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ABSTRACT
Textual data is common and informative auxiliary information for
recommender systems. Most prior art utilizes text for rating predic-
tion, but rare work connects it to top-N recommendation. Moreover,
although advanced recommendation models capable of incorporat-
ing auxiliary information have been developed, none of these are
specifically designed to model textual information, yielding a lim-
ited usage scenario for typical user-to-item recommendation. In this
work, we present a framework of text-aware preference ranking
(TPR) for top-N recommendation, in which we comprehensively
model the joint association of user-item interaction and relations
between items and associated text. Using the TPR framework, we
construct a joint likelihood function that explicitly describes two
ranking structures: 1) item preference ranking (IPR) and 2) word
relatedness ranking (WRR), where the former captures the item pref-
erence of each user and the latter captures the word relatedness of
each item. As these two explicit structures are by nature mutually
dependent, we propose TPR-OPT, a simple yet effective learning
criterion that additionally includes implicit structures, such as re-
latedness between items and relatedness between words for each
user for model optimization. Such a design not only successfully
describes the joint association among users, words, and text com-
prehensively but also naturally yields powerful representations that
are suitable for a range of recommendation tasks, including user-to-
item, item-to-item, and user-to-word recommendation, as well as
item-to-word reconstruction. In this paper, extensive experiments
have been conducted on eight recommendation datasets, the results
of which demonstrate that by including textual information from
item descriptions, the proposed TPR model consistently outperforms
state-of-the-art baselines on various recommendation tasks.

* These authors contributed equally to this work.
† Social Networks and Human-Centered Computing, Taiwan International Graduate
Program, Institute of Information Science, Academia Sinica, Taiwan.
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1 INTRODUCTION
Recommender systems are ubiquitous, as almost every service that
provides content to users is now armed with a recommender sys-
tem. In general, as user-item interactions such as ratings, playing
times, likes, sharing, and tags are generally available in real-world
recommender systems, many systems have leveraged collaborative
filtering (CF) for recommendation [9]. Despite the effectiveness and
prevalence of CF, most pure CF methods (i.e., those that leverage
only user-item interaction for modeling) do not incorporate auxil-
iary information such as item description and user profiles, thereby
yielding poor performance when user-item interactions are sparse as
well as under cold-start situations.

To leverage such auxiliary information to boost performance,
modern recommendation algorithms have expanded their ability to
integrate auxiliary context information using CF [3, 19, 22, 26]. A
natural paradigm is to transform the auxiliary information into a
generic feature vector, along with user and item IDs, using this as
the input to train a supervised model for score prediction. Such a
paradigm for recommender systems has been widely used in indus-
try [6, 21]; representative algorithms include factorization machines
(FM) [19], NFM (neural FM) [7], and Wide & Deep [5]. On the
other hand, as graphs are an extremely flexible and powerful way
to represent data, another paradigm is to construct a graph struc-
ture that incorporates both the auxiliary information and user-item
interactions, based on which node and/or edge (or relation) embed-
dings are learned [1, 3, 16, 22, 25–27]; for this type of approach,
recent recommendation models such as CKE [26] exploit knowl-
edge base for better recommendation results; KGAT [22] investigate
the utility of knowledge graphs (KGs) and yield state-of-the-art

https://doi.org/10.1145/3340531.3411969
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Figure 1: Four relations in TPR for job recommendation

performance on recommendation. However, as the above methods
are not particularly designed to model textual information, their
usage scenarios are limited to typical user-to-item recommendation
only. For example, models within the supervised paradigm predict
recommendation scores for a given user and an item; even though
such methods can encode textual information via a feature vector
(e.g., a bag-of-words representation), it is difficult to complete other
recommendation tasks, including item-to-item recommendation or
user-to-word recommendation.

An exception that deals solely with textual information is a thread
of studies that incorporates review texts within recommendation
models; instead of the commonly adopted top-N recommendation,
this thread of work considers rating-based prediction only [2, 12, 13].
In contrast to prior studies, in this paper, we focus on modeling an-
other source of textual information—the item description. Compared
to user reviews, the text in item descriptions is usually easier to ob-
tain and conveys specific and accurate information regarding the
corresponding items, thereby constituting informative material for
modeling user preference. It is of great help in providing explainable
recommendations.

Thus, in this paper, we propose text-aware preference ranking
(TPR), a framework in which we model the joint association of
user-item interaction and relations between items and associated
text for top-N recommendation. Motivated by preference ranking in
ranking-based CF [4, 20], we construct a joint likelihood function
that explicitly describes two explicit ranking structures: 1) item pref-
erence ranking (IPR) and 2) word relatedness ranking (WRR), where
IPR captures the item preference of each user and WRR captures
the word relatedness of each item. As these two structures are by
nature mutually dependent, except for modeling them, we propose
TPR-OPT, a simple yet effective learning criterion that additionally
includes implicit structures such as relatedness between items and
relatedness between words for a user; four types of structures are
shown in Figure 1 under the scenario of job recommendation. Note
that our design not only successfully describes the joint association
comprehensively but also naturally yields universal and powerful
representations for users, items, and texts that are suitable for a range
of recommendation tasks, including user-to-item, item-to-item, and

user-to-word recommendation, as well as item-to-word reconstruc-
tion. The support of such variants of recommendation tasks in a
unified model indeed broadens the usage scope of our model. For
example, within a job recommendation scenario, user-to-word rec-
ommendation can be of great help in providing users with related
skill sets mentioned in job descriptions, which can be done naturally
as the TPR-OPT simultaneously models user preference on text.

We conduct extensive experiments on eight recommendation
datasets, including six publicly available Amazon datasets and two
privately collected datasets. To attest the capability of the learned
embeddings, we perform various types of tasks, including typical
user-to-item (cold-start) recommendation, item-to-word reconstruc-
tion, and user-to-word recommendation. Experimental results show
that by including textual information from item descriptions, the
proposed model consistently outperforms state-of-the-art baselines
on various tasks. We also discuss the efficiency of the proposed
method in terms of time and memory usage empirically. In summary,
the contributions of this work are listed as follows.
• We present TPR, a text-aware recommendation framework that

jointly describes the association of user-item interactions and
relations between items and associated text.
• Within the TPR framework, we propose TPR-OPT, an effective

learning criterion that comprehensively models four types of struc-
tures among users, items, and texts.
• By optimizing TPR-OPT, the learned embeddings of users, items,

and words are comparable; thus, any pair-wise similarity (e.g.,
user-to-item or user-to-word) can be obtained in a straightforward
manner to support various types of recommendation tasks.
• We conduct extensive experiments on eight datasets, showing

the superiority of the proposed method over different advanced
models on various recommendation tasks.
• We provide an effective and efficient implementation, the source

code is available online at a GitHub repository 1.

2 METHODOLOGY
In this section, we first introduce the problem definition of text-aware
recommendation in Section 2.1 and give an overview of our proposed
TPR framework that leverages both explicit and implicit ranking
structures in Section 2.2. Subsequently, in Section 2.3 we introduce
a joint learning objective for both explicit and implicit structures and
then discuss its optimization together with regularization.

2.1 Problem Definition
Let U , I , andW denote the sets of users, items, and words, respec-
tively. In this study we consider two types of relations between the
elements in these sets: 1) interaction between users and items, de-
noted as Eu,i = {(u, i ) |u ∈ U , i ∈ I }, and 2) the “has-a” relation
between items and words, denoted as Ei,w = {(i,w ) |i ∈ I ,w ∈W },
where the words for each item are extracted from its description.

The goal of our model is to learn a representation matrix Θ ∈

R |U ∪ I ∪W |×d that maps each user, item, or word to a d-dimensional
embedding vector. The learned embedding vectors are thus suitable
for various types of recommendation tasks, including user-to-item,
item-to-item, and user-to-word recommendation, as well as item-to-
word reconstruction, as motivated in Section 1.
1https://github.com/cnclabs/codes.tpr.rec



2.2 Proposed TPR Framework
The proposed TPR is designed to model the joint association of user-
item interactions and the relations between items and associated
words from their descriptions. Here, we use preference ranking [4,
20, 23] to describe such relations, for which the objective is to find
an embedding matrix Θ that maximizes the joint likelihood function
from observed user-item and item-word pairs:

OTPR ≡ max
∏

(u,i )∈Eu,i

p (

IPR︷︸︸︷
>u ,

WRR︷︸︸︷
>i |Θ), (1)

where >u indicates the preference structure between two items for
the given user u ∈ U , >i refers to the relatedness structure between
words for the given item i ∈ I . Specifically, j >u j ′ denotes that
user u prefers item j over item j ′, whereas w >i w ′ denotes that
word w is with a higher probability of being in the description
of item i than w ′. From Eq. (1), the joint likelihood is composed
of two ranking structures: 1) >u , item preference ranking (IPR)
(described in Section 2.2.1) and 2) >i , word relatedness ranking
(WRR) (described in Section 2.2.2). Note that structures >u and >i
are by nature mutually dependent as the items that the given user has
interacted with overlap in these two structures. Therefore, despite
only explicitly observing these two structures, structures such as
relatedness between items and relatedness between words for a user
should also be considered in the joint likelihood function.

To realize such preference (relatedness) ranking, we create a set
of triples Du : U × I × I based on user-item interactions Eu,i for >u ,
and another set of triples Di : I ×W ×W based on the has-a relations
between items and words Ei,w for >i , as Du = {(u, j, j

′) |∀u ∈ U , j ∈
I+u ∧ j

′ ∈ I\I+u } and Di = {(i,w,w
′) |∀i ∈ I ,w ∈W +i ∧w

′ ∈W \W +i }
respectively, where I+u = {i ∈ I |(u, i ) ∈ Eu,i } denotes the set of items
that user u has interacted with, and W +i = {w ∈ W |(i,w ) ∈ Ei,w }
denotes the set of words in the description of item i. That is, for
each triple (u, j, j ′) ∈ Du , we have j >u j ′. Similarly, for each triple
(i,w,w ′) ∈ Di , we have w >i w ′.

Figure 2 illustrates the overall concept of the proposed TPR frame-
work. Given a user-item interaction (u, i ) ∈ Eu,i , we consider a joint
likelihood function composed of one preference structure on items
for u (i.e., IPR) and one relatedness structure on words for i (i.e.,
WRR), as shown in the dashed box. Due to the dependency between
the explicit structures (a) and (d) shown in the figure, two additional
structures should be further modeled: (b) for the similarity rank-
ing of two other items w.r.t. the given item, and (c) for the word
relatedness ranking of two words w.r.t. the given user. Below, in
Sections 2.2.1 and 2.2.2, we discuss the two explicitly considered
structures, IPR and WRR, respectively, after which we discuss how
to design the objective to jointly consider the four types of structures
in Section 2.3.

2.2.1 Item Preference Ranking (IPR). With item preference
ranking (IPR), we focus on generating a personalized ranked list
of items for each user based on the observed user-item interaction
by leveraging the user-item-item triples Du as training data to op-
timize the correct ranking of item pairs [4, 20, 23]. For such an
approach, BPR [20] is a pioneering, well-known example in which

the likelihood function of IPR is formulated as

OIPR = max
∏
u ∈U

p (>u |Θ)

∝ max ln *
,

∏
u ∈U

p (>u |Θ)+
-

= max ln *.
,

∏
(u, j, j′)∈Du

p (j >u j ′ |Θ)+/
-

= max
∑

(u, j, j′)∈Du

lnp
(
j >u j ′ |Θ

)
. (2)

Recall that I+u is the item preference set of the given user u, and >u
denotes the pairwise item preference for user u. It is common to
calculate p (j >u j ′ |Θ) in Eq. (2) as

p (j >u j ′ |Θ) = σ
(〈
Θu ,Θj − Θj′

〉)
, (3)

where ⟨·, ·⟩ denotes the dot product between two vectors, Θu (Θj )
denotes the d-dimensional row vector from Θ for user u ∈ U (item
j ∈ I , respectively) and σ (·) denotes the sigmoid function.

2.2.2 Word Relatedness Ranking (WRR). With the WRR com-
ponent, we seek to model the relation between items and associ-
ated words from their description. Inspired by language modeling
techniques that learn the word semantics by the words distribu-
tions [10, 14, 15], we propose maximizing the likelihood function
of relevant (positive) item-word pairs over irrelevant (negative) item-
word pairs for each item, by leveraging the item-word-word triples
in Di as training data. Thus we have

OWRR = max
∏
i ∈I

p (>i |Θ)

∝ max ln *
,

∏
i ∈I

p (>i |Θ)+
-

= max
∑

(i,w,w ′)∈Di

lnp (w >i w ′ |Θ). (4)

Recall that >i denotes the pairwise word relatedness for item i (i.e.,
w >i w ′ indicates that word w is more related than word w ′ to
item i). In Eq. (4), p (w >i w ′ |i ) is calculated as

p (w >i w
′ |i ) = σ (⟨Θi ,Θw − Θw ′⟩) , (5)

where Θw is the d-dimensional row vector from Θ for word w ∈W .

2.3 Joint Learning of Implicit and Explicit
Ranking Structures

Next, we illustrate how to design an objective function that jointly
considers the four types of explicit and implicit structures shown in
Figure 2(a)–(d). To our best knowledge, although various systems
have been developed that incorporate IPR concepts into their rec-
ommendation models, none leverages the concept of WRR to fuse
textual information into the models. More importantly, due to the
dependency between IPR and WRR, it is unreasonable to model
these two structures independently, that is, to directly maximize the
product of Eqs. (3) and (5).

To this end, in this paper, we propose a learning approach based
on the TPR framework for text-aware recommendation, for which we
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Figure 2: Overview of proposed TPR framework

define the calculation for the joint likelihood function (see Eq. (1))
for a user-item pair (u, i ) ∈ Eu,i as

p (j >u j ′,w >i w
′ |Θ)

= σ
(
⟨Θu + Θi , (Θj − Θj′ ) + (Θw − Θw ′ )⟩

)
= σ

(
⟨Θu , (Θj − Θj′ )⟩ + ⟨Θu , (Θw − Θw ′ )⟩ +

⟨Θi , (Θj − Θj′ )⟩ + ⟨Θi , (Θw − Θw ′ )⟩) , (6)

where j ∈ I+u , j ′ ∈ I\I+u , w ∈ W +i , and w ′ ∈ W \W +i . As shown,
the above joint likelihood in Eq. (6) can be decomposed into the
following four components:

(a) ⟨Θu ,Θj − Θj′⟩: Modeling the item preference ranking (IPR)
between j and j ′ for user u (see Figure 2(a) and Eq. (3));

(b) ⟨Θi ,Θj − Θj′⟩: Modeling the item similarity to item i regard-
ing items j and j ′ (see Figure 2(b));

(c) ⟨Θu ,Θw − Θw ′⟩: Modeling the word relatedness ranking to
user u regarding words w and w ′ (see Figure 2(c));

(d) ⟨Θi ,Θw − Θw ′⟩: Modeling the word relatedness ranking to
item i regarding wordsw andw ′ (see Figure 2(d) and Eq. (5)).

Note that the item i and j in (b) are both positive items for user u
(i.e., i, j ∈ I+ (u)); as a result, for this part, the model tends to clus-
ter items that the user has interacted with in the training data in
the embedding space. Moreover, word w in (c) is extracted from
the description of an item i that the user has interacted with (i.e.,
i ∈ I+u ); thus, this part of modeling captures user word preferences.
It is worth remembering that this elegant design for the objective not
only successfully describes the joint likelihood function in Eq. (1)
comprehensively but also naturally yields a powerful representation
matrix Θ that is suitable for a range of recommendation tasks, includ-
ing user-to-item, item-to-item, and user-to-word recommendation,
as well as item-to-word reconstruction.

With Eq. (6), we formulate the maximum posterior estimator to
derive our optimization criterion for TPR as

TPR-OPT

:= lnp (Θ| >u , >i ) ∝ lnp (>u , >i |Θ)p (Θ)

= ln
∏

(u, j, j′)∈Du ,
(i,w,w ′)∈Di

p (j >u j ′,w >i w
′ |Θ)p (Θ)

=
∑

(u, j, j′)∈Du ,
(i,w,w ′)∈Di

lnσ
(
⟨Θu + Θi , (Θj − Θj′ ) + (Θw − Θw ′ )⟩

)
− λΘ ∥Θ∥

2 ,

(7)

where λΘ is a model-specific regularization parameter.

2.3.1 Optimization. The most common algorithms for gradient
ascent are full and stochastic gradient ascent. In the first case, in each
step the full gradient over all training data is calculated after which
the model parameters are updated according to learning rate α :

Θ←− Θ + α

(
∂TPR-OPT
∂Θ

)
.

Although full gradient ascent generally leads to an ascent in the
correct direction, its convergence is slow. As a result, in this paper,
the objective function in Eq. (7) is instead maximized by adopting
asynchronous stochastic gradient ascent—the opposite of asynchro-
nous stochastic gradient descent (ASGD) [18]—to efficiently update
parameters Θ in parallel. Specifically, for each given (u, i ) pair, we
randomly sample one positive item as j and one negative item as j ′

for user u and a positive-negative word pair as (w , w ′) for item i,
resulting in triplets (u, j, j ′) ∈ Du and (i,w,w ′) ∈ Di for updating
the parameters with the gradient defined as

∂TPR-OPT
∂Θ

=
∂

∂Θ
lnσ (x̂ ) − λΘ

∂

∂Θ
∥Θ∥2 (8)

∝
e−x̂

1 + e−x̂
∂

∂Θ
x̂ − λΘΘ, (9)

where x̂ := ⟨Θu + Θi , (Θj − Θj′ ) + (Θw − Θw ′ )⟩.



2.3.2 Regularization. In practice, the regularization term is used
to reduce model complexity and generally benefits model gener-
alization ability. As the relations in IPR and WRR structures are
essentially different, we enable TPR-OPT to have different weights
for regularization. By rewriting Eq. (9), each row vector Θk in Θ is
updated by

∂TPR-OPT
∂Θk

=
e−x̂

1 + e−x̂
∂

∂Θk
x̂ − Λ(k )Θk

where

Λ(k ) :=



λIPR if k is an element of tuple (u, j, j ′) ∈ Du ,

λWRR if k is an element of tuple (i,w,w ′) ∈ Di .

Above, the two hyperparameters for regularization—λIPR and λWRR—
allow additional flexibility in adjusting the relation modeling for
different types of tasks. The effect of adopting different values of
λIPR and λWRR is discussed in Section 3.

3 EXPERIMENT
3.1 Datasets
To examine the performance of the proposed model, we conducted
experiments on eight datasets, including six public benchmarks and
two private real-world datasets, the statistics of which are listed in
Table 1. The six public benchmarks are from the Amazon review
dataset [17],2 for which we adopted user-item ratings and item de-
scriptions in the experiments. Note that for the Amazon data, we
treated items with ratings as positive feedback and the rest as neg-
ative feedback, and removed users that had rated fewer than three
items. For the two private datasets, the first is the Online Professional
Network data in Singapore, called SG-OPN, with about 10,000 per-
sons with their working experience and 12,000 job postings, for
which we treat each person and his/her listed jobs as the user-item
interactions and the job descriptions as the item descriptions; the
second one is the course-taking data from a major university in Asia,
called the Course dataset, with 17,000 students with their course-
taking logs and 600 courses with descriptions, for which we treat
each student and his/her taken courses as the user-item interactions
and the course descriptions as the item descriptions. Thus, all of
our experimental datasets contain user-item interactions and textual
item descriptions. For preprocessing, we converted the user-item
interactions into implicit feedback, and for item descriptions, we
filtered out words with term frequencies of less than five or words
with a document frequency of less than ten percent of the correspond-
ing corpus. Table 1 lists the statistics of the preprocessed data for
each dataset, including the number of words, the amount of implicit
feedback (U-I edges), and the number of relations between items
and words (I-W edges).

3.2 Baselines
We compared our model with seven baseline methods. The first
two, BPR [20] and WARP [23], leverage user-item interactions only
for recommendation; the third and fourth, SINE [25] and HPE [3],
are graph embedding methods; the fifth, GATE [13], is a model
incorporating reviews for recommendation; the last two, CKE [26]

2https://nijianmo.github.io/amazon/index.html

Users Items Words U-I edges I-W edges

Amazon-Magazine 2,825 1,299 6,740 11,685 9,4381
Amazon-Beauty 4,801 4,865 4,115 11,685 159,475
Amazon-Application 11,823 5,554 9,712 42,675 410,079
Amazon-Software 13,634 9,325 11,111 57,793 766,112
Amazon-Fashion 19,875 36,080 5,076 75,596 442,136
Amazon-Kindle 363,303 356,634 36,445 3,334,521 6,794,209
Course ∼17,000 ∼600 ∼3,000 ∼300,000 ∼150,000
SG-OPN ∼10,000 ∼12,000 ∼10,100 ∼30,000 ∼1,100,000

Table 1: Dataset statistics

and KGAT [22], are state-of-the-art knowledge-based recommenda-
tion methods. Below we briefly describe each method and how we
adopted these methods under our settings.

• BPR [20] (Bayesian Personalized Ranking) adopts pairwise rank-
ing loss for personalized recommendation and exploits direct user-
item interaction to separate negative items from positive items.
• WARP [23] (Weighted Approximate-Rank Pairwise) improves

ranking-based models based on BPR, weighing pairwise viola-
tions depending on their positions in a ranked list.
• SINE [25] (Scalable Incomplete Network Embedding) is an at-

tributed network embedding algorithm, which incorporates words
as item attributes.
• HPE [3] (Heterogeneous Preference Embedding) encodes user

preferences and query intentions into low-dimensional vector
spaces.
• GATE [13] (Gated Attentive-autoencoder) is an end-to-end rec-

ommendation algorithms that fuses hidden representations of item
contents and binary ratings using a neural gating structure.
• CKE [26] (Collaborative Knowledge Base Embedding) is a knowledge-

based recommendation method which exploits semantic knowl-
edge derived from TransR [11] to enhance the performance of
matrix factorization.
• KGAT [22] (Knowledge Graph Attention Network) is a recom-

mendation model that explicitly models high-order relations in
a collaborative knowledge graph under a graph neural network
framework.

Note that GATE can be used for typical user-item recommenda-
tion only as it is an end-to-end recommendation model. Other than
BPR and WARP, all other baselines encode textual information;
however, only HPE, CKE, and KGAT can be used for tasks that in-
volve node embeddings for words, e.g., cold-start recommendation,
item-to-word reconstruction, and user-to-word recommendation. The
implementations for the seven baselines are listed in the footnote.3

3.3 Experimental Settings
To attest the versatility of the learned embeddings of users, items,
and words, we completed the following recommendation tasks in
the following experiments.

3WARP: https://github.com/lyst/lightfm; HPE: https://github.com/cnclabs/smore; SINE:
https://github.com/benedekrozemberczki/karateclub; BPR, CKE, KGAT: https://github.
com/xiangwang1223/knowledge_graph_attention_network; GATE: https://github.com/
allenjack/GATE

https://github.com/lyst/lightfm
https://github.com/cnclabs/smore
https://github.com/benedekrozemberczki/karateclub
https://github.com/xiangwang1223/knowledge_graph_attention_network
https://github.com/xiangwang1223/knowledge_graph_attention_network
https://github.com/allenjack/GATE
https://github.com/allenjack/GATE


(1) Recommendation tasks:
(a) User-to-item recommendation: In this task, we provide a

list of recommended items for each user; for each user u the
items are ranked by the score ⟨Θu ,Θj ⟩, where j ∈ I .

(b) Item-to-item recommendation: This task is the same as the
previous task, except that the items are ranked by the score∑
i ∈I+u ⟨Θi ,Θj ⟩, where j ∈ I . Note that for this task, instead of

using the user embedding to calculate the score, we calculate
it using the embeddings of items that the user has interacted
with in the training data.

(2) Cold-start recommendation tasks:
(a) User-to-item recommendation: In this task, we recommend

items that are completely new, which means that the rec-
ommended items are not included in the training data. In
this scenario, we generate the embedding of a new item j by
Θj =

1
|W +

j |

∑
w ∈W +

j
Θw . For each user u, the recommenda-

tions are ranked by ⟨Θu ,Θj ⟩.
(b) Item-to-item recommendation: This task is same as the

above cold-start setting, but the items are ranked by the score∑
i ∈I+u ⟨Θi ,Θj ⟩.

(3) Word-related tasks:
(a) Item-to-word reconstruction: With this task, we evaluate

the text awareness of the proposed model. Given an item, this
task is to restore the contained relations between the given
item and the words from its description. The score of an item-
word pair (j,w ) is computed by ⟨Θj ,Θw ⟩.

(b) User-to-word recommendation: In this task, we are to pre-
dict a list of words for each user; note that the recommended
words are new, meaning that these words do not appear in
the descriptions of items that the user has interacted with in
the training data. The recommendations are then ranked by
⟨Θu ,Θw ⟩, where w ∈W \W +i for all i ∈ I+u .

For all of these tasks, we focus on the performance of top-N
recommendation, using two common recommendation metrics for
evaluation: recall (denoted as Recall@N ) and normalized discount
cumulative gain (denoted as NDCG@N ). For all the datasets, we
randomly divided the user-item interactions into 80% and 20% as the
training set and the testing set, respectively. The recommendation
pool for each user was generated as the collection of positive items
with 1,000 randomly selected negative items. Similar settings can
be found in [8, 24]. For the cold-start recommendation tasks, the
recommendation pool contained only those positive items that were
not in the training set. The final reported results were calculated by
averaging the results over five repetitions. We used all words in the
item descriptions; each unique word w corresponds an embedding
Θw (i.e., a unigram model). In our experiments, the dimensions of
the embedding vectors were set to 128, and all the hyper-parameters
of the compared models were determined via a grid search over
different settings, from which the combination that lead to the best
performance was chosen. The training iteration we searched for the
compared methods was {50, 100, 200}. For the proposed TPR, to
clearly illustrate the function of combined IPR/WRR regularization,
we fixed λIPR = 0.025 and report the performance by varying λWRR
in the experiments.

3.4 Experimental Results
In the following sections, we demonstrate the results of the tasks
listed in Section 3.3. First, we conduct experiments on typical top-N
recommendation, the results of which are shown in Sections 3.4.1
and 3.4.2. Second, typical top-N recommendation for the cold-star
scenarios is considered in Sections 3.4.3 and 3.4.4. Finally, we exam-
ine whether a model successfully encodes the word knowledge into
its learned representations by performing item-word reconstruction
and user-to-word recommendation in Sections 3.4.5 and 3.4.6, re-
spectively. Note that in the reported results , “†” symbol in Tables 2-7
indicates the best performing method among all the baseline meth-
ods; “*” and “Improv. (%)” denote statistical significance at p-value
< 0.01 with a paired t-test and the percentage improvement of the
proposed model, respectively, with respect to the best performing
value in the baselines.

3.4.1 User-to-item Recommendation (Task 1-a). This is the
typical recommendation task evaluated in most of the literature
in recommender systems. Table 2 tabulates the results in terms of
Recall@10 and NDCG@10 of the proposed TPR and the seven
baseline methods, where the best results are highlighted in bold.
Note that for the Amazon-Kindle dataset, we do not report results of
GATE, CKE, and KGAT due to computational resource limitations.4

Below, we itemize the findings from Table 2.

• In general, the models incorporating the textual information out-
perform the ones leveraging solely user-item interactions (i.e.,
BPR and WARP). However, as SINE and GATE are not origi-
nally proposed to handle the user-item ranking problem, these two
methods obtain relative weak results even though they include the
text data into their models.
• HPE, CKE, and KGAT are considered as the most competitive

baselines in this task due to their top performance. Even so, the
proposed TPR generally gains significantly better results than the
three methods for seven datasets in terms of both Recall@10 and
NDCG@10, except for the smallest dataset, Amazon-Magazine.
The results suggest that our method could perform better in larger
datasets with more interactions and textual information.
• It is feasible to train the proposed model on very large-scale

datasets, such as the Amazon-Kindle dataset; many other ad-
vanced models however encounter either the training efficiency
or memory capacity issues. Comparison on the training time and
memory usage among different models are reported and disucssed
in Section 3.5.2.
• For such a user-to-item recommendation task, adopting a larger

regularization on the WRR structure, λWRR, benefits model gener-
alization ability regarding word relatedness to items, more analysis
for which is described in Section 3.5.1.
• In sum, the overall improvement of the proposed TPR ranges

from 1.00% to 18.56% in terms of Recall@10 and from 3.70%
to 24.75% in terms of NDCG@10; such improvements should be
considered as measurable ones.

3.4.2 Item-to-item Recommendation (Task 1-b). For this and
the following tasks in Sections 3.4.3-3.4.6, we only report results

4The model is unable to be loaded into the GPU with 32GB memory or the training is
unable to be finished within days.



Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

BPR [20] 0.3306 0.1734 0.4278 0.3468 0.3035 0.1590 0.1563 0.1223
WARP [23] 0.3435 0.1892 0.3468 0.3437 0.3016 0.1655 0.1815 0.1298
SINE [25] 0.0360 0.0083 0.0549 0.0157 0.1283 0.0280 0.0865 0.0181
HPE [3] 0.3419 0.1377 † 0.4773 † 0.3652 † 0.3552 0.1736 † 0.2126 † 0.1393
GATE [13] 0.2720 0.0489 0.3940 0.0812 0.1336 0.0225 0.0819 0.0186
CKE [26] 0.3838 0.2061 0.4208 0.3450 0.2933 0.1562 0.1581 0.1230
KGAT [22] † 0.4156 † 0.2156 0.4321 0.3558 0.3213 † 0.1862 0.1862 0.1268

TPR (λWRR = 0.001) 0.3681 0.1599 *0.4950 *0.3735 *0.3937 *0.1779 *0.2394 *0.1525
TPR (λWRR = 0.005) 0.4101 0.1880 *0.4925 *0.3783 *0.4097 *0.1951 *0.2270 *0.1462
TPR (λWRR = 0.01) 0.4182 0.1840 *0.4840 *0.3793 *0.3997 *0.1971 *0.2258 *0.1482

Improv. (%) −0.62% −12.80% +3.70% +3.86% +15.34% +5.85% +6.77% +6.38%

Amazon-Software Amazon-Kindle Course SG-OPN

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

BPR [20] † 0.3669 0.1779 0.4414 0.2097 0.5731 0.4129 0.1008 0.0339
WARP [23] 0.3423 0.1556 † 0.5461 † 0.3392 0.5340 0.3639 † 0.2623 † 0.1131
SINE [25] 0.0976 0.0257 0.2812 0.1394 0.0357 0.0168 0.0412 0.0150
HPE [3] 0.3658 0.1405 0.5228 0.2803 0.3391 0.2294 0.0047 0.0040
GATE [13] 0.1326 0.0202 - - 0.4477 0.3170 0.0010 0.0035
CKE [26] 0.3448 0.1497 - - † 0.6094 † 0.4583 0.1050 0.0837
KGAT [22] 0.3907 † 0.1847 - - 0.5902 0.4294 0.1473 0.0512

TPR (λWRR = 0.001) *0.3898 0.1615 *0.5682 *0.3448 0.5735 0.4177 *0.3110 *0.1411
TPR (λWRR = 0.005) *0.4252 0.1844 *0.6065 *0.3722 0.6014 0.4422 *0.3094 *0.1392
TPR (λWRR = 0.01) *0.4319 *0.1956 *0.6164 *0.3804 *0.6155 0.4468 *0.3086 *0.1434

Improv. (%) +17.71% +5.90% +12.87% +12.14% +1.00% −2.50% +18.56% +24.75%
Table 2: Performance on user-to-item recommendation

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

BPR [20] 0.3637 0.1964 0.4433 0.3689 0.3472 † 0.1871 0.1655 0.1244 0.3993 † 0.1933
WARP [23] 0.2769 0.1615 0.4248 0.3577 0.2686 0.1438 0.1435 0.1130 0.2989 0.1444
SINE [25] 0.1365 0.0877 0.2813 0.1041 0.1873 0.0857 0.1663 0.1160 0.2636 0.1065
HPE [3] 0.3584 0.1376 0.4575 0.3584 0.3380 0.1600 † 0.2091 † 0.1326 0.3552 0.1501
CKE [26] 0.3903 0.1986 0.4469 0.3570 0.3353 0.1838 0.1585 0.1245 0.3766 0.1887
KGAT [22] † 0.3972 † 0.2049 † 0.4587 † 0.3710 † 0.3645 0.1864 0.1530 0.1155 † 0.4066 0.1699

TPR (λWRR = 0.001) 0.3911 0.1781 *0.4855 *0.3803 *0.3786 0.1890 *0.2330 *0.1541 0.3992 0.1736
TPR (λWRR = 0.005) *0.4155 0.2038 *0.4822 *0.3797 *0.3990 *0.1960 *0.2195 *0.1487 *0.4233 0.1946
TPR (λWRR = 0.01) *0.4201 0.2057 *0.4755 *0.3819 *0.3859 *0.2036 *0.2133 *0.1477 *0.4245 *0.1993

Improv. (%) +5.76% +0.39% +5.84% +2.93% +9.46% +8.81% +11.42% +16.21% +4.40% +3.10%

Table 3: Performance on item-to-item recommendation

conducted on the five public Amazon datasets due to space limita-
tions. Table 3 reports the results of item-to-item recommendation.
Although many studies evaluate their methods with user-to-item rec-
ommendation, practically, item-to-item has a wider range of usage in
many applications, such as “similar products” in e-commerce sites
and recommendations under the heading “because you watched...”
in video streaming services. Recall that GATE cannot be used for
tasks other than typical user-item recommendation.

• Similar to the user-to-item recommendation, the models consider-
ing the textual information generally gain better performance than
the ones leveraging purely user-item data.
• Similar to the user-to-item recommendation, HPE, CKE and

KGAT still serve as strong baselines; even so, the proposed method
consistently yields best performance compared to them. The over-
all improvement of TPR ranges from 4.40% to 11.42% in terms



Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.2454 † 0.0609 † 0.1203 † 0.0419 † 0.0794 † 0.0101 † 0.1326 † 0.0344 † 0.1149 † 0.0114
CKE [26] 0.0636 0.0343 0.0093 0.0058 0.0072 0.0035 0.0090 0.0046 0.0104 0.0056
KGAT [22] 0.0363 0.0254 0.0152 0.0035 0.0033 0.0035 0.0152 0.0035 0.0083 0.0035

TPR (λWRR = 0.001) *0.2636 *0.0875 *0.1654 *0.0640 *0.1569 *0.0340 *0.1698 *0.0700 *0.1511 *0.0337
TPR (λWRR = 0.005) *0.2590 *0.0919 *0.1483 *0.0570 *0.1175 *0.0200 0.1354 *0.0527 0.1176 0.0168
TPR (λWRR = 0.01) *0.2863 0.0609 *0.1320 *0.0501 *0.1026 *0.0167 0.1055 0.0374 0.0887 0.0106

Table 4: Performance on cold-start user-to-item recommendation

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.2090 † 0.0609 † 0.1133 † 0.0396 † 0.0794 † 0.0101 † 0.1337 † 0.0405 0.1106 0.0139
CKE [26] 0.0727 0.0343 0.0093 0.0035 0.0072 0.0035 0.0090 0.0046 0.0104 0.0056
KGAT [22] 0.0772 0.0432 0.0443 0.0117 0.0586 0.0068 0.0282 0.0080 † 0.1164 † 0.0181

TPR (λWRR = 0.001) *0.2954 *0.0697 *0.1483 *0.0617 *0.1496 *0.0200 *0.1681 *0.0546 0.1168 *0.0264
TPR (λWRR = 0.005) 0.2863 0.0520 *0.1320 *0.0454 0.1225 0.0167 0.1179 *0.0485 0.0883 0.0183
TPR (λWRR = 0.01) 0.2545 0.0520 *0.1250 *0.0431 0.1099 0.0167 0.1066 0.0400 0.0981 0.0139

Table 5: Performance on cold-start item-to-item recommendation

of Recall@10 and 0.39% to 16.21% in term of NDCG@10 for
the five datasets.

3.4.3 Cold-start User-to-item Recommendation (Task 2-a).
In order to recommend completely new items to users, which means
that the items are not included in the training data, content-based
information is crucial for such a cold-start scenario. Here we focus
on the performance of recommending completely new items, the
representations of which are obtained by averaging the word repre-
sentations from the item descriptions, as described in Section 3.3.
Recall that for tasks that involve word embeddings, i.e., for cold-start
recommendation, item-to-word reconstruction, and user-to-word rec-
ommendation, only HPE, CKE, and KGAT are applicable.

• As shown in Table 4, for such a cold-start scenario, TPR outper-
forms all the state-of-the-art methods, including HEP, CKE, and
KGAT. This superiority not only demonstrates the effectiveness
of TPR exploring unseen items, but also reveals the capability of
TPR modeling textual information for recommendation.
• In addition, we also notice that TPR obtains better recommenda-

tion results while adopting a smaller regularization on the WRR
structure, λWRR. This is because with a small λWRR, the model
strengthens the relations between items and words and ensures
the words embedding quality, thereby benefiting the cold-start
recommendation tasks.

3.4.4 Cold-start Item-to-item Recommendation (Task 2-b).
Similar to the previous task, this task is also to recommend com-
pletely new items to users. For cold-start items, we generate their
embeddings by averaging the embeddings of words contained in
their descriptions.

• Table 5 shows that TPR also significantly outperforms all the
compared methods for such a cold-start situation, which demon-
strates the superiority of TPR modeling the word preference for
recommendation.

• As CKE and KGAT are not designed for solving the cold-start
problem, both methods yield poor performance for the two cold-
start recommendation tasks in Sections 3.4.3 and 3.4.4,

3.4.5 Item-to-word Reconstruction (Task 3-a). In order to ver-
ify the TPR’s capability of modeling textual information, we design
this task of measuring how many related words can be captured by
the learned item embeddings.

• Table 6 shows that, for such an item-to-word reconstruction task,
TPR outperforms all the compared methods, including HPE, CKE,
and KGAT. Similar to the phenomenon mentioned in Section 3.4.3,
a small λWRR strengthens the item-word relations, which is clearly
demonstrated in this experiment. Note that a larger word regu-
larization allows TPR to explore missing relations and perform
better in traditional recommendation tasks.
• The reason why CKE performs ineffectively is that this method

has no direct modeling for relations between items and words;
thus the learned embeddings cannot reflect the closeness between
items and words.

3.4.6 User-to-word Recommendation (Task 3-b). Similarly,
to verify the TPR’s capability of modeling word preference on items,
we turn to conduct the experiments from the perspective of users.

• Table 7 shows that TPR consistently yields the great performance
on all the datasets in termso of both Recall@10 and NDCG@10,
suggesting that TPR is able to connect unseen items by matching
their descriptions via the TPR’s user-word preference modeling.

3.5 Parameter Sensitivity and Memory and Time
Usage

3.5.1 Parameters Sensitivity on Regularization. The results
listed in Tables 2-7 suggest that adopting a larger regularization on
the WRR structure (i.e., a larger λWRR), seems beneficial to the tasks
that directly use user and item embeddings for score calculation,



Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.7378 † 0.5910 † 0.7423 † 0.5651 † 0.7015 † 0.5383 † 0.5680 † 0.4927 † 0.5788 † 0.3682
CKE [26] 0.0441 0.0502 0.0222 0.0296 0.0435 0.0398 0.0124 0.0134 0.0635 0.0670
KGAT [22] 0.5273 0.4414 0.2884 0.2386 0.4109 0.2758 0.1869 0.1609 0.5138 0.3206

TPR (λWRR = 0.001) *0.8371 *0.7653 *0.8244 *0.7343 *0.8530 *0.7595 *0.8645 *0.8037 *0.7159 *0.4703
TPR (λWRR = 0.005) 0.6294 0.5448 0.4738 0.3849 0.6109 0.5025 0.4930 0.4348 0.5476 0.3552
TPR (λWRR = 0.01) 0.5279 0.4411 0.4270 0.3580 0.4743 0.3722 0.3284 0.2825 0.4632 0.2949

Table 6: Performance on item-to-word reconstruction

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.2002 † 0.1938 † 0.2206 † 0.1684 † 0.1955 † 0.1543 † 0.0829 † 0.0725 † 0.2414 † 0.1971
CKE [26] 0.0374 0.0576 0.0173 0.0263 0.0435 0.0398 0.0189 0.0213 0.0691 0.0723
KGAT [22] 0.0248 0.0375 0.0117 0.0161 0.0123 0.0201 0.0463 0.0644 0.0073 0.0153

TPR (λWRR = 0.001) 0.1996 0.1941 0.3411 *0.2943 0.1891 0.1556 *0.1053 *0.0833 *0.3018 0.2332
TPR (λWRR = 0.005) *0.2249 *0.2190 *0.3728 *0.3147 0.1818 0.1537 *0.1134 *0.0865 *0.2872 *0.2482
TPR (λWRR = 0.01) *0.2274 *0.2198 *0.3589 *0.2948 0.1690 0.1447 *0.1050 *0.0767 *0.2625 *0.2455

Table 7: Performance on user-to-word recommendation

Figure 3: Sensitive on Regularization
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i.e., user-to-item and item-to-item recommendations. In contrast, for
the tasks that involve word embeddings for score calculation (see
Sections 3.4.3-3.4.6), the phenomenon is inverse, especially for the
task of item-to-word reconstruction.

Figure 3 illustrates this phenomenon with respect to the perfor-
mance on the two tasks: user-to-item recommendation and item-to-
word reconstruction. The reason for such a phenomenon is due to
the fact that a small λWRR strengthens the item-word relations and
ensures the words embedding quality, thereby benefiting the recon-
struction and the cold-start recommendation tasks; on the contrary, a
large λWRR encourages the model to explore unseen word relations
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for generating item embeddings with better generalization ability,
thereby leading to better performance in the recommendation tasks.
Hence, such a regularization weight can be treated as a trade-off
parameter allowing additional flexibility in adjusting the relation
modeling for different types of tasks.

3.5.2 Memory Usage and Execution Time. Figures 4 and 5
plot the time usage and the memory usage for model training on
the Amazon-Fashion dataset, which is the largest dataset among
all public datasets that the advanced models, GATE, CKE, and
KGAT, can deal with under reasonable resource constrains. Note



that the values reported in the figure would be variant when different
implementations are applied; the listed numbers are based on the
implementations listed in footnote 3. With our implementation, TPR
costs around 20 seconds to complete the whole training process and
is much faster than the advanced model like CKE and KGAT. More-
over, our model works on only CPUs while CKE and KGAT adopt
GPU for computation. On the other hand, TPR utilizes less memory
than CKE and KGAT as well. Due to the simplicity of our model
deign, the actual time usage of our model is near to the primitive
matrix factorization models as the major additional computation
regards the process of sampling the tuples for optimization. It is
worth mentioning that it is hard to analyze time and memory usage
in terms of complexity as the compared baselines and our method
are essentially dissimilar in many aspects, which is the reason why
we here compare the time and memory usage empirically.

4 CONCLUSION
In this paper, we propose TPR, a text-aware recommendation frame-
work that models the joint association of user-item interaction and re-
lations between items and associated text for top-N recommendation.
Using the TPR framework, we design an optimization criterion that
comprehensively models four types of ranking relations, yielding a
unified and effective model that can be accommodated to various
types of recommendation tasks. Extensive experiments for six differ-
ent recommendation/reconstruction tasks are provided to attest the
effectiveness of the learned embeddings of users, items, and words.
The results show that TPR not only surpasses most state-of-the-art
recommendation algorithms on various tasks but also achieves high
modeling efficiency in terms of execution time and memory usage.
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