms of the strategic interaction in efficiency, 
as in  Longo et al. (2017) we consider a two-provider model of quality competition 
(") and cost-reduction effort ($).11 Let assume "% as the healthcare quality of 
hospital i and "& the healthcare quality of hospital j, with ' ≠ ).  The demand 

function for hospital i is given by *% = ("%, "&), such that *%-. =
/0.
/-.

> 0 and *%-3 =
/0.
/-3

< 0, so it is increasing in its own quality but decreasing in the quality of 

hospital j. This assumption implies that hospitals are demand (imperfect) 
substitutes: patients switch from a hospital to another in accordance with the 
variation of the quality of healthcare of the two hospitals. However, switching from 
one hospital to another entails costs in terms of time and transfer costs. Here, we 
define the objective function of hospital i as: 
 
                       					6% = [8 − :%("%, $%; <%)]*%>"%, "&; <%? − @%("%, $%; <%)         (1)                	
     
Where p is a fixed price per treatment that the hospital i receives from a third-
party payer, like the Government in our case, :%("%, $%) are the variable treatment 
costs, given that :%-. = 	

/A.
/-.

> 0 and :%B. = 	
/A.
/B.

< 0, they are increasing in quality 

and decreasing in efficiency, $%. @%("%, $%) are monetary and non-monetary fixed 

                                                
11 The cost-reduction effort is interpreted as an efficiency improvement. As the more efficient the 
resources are used to obtain a given output, the less costs for the hospital.  
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costs, with @%-. = 	
/C.
/-.

> 0 and @%B. = 	
/C.
/B.

> 0, whereas <% is a vector of shift 

parameters, such as location of patients and other hospitals, input prices, 
demographics, central policies, type of hospital, etc. The authors assume that 
quality and efficiency are substitutes D@%-.,B. =

/EC.
/-./B.

> 0F, meaning that an 

increase in quality would require a decrease in cost-reduction effort. Also, for 
sake of simplicity Longo et al. (2017) make the assumption of independence in 
variable costs, that is :%-.,B. =

/EG.
/-./B.

= 0. The first order conditions to the equation 

(1), by which hospital i maximizes its profit with respect to quality and efficiency 
is as follows:  
 

6%-. =
H6%
H"%

	= [8 − :%("%, $%; <%)]*%-.>"%, "&; <%? − :%-.("%, $%; <%)*%>"%, "&; <%?

− @%-.("%, $%; <%) = 0 
(2) 

 

6%B. =
H6'
H$'

	= −:%B.("%, $%; <%)*%>"%, "&; <%? − @%B.("%, $%; <%) = 0 (3) 

 
with *%-. > 0, :%-. > 0 and @%-. > 0. The optimal quality is achieved when the 
marginal profit from one additional unit of demand is equal to the correspondent 
marginal cost. Instead, the optimal level of efficiency is such that the marginal 
benefit from lower costs and higher profits are equal to the marginal disutility from 
efficiency.  
 
Since the scope of Longo et al. (2017) is to propose a model to examine 
hospitals´ strategic interactions, they find the interaction functions of hospital i´s 
quality ("%) and efficiency ($%) as a function of the choice of quality by hospital j.  
The reaction functions defined by the first-order conditions (2) and (3) satisfy: 
 

"% = "%I("&; <%) (4) 
$% = $%I("&; <%) (5) 

 
Here, it would seem that the quality and efficiency of hospital i are independent 
from the efficiency of hospital j because neither of the first order conditions of 
hospital i depends on the efficiency of hospital j. But, the total differentiation of 
the first-order conditions yields: 
 

H"%I

H"&
= J−6%-.,-36%B.,B. + 6%B.,-36%-.,B.L ∆

NO 
 

= J− P(8 − :%)*%-.-3 − :%-.*%-3Q 6%B.,B. − :%B.*%-36%-.B.L ∆
NO (6) 

 
With ∆= 6%-.,-.6%B.,B. − 6%-.,B.

R > 0. The first term in the square brackets is the 
direct effect of the neighbor’s quality on the marginal profit from higher quality. It 
is not clear whether an increase in the hospital j’s quality increases or decreases 
the marginal demand of hospitals i, so the sign of *%-.-3 is unknown. For the sake 
of simplicity, if we assume that *%-.-3 = 0, this will lead to a reduction in the 
variable costs (second term in the square brackets), because the increase in the 
neighbor’s quality reduces demand and so the marginal cost of output of hospital 
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i, which will respond with an increase in quality. However, the second term in the 
curly brackets is also emphasizing another effect. Lower demand will also reduce 
incentives to control for costs (lowering efficiency) and so, variable costs may 
increase.  
 
Hospitals then can be affected by the patients’ perception in their quality; if the 
quality of a hospital is perceived to be high, this will end in an increase in patients’ 
demand for this hospital, switching from its neighbors and yielding less efficiency. 
However, this is conditioned to the spatial structure. The strategic interaction will 
be stronger for closer hospitals. Changes in quality and efficiency will matter 
because of hospitals are close to each other, and because of the decay effect of 
spillovers.  
 
In our case, the health reforms that have been implemented relax some barriers 
to access to medical services, allowing citizens to select between different 
hospitals. In the short run, a hospital gains more patients when it increases its 
quality since the patients have the opportunity to choose and opt for those 
hospitals which they perceive as better qualified. But the effect that the reforms 
can have in the demand of a particular hospital is ambiguous. It will depend on 
the quality of other hospitals, and the geographical distribution of the patients and 
hospitals (Gravelle et al., 2014). So, patients will decide to switch from one 
hospital to another depending on the travel distance and transfer costs.  
Neighboring hospitals can react to the increase in quality of a hospital by either 
increasing or decreasing their own quality, and so, affecting the final demand; 
and therefore, the hospitals´ efficiency. 
 
Therefore, in order to test the spatial interaction in hospital efficiency we use the 
following function: 
 

$% = S($%NO, T%, U%) (7) 
 
 
With $% being the efficiency of hospital ' = (', … , W); $%NO is the efficiency of hospital 
i ‘s neighbor; T% is the vector of covariates, including hospital variables (e.g. 
occupancy and mortality rate, market share, etc.), and cantonal variables (e.g. 
GVA, density, etc.).      
 

5. Empirical Strategy  
 

The first stage of our empirical strategy involves defining a measure of efficiency. 
We make use of the efficiency scores obtained in Piedra Peña and Prior (2019). 
Their empirical strategy is mainly based on the panel Data Envelopment Analysis 
(panel-data DEA) proposed by Surroca et al. (2016) and Pérez-López et al. 
(2018). The advantage of this approach over other efficiency measurement 
analyses like classical DEA or other dynamical approaches like Malmquist index 
is that it allows to estimate time-invariant coefficients of efficiency for the period 
of analysis, considering the inherent panel data structure. Additionally, these 
time-invariant efficiencies can be broken down into time-variant ones, calculating 
efficiency values for each year under evaluation. One of the principal advantages 
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of this approach is that the results are robust to outliers and temporal random 
shock, which provides efficiency scores representative to the complete time 
period.  
 
Piedra Peña and Prior (2019) extend this approach to account for technological 
heterogeneities of Ecuadorian public hospitals applying multivariate techniques 
(factor analysis in combination with clustering methods) to obtain panel data-DEA 
efficiency scores for three different groups (clusters): High-tech, intermediate-
tech and low-tech.  
 
In this paper, we follow an input-oriented efficiency measurement. We assume a 
variable returns to scale (VRS) model to deal with heterogeneous observations.12 
The efficiency frontier is developed by optimizing the weighted input/output ratio 
of each Decision Making Unit (DMU),13 subject to the condition that this ratio can 
be equal, but never exceed one for any other DMU in the data set (Charnes et 
al., 1978).  
 
We use the same notations as Piedra Peña and Prior (2019). Assuming that we 
have W DMUs (' = 1, 2, … , W) and we obtain S clusters (Z = 1, 2, … , [), there are M 
outputs [\O

%,], … , \̂%,], … , \_
%,] ∈ ℜ_

b ] produced by N inputs [cO
%,], … , cd

%,], … , ce
%,] ∈ ℜe

b]. 
We denote [\O

f,], … , \̂f,], … , \_
f,] ∈ ℜ_

b ] and [cO
f,], … , cd

f,], … , ce
f,] ∈ ℜe

b] as the 
observed units under analysis. We define a time variable g	(1,2, … , h), so we have 
[\O,i

%,], … , \̂ ,i
%,] , … , \_,j

%,] ∈ ℜ_
b ] outputs and [cO,i

%,] , … , cd,i
%,] , … , ce,j

%,] ∈ ℜe
b] inputs. The 

input-oriented VRS (time-invariant) program for the cluster panel data-DEA is: 
 

max
no
p.,q,nr

p.,q,st
p.,q
∝vi%,]= wf

i%,] + x w^
i%,]\ŷf,]

_

^zO

 

 

 

Z. g.x|d
i%,]cyd

f,]
e

dzO

= 1 

 

 

wf
i%,] + x w^

i%,]\̂ ,i
%,] −x|d

i%,]cd,i
%,] ≤ 0; 			' = 1,2, … , W

e

dzO

; 	Z = 1,2, … , [
_

^zO

 

 

 

w^
i%,] ≥ 0;	|d

i%,] ≥ 0; 		� = 1,2, … ,Ä; 			Å = 1,2, … , Ç (8) 
 
With, w^

i%,] and |d
i%,] are weights for outputs and inputs, in the cluster s, for the 

observed unit ‘o’; the parameter wf
i%,] is a scalar that can take positive or negative 

values, depending of the prevailing returns to scale. Different from the classical 
cross-sectional DEA approaches, ∝vi%,] is an average value that represents the 
one time-invariant efficiency coefficient for the cluster s. \y^

f,] = ∑ \̂ ,i
f,] /hj

izO  is the 
average value, corresponding for the output m in the cluster s, for the time period 
                                                
12 This is also tested in the empirical application with the Simar and Wilson (2002, 2011) returns-
to-scale test.   
13 We can call DMU to any unit of analysis, say, individuals, departments, firms, municipalities, or 
in the case of this study, hospitals. 
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T; and cyd
f,] = ∑ cd,i

f,]/hj
izO  is the average value, corresponding for the input n in 

the cluster s, for the time period T. By applying this program, we obtain	ÄcW output 
weights and	ÇcW input weights corresponding to the W hospitals classified in the S 
clusters. 
 
Finally, the cluster time-invariant efficiencies (∝vi%,]) can be broken down in time 
variant efficiencies. Pérez-López et al. (2018) demonstrated that the time-
invariant panel-data efficiencies are equal to the weighted average of the time-
variant panel-data efficiency coefficients. The approach is extended by Piedra 
Peña and Prior (2019) considering the technological clusters. Considering an 
input-oriented approach, and taking one input, one output, the time-variant 
efficiency scores for the cluster s can be derived in the following way: 
 

∝vi%,]= ÖyO
is,] cd,O

f,]

∑ cd,i
f,]j

izO
+ ⋯+ Öyi

is,] cd,i
f,]

∑ cd,i
f,]j

izO
+ ⋯+ Öyj

is,] cd,j
f,]

∑ cd,i
f,]j

izO
 

∝vi%,]= 	xÖyi
is,]ái]	

j

izO

																																																																																																	(9) 

 
So that time-invariant panel-data efficiencies are equal to the weighted average 
of the time-variant panel-data efficiency coefficients for each cluster. 
 
The second step of our strategy defines a convenient spatial model, our main 
idea is to assess whether hospitals´ efficiency is associated with the efficiency of 
nearby hospitals and to other observed and unobserved variables. For this, 
spatial econometrics literature has developed models that treat three different 
types of interaction effects among units of analysis (Halleck Vega and Elhorst, 
2015). These interaction effects account for (i) endogenous interaction effects 
among the dependent variable; (ii) exogenous interaction effects among the 
explanatory variables; and (iii) interaction effects among the error terms.  
 
The identification of the source of spatial autocorrelation needs to be carried out 
in order to avoid model misspecifications and omitted variable bias. Following the 
strategy described in LeSage and Pace (2009) and Elhorst (2010), we begin with 
an SDM setting  as a general specification and, then,  test for alternatives. The 
process of model selection can be found in Appendix 2. We also provide 
Lagrange Multiplier (LM) lag and error tests for spatial panel models (Anselin et 
al., 2006) and their robust counterparts (Elhorst, 2010), commonly used in the 
literature to make inference for spatial interaction effects.  
 
To select between random and fixed effects model, we run the robust Hausman 
test (Hausman, 1978), and found robust evidence for the fixed effects model. 
Elhorst (2014) also recommends the selection of the fixed effects in spatial panel 
models when space-time data of adjacent spatial units are located in unbroken 
study areas. Also, given the assumption of orthogonality between the individual-
specific component and the explanatory variables is particularly restrictive and 
difficult to hold in empirical applications (Baltagi, 2013; Baltagi et al., 2018).  
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The model selection points out a SAC model as our appropriate framework of 
analysis.14 This is consistent with similar applications in the existing literature 
(Felder and Tauchmann, 2013; Herwartz and Strumann, 2014; Herwartz and 
Strumann, 2012), suggesting that the sources of autocorrelation occur in the 
efficiency performance of hospitals and unobservable factors that we cannot 
measure. Thus, from equation (7) we specify the following spatial panel data SAC 
model estimated by Quasi-Maximum Likelihood (QML):  
 

log	($%i) = åx á%&log	($&i) + ç´log	(T%i) + ∅% + êi + U%i
&ë%

 

     with U%i = í∑ á%&U&i& + ì%i            (10) 
 
 
The variable $%i is the logarithm of the efficiency of the hospital ' at time g, $&i is 
the logarithm of the efficiency of hospital i´s neighbor () ≠ ') at time g, á%& are the 
spatial weights that capture the pattern of spatial dependence and the strength 
of potential interaction between units i and j. The variable T%i is the vector 
including variables as occupancy rate, market share, mortality rate and regional 
demographics, that can affect the efficiency of the hospital. The variable ∅% 
captures the hospital fixed effects, and êi is the time effect. Finally, U%i is the error 
term. We define equation (10) in matrix form as: 
 

îi = åïîi + ñió + ∅ + òi + ôi with ôi = íïôi + öi                 (11) 
 
 
As for the specification of the components of the weight matrix ï, we use two 
different specifications. The former (hereinafter ïõ) is the inverse of the shortest 
Euclidean distance between any pair of spatial units (i and j) that has been 
commonly used in the literature when the data covers healthcare providers 
(Tosetti et al., 2018). The latter (hereinafter ïs) uses the inverse shortest time 
travel distance by car still between any pair of locations (i and j), as in Gravelle et 
al., (2014).  
 
The key parameters to be estimated for the spatial autocorrelation are the 
coefficients å and í. They measure the strength of the spatial dependence due 
to efficiency changes and to unobservable factors in neighboring hospitals 
respectively, conditional on the vectors of explanatory variables. If å > 0 then a 
positive autocorrelation is found in the efficiency of hospital i and the efficiency of 
their neighboring hospitals, and similarly for í. 
 
One of the main advantages of using spatial econometrics is the possibility to 
empirically assess the magnitude and significance of spillover effects (Elhorst, 
2014). In this sense, spatial regression models exploit the dependence structure 
among hospitals: the effect of the change of an explanatory variable for a specific 
hospital will affect the hospital itself, and, potentially, all other neighboring 
hospitals indirectly. This implies the existence of direct, indirect (spillover) and 

                                                
14 The acronym SAC is consistent with the terminology of LeSage and Pace (2009) but other 
authors treat this model with the acronym SARAR, that stands for Spatial Autoregressive Models 
with Autoregressive Disturbances.  
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total effects. We can estimate these effects by obtaining the matrix of partial 
derivatives of the expected values of $%i, as proposed by (LeSage and Pace, 
2009). So far, the literature on spatial healthcare economics identified the 
existence of spatial spillovers based on the coefficient estimates (Baltagi et al., 
2018). We improve the empirical approach by accounting for the direct, indirect 
and total effects of independent variables. As stated by LeSage and Pace (2009) 
the partial derivative interpretation of the impacts coming from changes in the 
independent variables provides a more valid basis for testing the existence of 
spillover effects. Here, we are also interested in measuring the effects of the 
hospitals’ occupancy rate, which can bring  tangible evidence of how the demand 
for medical services is affecting the efficiency of a given hospital and whether this 
is also affecting neighboring hospitals due to spillover effects. In addition, we 
carry out the LeSage and Pace (2009) partitioning analysis of the spatial 
multiplier.15 With this, we are able to trace the effect of the linkages between 
demand levels of neighboring hospitals. Thus, we do not only concentrate on 
analyzing the direct, spillover and total effects, but we determine the impacts that 
the demand itself has over the higher order of contiguity. In other words, we are 
able to examine how the impact of hospital demand manifests itself over space 
(Jensen and Lacombe, 2012). Finally, by means of hypotheses testing, we can 
check for its significant increase (or decrease) of the direct and indirect effects 
after 2008.     
 
To test the statistical variations of the healthcare demand upon the hospitals’ 
efficiency before and after 2008, we interact the logarithm of the occupancy rate 
with time dummies (ú:ùûg$i). Specifically, we build the following test: 
üf: ú:ùûg$O = ú:ùûg$R, where ú:ùûg$O = 1/2∑ ú:ùûg$iR°°¢

izR°°£  and represents the 
subperiod before the constitution;16 while ú:ùûg$R = 1/6∑ ú:ùûg$iR°O•

izR°°¶  
constitutes the subperiod after the constitution. Hypotheses are tested by means 
of two-sided t-test.17 

6. Data and Variables  
 
We are dealing with a database covering the period from 2006 (two years before 
the new constitution was approved) to 2014. Hospitals’ information was collected 
from the Annual Survey of Hospital Beds and Discharges and the Survey of 
Health Activities and Resources provided by the INEC. We excluded the 
psychiatric, dermatologic and geriatric hospitals, and took out from the sample 
outliers.18 We retrieved a panel data of 186 hospitals for which an average of 21 
hospitals per year had missing values that were imputed by means of Predictive 
Mean Matching imputation (Rubin, 1986).19 Whereas, cantonal economic and 

                                                
15 Refer to Appendix 3 for an explanation on LeSage and Pace (2009) spatial effects and its 
respective partitioning analysis.  
16 The constitution came into force in October 2008.  
17 The logarithmic transformation of the efficiency scores, ensures an unbounded dependent 
variable and thus enables a consistent maximum likelihood estimation (Simar and Wilson, 2007). 
18 We excluded psychiatric, dermatologic and geriatric hospitals as they focus on specific illness 
and patients that require different treatments that could bias the efficiency values. For example, 
psychiatric hospitals might require inpatients to stay for long periods of time, wherein our analysis 
would reflect it as a criteria for less efficiency. 
19 The imputation results were diagnosed by means of displays of completed data, distribution 
comparison and checks for fit of the data suggested by Abayomi, Gelman, and Levy (2008).  
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demographic variables were retrieved from the BCE and INEC’s public statistics 
respectively. The description for all the variables is presented in Appendix 1.     
 

6.1. Variables for the efficiency measurement 
 
As previously mentioned, we employ the efficiency estimations granted from 
Piedra Peña and Prior (2019). The selection for both input and output variables 
is related to the existing literature on hospital efficiency measurement. A 
complete overview is proposed by Hollingsworth (2008), O’Neill et al. (2008) and 
Cantor and Poh (2018).  
 
In our study, the input variables (controlled by the hospitals) are the number of 
beds, the medical equipment, and the availability of the infrastructure that is 
widely used as a proxy for the hospital size and the capital investment (O’Neill et 
al., 2008).20 To proxy labor costs, clinical staff is usually included (Hollingsworth, 
2008; Hollingsworth, 2003). To that end, we introduce the number of physicians 
and healthcare professionals beyond the number of physicians of the hospital. 
 
To measure the final production of health of public hospitals, the number of 
hospital discharges is employed. In addition, this proxy of the output needs to be 
adjusted by the patients’ case heterogeneity. That is, the illness for which each 
patient is treated. It is common knowledge in the healthcare efficiency 
measurement literature that not all diseases can be treated with the same amount 
of resources, and not all hospitals have the means nor the capacity to treat the 
more severe cases. To control for this heterogeneity, we need to weight it by an 
index that accounts for the severity of the illness, what is known as the case-mix 
index (Cantor and Poh, 2018).   
 
In this study, we use the case-mix index proposed by Herr (2008), which relies 
on the assumption of a positive correlation between length of stay and the 
severity of illness. The index is constructed with the three-digit International 
Statistical Classification of Diseases and Related Health Problems (ICD-10) (see 
Appendix 4).   
 

6.2. Variables for the spatial econometric model 
 

To account for the changes in the number of treated patients we use the logarithm 
of the hospital occupancy rate.21 Herwartz and Strumann (2012, 2014) point out 
that the importance of this variable in relation to healthcare efficiency. It serves 
as a proxy to determine whether hospitals are adjusting promptly their working 
staff to the increase of treated patients. Thus, hospitals with a relatively low 
occupancy rate can be interpreted as having an oversized staff, unlikely to meet 
the demand of patient care efficiently. This issue has been recently highlighted 
for low-and-middle-income countries, which present an occupancy rate well 
below that recommended by the WHO (Hafidz et al., 2018).  
 
                                                
20 The reader can refer to the Appendix 1 for a description of the input variables.  
21 All the variables expressed as percentages were in a 0-100 scale prior to obtain the logarithms 
to facilitate the estimations and the results’ interpretations. 
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To provide a proxy for market structure in the hospitals’ respective canton, we 
use the logarithm of the hospital’s market share. The market share has often 
been used as an explanatory variable in research regarding healthcare efficiency 
in developed economies, to provide a measure of concentration (or competition). 
For example, Longo et al. (2019) identify hospitals that compete in a given district 
to proxy the patients choice of provider. Hence, the higher competition in a 
district, the wider the range of healthcare providers that the patients can choose 
from. This reaction is expected to drive hospitals to compete in quality and 
increase the incentives to increase efficiency to contain costs. Despite its 
importance, few studies have embedded this variable in the case of setting 
involving  developing economies (Hafidz et al., 2018). In developing economies 
experiencing marked healthcare heterogeneities, market share might also have 
an additional implication, considering that there would be just a few hospitals for 
which the patients perceive to be able to get a quality treatment for their disease. 
Therefore, higher market share could also be – to a certain extent – proxying the 
patients’ quality perception of a hospital. In our context, we envisage two 
scenarios. In the first case, larger market shares could be related to larger 
hospitals, which are often located in more developed cantons. Piedra Peña and 
Prior (2019) find that these types of hospitals are those with better technology 
and better performance (hence, the most efficient). The second case would 
represent those hospitals located in less developed cantons (hence, with lower 
technology and efficiency) which do not have to deal with many close 
competitors.    
 
One of the limitations that we faced was finding appropriate variables in the 
dataset that can properly measure the quality of the hospitals. To address 
hospital quality, the variables commonly used in the literature range from 
mortality, readmission or health satisfaction rates (Hollingsworth, 2008; Hafidz et 
al., 2018). Unfortunately, the former two are not available in our data. In this 
respect, we decide to take into account hospitals’ quality by including the 
logarithm of the hospital and cantonal mortality rates. Other morbidity variables 
were also included, such as the number of disease-specific treated patients, to 
provide additional controls on the complexity of cases treated. Hospital whose 
performance displays a significant positive relationship with these morbidity 
variables might be suggesting not just a higher quality on the treatment of the 
disease but also a process of learning-by-doing (Gobillon and Milcent, 2013), as 
they would be showing an increasing experience in treating these diseases over 
time. 
 
The technological differences are included as a dummy interacting with different 
hospital independent variables to estimate their differential effect on the hospitals’ 
efficiency scores.   
 
As for canton specific variables, we included the logarithm of the density and 
gross value added (GVA) to control for the canton’s level of urbanization and 
proxy some exogenous socio-economic factors respectively (Herwartz and 
Strumann, 2014; Herwartz and Strumann, 2012). Many authors address the 
influence of elder population on hospital efficiency (e.g. Herr, 2008; Longo et al., 
2017) as they are likely to be more cost and resource intensive and present more 
complications in the treatment. In addition, Orellana et al. (2017) provide 
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evidence of over-utilization of medical treatment in the Ecuadorian public health 
system for people over 60 years old which can negatively affect the systems’ 
performance as they might be using medical resources that could be employed 
for higher priority or more severe cases. Here, we use the logarithm of the 
population over 65 years old to control for this effect.  
 
Finally, we use the logarithm of the cantonal patient migration measured as the 
number of patients treated in cantons different from the ones of their place of 
residence. Felder and Tauchmann (2013) state the importance of accounting for 
regional patient migration as it can be potentially correlated with inefficiency. 
Patient migration can explain efficiency differences between territories as it could 
be capturing deprivation effects (Herwartz and Schley, 2018). Bigger hospitals 
located in the high-developed regions are very likely to treat patients from outer 
regions, as patients in low-developed regions have access restrictions to good 
healthcare quality and perceive these bigger hospitals to have higher quality than 
those located in their residence area (Martini et al., 2014). This way smaller 
hospitals - likely located in low-developed areas – can present higher efficiencies 
that are not due to more efficient use of their inputs, but rather a lower local 
demand due to patient migration (Herwartz and Schley, 2018).  
 
The descriptive statistics of our data are presented in Table 1. We split the sample 
in technology cluster according to the criterion proposed by Piedra Peña and 
Prior (2019) (low-tech, intermediate-tech and high-tech). At first sight, this table 
emphasizes the important heterogeneity in the Ecuadorian public healthcare 
system. Low-tech hospitals are the majority in the system, but they have a much 
lower amount of healthcare inputs on average than their high-tech counterpart. 
However, these high-tech hospitals are treating more than 14 times the patients 
attended by the low-tech hospitals.  
 
Regarding the hospital demand, we see a higher occupancy rate for the high-
tech group (73.80%). Despite presenting the higher demand, this occupancy rate 
suggest an inefficient utilization of hospital resources: there seems to be spare 
hospital inputs that are not currently used for treatment, implying that there is still 
a room for improvement for public hospitals, in general. Furthermore, high-tech 
hospitals settle in regions that concentrate a bigger amount of population and 
economic production. The lower market share (18.48%) shows that there is more 
competition in these areas with respect to the low-tech hospitals’ regions, which 
also present a lower level of patient migration. This preliminary evidence 
anticipates the need to adjust the hospitals’ efficiency performance to the 
patients’ needs with strategies tailored accordingly to the technological groups.  
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Table 1: Variables' summary statistics 

 
Source: The author.  
 

6.3. Exploratory Spatial Data Analysis  
 

Before performing the more quantitative analysis, it is important to assess the 
true existence of spatial dependence in the distribution of the health resources in 
the Ecuadorian territory. Hence, we are performing an exploratory spatial data 
analysis (ESDA) to identify different patterns of spatial association and regional 
clusters or atypical locations (Anselin et al., 2006) of our observations and gain a 
better understanding of the spatial structure of the data. 
 
The aim of our spatial data analysis is to test whether strategic interaction 
between hospitals is occurring. This interaction can arise from the concentration 
of health resources in selected areas that can yield similar patterns of efficiency 
(Longo et al., 2017). We test for the spatial autocorrelation and proximity of the 
data by means of the Moran’s I-statistic (Moran, 1948). Moran’s I has been widely 
used in the literature to test for spatial dependence (LeSage and Pace, 2009). If 
the statistic is positive and significant, this means that hospitals with high amounts 
of healthcare resources are clustered.  
 
Figure 1 depicts the Moran’s map and scatterplot for the mean of four different 
hospital features between 2006 and 2014: number of  physicians, beds, medical 
equipment, and hospital personnel (outside physicians).22 Whilst, Table 2 reports 

                                                
22 A better description of this is presented in the data section.  

Variable 

Mean Overall Between Within Mean Overall Between Within Mean Overall Between Within
Output
Number of discharges 
(weighted) 15034 439416.60 141543.50 414089.60 2006 3348.90 3350.20 641.78 221772 1827255 647701.2 1720670

Inputs
Number of physicians 44 56.59 50.76 23.64 47 87.52 81.39 35.78 213 126.16 105.72 76.43
Number of beds 71 103.96 100.93 17.28 81 146.10 146.41 26.65 273 136.24 137.05 40.38
Number of hospital 
personnel

96 144.79 137.84 38.10 98 218.03 207.83 77.10 445 242.12 226.42 111.40

Number of equipment and 
infrastructure

68 81.92 74.50 34.44 64 60.80 59.98 15.57 255 137.41 106.81 92.73

Explanatory Variables
Ocupancy rate (%) 57.91 26.13 19.75 17.17 45.89 28.95 21.42 19.98 73.80 20.63 18.27 11.20
Market share (%) 67.23 40.55 37.80 14.95 45.86 41.76 38.02 18.98 18.48 17.31 16.07 8.20
Mortality rate (% hospital) 0.84 1.49 1.32 0.70 0.61 0.67 0.54 0.42 2.65 1.42 1.05 1.02
Number of disease 1 224 377.24 331.29 182.16 195 255.86 225.66 129.25 800.53 1293.10 1056.21 817.36
Number of disease 2 152 504.12 491.79 116.86 381 1043.97 960.01 455.48 1019 895.49 723.62 575.01
Number of disease 3 25 48.42 44.71 18.89 33 76.26 67.71 37.76 217 170.60 146.48 98.96
Number of disease 4 253 384.47 352.57 155.63 255 394.24 341.21 209.66 998 834.42 763.30 414.59
Number of disease 5 50 69.10 62.75 29.32 55 74.36 58.67 47.27 198 171.79 162.85 75.12
Number of disease 6 1490 3188.42 3113.28 727.17 1010 1507.23 1359.28 709.04 1845 2115.75 2015.82 905.11
Number of disease 7 205 707.51 627.11 330.98 125 240.65 197.48 143.44 387 503.81 418.82 309.76
Number of disease 8 34 114.34 109.11 35.19 30 69.89 62.42 33.97 365 493.50 470.79 209.91
Number of disease 9 291 536.01 493.68 212.07 285 520.75 486.98 210.06 1572 1599.99 1375.53 925.80
GVA(thousand $) 2064886 4188748.00 4154598.00 619145.20 1576364 3638626.00 3668601.00 594701.10 8318914 5342403 5445905 1359843
Density (population per 
Km2)

264.25 485.06 485.16 35.32 202.25 205.92 209.61 18.39 465.80 142.19 146.47 30.16

Mortality rate (% cantonal) 0.41 0.12 0.10 0.05 0.39 0.12 0.12 0.04 0.48 0.06 0.05 0.03
Total population over 65 24969 43875.11 43949.93 2107.82 19921 36822.14 37517.95 2858.56 91658 51679.52 54191.08 5269.397
Total patient migration 7684 15001.32 14963.12 1556.07 4530 6034.01 6050.24 1166.84 25511 18520.74 19297.82 2802.24

Cluster 1 (Low) n=156
SD SD

Cluster 2(Intermediate) n=21 Cluster 3(High) n=9
SD
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the Moran’s I test results, using the weight matrix ïõ based on the inverse 
Euclidean (shortest) distance between hospitals.23  
 

Table 2: Moran's I test of spatial dependence 

Hospital Inputs Moran's I Prob 
Physicians 0.3698 0.0000 
Beds 0.3279 0.0000 
Hospital Personnel 0.3638 0.0000 
Equipment and Infrastructure 0.3145 0.0000 
Source: The author.  

 

Figure 1: Moran's map and Moran's Scatterplot 

 

 
 

 

 

 

 

 

 

 

 

                                                
23 We also used different weight matrices such as the inverse of the shortest time travel distance, 
and the inverse of the squared distance and time travel distance. The results are similar in all 
cases. 
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Figure 1 (continue): Moran's map and Moran's Scatterplot 

 

 
Source: The author. 
 
The evidence shown in Table 2 points out an average positive spatial correlation 
for all the hospital features considered. Looking at the maps, the hospitals that 
present positive spatial autocorrelation (black points) are clustered around Quito 
and Guayaquil, which are the two bigger and most developed cantons in Ecuador 
(Mendieta Muñoz and Pontarollo, 2016). It is also worth noticing that the spatial 
pattern changes as hospitals move further away from these cantons. Hospitals 
that surround them present dissimilar amounts of resources, represented by the 
reddish points (low-high), and present a negative correlation as they move farther 
away, as depicted by the orange points (low-low).  
 
The corresponding scatterplots confirm the finding of positive autocorrelation. 
Most of the hospitals’ resources cluster in the quadrant III, whereas few are in 
quadrant I. This result is assessing not only the high heterogeneity in terms of the 
technological endowment for healthcare in Ecuador, but also the uneven 
distribution of these high-tech hospitals in the territory, which confirms the 
findings of the descriptive statistics abovementioned.  
 
The evidence issued from this preliminary analysis implies that classic 
econometric approximations to study the public healthcare Ecuadorian system 
would fail to obtain unbiased results given the existence of spatial dependence. 
We need to consider a proper model that incorporates this dependence and 
disentangle the spillovers effects that are causing it (Anselin, 1988).  
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In order to perform our analysis, we need an appropriate measure that allows us 
to estimate to what extent healthcare resources are efficiently used in the 
production of a healthcare output. In this respect, many methods have been 
proposed in the literature (Cantor and Poh, 2018) but a few of them have been 
applied in combination with spatial econometric techniques, (Felder and 
Tauchmann, 2013). 
 
Another novelty of this contribution is to bridge these two strands of literature by 
proposing an empirical two-stage approach. In the  first stage we estimate Piedra 
Peña and Prior (2019) efficiency scores robust over time that have the advantage 
of considering the technological differences in the public healthcare Ecuadorian 
sector. Instead, in the second stage, we select these measures of efficiency as 
dependent variables to perform spatial panel econometric estimates. In this way, 
we can determine the spatial dependence in efficiency across hospitals. 
Additionally, this empirical framework allows for disentangling to what extent 
direct and spillover effects issuing from external factors - particularly hospitals 
occupancy rates - affect the efficiency performance of hospitals over time.       
 

7. Estimation Results  
 

Our empirical analysis moves from linear program (9). Table 3 summarizes the 
time-variant efficiencies estimated. The results show the remarkable differences 
in efficiency when technological disparities are considered in the analysis. On 
average, high-tech hospitals display a higher performance than their 
counterparts. The value of 0.64 for the high-tech group shows that there is still a 
45% room for improvement of their input use to be fully efficient. In addition the 
results emphasize a constant problem of inefficiency over time, even stronger for 
low-tech hospitals if we consider their efficiency value of 0.42, showing that they 
still need to improve their input consumption on 57% to achieve full efficiency. 
Our results show that there is still a big room of improvement for public hospitals 
that policymakers and hospital managers should be aware of, once one also 
takes into account the existence of a spatial correlation across data, that 
demands for a deeper analysis of the problem.  
 

Table 3: Time-variant efficiencies, summary statistics 

Cluster Mean Median SD Min Max 
High 0.6495 0.6154 0.2044 0.3196 1 
Intermed. 0.5818 0.5500 0.2616 0.0537 1 
Low 0.4291 0.4232 0.1685 0.0738 1 

 Source: The author.  
 
Table 4 shows the regression results from the SAC spatial econometric model for 
equation (11). The first set of estimations refers to the model with the selected 
weight matrices and without incorporating the technological discrepancies. 
Hereinafter, we label this first type of setting as the baseline model.   
 
The results confirm the existence of positive spatial dependence among hospital 
efficiency in the sample. These results are robust for both type of spatial matrices. 
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Considering the weight matrix based on the shortest travel time distance,	24 the 
estimate of å indicates that 1% increase in the efficiency of neighboring hospitals 
j is increasing the efficiency of the hospital i by 0.45%. Referring to our efficiency 
measurement setting, the results suggest significant strategic complementarity 
effects in hospitals efficiency. These results contrast with the ones in Longo et al. 
(2017), in which they use different efficiency ratios to proxy efficiency.  
 
The statistical significance of the estimates for í suggests the presence of a 
negative spatial error correlation. This result involves the existence of other 
sources of spatial correlation in our sample that we are not properly captured in 
the model. The results are in line with previous findings in the literature. The 
existence of spatial error correlation is not new in spatial health econometrics 
(Baltagi et al., 2018). There are several risk factors that are difficult to measure 
but they are so geographically concentrated to affect health outcomes (Tosetti et 
al., 2018). These factors may not be necessarily linked to interactions among 
hospitals, but rather be associated with interactions among spatial units observed 
at a different scale. For instance, Martini et al. (2014) discuss the importance of 
ward level analysis in measuring efficiency, as similar behavior can occur among 
wards that provide homogeneous treatments, rather than hospital aggregation. 
The spatial interaction in hospital efficiency can also come from a more in dept 
disaggregation. For example, hospital efficiency can be affected by the 
physicians productivity (Johannessen et al., 2017): the concentration of these 
physicians in large hospitals, mostly located in developed cantons can generate 
interactions among them, giving rise to a spatial pattern that cannot be captured 
by the data. Conversely, the sources of spatial dependence can also come from 
macroeconomic phenomena like immigration or unemployment which can cause 
inefficiency in the provision of healthcare services (Herwartz and Schley, 2018), 
and are very likely to be influencing hospital performance in Ecuador, given its 
strong spatial dependence (Mendieta Muñoz and Pontarollo, 2016; Szeles and 
Mendieta Muñoz, 2016). 
 
Another potential source of spatial correlation in errors could come from the 
omission of budgetary information, which has proved to be a relevant factor of 
influence in hospital’s efficiency and quality, especially when there are financial 
pressures due to budget constraints (Herr, 2008; Mas, 2015). In this respect, it is 
worth pointing out an important limitation of our dataset that is the impossibility to 
retrieve the quality for hospitals budgetary information or public investment to 
properly match with our dataset.  
 
Due to the scarce literature that exploits a similar approach above all for Latin 
American countries, a comparative analysis becomes difficult. Nevertheless, the 
sign of the spatial correlation and the effect of both  the spatially lagged efficiency 
score and the error term go in line with those of Felder and Tauchmann (2013). 
Although they perform a cross-sectional analysis at the district level in Germany, 
the average effect of spatial dependence for the hospital’s efficiency – measured 
by efficiency measurement nonparametric models – does not seem to be 
unrealistic in the Ecuadorian context. 

                                                
24 Henceforth it will be used for interpretation as it is a more realistic matrix of hospital interactions 
rather than the one of Euclidean distances (ïõ). 
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Table 4 provides additional information about spillover effects. We present total 
effects disaggregated in direct and indirect (spillover) effects (LeSage and Pace, 
2009). The logarithm of occupancy rate shows that an increase in 1% in a 
hospital’s occupancy rate increases the efficiency of the same hospital in 0.13% 
and the efficiency of all neighboring hospitals in 0.09%. These findings would 
reject the hypothesis that higher demand for medical services (translating into 
higher occupancy rates) could be the source of the decrease in hospitals’ 
efficiency, and rather, it has boosted it.25 This finding is in line with the argument 
of the inefficient use of the spare resources in the public healthcare system, as 
in Herwartz and Strumann (2014).  
 

Table 4: Spatial regression results. Direct, indirect and total effects 

Variables ïõ ïs 

 Direct Indirect Total Direct Indirect Total 

log occupancy rate 0.140*** 0.0706*** 0.211*** 0.130*** 0.0983*** 0.228*** 
 (0.019) (0.018) (0.0311) (0.0189) (0.0211) (0.0354) 
log market share -0.0372*** -0.0188*** -0.0560*** -0.0342*** -0.0259*** -0.0601*** 
 (0.011) (0.0069) (0.0166) (0.0108) (0.0094) (0.0195) 
log mortality rate -0.0317*** -0.0160*** -0.0478*** -0.0289*** -0.0220*** -0.0509*** 
 (0.008) (0.0057) (0.0134) (0.0083) (0.0074) (0.0151) 
disease 1 -0.00759*** -0.00384** -0.0114*** -0.00580** -0.00440** -0.0102** 
 (0.003) (0.0016) (0.0041) (0.0026) (0.0022) (0.0047) 
disease 2 -0.00308 -0.00152 -0.00460 -0.00341 -0.00255 -0.00596 
 (0.003) (0.0014) (0.0039) (0.0026) (0.002) (0.0046) 
disease 3 0.0784*** 0.0395*** 0.118*** 0.0841*** 0.0639*** 0.148*** 
 (0.02) (0.015) (0.0366) (0.0240) (0.0219) (0.0440) 
disease 4 0.0232*** 0.0117*** 0.0350*** 0.0212*** 0.0161*** 0.0373*** 
 (0.004) (0.0034) (0.0066) (0.0039) (0.0042) (0.0075) 
disease 5 -0.0255 -0.0129 -0.0384 -0.0289 -0.0221 -0.0510 
 (0.018) (0.0101) (0.0283) (0.0184) (0.0149) (0.0329) 
disease 6 0.00665*** 0.00336*** 0.0100*** 0.00672*** 0.00511*** 0.0118*** 
 (0.0008) (0.0008) (0.0015) (0.0009) (0.0011) (0.0018) 
disease 7 0.00558*** 0.00283** 0.00841*** 0.00452** 0.00345** 0.00796** 
 (0.002) (0.0012) (0.0031) (0.002) (0.0017) (0.0036) 
disease 8 -0.0302*** -0.0152** -0.0454*** -0.0294** -0.0224** -0.0518** 
 (0.012) (0.0067) (0.0176) (0.0118) (0.009) (0.0211) 
disease 9 0.00601** 0.00301** 0.00902** 0.00591** 0.00447** 0.0104** 
 (0.0025) (0.0014) (0.0038) (0.0025) (0.002) (0.0045) 
log GVA 0.0877** 0.0438** 0.131** 0.0650* 0.0490* 0.114* 
 (0.036) (0.0199) (0.0545) (0.0357) (0.0278) (0.0625) 

       

                                                
25 We tested the direction of the causality between hospital efficiency and the demand by means 
of Granger (1969) causality test for panel data models adapted by Dumitrescu and Hurlin (2012). 
The test rejects the null hypothesis of non-causality.   



25 

 

Table 4 (continue): Spatial regression results. Direct, indirect and total effects 
Variables ïõ ïs 

 Direct Indirect Total Direct Indirect Total 

log density -0.610** -0.300** -0.910** -0.663*** -0.499*** -1.162*** 
 (0.248) (0.130) (0.363) (0.132) (0.114) (0.224) 
log mortality (cantonal) 0.0678* 0.0342 0.102* 0.0515 0.0391 0.0906 
 (0.038) (0.0215) (0.0584) (0.0377) (0.03) (0.0669) 
log pop > 65 -0.0126 -0.00753 -0.0201 -0.126 -0.0976 -0.224 
 (0.120) (0.0606) (0.180) (0.115) (0.0933) (0.207) 
log inpatient migration 0.00446 0.00230 0.00676 0.00455 0.00348 0.00803 
 (0.012) (0.006) (0.0177) (0.0117) (0.009) (0.0206) 
å 0.355***   0.453***   
 (0.053)   (0.0454)   
í -0.419***   -0.513***   

 (0.064)     (0.0627)   

N 1,674   1,674   
Number of hospitals 186     186     
Note: Dependent variable is log of hospital efficiency. ML estimations were also run and are comparable. 
Direct, indirect and spillover effects and related standard errors in parentheses computed using 2000 
draws. *** p<0.01, ** p<0.05, * p<0.1.   
Source: The author.  
      

Instead, market share is associated with a negative estimated coefficient.26 Its 
direct and indirect effects show that 1% increase of this variable diminishes the 
efficiency performance by 0.03% for the selected hospital and 0.02% for all the 
neighboring hospitals. This implies that hospitals that host more patients tend to 
experience an inefficient use of resources. However, the magnitude of this effect 
could be different in accordance with the type of hospital we are dealing with.  
  
In addition, it is interesting to review the negative effect of cantonal density, which 
means that hospitals located in denser areas tend to record lower performance. 
However, as we have previously mentioned, the higher level of efficiency in less 
populated cantons does not necessarily mean that these hospitals are 
outperforming those in denser territories, but it might be the result of patient 
migration outflow to the former ones.27 Furthermore, the non-significative effect 
of the cantonal inpatient migration, might not necessarily mean that it has no 
effect on hospital efficiency but just that it is failing to capture the true effect of 
patient migration.28  
 
The negative effect of hospital mortality provides evidence that a high 
performance rate is positively correlated with low mortality, which has been a 
common finding in recent literature (Ferreira and Marques, 2019; Herwartz and 
Strumann, 2012; Herwartz and Strumann, 2014). 
 

                                                
26 For the definition of market share, refer to the Appendix 1 
27 We provide more evidence on this when we consider the technological effects.             
28 This issue is definitely an important topic of analysis for future research.  
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However, the previous results do not accommodate technological 
heterogeneities among hospitals. We go a step further in the applied literature 
and include technological differences as interactions with hospital-related 
variables, being the ones that  tend to be relevant for the analysis (Piedra Peña 
and Prior, 2019). 
 
Table 5 presents the estimated results including technological interactions. Model 
(1) presents the baseline model using ïs. Models (2), (3) and (4) show the 
estimation results with the covariates at the hospitals level interacted with two 
dummies of cluster 2 (intermediate-tech) and cluster 3 (high-tech).29 For sake of 
simplicity, we exclude from the table the morbidity estimations’ parameters.30  
 
The most interesting finding refers to the market share. The estimated coefficient 
is significant and robust, positively associated with the technological endowment 
of public hospitals: the estimates are positive for high-and-intermediate-tech 
hospitals, something at odds with previous results. Indeed, the estimations 
provide evidence that in case of more concentration, high-and-intermediate-tech 
hospitals’ efficiency performance increases, enforcing spillover effects. These 
results are not far from recent findings in the literature. Pross at al. (2018) assess 
that regional and hospital level concentration can improve quality and resource 
efficiency. Gobillon and Milcent (2013) identify that the higher local concentration 
of patients in a few large hospitals rather than many small ones improve the 
hospitals’ performance. As these authors state, this can be the result of a 
learning-by-doing process. The hospitals with the best technology (better 
equipment, more specialized physicians, better infrastructure, etc.), having 
treated more patients and more severe cases over time, experience 
improvements in their treatment capacity through experience. These results 
might evidence policy recommendations for public investment in favor of hospital 
competition (which usually seek higher quality and efficiency of the health 
system) but well targeted in order to avoid a negative impact. The concentration 
of resources in high-developed areas (where most of the high-tech hospitals 
locate) can be beneficial for the hospital performance in those areas. It is 
desirable that public investment could target less-developed areas where the low-
tech hospitals concentrate without having many close competitors. Increasing the 
number of hospitals in less-developed areas would yield hospitals to compete by 
increasing their quality and performance in order to avoid the patient’s outflow. It 
could also attract skilled and specialized physicians to these regions given the 
demand for qualified personnel over there. As a consequence, more patients 
could be tempted to receive treatment there, if they perceive that these hospitals 
are increasing in quality and efficiency (Ippoliti and Falavigna, 2012), and, hence, 
enhancing the regional performance of the health sector.    
 
Our estimations also stress that there are no significant changes in occupancy 
rate and mortality rate when referring to the technological endowment. 
Regardless of the technological differences, higher demand is translating into 
higher efficiency. The rationale might be that all hospitals, regardless of their 
technological level, show low levels of efficiency, implying an inefficient use of 

                                                
29 Estimation results with the other weight matrix are comparable and available upon request. 
30 Complete results’ tables are available upon request.  
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their spare inputs which gives them room for improvement when there is a higher 
demand for medical treatment.  
             
To find out how the occupancy rate has influenced the efficiency of public 
hospitals, we draw in Figure 2 the tendency of the total effect of ú:ùûg$i over time. 
We can appreciate a cut in the total effect after 2008, suggesting that the increase 
in demand after this year yields an increase in the performance of the hospitals 
due to a more efficient use of spare resources. This effect might also be the result 
of a proper managerial planning that could have anticipated an increase of the 
bulk of patients, given that the Ecuadorian population had time to get informed 
about the potential changes that the constitution embraced.  
 
To verify whether this discontinuity in efficiency was statistically significant, Table 
6 presents the correspondent hypotheses tests for both direct and indirect effects. 
The test rejects both hypotheses at 95% of confidence. This result implies that 
the period after the adoption of the new constitution enforced not only a significant 
upturn in the direct effect that an increase in demand generated in a specific 
hospital, but bigger spillover effects for neighboring hospitals as well.  
 
The results presented so far highlight the importance that covariates (mainly 
higher demand and more competition) can bring to the efficiency performance of 
public healthcare system, and the potential effect that policy implementation can 
have on it in the case to be well planned at the territorial level. As it has been 
proved, these policies do not exclusively bring benefits for the selected hospital, 
but they also affect neighboring hospitals due to spillovers. Nevertheless, it is 
worth pointing out that there are still some explanatory variables that are 
worsening the performance of the system. Some of these are still unknown, and 
more research must be done in this direction.  
 
Finally, Table 7 presents the different neighboring order coefficient estimates of 
the partitioning analysis. The direct partitioning effect in Table 7 shows a 
significant impact beyond the so called zero-order neighbor (ß°, see appendix 
3) that decreases significantly in size from ßOon.31 Implying that for direct 
impacts, those immediate neighbors play a strong role.32  
 
Regarding the indirect partitioning effects, these are significant for the second, 
third and fourth-order neighbor (and significant at 90% of confidence for the firth-
order neighbor, considering ïs) and strongly decreasing in size after ß®. This 
effect suggests that, although significant, demand has a limited effect over space 
for hospital efficiency, with spillover effects being strong in small concentrated 
areas and generating small feedback effects.  
 

                                                
31 The reader will appreciate that the coefficients for ßR and for ßO in Table 7 are zero for the 
direct and indirect partitioning effects, respectively. This is because the first term of the series 
expansion in (14) (see appendix 3) contains zeros on the off-diagonal. Consequently, ßR will 
always be equal to zero for the direct effect. Conversely, given that the spatial weight matrix ï 
contains zero on the main diagonal, by definition; ßO will always be zero for the indirect effect 
(Jensen and Lacombe, 2012).        
32 The impact of the marginal change of demand of hospital i on its own efficiency is the result of 
local effects plus feedback effects that pass mainly through its direct neighbor j.  
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The abovementioned results provide a useful tool for policy decisions. We have 
demonstrated here not just the existence of positive spillover effects of demand 
on hospital efficiency, but those spillover effects spread to a limited extent in small 
concentrated areas. Policy reforms that enhance hospital demand will have 
positive effect on efficiency performance, but this will spread through spillover 
effects to a limited extent due to the concentrated spatial territory of the country 
only.   
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Table 5: Spatial panel regression results, including technological interactions. 

Variables (1) (2) (3) (4) 

 Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total 
log occupancy 
rate 0.130*** 0.0983*** 0.228*** 0.127*** 0.0784*** 0.205*** 0.132*** 0.0740*** 0.206*** 0.129*** 0.0726*** 0.202*** 

 (0.0189) (0.0211) (0.0354) (0.0223) (0.0218) (0.0396) (0.0223) (0.0211) (0.0388) (0.0222) (0.0198) (0.0368) 

log market share -0.0342*** -0.0259*** -0.0601*** -0.0374*** -0.0232*** -0.0607*** -0.0603*** -0.0337*** -0.0940*** -0.0598*** -0.0337*** -0.0934*** 

 (0.0108) (0.00937) (0.0195) (0.0109) (0.00850) (0.0184) (0.0120) (0.0104) (0.0204) (0.0120) (0.0105) (0.0204) 

log mortality rate -0.0289*** -0.0220*** -0.0509*** -0.0310*** -0.0192*** -0.0502*** -0.0289*** -0.0162*** -0.0451*** -0.0215** -0.0122** -0.0337** 

 (0.00831) (0.00745) (0.0151) (0.00857) (0.00701) (0.0147) (0.00854) (0.00603) (0.0138) (0.00924) (0.00620) (0.0149) 

log GVA 0.0650* 0.0490* 0.114* 0.0915** 0.0566** 0.148** 0.113*** 0.0627** 0.175*** 0.109*** 0.0616** 0.171*** 

 (0.0357) (0.0278) (0.0625) (0.0364) (0.0259) (0.0602) (0.0390) (0.0257) (0.0616) (0.0384) (0.0265) (0.0621) 

log density -0.663*** -0.499*** -1.162*** -0.640*** -0.392** -1.032*** -0.730*** -0.400*** -1.130*** -0.714*** -0.395*** -1.109*** 

 (0.132) (0.114) (0.224) (0.240) (0.161) (0.385) (0.242) (0.142) (0.362) (0.240) (0.145) (0.366) 
log mortality 
(cantonal) 0.0515 0.0391 0.0906 0.0740* 0.0454* 0.119* 0.0706* 0.0396 0.110* 0.0725* 0.0412 0.114* 

 (0.0377) (0.0300) (0.0669) (0.0407) (0.0265) (0.0658) (0.0408) (0.0256) (0.0651) (0.0395) (0.0261) (0.0640) 

log pop > 65 -0.126 -0.0976 -0.224 -0.0523 -0.0339 -0.0862 -0.0530 -0.0317 -0.0847 -0.0407 -0.0247 -0.0654 

 (0.115) (0.0933) (0.207) (0.122) (0.0790) (0.200) (0.122) (0.0712) (0.192) (0.114) (0.0668) (0.179) 
log inpatient 
migration 0.00455 0.00348 0.00803 0.00268 0.00160 0.00428 0.00478 0.00251 0.00730 0.00556 0.00302 0.00858 

 (0.0117) (0.00902) (0.0206) (0.0119) (0.00766) (0.0195) (0.0122) (0.00717) (0.0193) (0.0121) (0.00708) (0.0191) 
log occupancy 
rate*cluster 2    0.0311 0.0190 0.0500 0.00850 0.00435 0.0128 0.0130 0.00754 0.0206 

    (0.0369) (0.0241) (0.0604) (0.0376) (0.0218) (0.0590) (0.0376) (0.0223) (0.0595) 
log occupancy 
rate*cluster 3    -0.00229 -0.00173 -0.00402 -0.0477 -0.0248 -0.0725 -0.0340 -0.0187 -0.0527 

    (0.169) (0.112) (0.279) (0.169) (0.0976) (0.265) (0.169) (0.0995) (0.267) 
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Table 5 (continue): Spatial panel regression results, including technological interactions. 

Variables (1) (2) (3) (4) 

 Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total 
log market 
share*cluster 2       0.106*** 0.0588*** 0.165*** 0.100*** 0.0560*** 0.156*** 

       (0.0280) (0.0192) (0.0436) (0.0282) (0.0197) (0.0447) 
log market 
share*cluster 3       0.284*** 0.159*** 0.443*** 0.250*** 0.142** 0.392** 

       (0.0883) (0.0613) (0.142) (0.0938) (0.0647) (0.153) 
log mortality 
rate*cluster 2          -0.0474* -0.0266 -0.0740* 

          (0.0273) (0.0163) (0.0426) 
log mortality 
rate*cluster 3          -0.0637 -0.0355 -0.0992 

          (0.0595) (0.0350) (0.0935) 

! 0.453***   0.397***   0.373***   0.375***   
 (0.0454)   (0.0527)   (0.0580)   (0.0575)   

" -0.513***   -0.486***   -0.447***   -0.451***   
 (0.0627)     (0.0678)     (0.0745)     (0.0740)   

N 1,674 1,674 1,674 1,674 1,674 1,674 1,674 1,674 1,674 1,674 1,674 1,674 
Number of 
hospitals 186 186 186 186 186 186 186 186 186 186 186 186 
Note: Dependent variable is log of hospital efficiency. ML estimations were also run and are comparable. Direct, indirect and spillover effects and related 
standard errors in parentheses computed using 2000 draws.  *** p<0.01, ** p<0.05, * p<0.1.   

Source: The author.
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Figure 2: Occupancy rate’s total marginal effect with 95% CI 

 
Source: The author.  

 
Table 6: Occupancy rate effects and hypotheses tests 

  Effect 
Occupancy rate Direct Indirect Total 

2007 0.114** 0.0147** 0.129** 
 (0.0477) (0.00638) (0.0538) 

2008 0.0662 0.00847 0.0747 
 (0.0493) (0.00638) (0.0555) 

2009 0.161*** 0.0207*** 0.181*** 
 (0.0534) (0.00716) (0.0600) 

2010 0.187*** 0.0241*** 0.211*** 
 (0.0486) (0.00658) (0.0545) 

2011 0.160*** 0.0206*** 0.180*** 
 (0.0487) (0.00664) (0.0549) 

2012 0.175*** 0.0226*** 0.197*** 
 (0.0510) (0.00714) (0.0576) 

2013 0.180*** 0.0233*** 0.203*** 
 (0.0512) (0.00723) (0.0578) 

2014 0.0751 0.00962 0.0847 
 (0.0479) (0.00621) (0.0539) 

Test statistics    
 !": $%&'()* = $%&'(), 6.43** 6.02** 6.45** 

Note: Dependent variable is log of hospital efficiency. Direct, indirect and spillover effects and 
related standard errors in parentheses computed using 2000 draws.  *** p<0.01, ** p<0.05, * 
p<0.1.  
Source: The author.  
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Table 7: Spatial partitioning results of direct, indirect and total effects of hospital 
demand 

  Direct 

 
log occupancy rate    

(-.) 
log occupancy rate 

(-/) 
0* 0.12799*** 0.12571*** 

 (6.02202) (5.82393) 
0, 0.00000 0.00000 
01 0.00272*** 0.00265*** 

 (2.90945) (3.35807) 
02 0.00021** 0.00034** 

 (2.05552) (2.42271) 
03 0.00018 0.00023* 

 (1.56598) (1.85795) 
04 0.00002 0.00005 

 (1.25065) (1.38788) 
05 0.00001 0.00003 

 (1.02999) (1.12931) 
 

  Indirect 

 
log occupancy rate    

(-.) 
log occupancy rate    

(-/) 
0* 0.00000 0.00000 
0, 0.04151*** 0.04744*** 

 (4.56186) (4.90785) 
01 0.01074*** 0.01525*** 

 (2.90945) (3.35807) 
02 0.00415** 0.00641** 

 (2.05552) (2.42271) 
03 0.00123 0.00231* 

 (1.56598) (1.85795) 
04 0.000004 0.00091 

 (1.25065) (1.38788) 
05 0.000002 0.00033 

 (1.02999) (1.12931) 
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Table 7(continue): Spatial partitioning results of direct, indirect and total effects 

of hospital demand 

 
  Total 

 
log occupancy rate    

(-.) 
log occupancy rate    

(-/) 
0* 0.12799*** 0.12571*** 

 (6.02202) (5.82393) 
0, 0.04151*** 0.04744*** 

 (4.56186) (4.90785) 
01 0.01346*** 0.01791*** 

 (2.90945) (3.35807) 
02 0.00436** 0.00675** 

 (2.05552) (2.42271) 
03 0.00141 0.00255* 

 (1.56598) (1.85795) 
04 0.00002 0.00096 

 (1.25065) (1.38788) 
05 0.00001 0.00036 

 (1.02999) (1.12931) 
Note: Dependent variable is log of hospital efficiency. Z-values in parenthesis computed using 
2000 draws for the direct, indirect and total effects. *** p<0.01, ** p<0.05, * p<0.1.   
Source: The author.  
 

7.1. Robustness checks  
 
To test for the robustness of the results of previous estimations, we run the same 
estimations for the model (4) by applying the Generalized Method of Moments 
(GMM) models for endogeneity to control for heteroscedasticity. Although this 
method displays some advantages over ML methods (Tosetti et al., 2018), GMM 
have been little exploited in spatial health economics, and its application has 
been recently encouraged (Baltagi et al., 2018). We also examine whether the 
results are sensitive when we consider the remoteness between hospitals by 
introducing the inverse of the squared distance to define the weight matrix -.6 
and time travel distance for the weight matrix -/6, so those hospitals quite far 
apart weight less. 
 
Table 8 presents GMM estimations as well as the results with the new squared 
matrices. The estimation is based on the Kelejian and Prucha (1999) model that 
was first extended to the panel case by Druska and Horrace (2004) and later by 
Kapoor, Kelejian, and Prucha (2007) for the case of the random effects. The 
estimation in a fixed effects framework was later adapted by Mutl and Pfaffermayr 
(2011). One drawback of this method is that it does not provide an estimate of 
the dispersion of 7, so no significance test is possible (Croissant and Millo, 2018).   
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Looking at the 8 coefficients of the first two models, the estimations show no 
substantial difference with respect to the previous estimates. Even if we cannot 
determine whether the coefficients 7 are statistically significant.  Regarding the 
effects of the covariates, the results are robust, and the size of the estimation is 
comparable. Occupancy rates are still significant regardless of the technological 
disparities, whilst the opposite occurs for the market share. Although, the spillover 
effects of market share for intermediate-and-high-tech hospitals display no 
statistical significance taking into account the squared weight matrices. It might 
be shown that the indirect effect issued from the concentration of hospitals has 
an impact on the closest neighbors only, and this effect decays proportionally with 
their distance. The findings support the partitioning analysis carried out in section 
7, demonstrating weaker spillover effects of demand in efficiency after the 
second-order neighbor.      
 
In addition, we identify a weaker effect for 8. Despite the magnitude of the 
estimates, once more, spatial dependence in efficiency is confirmed. 
 
Furthermore, we test the robustness of the results of the competition detected 
among hospitals. There is the possibility that the heterogeneity that we recognize 
in terms of technology may also be visible in terms of the spectrum of diseases 
treated. Therefore, the spatial dependence found might not be due to competition 
for a greater demand for patients, but due to the existence of specialized hospitals 
versus other general hospitals that include more treatments, which do not 
compete. To test this statement, we run the equation (11) on three different 
subgroups provided by our dataset: acute, chronic, and basic hospitals. Hence, 
we analyze homogeneous hospitals in terms of functioning and treatment.     
 
Table 9 shows the estimations of the baseline model on the three subgroups 
using the weight matrix based on the shortest travel distance.33 For basic 
hospitals the results are robust and comparable with the previous ones, 
supporting the exitance of spatial strategic interactions in hospital efficiency. 
Instead, acute, and chronic hospitals do not display spatial dependence in 
hospital efficiency (although, chronic hospitals present a significant spatial 
dependence in the error term, comparable to previous results). This could be 
suggesting that basic hospitals (which constitute more than 50% of the sample) 
are those that compete in terms of efficiency with their neighbors. However, the 
estimations should be interpreted with caution given the loss of information in the 
regressions when we split the sample. Future research will focus on expanding 
the time span to reach concluding results.     
 
Finally, it is interesting to remark that inpatient migration turns significant for 
chronic hospitals, especially when these are mainly oncologic. The variable 
suggests a negative relationship with the efficiency performance of chronic 
hospitals and sets new insights for future research on hospital patient migration 
dynamics.   
 

                                                
33 As we consider three different subgroups of hospitals, the spatial weight matrix was calculated 
for each hospital type. Also, these regressions were run by QML to be comparable with the main 
results.  
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Table 8: Spatial regression results. GMM estimators 

Variables !" !# !"$ !#$ 

 Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total 

log occupancy rate 0.134*** 0.07*** 0.204*** 0.134*** 0.065** 0.1989*** 0.135*** 0.022* 0.157*** 0.135*** 0.0197 0.154*** 

 (0.0241) (0.0268) (0.0435) 
(0.0244) (0.0316) (0.0471) (0.0238) (0.0134) (0.0309) (0.0239) (0.0155) (0.0324) 

log market share -0.061*** -0.032** -0.093*** -0.064*** -0.031** -0.095*** -0.0622*** -0.0101* -0.072*** -0.063*** -0.0093 -0.073*** 

 (0.0138) (0.0136) (0.0243) 
(0.0136) (0.0166) (0.0265) (0.0135) (0.0061) (0.0165) (0.0137) (0.0074) (0.0176) 

log mortality rate -0.024** -0.013* -0.037** -0.024** -0.012 -0.036** -0.024** -0.0038 -0.027** -0.024** -0.0035 -0.027** 

 (0.0106) (0.0078) (0.0175) 
(0.0108) (0.009) (0.0186) (0.0107) (0.003) (0.0128) (0.0107) (0.0034) (0.013) 

log GVA 0.095** 0.049* 0.145** 0.102** 0.049* 0.151** 0.102** 0.017 0.1183** 0.105** 0.0154 0.1207** 

 (0.0444) (0.0287) (0.0692) 
(0.0447) (0.034) (0.0735) (0.045) (0.0117) (0.0519) (0.0452) (0.0138) (0.0534) 

log density -0.565* -0.296* -0.861* -0.638** -0.309* -0.947** -0.749** -0.122 -0.8716*** -0.775*** -0.113 -0.8883*** 

 
(0.2964) (0.1675) (0.4399) (0.2966) (0.1904) (0.4533) (0.2976) (0.0777) (0.3361) (0.2988) (0.0894) (0.3416) 

log mortality (cantonal) 0.075 0.039 0.114 0.078* 0.038 0.116 0.072 0.012 0.083 0.074 0.0108 0.0847 

 
(0.0474) (0.0308) (0.0756) (0.0469) (0.0345) (0.0776) (0.0475) (0.0109) (0.0556) (0.0475) (0.0127) (0.0568) 

log pop > 65 -0.051 -0.026 -0.077 -0.039 -0.019 -0.058 -0.0012 -0.0002 -0.0014 -0.0016 -0.00024 -0.0018 

 
(0.1465) (0.0875) (0.2311) (0.1467) (0.0952) (0.2381) (0.1475) (0.0288) (0.1733) (0.1482) (0.0316) (0.1762) 

log inpatient migration 0.004 0.002 0.006 0.003 0.0016 0.0048 0.0058 0.00094 0.0067 0.0052 0.00076 0.006 

 
(0.0139) (0.008) (0.0217) (0.0138) (0.0087) (0.0222) (0.0138) (0.0027) (0.0162) (0.014) (0.003) (0.0166) 

log occupancy rate*cluster 2 0.017 0.009 0.026 0.015 0.007 0.0221 0.014 0.0023 0.0167 0.0136 0.002 0.0157 

 
(0.0433) (0.0253) ( 0.0676) (0.0432) (0.0275) (0.0694) (0.0432) (0.0086) (0.0509) (0.0433) (0.0094) (0.0515) 

log occupancy rate*cluster 3 -0.079 -0.041 -0.1197 -0.086 -0.042 -0.128 -0.079 -0.0129 -0.092 -0.0872 -0.0128 -0.1 

 
(0.1791) (0.1047) (0.2802) (0.1782) (0.1139) (0.287) (0.1788) (0.0363) (0.2111) (0.178) (0.0399) (0.2128) 

log market share*cluster 2 0.121*** 0.063** 0.184*** 0.125*** 0.0604** 0.185*** 0.124*** 0.0202 0.144*** 0.1254*** 0.0184 0.144*** 

 
(0.0321) (0.0299) (0.0566) (0.0321) (0.0361) (0.0618) (0.0314) (0.0131) (0.039) (0.0311) (0.0149) (0.0391) 
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Table 8 (continue): Spatial regression results. GMM estimators 

Variables 
!" !# !"$ !#$ 

 Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total 

log market share*cluster 3 0.264** 0.138* 0.402** 0.257** 0.125* 0.382** 0.247** 0.0402 0.287** 0.2471** 0.0362 0.284** 

 
(0.1064) (0.0801) (0.1761) (0.1069) (0.0904) (0.1843) (0.1042) (0.0314) (0.1259) (0.1056) (0.0362) (0.1304) 

log mortality rate*cluster 2 -0.042 -0.022 -0.064 -0.042 -0.0203 -0.062 -0.043 -0.007 -0.0502 -0.044 -0.0064 -0.0502 

 
(0.0309) (0.0187) (0.0481) (0.0312) (0.021) (0.0504) (0.0307) (0.0073) (0.0364) (0.0311) (0.0082) (0.0375) 

log mortality rate*cluster 3 -0.084 -0.044 -0.128 -0.081 -0.039 -0.121 -0.083 -0.0135 -0.096 -0.084 -0.0122 -0.096 

 
(0.0637) (0.0418) (0.1027) (0.0633) (0.0449) (0.1045) (0.0654) (0.0161) (0.0788) (0.0651) (0.0177) (0.0793) 

% 0.364***   0.339***   0.146**   0.132*   

 (0.07966)   (0.08863)   (0.0721)   (0.0811)   

& -0.180   -0.144   -0.078   -0.057   

N 1,674   1,677   1,674   1,674   

Number of hospitals 186   189   186   186   

Note: Dependent variable is log of hospital efficiency. *** p<0.01, ** p<0.05, * p<0.1 
Source: The author. 

 

 



37 
 

 
Table 9: Spatial regression results. Direct, indirect and total effects by hospital 

type 

 

8. Conclusions 
 
This study proposes to analyze the spatial dependence of hospital efficiency in 
Ecuador. To address this question, we apply an innovative methodology 
proposed by Piedra Peña and Prior (2019) to obtain robust efficiency scores for 
a sample of public hospitals in Ecuador between 2006 and 2014, taking into 
account their technological differences to avoid biased results. Then, we use this 
efficiency score as a dependent variable of a spatial econometric SAC model to 
consider spatial autocorrelation in efficiency and disturbances. The results 
confirm that an increase in the efficiency of surrounding hospitals is increasing 
the efficiency of a selected hospital. The direction of these effects is robust to 
different specifications and estimation methods. Spatial autocorrelation and 

Variables Acute Chronic Basic 

 Direct Indirect Total Direct Indirect Total Direct Indirect Total 
log occupancy rate 0.104*** 0.0029 0.107*** 0.456*** 0.0276 0.483*** 0.121*** 0.0659*** 0.187*** 
 (0.0278) (0.0155) (0.0340) (0.0592) (0.0477) (0.0602) (0.0257) (0.0197) (0.0408) 
log market share 0.0825*** 0.0019 0.0845*** -0.0836*** -0.005 -0.0886*** -0.151*** -0.0826*** -0.233*** 
 (0.0171) (0.0120) (0.0213) (0.0308) (0.0096) (0.0327) (0.0144) (0.0198) (0.0273) 

log mortality rate -0.0407*** -0.0009 
-

0.0416*** -0.129*** -0.008 -0.137*** -0.014 -0.008 -0.0215 
 (0.0142) (0.006) (0.0156) (0.0240) (0.0140) (0.0279) (0.0100) (0.00615) (0.0159) 
log GVA -0.0423 -0.0006 -0.0429 -0.0885 -0.002 -0.09 0.0695* 0.0377 0.107* 
 (0.0761) (0.0124) (0.0777) (0.249) (0.0307) (0.264) (0.0421) (0.0242) (0.0649) 
log density -2.202*** -0.0157 -2.217*** 4.264** 0.231 4.495** -0.532** -0.286* -0.819* 
 (0.572) (0.305) (0.525) (2.159) (0.497) (2.248) (0.272) (0.160) (0.419) 
log mortality 
(cantonal) 0.0633 -0.0002 0.0630 -0.006 -0.002 -0.0089 -0.006 -0.003 -0.00976 
 (0.0968) (0.0172) (0.0996) (0.367) (0.0472) (0.392) (0.0421) (0.0240) (0.0657) 
log pop > 65 0.210 -0.006 0.203 1.078 0.079 1.157 0.028 0.0128 0.0407 
 (0.223) (0.0435) (0.222) (0.746) (0.159) (0.817) (0.199) (0.110) (0.308) 
log inpatient 
migration 0.0196 -2.91e-5 0.0196 -0.184** -0.01 -0.194** 0.0024 0.0014 0.00378 
 (0.0281) (0.0048) (0.0288) (0.0809) (0.0212) (0.0850) (0.0123) (0.00693) (0.0191) 

! 0.0141   0.060   0.378***   
 (0.133)   (0.0941)   (0.0570)   

" -0.0848   -0.655***   -0.515***   
 (0.147)   (0.0890)   (0.0718)   

N 711   81   882   
Number of hospitals 79     9     98     
Note: Dependent variable is log of hospital efficiency. ML estimations were also run and are comparable.  Direct, indirect 
and spillover effects and related standard errors in parentheses computed using 2000 draws. *** p<0.01, ** p<0.05, 
* p<0.1.  

Source: The author.         
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spillover effects seem to be diminishing as the hospitals locate further away from 
the most developed areas. As Longo et al. (2017) state, the positive dependence 
between neighboring hospitals suggests that they are acting as strategic 
complements in efficiency.  
 
We also address the question of whether the variations in demand for a given 
hospital – that we measure through occupancy rates – are affecting nearby 
hospitals’ efficiency through spillover effects. The results confirm that increases 
in demand for medical services for public hospitals are causing that neighboring 
hospitals attract some of this demand, and this is boosting their own efficiency, 
regardless of the technological endowment of the hospitals. 34 A big portion of this 
positive effect can be explained because the public healthcare hospitals show 
low levels of occupancy rates, which might be implying the existence of spare 
resources that are inefficiently used to produce healthcare outputs. The increase 
of demand forces hospitals to make better use of this spare resources, hence, 
increasing its efficiency performance. In addition, the estimates assess that after 
2008, the direct and indirect impact of occupancy rates in the efficiency 
performance significantly increased. While waiting for the approval of the new 
constitution, which was expected to entail an increase in the number of patients 
looking for medical treatments, hospital managers could have planned strategies 
to adapt to these changes, and this could be reflected in part of this higher effect 
after 2008.  
 
The technological disparities among hospitals also play a key role, especially 
when analyzed jointly with market share. We find evidence that high-and-
intermediate-tech hospitals have a differential effect. That is, the increase of 
concentration of patients in technologically better hospitals increases their 
efficiency and that of surrounding hospitals, whereas the opposite effect is found 
for low-tech hospitals. These results are providing some evidence of a potential 
learning-by-doing process in high-and-intermediate-tech hospitals.   
 
These differences have important policy implications. Taking into consideration 
that high-tech hospitals are mostly concentrated in well-developed areas, policy 
decisions and public funding should be allocated taking into consideration the 
territorial development within the country. The rationale is that policy reforms and 
public investment that imply more competition (by investing in the construction 
more hospitals) can be counterproductive for the healthcare performance of well-
developed areas but beneficial for less-developed ones.  
 
In this line, policymakers could exploit spillover effects in well-developed areas to 
reinforce the hospital performance. However, they should be aware that these 
spillover effects will spread to a limited extent over space, emphasizing the 
importance of well targeted policy decisions. Clearer criteria of public funding 
allocation and stronger regulation on hospital resource consumption controlling 
(or limiting) for hospital costs inflation can have a positive impact in these regions. 
With more control to prevent costs’ inflation, hospitals would have incentives to 
increase their profits by improving their resource use, hence, increasing their 
                                                
34 Focusing on the types of hospitals, the results hold for basic hospitals, whilst acute and chronic 
hospitals do not show spatial dependence in efficiency. However, these results should be taken 
with caution due to the information loss when splitting the sample.   
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efficiency. Due to spillover effects, this efficiency improvement would spread 
throughout the region, enhancing the performance of the public healthcare 
system without increasing the allocation of resources or public investment. 
Instead, public investment and resource allocation could focus on less-developed 
areas, where higher supply of hospitals could motivate existing hospitals to 
compete for patient inflow by increasing their quality and efficiency. These 
improvements can be a potential solution to decrease the existing regional gap 
in the Ecuadorian healthcare system.   
 
The empirical application carried out in this study can also be extended to other 
Latin American countries that share many socio-economic, political and cultural 
characteristics (Levy and Schady, 2013; Atun et al., 2015) and whose spatial 
disparities have been well documented (Cuadrado-Roura and Aroca, 2013). 
 
However, this study leaves some open questions for future research. In a country 
with an important heterogeneity in the healthcare system, it should be interesting 
to understand whether internal patient migration flows are affecting or being 
affected by the hospitals' performance. High-performing hospitals might be 
attracting patients from low-performing ones in neighboring regions. 
Understanding the mobilization patterns of patients is crucial to attain 
improvement of the healthcare system. Understanding interregional patient 
migration patterns can help central and local authorities as well as hospitals 
themselves to identify under-performing hospitals, which could benefit from an 
increase in health budget and resource allocation, in order to improve their 
performance and attract more demand. Also, patient mobility flows are likely to 
follow a spatial pattern, as patients will be willing to travel to the nearest high-
performing hospital. In this sense, policymakers can identify spatial clusters of 
hospitals and promote policies that encourage efficiency gain. 
 
Further methodological innovations can also be implemented. In this analysis, we 
assume that hospitals interact with each other within a bounded area, in the 
presence of local competition. However, hospitals can experience global forms 
of interactions that might not necessarily depend on their geographical distances 
but rather in long-range interdependencies (Lisi et al., 2017). By keeping #

$%
 

unknown, and estimating it by graphical modeling (Moscone et al., 2018; 
Moscone et al., 2017), future research could test the existence of these 
interdependencies in case of developing countries like Ecuador. Moreover, one-
stage SFA panel models that account for hospital heterogeneity and address 
spatial dependence such as those recently proposed by Pross et al. (2018) can 
also be implemented to control for possible bias in the efficiency estimations in 
tow-stage approaches (Simar and Wilson, 2007).35 However, the main setback of 
SFA approximations is that we need to rely on a production function that has to 
be defined a priori (O’Neill et al., 2008), and that cannot be simply proposed in 
the context of a developing country. Future work defining the theoretical 

                                                
35 The main setback of two-stage approaches relies on the impossibility to know the underlying 
Data Generating Process of DEA efficiency estimates, which raises some doubts of what is being 
estimated in the second stage. Plus, DEA estimates are serially correlated which consequently 
lead to unreliable inference (Simar and Wilson, 2007). We control for this latter issue by 
accounting for panel-data robust efficiency estimations that take into consideration the panel 
structure of the data.      
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framework of a proper production function is then desirable to provide the 
background for empirical applications.        
 
Finally, we need to point out some issues referring to data availability. It is 
recommended that future research take into account further information that has 
been proved to have a significant effect on hospitals’ efficiency, such as the 
quality of treatments and budgetary information. Here, we proxy the hospital’s 
quality with mortality variables, which have been widely used to approximate 
hospital quality and performance (Hafidz et al., 2018; O’Neill et al., 2008; Lisi et 
al., 2017). However, mortality can be influenced by other external factors, like the 
severity of the disease that patients suffer when they enter the hospital or other 
complications that the hospitals cannot control for, and that does not reflect the 
quality of the treatment received. The same type of comment applies to the 
readmission rates, the level of specialization (Gravelle et al., 2014; Longo et al., 
2017) or the nosocomial infections (Prior, 2006) that could bring more elements 
for better understanding the public healthcare quality-efficiency relationship in the 
healthcare system. 
 
Another relevant missing information refers to hospital budget and public 
investments. Hospitals can adopt a different behavior when they face financial 
pressures (Mas, 2015). Those troubles are quite common in developing 
economies such as Ecuador where hospitals might be forced to make efforts 
towards cost limitations that could affect their performance. The large public 
investment made by the government after 2008 is very likely to have an impact 
on hospital efficiency. It is expected to relax some financial pressures and could 
have been targeted from a territorial viewpoint and, hence, affecting health 
outcomes directly. Future research should fill this gap of information to derive in 
additional empirical research to bring relevant insights for policy decisions. In this 
line, a clear suggestion for policymakers is to implement strong monitoring 
systems that provide researchers and healthcare managers with reliable and 
robust data. 
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Appendix 1. Data Description  
 

Table A1: Variables’ description 
 

Variable Description Variable construction 

Output   
Number of discharges 
(weighted) Treated patients in a given hospital Number of discharges*Case-Mix index 

Inputs   

Number of physicians 
Physicians and general physicians in a 
given hospital Total number of physicians  

Number of beds Total amount of beds per hospital Total number of beds 

Number of hospital 
personnel 

Medical staff not including physicians. 
E.g. Nurses, technologists, 
administrative staff, dentist, etc.  Total number of hospital personnel 

Number of equipment 
and infrastructure 

Physical infrastructure (surgery rooms, 
intensive care rooms, etc.) and medical 
equipment (imaging, diagnosis, 
sterilization, etc.) Total number of equipment and infrastructure 

Explanatory Variables   

Occupancy rate  
Inpatients days of care per beds 
available in a given hospital (Inpatient days of care/Bed days available) *100 

Market share  

Concentration of inpatients in a given 
hospital relative to the total amount of 
patients in the canton 

(Total number ith hospital inpatients/Total 
number of cantonal patients)*100 

Mortality rate  
percentage of deceased patients in a 
given hospital  Hospital mortality*100 

Number of disease 1 
Inpatients with certain infectious and 
parasitic diseases Total inpatients with disease/100 

Number of disease 2 Inpatients with neoplasms Total inpatients with disease/100 

Number of disease 3 
Inpatients with diseases of the nervous 
system   Total inpatients with disease/100 

Number of disease 4 
Inpatients with diseases of the 
respiratory system  Total inpatients with disease/100 

Number of disease 5 
Inpatients with diseases of the skin and 
subcutaneous tissue   Total inpatients with disease/100 

Number of disease 6 
Inpatients with pregnancy, childbirth and 
the puerperium  Total inpatients with disease/100 

Number of disease 7 
Inpatients with certain conditions 
originating in the perinatal period  Total inpatients with disease/100 

Number of disease 8 

Inpatients with congenital malformations, 
deformations and chromosomal 
abnormalities  Total inpatients with disease/100 

Number of disease 9 

Inpatients with injury, poisoning and 
certain other consequences of external 
causes  Total inpatients with disease/100 

GVA Gross Value Added Total, cantonal 
Density (population per 
Km2) Cantonal population per Km2 Population/Km2 

Mortality rate (% 
cantonal) 

Percentage of deceased patients in a 
given canton relative to cantonal 
population  Cantonal mortality*100 

Total population over 65  Cantonal population over 65 years old Total, cantonal 

Total patient migration 

patients treated in a given hospital 
residing at a different canton where they 
are treated Total, cantonal 

Source: The author.  
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Appendix 2. Model specification 
 
The following selection model strategy begins with a baseline model and 
develops around some tests to achieve an econometric specification that fits the 
data at hand. First, we present the panel LM and robust-LM tests to provide an 
initial clue of the potential sources of spatial autocorrelation in Table A2. To 
develop these tests and the following model specification in this appendix, we 
rely on the matrix of the inverse Euclidean distance '

(
.  

 
The robust test fails to reject the null hypothesis of no spatial autocorrelation (at 
90% and 95% of confidence) in both, the dependent variable, and the errors. The 
initial evidence leads to take into consideration both types of spatial 
autocorrelation.36     
 

Table A2: LM and robust-LM tests 
  Value Prob 
LM-Lag 0.2929 0.5884 
LM-Err 1.386 0.2391 
Robust LM-Lag 3.2491 0.0715 
Robust LM-Err 4.3422 0.0372 

Source: The author.  
 
Then, we compare the appropriateness of a scope of spatial models taking a fixed 
effects model as a benchmark in Table A3. The Hausman test rejects the null 
hypothesis of no systematic difference between fixed and random effects, so it is 
coherent to apply a fixed effect estimation. Following LeSage and Pace (2009) 
and Elhorst (2010), we explore the most suitable econometric estimation by 
starting with the general SDM model and, then, refining it towards a SAR or SEM 
model. Following the SDM model, we cannot find statistical evidence of spatial 
dependence in efficiency. SAR and SEM models produce the same results in 
efficiency and error spatial dependence, respectively. Instead, the SAC model 
provides significant evidence of spatial dependence both in dependent variable 
and error term. Merging these outcomes with the results of the LM-tests, the SAC 
model seems to be the most convenient to apply to our data. However, the SAC 
model is not nested within the SDM model (Elhorst, 2014), and, hence, we can 
rely on alternative information criteria to select between them (Belotti et al., 2016). 
Akaike and Bayesian information criteria endorse the selection of the SAC model 
as the best specification. The recent literature in this regard supports this finding 
and SAC models, usually account for spatial dependence in efficiency and 
potential unmeasurable variables that can affect the hospitals’ efficient 
performance (Felder and Tauchmann, 2013; Herwartz and Strumann, 2014; 
Herwartz and Strumann, 2012).  
 
 
 

                                                
36 The reader must take these initial results with caution, given that the classical panel data tests 
(Anselin et al., 2006) and their robust counterpart (Elhorst, 2010) do not allow for any spatial or 
time-specific effects. The tests run here are controlled in and ad hoc way for individual effects by 
demeaning the data as in Croissant and Millo (2018). 
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Table A3: model specification 
 

Variables Panel SDM SAR SEM SAC 
log occupancy rate 0.142*** 0.153*** 0.142*** 0.143*** 0.135*** 

 (0.046) (0.019) (0.019) (0.019) (0.018) 
log market share -0.037 -0.041*** -0.037*** -0.038*** -0.036*** 

 (0.038) (0.011) (0.011) (0.011) (0.011) 
log mortality rate -0.032* -0.034*** -0.032*** -0.032*** -0.032*** 

 (0.017) (0.009) (0.009) (0.009) (0.009) 
disease 1 -0.007 -0.008*** -0.007*** -0.007*** -0.007*** 

 (0.005) (0.003) (0.003) (0.003) (0.003) 
disease 2 -0.005 -0.006** -0.005* -0.005* -0.003 

 (0.005) (0.003) (0.003) (0.003) (0.003) 
disease 3 0.076* 0.077*** 0.076*** 0.077*** 0.075*** 

 (0.045) (0.025) (0.025) (0.025) (0.023) 
disease 4 0.024*** 0.024*** 0.024*** 0.024*** 0.023*** 

 (0.008) (0.004) (0.004) (0.004) (0.004) 
disease 5 -0.023 -0.025 -0.023 -0.023 -0.024 

 (0.047) (0.020) (0.020) (0.020) (0.019) 
disease 6 0.007*** 0.007*** 0.007*** 0.007*** 0.006*** 

 (0.002) (0.001) (0.001) (0.001) (0.001) 
disease 7 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 

 (0.002) (0.002) (0.002) (0.002) (0.002) 
disease 8 -0.032* -0.033*** -0.032*** -0.032*** -0.029** 

 (0.017) (0.012) (0.012) (0.012) (0.011) 
disease 9 0.007* 0.007*** 0.007*** 0.007*** 0.006** 

 (0.004) (0.003) (0.003) (0.003) (0.002) 
log GVA 0.093 0.019 0.094** 0.096** 0.087** 

 (0.073) (0.051) (0.043) (0.043) (0.037) 
log density -0.811* -0.519 -0.823*** -0.836*** -0.606*** 

 (0.470) (0.343) (0.274) (0.271) (0.233) 
log mortality (cantonal) 0.068 0.043 0.068 0.068 0.068* 

 (0.047) (0.050) (0.045) (0.045) (0.039) 
log pop > 65 0.033 0.051 0.036 0.037 -0.012 

 (0.173) (0.169) (0.139) (0.138) (0.115) 
log inpatient migration 0.003 -0.006 0.003 0.003 0.003 
  (0.016) (0.014) (0.013) (0.013) (0.011) 
Lagged Independent 
Variables      
log occupancy rate  0.019    
  (0.032)    
log market share  -0.020    
  (0.021)    
log mortality rate  0.005    
  (0.019)    
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Table A3 (continue): model specification 
Variables Panel SDM SAR SEM SAC 
disease 1  -0.007    
  (0.008)    
disease 2  0.005    
  (0.005)    
disease 3  0.113**    
  (0.055)    
disease 4  -0.009    
  (0.009)    
disease 5  0.009    
  (0.039)    
disease 6  0.001    
  (0.002)    
disease 7  -0.005    
  (0.007)    
disease 8  0.002    
  (0.028)    
disease 9  0.003    
  (0.005)    
log GVA  0.268***    
  (0.096)    
log density  -0.867    
  (0.539)    
log mortality (cantonal)  0.135    
  (0.091)    
log pop > 65  -0.118    
  (0.227)    
log inpatient migration  0.046**    
    (0.023)       
Spatial      
rho  -0.054 -0.011  0.355*** 

  (0.035) (0.033)  (0.053) 
lambda    -0.026 -0.419*** 
        (0.034) (0.064) 
Hausman (p-value) 0.0000 0.0000 0.0002 0.0000  
AIC 91.93 85.05 79.82 79.35 66.84 
BIC 227.5 280.3 182.9 182.4 175.3 
Observations 1,674 1,675 1,674 1,674 1,674 
Number of hosp 186 187 186 186 186 
Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix 3. Spatial Effects 
 
Following LeSage and Pace (2009), if a particular explanatory variable in an 
observed spatial unit changes (e.g. the change in the demand of hospital i), not 
only will the dependent variable in that unit itself change (efficiency of hospital i) 
but also the dependent variable in other units (efficiency of hospital j). The former 
called direct effects and the latter indirect (spillover) effects. In the SAC model, 
direct effects are the result of local effects plus feedback effects mediated by 
spatial spillovers.37  
 
In particular, taking the matrix of partial derivatives of the expected value of the 
logarithm of the efficiency )

*
 with respect to the zth explanatory variable of +

*
 in 

all hospitals (from 1 to 186) for the SAC model, we have:  
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Where >
?
 is the vector of coefficients. LeSage and Pace (2009) define the 

diagonal element of (12) as the direct effects, while the off-diagonal contain the 
indirect effects. The infinite series expansion of the spatial multiplier matrix 
(: − <')

=2 can be expressed as follows:  
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Note that, since the off-diagonal elements of the identity matrix : are zero, the 
term represents a direct effect of a change in +

*
. Furthermore, since the diagonal 

elements of !' are zero by assumption, the term represents the indirect effect 
of a change in +

*
. The remaining terms in the right-hand side of (13) represent 

the second and higher order direct and spillover effects. Thus, the spatial 
multiplier, as shown in (13) can be expanded to determine the impacts that the 
explanatory variables have on the higher order of contiguity in the following 
manner: 
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The power of the autoregressive parameter, !, ensures that the marginal effect 
of a given variable decreases with a higher order of contiguity. In other words, 
the effect of a change of an explanatory variable declines as we move over space 
(LeSage and Pace, 2009). 
 
However, the presentation of both direct and indirect effects can be challenging, 
since they vary from different units in the sample. Therefore, LeSage and Pace 
(2009) propose to report direct effects as the average of the diagonal elements, 
while one spillover effect can be measured by the average row sums of the off-

                                                
37 This feedback effect is derived from the impacts passing through neighboring hospitals and 
back to the hospital where the change came from (from hospital i to j to k and back to hospital i). 
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diagonal elements. The sum of the average direct and spillover effects is the total 
effect.  
 
In order to draw inferences regarding the statistical significance of the direct and 
spillover effects, LeSage and Pace (2009) propose to simulate the distribution of 
the direct and spillover effects using the variance-covariance matrix implied by 
the ML estimates. This is because it cannot be simply seen from the coefficient 
estimates and the corresponding standard errors or t-values of the variance-
covariance matrix whether the indirect effects in models containing endogenous 
interaction effects are significant (see LeSage and Pace, 2009; Elhorst, 2014).  
 
Appendix 4. Case-mix weights    
 
To control for the severity of cases in this study, we construct the case-mix weight 
following the approach developed by (Herr, 2008). These weights are based on 
the across-hospital average length of stay (LOS) of each diagnosis relative to the 
overall length of stay. In developing a list of diagnostic categories (cases), we 
use the three-digit International Statistical Classification of Diseases and Related 
Health Problems (ICD-10). 
 
The weights then are constructed as followed. A mean of LOS by year and main 
diagnosis  P = 1,… ,R over N hospitals is calculated using the following formula: 
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(15) 

 
Then, the mean LOS over all diagnoses and all hospitals is denoted by STU

a
 and 

the final weights b
V

 are obtained by: 
 

b
V
=

STU
V
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(16) 

The weights b
V

 will be bigger (smaller) than one if the treatment of diagnosis P 
takes more (less) time than the overall average LOS. These weights rely on the 
assumption of a correlation between the length of stay and the severity of illness, 
so the idea is that the more days of stay of the patient, the more severe the 
disease and the more resources are used. 
 
Finally, the weighted number of discharges are obtained by multiplying the 
number of discharges of each case times b

V
 and adding them up for every 

hospital. 
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