
TFG IN INFORMATIC ENGINEERING, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Trace generator for Opportunistic Networks
routing protocols through heuristic

techniques

Marc Amin Abou-Hamdan Chamorro

Abstract– This report is concerning about the execution of the project to build an algorithm capable
of generating The ONE simulator Scenarios in order to test delay tolerant networks (DTN) algorithms,
specifically opportunistic networks, as well as the methodology employed to carry it out, special men-
tion to the Simulated Annealing technique, which will be the key to the impartial The ONE simulator
Scenarios Generator. However, it is also explained what kind of Scenario is going to be built. Further-
more, the report will show the state of the art, specifying other methods to obtain these Scenarios,
such as by getting prebuild derived from human mobility ones or real-based ones. Moreover, the
report will include the planning of the project, updates on the development of the project, including the
explanation of the structure of the code and a guide to use it, and whether it has followed the planfica-
tion or not and why. Finally it will include the sources consulted in addition to some acknowledgments.

Keywords– DTN, Store and Forward, The ONE Simulator (The ONE), Opportunistic Networks
(OppNets), Simulated Annealing, Scenario, Scene, Matrix, Gantt diagram, Nodes, class diagram,
Python, Numpy, generator, absolute network density, sparsity distribution, centrality, quadrant.

F

1 INTRODUCTION

OPPORTUNISTIC networks are wireless connection
networks where the topology of the nodes and
the connection between them change continuously

and is a priori undefinable. The connection between nodes
happens only when they are in range and can disappear
whenever because nodes get far from each other, so end to
end principle between source and destination nodes is not
accomplished.

Opportunistic Networks are characterized by having
nodes which can be disconnected or isolated but if they are
holding a message then they will keep running the com-
munication protocol alive until they reconnect and pass the
message to another suitable node to make the message reach
its destination. This is thanks to the store and forward tech-
nique, which holds that a node will store the message in its
memory at least until it complete the cicle of the commu-
nication algorithm. In other words that is when it passes a
message to another suitable node, the message is dropped
when the TTL has run out or the algorithm runs a mecha-
nism to make the node know that the message is deprecated.

• E-mail: marcamin.abouhamdan@e-campus.uab.cat
• University Mention made: Information Technology
• Project tutorized by: Diego Mauricio Freire Bastidas (DEIC)
• Year 2019/20

The task of building a routing algorithm for Opportunis-
tic Networks is a hard job due to its main issues: secu-
rity, privacy and its indeterminable and continous changing
topology. This is why there is not a standard routing algo-
rithm for opporunistic networks yet.

However a large variety of routing protocols have
emerged as options to become the standard protocol for
routing the opportunistic network messages. They can be
classified by different ways and one classification could be
the one in Figure 1.

Fig. 1: Classification of Opportunistic Networks routing
protocols [1].

We can find many different routing protocols inside every
type of them, each one with its particularities, with its pros
ans cons. And it is at this point where this Treball de Fi de
Grau starts to get involved. As said before, all of the routing
protocols have their pros and cons and the best method to

“June” of 2020, Escola d’Enginyeria (UAB)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/334428786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 EE/UAB COMPUTER SCIENCE TFG: Trace generator for Opportunistic Networks routing protocols through heuristic techniques

prove their efficiency is by running a simulation in which
each routing protocol can be tested.

As a consequence, the author of every routing protocol
has run its own simulation with its particular results with
different metrics such as dropped messages, unreached des-
tination or network congestion among others. The problem
comes when every routing protocol creator builds its own
simulaion Scenario, which is the nodes location in a spec-
ified area or map where the simulation will be run and at
a concrete time. With this concept, the Scenario represents
the sequence of nodes’ locations through time inside the
map, what resembles a movie. Very frequently, the nodes
location is determining in the results obtained from the sim-
ulation, as they can be located specially to make a specific
routing protocol to excel in its simulation results.

For this reason we believe that it is important to be able
to build an ’impartial’ Scenario, in order to get more fair
results in the testing of routing protocols. This Scenario will
need some specific characteristics to be the most impartial
as possible.

2 OBJECTIVE

It is logical that the authors of the different routing proto-
cols build their optimal Scenario to make their protocol look
more efficient given that there is not a single Standard test-
ing Scenario. Due to the need of a Scenario to test their
routing protocol, they must build one, so it is obvious that
they will not make their protocol’s task hard by building
a challenging Scenario, but building a proper Scenario to
make their routing protocols shine.

In consequence, our task is to try to build a Scenario gen-
erator capable of building impartial Scenarios with a very
specified characteristics that will give it balance.

In order to get an impartial Scenario we will build an al-
gorithm able to generate a Scenario with the characteristics
that will be introduced in it. One of the most widespread
Opportunistic Networks simulators is The ONE, so we will
build a Scenario to be run in the The ONE software.

The corresponding characteristics were the relative den-
sity of the nodes, which are relative to the quadrants in
which we divide our area of action (map); the centrality of
the nodes, that shows the mean number of connections of
every node, meaning connections with those nodes in a pre-
determined range to establish a connection, in other words,
the number of neighbour nodes; relative dispersion, relative
to the quadrants in which the map is divided, meaning the
number of quadrants without nodes; the number of clusters
per scene (this term will be explained later on, in section
3.2), meaning the number of agruppations of nodes divided
per the number of scenes in our Scenario; the mean distance
between clusters per scene and the mean variance of the size
of the clusters between scenes.

However, these characteristics have changed following
the decisions made in the meeting. Currently, the charac-
teristics are:

• Absolute Network Density, that is a portion between
the actual connections over the total connections,
where total connections refers to the connections that
could potentially exist between nodes and actual con-
nections are the ones that actually exist. For un-

weighted networks of N nodes without multiple con-
nections, the network structure can be represented as
an NxN adjacency matrix A.

• Quadrant, which consists of two characteristics at the
same time. One of them is Quadrant itself, which is
a sector of the Scenario that represents the physical
division of the area into q blocks. where q is an integer
in a 1 to 6 range. The other one is Nodes : Quadrant,
that is the number of nodes within a quadrant. This
relationship is defined as two integers, n : q, which
means that the Scenario has a mean distribution of n
nodes in q quadrants.

• Centrality, which consists of three chracteristics at the
same time. One of them is Closeness Centrality. An-
other one is Betweenness Centrality. Finally, the last
one is called Clustering Centrality.

• Sparsity Distribution. This characteristics shows the
physical distribution over the area of the Scenario, tak-
ing into account how many areas have low presence of
nodes.

3 METHODOLOGY

3.1 Simulated Annealing

In order to build this impartial Scenario with the optimal
values for the characteristics we want to achieve, we will
use a method called Simulated annealing.

Simulated annealing is a probabilistic technique for
aproximating the global optimum of a given function. Sim-
ulated annealing is a specially used technique when trying
to find the global maximum, because, although the prob-
lem may be very complex, it can overcome the complexities
with its performance.

The term annealing comes from metallurgy and is a tech-
inque where metal is heated and then controlledly cooled to
make the size of their crystals and reduce defects.

In our case we will use the simulated annealing tech-
nique to find the best Scenario, heating heavily the nodes at
the beginning and iteration after iteration of improvement,
the range of movement of the node will be reduced since
it makes the Scenario get the characteristics it has been re-
quired previously.

3.2 Our Scenario

In order to develop our task efficiently we take a different
concept of the Scenario from the conventional one. Al-
though the conventional Scenario concept inlcudes the mes-
sages that nodes exchange, we will not include them in our
Scenario concept because it does not contribute in any way.

Furthermore, we divide the Scenario in different scenes,
which are different location of nodes in the map correspond-
ing to their position at a concrete instant, making the agrup-
pation of scenes an equivalence of the movement of the dif-
ferent nodes through time inside the area of analysis (the
map).



Marc Amin Abou-Hamdan Chamorro: Trace generator for Opportunistic Networks routing protocols through heuristic techniques 3

3.3 Work methodology changes
After a meeting with the head of the project, the decision of
acquire a new methodology was taken. The methodology
under consideration was the prototype based methodology,
in which the project progress will be reflected in periodi-
cally improved prototypes.

Thus the project will be divided in different phases,
which will include a prototype each, every one of them be-
ing an improved version of the previous one.

At the beginning, in the First Phase, the prototype in-
cludes a Scenario generator with random initial positions
for the nodes, which will have a restricted mobility through
time.

Afterwards, in the Second Phase, the prototype includes
the Scenario generator with random initial positions for the
nodes, with a varying restricted mobility through time, by
executing a certain amount of iterations, which, at the end of
each one, the characteristics of each iteration Scenario will
be calculated and evaluated in order to vary this movement
restriction, to achieve a better nodes location through the
map that will end up improving the Scenario characteristics
values. With this, we will be able to hypothetically get a
Scenario built with the required set of characteristics.

4 PLANNING

At the time of executing the project we proceeded in an
organized way, following the planning of Figure 2.

Fig. 2: Gantt diagram of the project.

4.1 Setbacks and planning changes or up-
dates

Due to a viral pandemic in the beginning of 2020, the whole
world has entered a state of global quarantine, having to stay
locked at our homes. This situation has made it difficult to
celebrate meetings within the research group, delaying the
project features decisions. Thus the project has had to be

paused during this time until the meeting finally was cele-
brated. However, the majority of the information obtained
has not been able to be included in the project completely
yet, although it will be presented as extra data in this report.

The planing after that has got the appearance shown in
Figure 3

In the First phase we have achieved to build the base
structure of the program, which generates a whole Scenario
based on random initial location for the nodes and random
restricted movement of them through time.

As far as we achieved this first objective, phase one of
the project had been concluded and from then on, the next
objective has been to develop the simulated annealing be-
haviour of the program.

Unfortunately, due to the previously commented situa-
tion, a more advanced state of the project has not been yet
able to achieve, although it is possible to recover from the
drawback as far as they do not appear oftentimes.

In the second phase it is planned to build a Scenario gen-
erator with random initial positions for the nodes, as in the
First phase, with a varying restricted mobility through time,
by executing a certain amount of iterations, which, at the
end of each one, one characteristic of each iteration Sce-
nario will be calculated and evaluated in order to vary this
movement restriction, to achieve a better nodes location
through the map that will end up improving the Scenario
characteristic value. With this, we will be able to hypothet-
ically get a Scenario built with the required characteristic.
In this Second phase, the characteristic will keep being the
Density of the nodes, now with a better calculation algo-
rithm extracted from a page in the rosettacode website [2].

5 DEVELOPMENT

5.1 First phase
First of all, we created the concept of the structure that will
hold the data of the whole Scenario, which consisted of a
matrix of SxNx3, being N the number of nodes participating
and S the number of scenes that our Scenario consists of.
The last dimension refers to a triple of coordinates+time.
The coordinates are 2D, so we see them as X and Y. The
last member of the triple is the time. Time refers to the time
associated to the scene in which the node has the concrete
coordinates.

In this structure, every row corresponds to a node and the
different columns refers to each scene. As an example we
show a case in which we have 5 nodes and 3 scenes:

As we can see in Figure 4, each variable has different
colours, implying that when colour changes, the value of
the variable may have changed. On the one hand, as we
expect at every column, time has the same color(value) be-
cause they correspond to the same scene. On the other hand,
we can see that the tuple of coordinates change of colour
at every column, as the nodes may have moved from one
scene to another. Also between rows, colour of the tuple of
coordinates changes as two nodes may not be in the same
place.

However, throughout the execution of the project, the
need of adding more elements to the last dimension had
emerged. For example, in order to calculate the density of
the Scenario, it was needed to take into account the range



4 EE/UAB COMPUTER SCIENCE TFG: Trace generator for Opportunistic Networks routing protocols through heuristic techniques

Fig. 3: Current Gantt diagram of the project.

Fig. 4: Matrix of 3x5x3.

of communications of each node, data that had had a fixed
value assigned for all of them in order to simplify it for test-
ing.

Furthermore, we wanted to add another specification to
each node in order to take the Scenario closer to the real-
ity, which is the speed of every node. For this specification,
we planned to assign three differents speeds that will corre-
spond to the node mobility method. These specific methods
are, nodes moving from one point to the other on foot, nodes
moving from one point to the other by car and nodes moving
from one point to the other running. Thus we are specifying
a probability ratio for the nodes to be using each method, so
that at the time of creating the first scene of every iteration
Scenario, it will relatively randomly be assigned a speed to
each node corresponding to the method.

Because of these new specifications, the matrix that will
hold the Scenario would have the appearance shown in Fig-

ure 5:
Second of all we designed a preliminary class diagram

updated with the new characteristics.
As we can see later in Figure 6, we have as our main class

Scenario, which runs the task of nexus of the majority of the
classes. It has the Matrix object as an attribute and builds
up the Scenario with scenes. Once the Scenario has been
built, it has connections to a path of classes that will apply
the simulated annealing to the built Scenario.

However, throughout the execution of the project, it has
been seen that the interface should be a class that unifies the
simulated annealing method classes, so that each iteration
of simulated annealing would have its own Scenario. The
class may be named SimulatedAnnealing and it works as
the “user-interface” class.

Afterwards we first designed a preliminary sequence dia-
gram that tried to show the process of the Scenario creation
and the later annealing. Nonetheless, the code differ from
the diagram, but it still represents the basic idea of how the
program was going to initially work.

5.2 Second phase

For the second phase of the project, as we said previously,
the main class has become the Simulated Annealing one,
making it the new user-interface class, although it is still
possible to access directly to the Scenario class to build a
Scenario without requiring any characteristic, as this pa-
rameter has been deleted from the Scenario class because
its usage is implemented in the Simulated Annealing class.

Regardless what was previously said of adding the speed
specification for the nodes as an add-up, it has not been im-
plemented as was qualified as not needed for the project.
As a consequence, the column in the matrix referred to the
speed will not be added and the resultant matrix is finally as



Marc Amin Abou-Hamdan Chamorro: Trace generator for Opportunistic Networks routing protocols through heuristic techniques 5

Fig. 5: Matrix of 3x5x5.

Fig. 6: Class diagram.

Fig. 7: Sequence diagram.

shown in Figure 8.

In this new class, the parameter characteristics will be
used as the required characteristic. Although the format of
the parameter is a list of at least two values, it will only
use the first one, as the required value for the density. As it
was an intermediate test phase, it was not needed to make
it more easily scalable to add more characteristics, but it
could be done by simply adding new methods to calculate
the required characteristic and a line which would call it at
every iteration.

The way it works is assigning a weight to “each charac-
teristic”, in this case a weight of 1 for the density (as it is the
only processed characteristic) to ponder the contributions of
the different characteristics. Besides this weight, we calcu-
late another weight, which is particulr for every character-
istic. This one relates to a value by what will be multiplied
the moveRestriction applied to the next iteration.



6 EE/UAB COMPUTER SCIENCE TFG: Trace generator for Opportunistic Networks routing protocols through heuristic techniques

Fig. 8: Final Matrix scheme.

5.3 Third phase
In this final phase we have implemented a scalable char-
acteristics system that allows to add as many different re-
quired characteristics as wanted, as far as the parameter is
included as an object of a child class of the Characteris-
tic class, which will be added in the Annex of this report.
Each characteristic must have its own calculating method,
which accepts a Scenario object as a parameter to calculate
its characteristic value. The object gets the required value
as a parameter when it is created.

Moreover, the “Temperature” parameter has finally been
implemented in the SimulatedAnnealing class, becoming
more close to the real simulated annealing concept. The
temperature is set to a higher value when the obtained char-
acteristic from the recently build Scenario is far beyond the
required value, either lower or higher. When the temper-
ature is set to ’success’ means that all the obtained values
of the characteristics are within the previoulsy set tolerance
value. Temperature is multiplied by the movementRestric-
tion of the previous iteration. In this third phase we de-
cided to start with a value of moveRestriction matching the
value of the shortest side of the Scenario map, to help the
simulated annealing algorithm to converge by increasing its
value.

We have tested the project with two characteristics, den-
sity and sparsity, classes that are included within the files
of the project. Beside them, we have created a program as
a more “user-friendly” UI for testing, which runs different
Scenario cases tests to check the results of the project. This
program is used to test the SimulatedAnnealing with the
density and sparsity required values specifically, although
the SimulatedAnnealing class is capable to handle more dif-
ferent characteristics.

5.4 The structure
The main class is SimulatedAnnealing, which receives the
list of required characteristics and the rest of Scenario pa-
rameters and handle to run different iterations until the re-
quiresd Scenario is built or until the 100 maximum itera-
tions are achieved.

The main class, after the SimulatedAnnealing one is the
Scenario class, in which converges classes Scene and Ma-

trix and carries out the task of generating a Scenario itself.
It is done with the key help of the Matrix class, of which the
main object of the Scenario class is made out. It is the main
data container as it holds the previous mentioned matrix of
nodes. This Matrix object will be made up of elements of
the class Scene, as much as scenes the Scenario will have.
At the same time, the Scene object is made up of nodes that,
by their side, they are made up of namedtuple lists, as we
are working with Python. Thus the nodes are finally the
list of four elements that were described antecedently and
shown in Figure 8.

5.5 The usage of the Scenario generator at
phase 1

Once reached this point is important to be in knowledge of
how to generate our Scenario with the given prototype code.
Thus the usage of the first prototype will be described as
follows:

• First of all we have to open our command table and go
to the project directory

• Second of all we open the python environment by ex-
ecuting the command Python

• Afterwards we have to import the main class Scenario
by executing the command import Scenario

• Finally we can execute the program by calling the Sce-
nario constructor and specifying our requirements for
the Scenario in the proper order, namely: numNodes
as the number of nodes we want the Scenario to have,
characteristics as a list of the characteristics that our
Scenario should accomplish (although this part is not
implemented yet, it is important to write any value in,
preferably a list or array), totalTime as the time of
duration of the whole Scenario, dimensions as a tu-
ple of Scenario dimensions i.e [100, 100], comRange
= 10 as a range of communication of each node (as
you can see it is established to 10 by default so it is
not a required parameter to send), windowTimeSize =
1 as the time within scenes or duration of each scene
and, as it is shown it is established to 1 by default, so
there is no need to be sent if do not want to change it.
This call can be made as the one that follows as an
example: Scenario.Scenario(10, [5], 5,
[50, 50]) As it is shown, the unnecessary param-
eter fields are not filled and the default value will be
used.

By the execution of this command, the result will be the
Scenario printed and the mean density specified, as it is see-
able in Figure 9 and 10

5.6 The usage of the Scenario generator at
phase 2

In this improved prototype, the user-interface (UI) is the
SimulatedAnnealing class, which establishes the parameters
of the Scenario through the ones specified in the time of its
creation, and afterwards executes up to 20 iterations of Sce-
narios, trying to transform the Scenario in order to achieve



Marc Amin Abou-Hamdan Chamorro: Trace generator for Opportunistic Networks routing protocols through heuristic techniques 7

Fig. 9: First part of the result of the execution of the pro-
gram in phase 1.

Fig. 10: Second part of the result of the execution of the
program in phase 1.

the characteristics to be required through its parameters for
the Scenario.

In pursuance for obtaining a Scenario with the required
characteristics, the SimulatedAnnealing class will execute
the simulated annealing method varying the movement of
the nodes within scenes until it obtains a Scenario that fits
the required characteristics (satisfying a given tolerance of
0.1 of difference between the obtained characteristics and
he required ones) or until it reaches 100 iterations, in other
words, 20 tries made up of Scenarios.

Thus this is the first contact with the final result, although
still not complete. So that we can use it, we need to be in
touch with its usage tips. These are described as as follows:

• First of all we have to open our command table and go
to the project directory

• Second of all we open the python environment by ex-
ecuting the command Python

• Afterwards we have to import the main class Simu-
latedAnnealing by executing the command import
SimulatedAnnealing as sa

• Finally we can execute the program by calling the
SimulatedAnnealing constructor and specifying our
requirements for the Scenario in the proper order,
namely: characteristics as a list of the required charac-
teristics the Scenario should accomplish, in a specified
order, which in this phase will be as the first one the
required density and as the second one, a random num-
ber which, in a future would be another characteristic,
but in this testing phase it was done this way to make it
improvable but not yet functional. Then, numNodes as
the number of nodes we want the Scenario to have, to-
talTime as the time of duration of the whole Scenario,
dimensions as a tuple of Scenario dimensions i.e [100,
100], comRange = 10 as a range of communication of
each node (as you can see it is established to 10 by
default so it is not a required parameter to send), win-
dowTimeSize = 1 as the time within scenes or duration
of each scene and, as it is shown it is established to 1
by default, so there is no need to be sent if do not want
to change it. This call can be made as the one that fol-
lows as an example: sa.SimulatedAnnealing(
(0.7, 0.8), 10, 5, [50, 50]).

As it is shown, the unnecessary parameter fields are
not filled and the default value will be used and the
required density value is 0.7, and the next value (0.8)
will not be used.

By the execution of this command, the result is besides
some state-checking data for each Scenario created (iter-
ation), a final Scenario which is printed at the end of the
execution. I can be seen in the following Figures 11 12:

Fig. 11: First part of the result of the execution of the pro-
gram in phase 2.



8 EE/UAB COMPUTER SCIENCE TFG: Trace generator for Opportunistic Networks routing protocols through heuristic techniques

Fig. 12: Second part of the result of the execution of the
program in phase 2.

5.7 The usage of the Scenario generator at
phase 3

In this phase, despite the previous ones, it is important that
the required characteristics are objects of the concrete re-
quired characteristic class, so it is important to have in mind
to import these classes in order to use them.

In our case, we have used a separate program, by creat-
ing a new class file that will handle with this easier. The
results of the execution of this program are included in an-
other section, so they will not be shown in this one.

Here it will be explained the plain steps to create one Sce-
nario with the SimulatedAnnealing class by the commmand
table.

• First of all we have to open our command table and go
to the project directory

• Second of all we open the python environment by ex-
ecuting the command Python

• Afterwards we have to import the main class Simu-
latedAnnealing by executing the command import
SimulatedAnnealing as sa

• Besides it is important to import the characteristics
classes, as an example, the Density and Sparsity
classes, which are both child classes of the Charac-
teristic class: from Density import Density
and also from Sparsity import Sparsity

• Finally we are able to call the constructor of the
SimulatedAnnealing class adding the parameters we

want to send, as seen previously, but with the new
characteristics list, which instead of raw numbers,
they have to be objects of the concretes characteristics
classes, which can be directly done by writing in the
call of the characteristic class constructor with the
required characteristic value as a parameter. As an
example it could be: sa.SimulatedAnnealing(
[Density(0.4), Sparsity(0.1)], 50,
10, [100,100] ). As said previously, the unnec-
essary parameter fields are not filled and the default
value will be used. In this case, the required density
value is 0.4 and the required sparsity value is 0.1

6 RESULTS PRESENTATION AND DISCUS-
SION

At the beginnings of the project, the density value was cal-
culated without having into account the overlap between the
ranges of communication of the different nodes, so it was
not reliable data.

Nonetheless this issue has been solved at the beginning of
the Second phase with the decision of using the rosettacode
algorithm [2].

This algorithm calculates the area of the range of com-
munication of all nodes, counting only once the overlapped
areas, and selecting the scene with the higher area value, for
later calculating the density with this value, by dividing it
by the dimensions of the map.

DensityPerScene =
CalculatedArea

ScenarioArea

MeanDensity =

∑TotalNumberOfScenes
n=1 DensityPerScene

TotalNumberOfScenes

At the end of the second phase, we have achieved the re-
sults shown in Figures 15, 16 of the Appendix. The param-
eters of the Scenario are shown in Figure 16. In Figure 13
we show an example of what is displayed in the Appendix.

Fig. 13: Two charts of a set of testing in phase 2.

As we can see, the obtained density values suffered un-
significant changes within the different iterations, making
the simulated annealing algorithm unable to converge in the
majority of the cases.

From this we can extract that the determining factor in
the values obtained for the density are the parameters of the
Scenario.

At the Third phase, we included the sparsity calculations
to request a sparsity value for the Scenario. Moreover, we
increased the initial value for the movementRestriction of
the nodes, until the maximum available for the map, in other
words, matching the shortest side of the map which, in our
case, is any of them as our map is squared. In addition



Marc Amin Abou-Hamdan Chamorro: Trace generator for Opportunistic Networks routing protocols through heuristic techniques 9

to this measure, we have have decided to take the maxi-
mum density value within scenes instead of the mean value
within them. The purpose of these measures was to help the
algorithm converge.

MaximumDensity =
max(DensityPerScene)

MapOfTheScenarioArea

We have completed two tests for this final phase, with the
results shown in Figures 17, 18, 19 and 20 of the Appendix.
The Scenario parameters for each test are specified in Fig-
ures 18 and 20. In the Figure 14 we show an example of
what is displayed in the Appendix:

Fig. 14: Two charts of a set of testing in phase 3.

As we can see in Figure 17 although we are able to obtain
a suitable Scenario in 3 cases out of 7, the variation of the
characteristics is not as significant as expected, even with
the measures taken, making it too reliant of the Scenario
paremeters introduced.

Afterwards we tried with different parameters for the
Scenario in order to see the behaviour of the algorithm with
greater parameters. In this case, as we can see in Figure
19, we have obtained even worse results than before, with
only one convergence. From this results we can extract that,
again, the density values are very reliant of the Scenario
paremeters and that the situation is worsened when these
parameters increase their values, in other words, when the
Scenario is bigger.

7 STATE OF THE ART

Currently there is not a Scenario generator open code, nor
any published one. Nevertheless the authors of routing pro-
tocols use their designed Scenarios for the testing.

However, it exists real-based Scenarios or generated Sce-
narios derived from real human mobility, such as CAHM
[3] or Map-Based Movement [4]. To give some examples,
we are going to describe seven of them, extracted from the
paper Fair Comparative Analysis of Opportunistic Routing
Protocols: An Empirical Study by Jay Gandhi and Zunnun
Narmawala [5].

• CAHM: Community Aware Heterogeneous Human
Mobility (CAHM) model creates the initial nodes lo-
cation map by overlapping community structure and
give the nodes a movement pattern based on human
mobility characteristics taken from real-world mobil-
ity traces analysis and derived from human social be-
haviour [3].

• Map-based Movement: In this mobility model, the
nodes location is based on a predefined real map,
hence its particularity comes from the movement of
the nodes. It consists of three movement models,

which are Random Map-based Movement, Routed
Map-based Movement, and Shortest Path Mapbased
Movement [4].

• Infocom05: This is a real-world Scenario generated
by 50 students attending to the 2005 Infocom con-
ference, from Infocom student workshop, who were
given Bluetooth devices and carried them for 4 days
in the conference. Every 2 minutes, each Bluetooth
device (iMotes) performed a neighbourhood scan [6].

• Infocom06: It is the same experiment as Infocom05
but on a larger scale as the iMote was carried by 80
students this time, for 5 days in the Infocom 2006 con-
ference. On this occasion the conference area included
three floors, and 34 out of the 80 participants were di-
vided in four groups based on their academic affiliation
[6].

• Reality: In this experiment, carried out at MIT, 100
smartphones were given to students and staff for 9
months, collecting approximately 5,000,000 h of data
on the user’s communication, location and device us-
age. The smartphones’ Bluetooth was enabled and per-
formed device discovery every 5 minutes [7].

• Cambridge: In this experiment the participants were
70 students and researchers as well as every other
Bluetooth enabled device carrier, as it was possible
to record a Bluetooth contact with externals devices,
calling it an external contact. Hence, it existed two
types of contacts, internal contact, which was referred
to those Bluetooths conctacts between two iMotes (the
device the participants were carrying with them) and
the external contact already explained. The experiment
took 11 days of collecting information [6].

• Sassy: In this experiments there were 27 participants
who were staff members of St. Andrews University.
They were given T-mote devices. The participants car-
ried the devices whenever possible for 79 days, with
the device detecting others in a range of approximately
10 meters. To collect information from the devices, ev-
ery encounter events were stored for being uploaded to
a central database via base stations [8].

8 CONCLUSIONS

In the First phase of the Scenario generator project we
achieved the prototype of the Scenario generator that allows
to build a Scenario with initially randomly placed nodes and
random restricted movement (by default, restricted to 5 po-
sitions) for the nodes, as well as calculate the mean Density
of the nodes in the Scenario.

However, this density is not fully reliable as commented
previously, but this issue had been fixed, by using the roset-
tacode algorithm [2], avoiding the overlapping. In addition,
in order to help the algorithm converge, we have changed
the characteristics calculations by taking always the max-
imum value within scenes instead of calculating a mean
value, which would normalize the value, decreasing the im-
pact of the temperature on it.

At the second phase of the project we did still use the
mean value of the density, although with the new algorithm,



10 EE/UAB COMPUTER SCIENCE TFG: Trace generator for Opportunistic Networks routing protocols through heuristic techniques

as we were not able to check its lack of convergence poten-
tial with the mean values, as it was one of the first testing
cases of the SimulatedAnnealing class.

From this testing case we can conclude that the major
influence for the density value obtained from the genera-
tor program comes mainly from the Scenario parameters,
such as the number of nodes (numNodes) of the Scenario,
which in the case of the density makes sense, because it is
closely related to the density, as, by definition, the density
is the division of the number of nodes (each node with its
range of communications) per the area covered by the Sce-
nario map, which comes along with another Scenario pa-
rameter, the Scenario dimensions. As well as the number of
nodes, the parameter dimensions has also a too big impact
in the density of the Scenario, hindering the contribution of
the moveRestriction to be determining in the final density
value.

In this case, the number of scenes, directly related to the
parameters totalTime and windowTimeSize, that are key to
ots calculation, also has some impact to the density calcu-
lation, because the higher the number of scenes, the higher
the normalization due to the mean value from the density
calculations.

This last issue could be fixed by using the maximum
value within scenes for the characteristics calculations, but
the other issues could not be fixed this way. So we decided
to be more strict with the weights of the characteristics and
set the initial moveRestriction value to the shortest Scenario
map side, in other words, increasing the randomness, to ex-
agerate the initial temperature.

Therefore for the last phase we obtained better results
with low values for the Scenario parameters, showing that
the improvements worked.

Nevertheless, once we increase the value of the Scenario
parameters, the results worsened again, making evident that
the dependence to the Scenario parameters was strong yet.

We can conclude that the simulated annealing method by
itself is not capable of obtaining a Scenario fitting some
given required characteristics in any case, because they
highly depend on the Scenario parameters.

As a hypothesis, it seems that this method, in combina-
tion with others could manage to obtain the required Sce-
nario in any condition, in case of setting some indicative
values for the Scenario parameters instead of just setting the
exact value, letting some range of action for the algorithm
to work with.

Independently from the reults of the project, we are open
to add new features such as other modes of initially fill the
Scenario with nodes, for instance, by taking the initial nodes
position from a file, and including movement patterns to the
nodes, as well as movement speed.

ACKNOWLEDGMENTS

In first place I want to thank the project tutor Diego Freire
for being always in touch with me while elaborating the
project and for all the help that handed to me, specially in
the moments where the situation was stucked and the ad-
vance of the project was not possible. He helped to set an
initial path to the project in order to being able to begin de-
velopping the project from an initial point.

In second place I want to thank Sergi Robles, who is the
responsible for the investigation and is in charge of the in-
vestigation team. He initially helped me to understand what
was required from me for the project and explained it in
a precise and clear way, what helped me a lot in order to
understand the task and consequently, develop the project.
Not only he first explained me the project requirements, but
also provided us from a new project methodology, which
helped a lot at the time of advancing with the project, as it
simplified the load of work in time by spreading the burden
of work over time and letting us have different prototypes
to evaluate better the job carried out through time.

Finally I want to thank all of my information sources that
helped me to develop the project, in one way or another,
either by providing of knowledge of the art or either by pro-
viding of a direct response to a project requirement.

REFERENCES

[1] N. Kaur and G. Mathur, “Opportunistic networks: A re-
view,” IOSR Journal of Computer Engineering (IOSR-
JCE), vol. 18, no. 2, pp. 20–26, Mar. 2016.

[2] Rosettacode community. (2020, Mar.)
Total circles area, grid sampling
version (python). [Online]. Available:
https://rosettacode.org/wiki/Total circles areaPython

[3] Z. Narmawala and S. Srivastava, “Community aware
heterogeneous human mobility (cahm): Model and
analysis,” Pervasive and Mobile Computing, vol. 21,
pp. 119–132, 2015.

[4] A. Keränen, J. Ott, and T. Kärkkäinen, “The
one simulator for dtn protocol evaluation,” in Pro-
ceedings of the 2nd International Conference on
Simulation Tools and Techniques, ser. Simutools
’09. Brussels, BEL: ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommu-
nications Engineering), 2009. [Online]. Available:
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5674

[5] J. Gandhi and Z. Narmawala, “Fair comparative anal-
ysis of opportunistic routing protocols: An empirical
study,” in Data Communication and Networks, L. C.
Jain, G. A. Tsihrintzis, V. E. Balas, and D. K. Sharma,
Eds. Singapore: Springer Singapore, 2020, pp. 285–
294.

[6] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot,
and A. Chaintreau, “Crawdad dataset cambridge/hag-
gle (v. 2006-09-15),” CRAWDAD wireless network data
archive, 2006.

[7] N. Eagle and A. S. Pentland, “Reality mining: sens-
ing complex social systems,” Personal and ubiquitous
computing, vol. 10, no. 4, pp. 255–268, 2006.

[8] G. Bigwood, D. Rehunathan, M. Bateman, T. Hender-
son, and S. Bhatti, “Crawdad dataset st andrews/sassy,”
Retrieved from http:/crawdad. cs. dartmouth.
edu/st andrews/sassy, 2011.



Marc Amin Abou-Hamdan Chamorro: Trace generator for Opportunistic Networks routing protocols through heuristic techniques 11

APPENDIX

A.1 Results of testing in phase 2

Fig. 15: Track of the density value variation between iterations for each density requirement in phase 2.

Fig. 16: Results of the phase 2 test with density only requirement.



12 EE/UAB COMPUTER SCIENCE TFG: Trace generator for Opportunistic Networks routing protocols through heuristic techniques

A.2 Results of testing in phase 3

Fig. 17: Track of the density and sparsity values variation between iterations for each density requirement in phase 3 for
the first test.

Fig. 18: Results of the first test of phase 3.



Marc Amin Abou-Hamdan Chamorro: Trace generator for Opportunistic Networks routing protocols through heuristic techniques 13

Fig. 19: Track of the density and sparsity values variation between iterations for each density requirement in phase 3 for
the second test.

Fig. 20: Results of the second test of phase 3.


