CapsTONE PrRoJECT: COoMPUTER ENGINEERING UAB

|dentification of motifs in biological sequences

using genetic programming.

Alex Velasco (Computer Engineering Student UAB)

Abstract — Current tools for motif discovery search patterns that are over-represented in DNA sequences but do not use DNA
curvature or cofactors associated with the protein bind. We developed a tool that searches for motifs with a variable gap
between patterns. The search is done using a genetic programming algorithm that searches for possible models that could be
the motif and tries to fit them in a set of positive sequences with the motif against a control dataset. To evaluate the fitness of
the organisms we have created an energy model for each component of the regulated bacterial promoters. The final genetic
algorithm is able to find hidden motifs in synthetic sequences and real biological sequences.

Index Terms— Algorithm, binding site, biological motif, complexity control, framework, genetic programming, mutation
operator, organism, placement, population, PSSM recognizer, sequences, tree structure.

*

1 INTRODUCTION

In biology, the process of creating a protein begins when

DNA is read by a set of proteins (the RNA-polymerase
holoenzyme), which transforms the double helix of DNA
into a single RNA sequence[l]. Information codified on
RNA is then read by ribosomes and translated into
proteins. The initiation of transcription from DNA to
RNA is regulated by specific proteins called transcription
factors (TFs)[2]. This kind of proteins bind to specific
DNA regions, also known as promoter regions of the
transcription.

RNA polymerase
P
Transcription >

S e
P te

\‘/

mRNA

Fig. 1. Global structure of gene transcription from DNA to mRNA.

Transcription factor binding is governed by the
recognition of specific patterns, with every TF recognizing

AI6M Wefgqgry’ cligou guq 21wl bgbele gf ToIe gC MK

patterns are known as biological sequence motifs.

The existence of TF-binding motifs were first reported in
the late 1960’s. Since then, scientists have created models
to represent the interaction of TF and DNA,
predominantly using position-specific weight matrices
(PSWM)[3]. In the PSWM model, we consider DNA as a
linear string of letters where the TF targets a specific
pattern or motif within a long string representing the
genome. This model assumes a linear sequential
representation, as well positional independence. Even
though these assumptions work well for many TFs, they
are not intrinsically granted, since they ignore DNA
structure, co-dependencies between positions and among
TFs and co-factors.

TF binding

PWM PWM

sites - counts - frequencies
YA’C/;’Y‘/ 1 2 3 4 1 2 3 4
.10 0 7 0 .1 0 070
,,éc .0 6 0 2 .0 06 0 02
i - o o s 1 - T 0 0 0301
; EI0 40 G 0 040 07

Fig. 2. Process of creating a PWM from the TF’s binding sites.

bronigeq pA pibozy DIIS| g6 DOcNWeSR g6 |9 NYB
prondpr fo Aon pA :; COKE

~

https://core.ac.uk/display/334428793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.zotero.org/google-docs/?aMTRdH
https://www.zotero.org/google-docs/?QZsYfQ
https://www.zotero.org/google-docs/?UipAVq

Motifs can be identified using experimental methods in
vitro (e.g. EMSA) or in vivo (e.g. ChIP-Seq). ChIP-Seq is a
type of massively-parallel chromatin
immunoprecipitation assay that provides approximate
TF-binding data across the entire genomel[4].
Electrophoretic =~ Mobility ~ Shift Assays (EMSA)
discriminate TF-bound from TF-unbound DNA using
electrophoretic gel migration[5]. Both methods can
identify relatively short sequences (i.e. ~200 bp) that are
bound to a TF, but they cannot precisely outline the
TF-binding site.

When it comes to analyzing sets of sequences suspected
of harboring TF-binding sites, MEME is the most popular
tool. MEME is an efficient tool for PSSM-based motif

discovery[6]. However, many TFs do not target
well-defined sequence motifs. Instead, they rely on
recognition of the DNA curvature, internal

co-dependencies and binding to associated cofactors. The
lack of tools for appropriately modeling these TFs has led
to a lag in their study, in spite of their biological
importance. Hence, having the ability to model and
discover more flexible TFs would open up many research
lines in the future.

In this context, it must be stressed that the current
capstone project is defined as an open-ended research
project that incorporates Genetic Programming (GP).
Evolutionary algorithms provide a flexible platform for
the discovery of unconventional biological sequence
motifs, as they can identify global solutions that
incorporate both sequence and structure derived elements
in their recognition[7].

2 OBJECTIVES

The main objective of this work is to develop and provide
a proof-of-concept that a genetic programming (GP)
platform can be adapted for discovery of TF binding
motifs and, more generally, of the complex interplay
between the components that make up regulated bacterial
promoters.

This requires defining the problem in terms of an
algorithmic solution, translating the biological problem to
a computational framework and understanding the
required biology and biochemistry background to
generate an accurate implementation of the algorithm.
The development of such a GP framework requires that
we incorporate basic elements of the known biology and
biochemistry pertaining to the binding of TFs to bacterial
promoters and to our current knowledge of bacterial
promoter architecture. This development necessarily
implies the definition of the overall GP framework in
terms of Dbasic workflow and Object-Oriented
Programming (OOP) class structure, as well as adapting
GP operators, including crossover and mutation, to reflect
our knowledge of the biological entities involved .

The most critical part of an evolutionary algorithm is the
definition of fitness function, since this will define the
evolution of the population towards an optimal solution.
To assess the effectiveness of proposed fitness functions
and placement strategies, we will test the GP framework
on both synthetic and real biological datasets.

CapsTONE ProJecT: CoMmPUTER ENGINEERING UAB

3 STATE OF THE ART

3.1 MEME

Currently there are tools that allow motif discovery, like
MEME, under the assumption of a rigid model (the size of
the motif is predefined) and positional independence.
This tool is able to discover overrepresented motifs in a
set of sequences of DNA. It is important to highlight that
when a bipartite motifs cannot be directly detected by
MEME, which treats them as independent motifs and
therefore imposes heftier restrictions on the relevance of
each individual submotif. In other words, does not accept
patterns with variable distance spacers[8].

3.2 Motif discovery methods

MEME is part of an extensive family of algorithms based
on a target optimization criteria, like the information
content of the motif or the potential binding energy to the
DNA of the inferred model.

There have been multiple approaches based on different
optimization methods:

MEME uses expectation maximization (EM) on a model
of a fixed width and uses an initial estimate of the number
of sites to search motifs. It then, sorts the possible sites by
probabilities according to EM. Meme calculates the
expected values (E-values) of the first n sites for different
values of n. This procedure is repeated for different
values of width and initial estimates of the number of
sites. To finish, it outputs the motif with the lowest
E-value [9].

Other methods use greedy algorithms to search for
motifs. These methods first perform an alignment of
n-mers and translate it into an alignment matrix. Then,
from the matrix they directly extract the consensus
sequence (here is the greedy method). From the
alignment matrix build a weight matrix using a
logarithmic ratio[10].

Gibbs sampling methods use 2 evolving data structures.
A pattern description in the form of a probabilistic model
of the background frequencies and a constituting
alignment for the common pattern within the sequences.
This pattern is obtained by locating the alignment that
maximizes the ratio of the corresponding pattern to
background probability[11].

GLAM (Gapless Local Alignment of Multiple sequences)
is a C++ program that uses Gibbs sampling to detect and
align similar regions of biological sequences and optimize
the alignment using simulated annealing. It added several
enhancements to the Gibbs sampling alignment method
like the detection of the alignment width and the
calculation of statistical significance[12].

ANN-Spec (Artificial Neural Network - Specificity) is a
machine learning algorithm and can be applied for
discovering un-gapped patterns in DNA sequence.
ANN-Spec searches for parameters for a weight matrix
that will maximize the specificity for binding sequences
of a positive dataset compared with a background
sequences dataset[13].

https://www.zotero.org/google-docs/?hrADUp
https://www.zotero.org/google-docs/?bIg0Cy
https://www.zotero.org/google-docs/?WZPCl4
https://www.zotero.org/google-docs/?IsID2S
https://www.zotero.org/google-docs/?03izKx
https://www.zotero.org/google-docs/?VXaZ8Q
https://www.zotero.org/google-docs/?y6N4u2
https://www.zotero.org/google-docs/?ljpYFd
https://www.zotero.org/google-docs/?tU6b1M
https://www.zotero.org/google-docs/?vHInY4

VELASCO A.: IDENTIFICATION OF MOTIFS IN BIOLOGICAL SEQUENCES USING GENETIC PROGRAMMING. 3

There have been other more recent approaches like
gPMS9, that uses a tree to pass through all possible
polymers using a pruning criteria to optimize the search
and discard branches[14].

3.3 GP for motif discovery

There have been studies comparing linear and tree-based
representations for unaligned protein sequences. This
studies had been executed over existing genetic
programming systems (LilGP) with very simple
mutational operators [15].

This project has features that make it unique, the
possibility of including shape recognition in the model
architecture, which tries to model the motifs using
nucleobases and the DNA structure[16]. It is also
important that the problem is redefined as a promoter
architecture inference, and not a single motif discovery, so
the model also includes the interaction between single
motif patterns.

4 METHODOLOGY

4.1 Dataset for the analysis

Datasets are written in FASTA format, a text format used
to represent the sequences of nucleobases[17]. For every
sequence, it consists of a line that includes metadata
about the sequence, and a second line with the DNA
sequence.
For every execution we will have 2 datasets, the positive
dataset is the one that is supposed to include the motif we
want to detect. The negative dataset or control dataset is a
randomly generated dataset that does not have any motif
inside, and will be used to check that the binding on the
positive dataset is providing a positive benefit the
negative dataset can not provide.
For this project we used 2 types of datasets, synthetic
datasets were used mainly during the development to
improve the algorithm, using motifs we created and
knowing the exact solution. Biological datasets were used
in the final stage of the project, to evaluate the GP
algorithm with real data.
To generate the first synthetic positive datasets we
generated a random mononucleotide raw sequence (200
bp). Then, on fixed positions 80 -100 inserted the
following motif:

20

1.0

bits

5 10 15

001G GoasorTesS o

L A= e
T

Fig. 3. Sequence logo[18] corresponding to the main fixed motif used on
synthetic data.

This motif is clearly visible in the sequence logo. We also
inserted a second motif at positions over 150, but with a
variable spacing (0-9 bp) for each sequence:

20

a8
EH]

0.0

0l ¢,

Fig. 4. Second motif inserted with a variable spacing.

The negative dataset was generated by generating
pseudoreplicates of the positive dataset (sampling with
replacement) using a given window size (w=2) . The goal
is to maintain statistical parameters of the input of
sequences at the dinucleotide level without recapitulating
the sites of interest.

4.2 Coding

The project is hosted on GitHub, on a collaborative
repository called ErillLab:
https:/ /github.com /Erilllab/TE GA

The code was developed using Python 3.7.3 on a
Unix-like system. To manage all the libraries we used the
virtual environment manager conda, but also virtalenv
can be used.
There are 2 main dependences in the program:

- Biopython on version 1.76

- Numpy on version 1.11.3
The composition of this repository is a README.md with
basic information about the project and the installation of
dependencies, a docs folder including all the
documentation for the future researchers and a src
directory including the source code of the algorithm.

4.3 GP framework

The main component of the GA is the population it is
used to find motifs along a set of DNA sequences. The
subjects of the population are a data structure we will call
organisms.

@ Connector
D PSSM recognizer

Shape recognizer

P2
_ﬁ|c [AVLg ¢

AT GCACTCETGCAGCATGT TGO TAGC T GCTACGCTT ACCAT AT CAGAT ATAT

Fig. 5. Example of an organism with 3 connectors, 3 PSSM recognizers and
1 shape recognizer.

The organism is a data structure that stores all the
components in a tree-like structure where we can find
different types of nodes. The leaves of the tree are
recognizers and the rest of the nodes are connectors.

https://www.zotero.org/google-docs/?ANMh3s
https://www.zotero.org/google-docs/?ahwapd
https://www.zotero.org/google-docs/?ZQdvYM
https://www.zotero.org/google-docs/?SEkmHm
https://www.zotero.org/google-docs/?1jRjfo
https://github.com/ErillLab/TF_GA

Recognizers are connected by connectors, but connectors
can also be connected through them.

PSSM-type recognizers are nodes used to recognize a
specific sequence in the DNA using a PWM/PSSM matrix
of a certain dimension (i.e. 4bp).

Fig. 6. PSSM recognizer visual representation.

Shape-type recognizers are nodes used to recognize a
specific shape in the DNA based on certain parameters
(e.g. twist, roll). We will not consider these except in
acknowledging that in the future they could be available.
Connectors are nodes used to connect 2 nodes at a certain
distance with a mean connector distance (M) and a
standard deviation (0") between nodes.

— —
Fig. 7. Connector visual representation.

4.4 GP workflow

The basic execution of the GA is defined by the following
flowchart:

Yes

CapsTONE ProJECT: CoMPUTER ENGINEERING UAB

Fig. 8. Genetic programming basic workflow execution.

The population is firstly initialized using random
organisms as subjects or reading organisms from the
input file as a template to start the execution. If the input
file does not contain enough organisms to fill the
population, it can be automatically filled with random
organisms or a copy of that organism.

Then, a predefined number of iterations are executed. The
condition to finish the loop can be changed to other
custom methods (i.e. when it reaches a certain fitness
score or when new generations do not imply a
considerable improvement).

On every iteration, organisms are randomly paired to run
a deterministic crowding on the GP algorithm[19].
Crossover is done by selecting 2 random nodes from the
paired parent organisms and creating a descendants
swapping these 2 nodes. The crossover is not always done
so we can find local solutions only by mutating existing
parents. When the crossover is done, and childs are
generated, we also compute the proximity from every
child to both parents based on the number of nodes taken
from each one.

Mutation consists in modifying children parameters on
some nodes (i.e. modify the mean distance in a connector,
modify columns of the PSSM recognizer) or changing the
structure of the organism by adding or removing nodes.
To finish the iteration we compute the energy of every
child and its closest parent and return the organism with
the highest energy to the population.

4.5 Mutation and recombination operators

Mutation operators are executed over different parts of
the organism. Mutation that affects the entire organism is
usually used to stabilize the organism's complexity. There
are 3 different general organism mutations

PSSM substitution mutation consists in replacing any
node in the organism for a random PSSM recognizer. This
allows the organism to reduce complexity if the node
selected is a connector or maintain complexity if it is
another recognizer.

ot o

Fig. 9. Example of the PSSM substitution mutator for an organism.

https://www.zotero.org/google-docs/?OekoL6

VELASCO A.: IDENTIFICATION OF MOTIFS IN BIOLOGICAL SEQUENCES USING GENETIC PROGRAMMING. 5

Rise child mutation consists in selecting a node and
moving it to its parent location, always reducing the
organism complexity due to a node elimination (and the
hanging tree associated).

P

Fig. 10. Example of the rise child mutator for an organism.

Sunk node mutation consists in creating a connection
and inserting it in the tree structure, connecting the
current nodes to one random side of the new
connection.

u_
ﬁ Iﬁ..

Fig. 11. Example of the sunk child mutator for an organism.

Nodes itself can also mutate, modifying internal
parameters. Connections have 3 different mutations:
Sigma mutation consists in modifying the standard
deviation associated with connector stiffness.

Mu mutation consists in modifying the mean distance,
adjusting the distance between nodes.

s s us

—dl—) —d2—>

Fig. 12. Example of the mu mutator for a connector node.

Swap node mutation consists in swapping the location
of the nodes of a single connector.

s 8 & ®

Fig. 13. Example of the swap node mutator for a connector node.

PSSM recognizers have a total of 5 mutator operators
that act mainly on the PWM. To see an example see
FIGURA DEL PRINCIPI.

Random column mutation consists in generating a new
column on the pwm (a probability for each base) and
substituting the new random column on the PWM.

Flip column mutation consists in selecting 2 random
comuns in the PWM and swapping the values for all
the nucleobases.

Flip rows mutation consists in selecting 2 random
bases and swapping the values between bases in all the
columns of the PWM.

There are two more mutators related to shifting the
PWM to both sides. Shift mutation consists in moving
1 position all columns to one side modulus the number
of columns.

The recombination operator is the main operator of the
GA, that creates child organisms with a mixture of the
parents. The operator selects 2 random nodes from the
parents and swaps the nodes with the whole tree
structure under it.

Parent 1 |! Child 1 !|
Parent 2 |! Child 2 Q

Fig. 14. Example of a crossover of 2 organisms. Parents do not disappear,
they will continue if they are better than the children.

4.6 Definition of the organism energy model

One of the most important sections in the GP algorithm is
the function we use to evaluate the fitness of each
organism.

The fitness function is a composite function resulting
from the evaluation of a positive dataset versus a control
negative dataset. The fitness of each dataset is evaluated
as the mean energy of all sequences contained.

The assignment of an energy value to an
organism-sequence pair is the result of the evaluation of a
particular placement of the organism on the sequence,
and the overall energy of the resulting configuration. The
energy is propagated upwards, from the PSWM
recognizers that directly interact with the sequence,

through their interconnection node, and all the way up to
the root node that defines the organism.

!‘ / - \
H N A

Fig. 15. Representation of the energy computation.

4.6.1 PSSM recognizer energy

PSSM recognizers first do a conversion of the PWM to a
Position Specific Scoring Matrix (PSSM) to create a score
based on the PWM values.

Each value in the matrix follows this conversion:

Mpw)

0.25

Mpssn = logs(

Fig. 16. Equation used to create PSSM from the PWM[3].

We divide the PWM value with the random probability of
that base, in this case we have equal probability for every
base. To deal with negative infinities, we add a
pseudo-count to every value.

PWM

-l 0 07 0 .2 -32 148 -32
e ‘o 06 0 02 |mmpC 32 126 -2 03
L 0 (0F 030 T R G
G 0 040 07

G -32 067 -32 148

Fig. 17. Example of a PSSM computation from the PWM.

Once we have placed the PSSM recognizer we evaluate it
as the position-wise sum of the PSSM scores given the
sequence.

4.6.2 Connector energy

Energy from connectors use an additive model that is
composed of the energy of the elements they are
connecting plus a term that provides energy based on the
agreement between observed and connector distance.

1 _[{"—d(cvcz))z
(1+202)

E, =Ep +Ep +1,—————
= BP, T EP, T Migg (10 +02) ©

CapsTONE ProJecT: CoMmPUTER ENGINEERING UAB

Fig. 18. Formula used to compute the energy of a connector.

And on the following figure we can see the energy
contribution:

0.9 G =-22 / sig=4
0.8 —G mu=-4/sig=4
§ 0.7 T —G mu=8/ sig=0
:-f 0.6 I\ /\ G mu=44 / sig=12
g 05 { | I —G mu=8/ sig=80
204 []
%03 I T
0.2
01 / \/ \
i — /XN |
-100 -50 0 50 100

Observed distance

Fig. 19. Values of the energy contribution of the connector based on p and ¢
values and the distance between nodes.

The term that provides energy for the connection includes
the mean distance between nodes, standard deviation and
a T parameter to regulate energy provided by the
connection.

The first placement strategy used was called Best All.
This strategy places first all the recognizers in their best
possible position in the sequence independently for all the
recognizers. Once positions for each PSWM recognizer
have been set, the energy is propagated upwards
following the model seen above (Fig. XXX, Eq. XXX). This
means that for every DNA sequence, every recognizer
will have his maximum score, regardless of whether this
optimizes the overall placement energy for the organism .

4.7 Complexity control strategies

A common issue in GP algorithms is the ability of
organisms to improve their fitness by increasing in
complexity. In the case of our relative
(positive-to-negative) energy measurement, there is no
direct selective pressure to increase complexity, but there
is also no reason for organisms to optimize their size
when attempting to maximize the fitness function over
the sequence datasets. To control the dimension of
organisms in terms of nodes we used implicit and
explicit methods.

Implicit methods involve introduction of mutational
operators that tend to reduce the organism complexity. It
is the case of the PSSM substitution mutation and rise
child mutation. In order to be able to adjust the
mutational pressure, we also introduced a sunk node
operator that always adds complexity.

Furthermore, we added an explicit complexity factor that
directly controls the complexity of the organism by
modulating the fitness function. We compute the mean
fitness per node in the population at each generation, and
then multiply that value times the number of nodes of the
organism. So, if the organism has less nodes than the
average for the population, it will receive a lower penalty.
Lastly, we have introduced upper and lower bounds for

https://www.zotero.org/google-docs/?ntSwNj

VELASCO A.: IDENTIFICATION OF MOTIFS IN BIOLOGICAL SEQUENCES USING GENETIC PROGRAMMING. 7

organism size that can be specified by the user, and which
are implemented as hefty additions to the complexity
factor of an organism if a bound is surpassed.

We call effective fitness to the fitness function with the
explicit penalty applied.

5 RESULTS AND DISCUSSION

5.1 Operational GP framework

The program requires the execution of a basic Genetic
Algorithm workflow and, at the beginning of the project,
the idea of using an actual framework from the Python
Library to simplify the development of the program was
considered. Pyeasyga is an example of an easy to use
library consulted before the development .However,
using a GP library would require additional work to
adapt our specific problem into a generic framework
algorithm. There is also a need for us to have a total
control every phase, so we can customize every step,
applying necessary changes and trying to improve
execution performance in terms of efficiency finding
motifs in the dataset.

5.1.1 Issues in development

The first version of the program only executed the GA
framework, finding huge organisms (with a massive
number of nodes) that did not match the motif we
created. At that point we were able only to execute the
framework and after a few iterations see the result of the
best organism (in terms of basic fitness).

During the development of the GA, we noticed that there
was no way for us to extract conclusions about the fitness
function due to the amount of random factors actively
affecting the algorithm. This led us to the development of
an alternative tool to evaluate any given organism outside
the GP framework, and showing deterministic results.

The implementation of this tool required a simple way to
save and load organisms, allowing us to move organisms
generated from the GA framework and use it on the test
tool to evaluate the fitness function. A simple data text
format to store organisms is JSON, that allows us to
understand an organism's structure and add some
specific custom organisms, in case we need it.

{
"rootNode": {
VEETEEERI " "connector”,
"mu": -29,
"sigma": 2,
"nodel": {
TG "pssm”,
"pwm'": [
{"a" 0.5,"g": 0.05,"c": 0.4,"t": 0.05},
{"a":0.4,"g": 0.1,"c": 0.1,"t": 0.4}
{"a": 0.75,"g": 0.05,"c": 0.15,"t": 0.05},
{"a": 0.5,"g": 0.2,"c": 0.2,"t": 0.1}]
b
"node2": {
e T "pssm”,
"pwm'": [
{"a": 0.75,"g": 0.0,"c": 0.1,"t": 0.15},
{"a": 0.45,"g": 0.05,"c": 0.2,"t": 0.3},
{"a":0.0,"g": 0.8,"c": 0.15,"t": 0.05},
{"a":0.1,"g": 0.15,"c": 0.05,"t": 0.7}]

Fig. 20. Example of an organism stored in JSON format.

Another problem was the visualization of the binding of
an organism to a sequence. This feature allows us to see
how every organism’s recognizer binds to DNA, and put
it in an easy and readable format. This decision made the
program much easier, because just by having a look at
that file, we could conclude if the organism was correctly
binding as we were expecting. See the format:

AAAAAGCTGTATTTGTCTCCAGTACTGTGACAGCGAGTGATGGGTATACAAAGTTAAGGACTAAATTCTATCTACACACGGAAAAG

Fig. 21. Example of PSSM recognizers binding to some sequences.

5.1.2 Test datasets

The tool used for evaluating organisms was created for
the isolated evaluation of the organisms through all the
datasets. It loads the objects’ structure to import custom
organisms and then executes a single evaluation of the
organism to show the results on screen as seen here:

PRG 1 N: 7.00 P: 587.59 N: 134.37 C: 350.00 F: 453.22 EF: 103.22

ORG 2 N: 7.00 P: 494.09 N: 50.59 C: 350.00 F: 443.50 EF: 93.50

ORG 3 N: 5.00 P: 306.25 N: 49.09 C: 250.00 F: 257.16 EF: 7.16

ORG 4 N: 3.00 P: 258.94 N: 33.79 C: 150.00 F: 225.15 EF: 75.15

ORG 5 N: 1.00 P: 6.67 N: 5.87 C: 50.00 F: 1.60 EF: -48.40

ORG: 6 N: 1.88 P: 3.77 N: -14.78 C: 58.00 F: 18.55 EF: -31.45

ORG 7 N: 5.00 P: 114.65 N: 110.74 C: 250.00 F: 3.91 EF: -246.09

Fig. 22. Example of 7 different organisms evaluated.

In the output we can see the execution of 7 organisms and
some parameters that represent the values of some
parameters of the execution related to: Number of nodes,
evaluation on the positive dataset, evaluation on the
negativa dataset, complexity applied, fitness of the
organism and effective fitness.

5.1.3 Runtime analysis

Every run depends on some parameters of the GP
algorithm. It includes the size of the population, the
sampling in the positive and negative dataset and the
number of iterations. Most of the program execution time
is dedicated to the placement and those are the
parameters that affect. It is also important the computer
executing the program and the CPU power.

There are a few examples of the execution and
parameters:

Population | Sampling Iterations Time

size size (minutes)
50 200 50 25

50 100 50 10

100 100 50 14

Table 1. Examples with the time execution with a certain population,
sampling size and iterations.

5.1.5 Parallelization

Output of every runtime analysis was initially stored in a
single directory, so every run was saved using the same
directory name. That led us to have sequential runs with a
single CPU usage per execution. Also every run should be
moved manually before starting another run.
Parallelization consisted in creating multiple folders
based on the start time of the execution so you can
execute multiple runs saving every run a different
directory. Is important to notice that every run should be
executed with a second delay, but it allows us to optimize
the time to recollect results about multiple parallel runs .

5.2 Complexity control

Mostly in the beginning of the project, we had a problem
with the complexity of the solutions in the GP algorithm,
that were organisms with an intractable number of nodes.

Our first approach of addressing this problem was trying
a multiplicative model for the connectors, so the
connector modulates the whole energy of its nodes.

In this context, the standard approach is to assume some
form of additive contribution of the connector to the pair.
That is, we assume that both PSSMs bind with some
energy to their respective sites, and then the connector
provides a boost to their binding. This is interpreted as
the fact that the dimer, as a whole, has a higher binding
energy (i.e. higher binding specificity). It can therefore
search more efficiently for its binding sites in the genome
(this is the ‘pre-recruitment model’; alternatively, one can
postulate that when one of the monomers is bound to
DNA, it facilitates binding of the second monomer
recruitment model).

CapsTONE ProJecT: CoMmPUTER ENGINEERING UAB

Pre-Recruitment

p=8 p=8
" o=0 o=0

Ao g[ﬁl

ATGCAGTTGCAGCAT

“d=6 "

Recruitment

o

ATGCAGTTGCAGCAT

a6

Fig. 23. Comparison between recruitment and pre-recruitment energy flow.

In other words, the binding energy of the two individual
monomers (PSSMs) should remain intact, but be provided
with an additive boost when the connector is present.

We performed several trials and found that a combination
of mutational pressure and explicit fitness penalty kept
the organism’s complexity under control while allowing
effectivent exploration of the search space.

On the following figure we can observe the average nodes
per iterations and the nodes with the maximum fitness
organism without using any placement enhancement:

Organisms complexity on 3 different executions

10
= Run 1 Average Nodes = Run 2 Average Nodes
Run 1 Best Nodes Run 2 Best Nodes

Run 3 Average Nodes
Run 3 Best Nodes

lteration

Fig. 24. Average nodes and nodes of the best organism of every iteration.

Complexity remains low (at about 2.0 nodes on average),
but the winning organisms are less sharp and don’t seem
to locate the motif very efficiently. They are also more
bloated than in the previous iterations. This suggests that
selection is weaker, which sort of makes sense, in that the
organisms are not selectively constrained to grow. Given
this, the organisms are free to explore solutions that are
not extremely efficient (in terms of discriminating well
with few nodes). They are simply buffeted against by a
strong downgrade mutational wind, but as long as they
keep an edge, they are good to go. In other words,
solutions that are minimally better by incorporating an
extra connector will do okay, even though the mutational
push will be to downgrade. They will therefore not be
forced to identify the best possible configurations.

5.3 Placement enhancement

The program was based on a PSSM-centred model that
firstly inserted the PSSM recognizer on the best binding
site according to the PSSM. This is an issue due to the

VELASCO A.: IDENTIFICATION OF MOTIFS IN BIOLOGICAL SEQUENCES USING GENETIC PROGRAMMING. 9

connector not providing much of an energy contribution
in the case recognizers were not “well” placed on the
maximum binding energy locations. To circumvent this
issue, we changed the placement strategy so that each
PSSM would propose several “good” binding positions,
and the connnector would then chose the ones that
satisfied it best.

To address the issue of organisms exploiting multiple
connection energies from PSSMs that are, essentially,
binding at the same location, we implement effective
blocking of the entire sequence length covered by each
PSSM. This is done both at the connector and PSSM
levels, because the connector is the one that chooses the
best configuration of PSSMs and establishes those
positions as blocked.

To check the enhancement, we executed multiple tests of
a solution organism with increasing values of placement
options(l, 3, 9, 18, 27):

Positive fithess, Negative Fitness and Fitness

Fitness

== Negalive Filness == Posilive fitness

800

600

400

200

Placement Options

Fig. 25. Results of a “good” organism’s fitness in positive and negative
datasets. Columns show the total fitness of the organism.

Something noticeable in these results is the fact that as
placement options (PO) increase, the relative fitness of
“good” solutions goes down. This is largely driven by the
fact that there is no way to improve placement in the
positive set with higher PO, but increasing the PO allows
the system to find better ways of fitting negative set
sequences.

However, the placement in the positive dataset is
improved, finding the motif on almost every sequence.

ATAATACTGTTTTTATATAC
CCGAAACTGTATTTATATACA
AACTAGCTGAA

GCAATGCTGTG

Fig. 25. Example of sequences and recognizers binding sites with 3
placement options. In blue is represented the motif to find and in yellow,
red, green and cyan the recognizers binding sites.

5.4 Results on synthetic and biological data

After establishing an enhancement placement and a

complexity control, we execute the GP algorithm with
synthetic data and conclude that with enough iterations,
it is able to find the motif with a good placement of the
recognizers.

However, sometimes the solution gets stuck in a local
optima that includes a part of the motif, but not the
complete motif.

Real data is tested on promoter regions of the lexA gene
from several Gammaproteobacteria and
Betaproteobacteria species. Many of these promoters have
two LexA-binding sites, but this is not a general rule
(some have one, some three). We performed the first solid
runs and the last one was the only targeting an instance of
the motif. However, several of the runs seem to have hit
at some point the correct solution.

Several runs later, after modifying some parameters about
the population size and sample size of the sequences
analyzed, the solutions looks in the same direction. The
motifs are identified, but the solutions get stuck in a local
optima. Some organisms recognize shifted versions of the
motif, and it does not seem easy for the solutions to
identify the proper solution.

GP algorithms are good at finding solutions, but maybe
not that good at optimizing them. In the future it can be a
good idea to execute an independent program only for
optimizing the local solution to get the exact motif.
Adding shape recognizers and improving the placement
will be something that possibly will improve the overall
in the motif finding.

6 CoNCLUSION

In biology, transcription from DNA to mRNA is a
complex process that involves specific proteins binding
the promoter regions of DNA’s double helix. TFs not only
bind to well-defined sequences motifs but also recognize
DNA curvature, internal co-dependencies and binding of
associated cofactors. Currently there is a lack of tools to
model these dependencies that has led to a lag in the
study of TFs with more flexible binding profiles.

In this project we have developed a genetic algorithm that
allowed us to find motifs by modeling the components
that make up regulated bacterial promoters. We have also
developed a test tool that allowed us the possibility of
evaluating independent organisms and extracting
conclusions without executing the genetic algorithm.
Development has shown concepts that could must be
addressed in future research (i.e. complexity control,
placement of the recognizers and the energy model used
in organisms).

Local optimization is an issue that implies that final
organisms do not model the exact motif but a close
approximation to it.

However, we achieved successful results in both real and
synthetic data, even though some features should be
improved in order to have a more optimal result and a
better performance of the GP algorithm.

Acknowledgements
I would like thank Joan Serra-Sagrista and Ivan Erill for
all the discussion and support on the current project. I

10

also wish to thank my family and friends for their support
in time of confinement.

7 BIBLIOGRAPHY

(1]

(2]

(3]

(4]

(5]

6]

(7]

(8]

9]

(10]

(11]

[12]

(13]

“Overview: Gene regulation in bacteria (article),”
Khan Academy.

https:/ /www.khanacademy.org/science/biology/
gene-regulation/gene-regulation-in-bacteria/a/ove
rview-gene-regulation-in-bacteria (accessed Jun. 08,
2020).

“Transcription factor,” Wikipedia. May 30, 2020,
Accessed: Jun. 09, 2020. [Online]. Available:

https:/ /en.wikipedia.org/w/index.php?title=Trans
cription_factor&oldid=959782582.

“Position weight matrix,” Wikipedia. Apr. 18, 2020,
Accessed: Jun. 26, 2020. [Online]. Available:

https:/ /en.wikipedia.org/w/index.php?title=Positi
on_weight_matrix&oldid=951611110.

“ChlP sequencing,” Wikipedia. Jun. 21, 2020,
Accessed: Jun. 27, 2020. [Online]. Available:

https:/ /en.wikipedia.org/w/index.php?title=ChIP
_sequencing&oldid=963650023.

“Electrophoretic mobility shift assay,” Wikipedia.
Apr. 07,2020, Accessed: Jun. 27, 2020. [Online].
Available:

https:/ /en.wikipedia.org/w/index.php?title=Elect
rophoretic_mobility_shift _assay&oldid=949641213.
F. Zambelli, G. Pesole, and G. Pavesi, “Motif
discovery and transcription factor binding sites
before and after the next-generation sequencing
era,” Brief. Bioinform., vol. 14, no. 2, pp. 225-237,
Mar. 2013, doi: 10.1093 /bib/bbs016.

R. Chauhan and P. Agarwal, “A Review: Applying
Genetic Algorithms for Motif Discovery,” Int.].
Comput. Technol. Appl., vol. 03, Jul. 2012.

“Multiple EM for Motif Elicitation,” Wikipedia. Oct.
15, 2018, Accessed: Jun. 20, 2020. [Online].
Available:

https:/ /en.wikipedia.org/w/index.php?title=Multi
ple_EM_for_Motif_Elicitation&oldid=864227879.
“MEME - MEME Suite.”

http:/ /web.mit.edu/meme_v4.11.4/share/doc/me
me.html (accessed Jun. 20, 2020).

G. Z. Hertz and G. D. Stormo, “Identifying DNA
and protein patterns with statistically significant
alignments of multiple sequences,” Bioinforma. Oxf.
Engl., vol. 15, no. 7-8, pp. 563-577, Aug. 1999, doi:
10.1093 /bioinformatics/15.7.563.

C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S.
Liu, A. F. Neuwald, and J. C. Wootton, “Detecting
subtle sequence signals: a Gibbs sampling strategy
for multiple alignment,” Science, vol. 262, no. 5131,
pp- 208-214, Oct. 1993, doi:
10.1126/science.8211139.

M. C. Frith, U. Hansen, J. L. Spouge, and Z. Weng,
“Finding functional sequence elements by multiple
local alignment,” Nucleic Acids Res., vol. 32, no. 1,
pp- 189-200, 2004, doi: 10.1093 /nar/gkh169.

C. T. Workman and G. D. Stormo, “ANN-Spec: a

(14]

[15]

[16]

(17]

(18]

(19]

CapsTONE ProJecT: CoMmPUTER ENGINEERING UAB

method for discovering transcription factor binding
sites with improved specificity,” Pac. Symp.
Biocomput. Pac. Symp. Biocomput., pp. 467-478, 2000,
doi: 10.1142/9789814447331_0044.

M. Nicolae and S. Rajasekaran, “qPMS9: An
Efficient Algorithm for Quorum Planted Motif
Search,” Sci. Rep., vol. 5, no. 1, Art. no. 1, Jan. 2015,
doi: 10.1038/srep07813.

R. Seehuus, A. Tveit, and O. Edsberg, “Discovering
biological motifs with genetic programming,” in
Proceedings of the 2005 conference on Genetic and
evolutionary computation - GECCO 05, Washington
DC, USA, 2005, p. 401, doi:
10.1145/1068009.1068074.

M. A. H. Samee, B. G. Bruneau, and K. S. Pollard,
“A De Novo Shape Motif Discovery Algorithm
Reveals Preferences of Transcription Factors for
DNA Shape Beyond Sequence Motifs,” Cell Syst.,
vol. 8, no. 1, pp. 27-42.e6, 23 2019, doi:
10.1016/j.cels.2018.12.001.

“FASTA format,” Wikipedia. May 11, 2020,
Accessed: Jun. 27, 2020. [Online]. Available:

https:/ /en.wikipedia.org/w/index.php?title=FAST
A_format&oldid=956134292.

“Sequence logo,” Wikipedia. May 11, 2020, Accessed:
Jun. 27, 2020. [Online]. Available:

https:/ /en.wikipedia.org/w/index.php?title=Sequ
ence_logo&oldid=956012026.

S. F. Galan and O. J. Mengshoel, “Generalized
crowding for genetic algorithms,” in Proceedings of
the 12th annual conference on Genetic and evolutionary
computation - GECCO 10, Portland, Oregon, USA,
2010, p. 775, doi: 10.1145/1830483.1830620.

https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml
https://www.zotero.org/google-docs/?rdC3ml

