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Abstract. Algorithms whose computations involve making physical measurements can be
modelled by Turing machines with oracles that are physical systems and oracle queries that
obtain data from observation and measurement. The computational power of many of these
physical oracles has been established using non-uniform complexity classes; in particular,
for large classes of deterministic physical oracles, with fixed error margins constraining the
exchange of data between algorithm and oracle, the computational power has been shown to
be the non-uniform class BPP//logx. In this paper, we consider non-deterministic oracles
that can be modelled by random walks on the line. We show how to classify computations
within BPP//logx by making an infinite non-collapsing hierarchy between BPP//logx and
BPP. The hierarchy rests on the theorem that the number of calls to the physical oracle
correlates with the size of the responses to queries.

1 Introduction

Consider algorithms that request and receive data from an external source in the course of their
computations. These algorithms abound and can be found in all sorts of monitoring and control
systems. We suppose these algorithms are modelled by Turing machines with oracles that are
physical systems, and whose oracle queries ask and obtain data by means of some process to
measure a physical quantity. Essentially, through a measurement procedure, the Turing machine
will access a sequence of approximations to a real number.

Starting in [5,7], we began a theoretical investigation of such physical oracles, focussing on classic
deterministic physical experiments. To guide our thinking we conceived an abstract experimenter
using some physical equipment to undertake an abstract experiment to measure a physical quantity.
The Turing machine modelled the experimental procedure and the data from the oracle modelled
observations of the equipment: see [5,7,10,11,12,15] inter alia.

Technically, we examined what was involved in an algorithm requesting and receiving data from
a physical process, and especially interface properties to do with

(a) the error margins involved in the data: the queries could have infinite precision, being exact
or having finite but vanishingly small errors; or have a finite precision that is a fixed error margin;
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(b) the time taken by the algorithm to acquire the data: the queries need not take one compu-
tational step or unit time, but may take time depending on the size of the query.

We also placed complexity constraints on the computations, especially polynomial time.

The computational power of many of these physical oracles has been established using non-
uniform complexity classes. These have the general form B/F consisting of a complexity class
B equipped with class F of special oracles called advice functions. An advice function is a map
f + N — X* that provides extra data f(n) to the Turing machine when computing with inputs of
size n € N. Advice functions are suitable for representing real numbers (in binary, say). Typically,
we take B to be the class P, defined by polynomial time deterministic Turing machines; or to be the
class BPP, defined by polynomial time Turing machines governed by fair probability distributions.
We take F to be based on logarithms.

Through a detailed investigation of protocols between analogue and digital components of many
types of system (see [12,18]), we established the computational power of these oracles as follows.

For infinite precision measurements, in deterministic polynomial time, the computational power
was shown to be P/logx . However, in the more realistic case of finite fixed precision measurements
in deterministic polynomial time, the computational power was shown to be BPP//logx. This was
done for a wide variety of physical oracles and led to a thesis proposing BPP//logx as a limit to
computation [14]. The probabilistic form of BPP//log is due to the use of probabilities to handle
fair choices of data from within the fixed-size error intervals of the deterministic physical oracle.
Probabilistic oracles are the subject of [17].

Our attempts to model measurement algorithmically addressed a longstanding question, first
formulated by Geroch and Hartle in their intriguing paper [24]: What are the physically measurable
numbers? Are the measurable numbers computable numbers? Measurement is a scientific activity
supported by a full theory developed throughout the last century as a chapter of mathematical
logic (see [25]). Our computational theory of measurement started in [8,10] and focussed on the
time needed to make a measurement; here we consider the amount of data involved in making a
measurement.

The data provided by the oracle is constrained by

(i) the size of responses to queries, and

(ii) the frequency of calls to the oracle.

The size of the data can be controlled by the size of the values of the advice functions |f(n)|. We
will show that for BPP//log, for inputs of size n, the amount of bits translates into a modest
number of calls to the oracle, which is poly-logarithmic in n.

In this paper, we also introduce the possibility of using physical oracles whose behaviour is
modelled stochastically, as one finds in statistical mechanics. Imagine a physical experiment mod-
elled by a random walk on the line, as discussed in [20]. The oracle is non-deterministic and can be
connected to a Turing machine that can be deterministic or non-deterministic: we will need both.
Specifically, we will use Turing machines and fair probabilistic Turing machines.

Let log'®) be the class of advice functions f : N — X* such that |f(n)| € O(log®)(n)). Let
poly(log(k)) be the class of polynomial functions in log(k). We prove the following:

Theorem 1. The class of sets decidable in polynomial time by RW fair probabilistic Turing ma-
chines that can make up to poly(log® (n)) calls to the RW oracle, for inputs of size n, is exactly
BPP//log* V&,

The hierarchy of complexity classes within BPP//logx we establish starts with BPP//log* and
approaches arbitrarily close to BPP.
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We show strict boundedness, i.e., £ > 0, log(kﬂ) < log(k). In particular, this is true for & > 1
and we have the following infinite descending chain

e 10g(4) =< 1og(3) =< log(2) < log,

which can generate a hierarchy as in the figure.

BPP//logx
BPP//log®«

Theorem 2. The classes of sets decided by RW fair probabilistic Turing machines that can make
up to
-+ € poly(log™ (n)) € poly(log™ (n)) < poly(log(n)) & poly(n)

calls to the RW oracle coincides with the descending chain of sets
.-~ C BPP//logW% C BPP//log®x C BPP//log®+ C BPP//logx ,
respectively.

While measuring a physical magnitude, a slight amount of bits of the binary representation of
a real number, relative to the size of the input, can originate hyper-computation.

It is striking the extent to which the class BPP//log* arises naturally in exploring physical
systems and in physically inspired computational models. However other non-uniform classes have
been found useful. The computational power of deterministic neural networks having access to real
numbers in polynomial time was proposed to be P/poly in [23]. These results contrast with our
many results involving P/ logx: our reduction of power in deterministic time is due to the fact that
measurement takes time in non-linear systems, while in [23] the systems considered are piecewise
linear. However, inspired by the work in [23], the authors of [26] specify hardware presumably
designed to be capable of computing a non-decidable fragment BPP//log*. In our view such systems
will not support programming, since programming in such a context will the introduction of a real
number into the system with unbounded precision. Eventually, such systems will be capable of
emergent computation due to arbitrary unknown reals (if real numbers exist in Nature) specifying
their components. Emergent computational activities might well be relevant in learning tasks.

2 Random walk oracles

2.1 Random walk

Consider the random walk experiment (RWE) of having a particle moving along an axis. The
particle is sent from position x = 0 to position z = 1. Then, at each positive integer coordinate,
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the particle moves right, with probability o, or left, with probability 1 — o, as outlined in Figure
1. If the particle ever returns to its initial position x = 0, then it is absorbed. In this process, the
particle takes steps of one unit, at time intervals also of one unit, postulated to be the time step of
a Turing machine transition (see [1]).

Fig. 1. Random walk on the line with absorption at x = 0.

We are interested in the probability that the particle is absorbed (see [21]). Let p; be the
probability of absorption when the particle is at = ¢. In our model, the particle is launched from
2 = 0 but it only starts its random walk at x = 1. Tt is easy to see that p; = (1 — ) + opy. From
2 = 2, to be absorbed, the particle must initially move from z = 2 to x = 1 (not necessarily in one
step), and then from x = 1 to = 0 (again, not necessarily in one step). Both movements are made,
independently, with probability p1, thus, py is just p?. More generally, we have py = p¥. Therefore,
the equation for the unidimensional random walk with absorption at x = 0 is given by the equation

p1:(1_0)+0p%7

with solutions p; = 1 and p; = 177" For o = %7 the solutions coincide and p; = 1. For 0 < %7 the
second solution is impossible, because 1?% > 1, so, we must have p; = 1. For 0 = 1, the particle
always moves to the right, so p; = 0. Thus, for the sake of continuity of p;, for o > %, we must
choose p; = 177" Consequently, we get

1 ifo<
P1=19 1=0

N= N

if o >

So, if 0 < %, with probability 1 the particle always returns, but the number of steps is unbounded.
In Figure 2, we illustrate this situation, for the case o = 1/4, giving the possible locations of the
particle, and the respective probabilities, after the first steps.

2.2 Machines with random walk oracles

We will combine the RWE with both Turing machines and fair probabilistic Turing machines.
Probabilistic Turing machines have been around since the 1950s and have a number of equivalent
formulations. For example, the machine may randomly choose between the available transitions at
each step with probability % Perhaps the most elegant and easiest way to describe them is to say
that they have access to a fair independent coin toss oracle, returning values ‘heads’ or ‘tails’ with
probability % Whilst the definition of the machines can be shown to converge, the different criteria
in use for recognising strings do not.

Definition 1. Consider any form of Turing machine that gives probabilistic results, e.g. a Turing
machine with any form of random oracle. A set A C {0,1}* is accepted by such a Turing machine
M in polynomial time if there is a v < 1/2 so that for for every input w, M halts in polynomial
time and
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— Ifwe A, M accepts w with error probability bounded by ~y;
— Ifw ¢ A, M rejects w with error probability bounded by ~.

Distance from the origin

0 1 2 3 4 5 6

0 1
1 / 1 AN
3 1
2 1 1
7\
3 3 1
Step 16 16
VA NN
4 9 6 1
64 64 64
/ N / N
5 24 9 1
256 256 256
7 N 7 N 7 N
6 54 15 21 1
1024 1024 1024 1024

Fig. 2. Diagram showing probabilities of the particle being at various distances from the origin, for the case
of o =1/4.

For example, fair probabilistic Turing machines are used to define the class BPP with the
criterion that any given run of the algorithm, it has a probability of (say) at most % of giving
the wrong answer, whether the answer is accept or reject. Fair probabilistic Turing machines are
required for our main theorems.

Now, let us consider a Turing machine coupled with a random walk experiment, as introduced
in [20]. To use the RWE as an oracle, we admit that the probability o that the particle moves
forward, encodes some advice. Unlike scatter machine experiments in [5,11,16], the RWE does not
need any parameters to be initialized, i.e., the Turing machine does not provide the oracle with
any dyadic rational, it just “pulls the trigger” to start the experiment. We consider both a Turing
machine with added RWE oracle, a RW Turing machine, and a fair probabilistic Turing machine
with added RWE oracle, a RW fair probabilistic Turing machine

For every unknown o € (0, 1), the time that a particle takes to be absorbed is unbounded. We
introduce a constant time schedule to bound the oracle consultation time. If the particle is absorbed
during that time, the finite control of the Turing machine changes to the ‘yes’ state, otherwise, the
finite control changes to the ‘no’ state. The experiment has two possible outcomes and a constant
time schedule.

We analyse the probability of ‘yes’.

A path of the random walk is a possible sequence of moves that the particle makes until it is
absorbed. Note that all such paths are made of an even number of steps. Paths of the random walk
along the positive x-axis with absorption at x = 0 are isomorphic to a specific set of well-formed
sequences of parentheses. For instance, in a random walk of length 6, the particle could behave as
((0)) or (O()), where a movement to the right is represented by “(” and a movement to the left is
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represented by “)”. The first opening parenthesis corresponds to the first move of the particle from
x =0 to x = 1. The probability of answer in 6 steps is the sum of two probabilities corresponding
to the two possible paths. All paths of a certain length have the same probability; namely, for every
even number n, the probability of each path of length n is

o M 1-0)% .

Therefore, we only need to know the number of possible paths for each length, i.e., the number of
well-formed sequences of parentheses satisfying some properties. In [4], the authors generalize the
Catalan numbers and prove the following interesting result:

Proposition 1 (Blass and Braun [4]). For every {,w € Z, £ > w > 0, let X be the number of
strings consisting of £ left and £ right parentheses, starting with w consecutive left parentheses, and
having the property that every nonempty, proper, initial segment has strictly more left than right

parentheses. Then
w 20 —w
X =
20 —w ( 14 )

Note that when w = ¢ = 0, the undefined fraction w/(2¢ — w) is to be interpreted as 1, since
this gives the correct value X = 1, corresponding to the empty string of parentheses. From this
proposition, we derive the probability ¢(¢) that the particle is absorbed in even time t+ 1, for ¢ > 1.
It suffices to take £ = (t +1)/2 and w = 1:

1/t [
00 =1 (o)1= ) o
2

Therefore, the probability that the particle is absorbed during the time schedule T is given by

This is the probability of getting the outcome ‘yes’ from the oracle. Figure 3 allows us to
understand the behaviour of the probability F(o,T) as a function of 0. We see that, as T increases,
F(0,T) increases as well, since the longer the machine waits, the more likely it is that a particle
is absorbed. We can also see that as T' approaches infinity, F'(o,T") approaches the probability p;
that the particle is absorbed, which makes sense, since p; represents a probability of absorption
with unbounded time. For analytical reasons, we will consider only o € [%, 1], corresponding to a
variation of p; from 1 to 0. Note that we could consider any interval contained in [0, 1]. For every
T, this probability is a function of o that satisfies the following conditions:

(a) F(o,T) € CI([%, 1)),

(b) for every o € [5,1], F'(0,T) # 0 and

(c) n bits of F(e,T) are computable in time O(2").

These conditions are the basis of an axiomatisation SPO of stochastic physical oracles in the
forthcoming paper [17], and from which take the following theorem:

Theorem 3. For every set A, A € BPP//logx if, and only if, it is decidable by a RW Turing
machine in polynomial time.
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Fig. 3. Graphs of F(0,T) for T =2, T =10 and T = 100.

3 Computational resources

Consider that we have a limiting number of particles that the RW Turing machine can launch, i.e.,
a bound in the number of oracle calls that the machine can make. We study now how the precision
in the measurement of o depends on the number of oracle calls.

Theorem 4. A RW Turing machine, or a RW fair probabilistic Turing machine, that can make
up to £(n) calls to the RW oracle, on input w of size |w| = n, can read % log(&(n)) + ¢ bits of the
unknown parameter o, where ¢ is a fized constant, in polynomial time.

Proof. The proof is common to both types of Turing machine. We know that each particle has prob-
ability of absorption F'(¢,T) in time T'. Thus, if we make (n) oracle calls on an input of size n, the
number of times « that the experiment returns ‘yes’ is a random variable with binomial distribution.
Let us consider X = a/&(n), the random variable that represents the relative frequency of absorp-
tion (‘yes’). We have the expected value E[X] = E[a]/¢(n) = £(n)F(0,T)/¢(n) = F(o,T) and
the variance V[X] = V[a]/¢(n)? = &(n)F(0.T)(1 — F(o,T))/¢(n)* = F(o,T)(1 — F(a,T))/¢(n).
Chebyshev’s inequality states that, for every 6 > 0,

V[X] _ F(o,T)(1 - F(o,T)) _ Flo,T)
2 = ) = )

Let k be the number of bits of o to be read.* This means that we have to find ¢ up to an error of
27%=5 To do this, we first estimate the probability F(c) up to an error §, and then run a bisection
algorithm to find the value of ¢ (this may require polynomial time). The value of § needed to ensure
the required accuracy of o depends on the lower bound of the derivative of F'. To allow for this we
set § = C27F for some C > 0, and then

P(X ~E[X]| > 8) <

22kC=2 F(0,T) < 22k =2
§(n) - &n) 7
and if we want an error probability of at most v, we set
92k (12
W <7.

4 Tt is proved in [12,16] that, for every o € Cs and for every dyadic rational z, if |o — 2| < 27%=5 then the
binary expansions of  and z coincide on the first k bits.

P(X — F(o,T)] > C27") <
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Applying logarithms, we get

2k — 2 1og(C) —log(&(n)) < log(y)

therefore,
constant value

< log(€(n)) +log(v) + 2 log(C)
< 5 :

For the RW Turing machine, for every o, F(o,T) increases with 7" and the term log(1/F(o,T))
decreases; contrary to what one might expect, for every input word w of size n, the longer we wait
for the particles to return, the less precision we can obtain for 0.5 We take the particular case that

in every oracle call the machine will wait exactly two time steps for the particle to return (7' = 2).
Therefore, F(0,2) = (1 — o). Now, with k € O(log(&(n))), we have

k

P(I1=X)—o|=P(X—(1-0)|>27"7) <.
With value 1 — X we can estimate o. O

This result suggests a non-collapsing hierarchy of classes can be defined by the magnitude of
the number of queries to the oracle. As we want this to be a hierarchy built on BPP and within
BPP//logx, we must ensure that all of the machines we consider can compute BPP. Thus we
consider a RW oracle added to a probabilisitic Turing machine, to give an RW fair probabilistic
Turing machine.

4 Lower and upper bounds

We encode advice functions in order to compare RW Turing machines with Turing machines with
advice. We define the iterated logarithmic functions log'®) (n):

— log(o) (n) =mn;
- log(kﬂ)(n) = log(log(k) (n)).

Similarly, we define the iterated exponential exp(¥)(n):

— exp(®(n) = n;
— exp®+D) () = 20x0 (m),

The iterated exponential is a well known bound on the number of computation steps of elemen-
tary functions (e.g. see [22]). For every k € N, the functions log® and exp®) are inverse of each
other. Let log®) also denote the class of advice functions f such that |f(n)| € O(log®)(n)).

Let ¢(w) be the encoding of a single word w. We define the encoding y(f) = limy(f)(n) for an
advice function f € log(k)* in the following way:

= y(f)(0) = 0.¢(f(0));

5 This statement makes sense, since, if we wait too long, then we will lose information about the absorption
time of the particle.
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—if f(n+1) = f(n)s, then

W (n+1) = {y(f)(n)c(s) if n 4 1 is not of the form exp®)(m)
y(f)(n)e(s)001 if n + 1 is of the form exp®) (m)

So, for example, if we want to encode a function f € loglogx, we just have to place the separator

001 when n + 1 is of the form 22", for some m € N.

For every k and for every f € log(k)*, we have that y(f) € Cs. Also, for every n, in order to extract
the value of f(n), we only need to find the number m € N such that exp® (m —1) < n < exp® (m)
and then read y(f) in triplets, until we find the (m+1)-th separator. Then, it is only needed to ignore
the separators and replace each 100 triplet by 0 and each 010 triplet by 1. Since f € log(k)*, we know
that | f(exp® (m))| = Olog™ (exp® (m))) = O(m). We conclude that 30(m) + 3(m + 1) = O(m)
bits are enough to get the value of f(exp®(m)) and, consequently, O(log(k) (n)) bits to get the
value of f(n).

Definition 2. Denote by poly(g(n)) the class of functions f : N — N for which there is a polynomial
p(x) so that f(n) < p(g(n)) for alln € N.

We can use this to prove the following result:

Theorem 5. [Lower bounds] For every k, every set in BPP// log® V% is decidable in polynomial
time by a RW fair probabilistic Turing machine that can make up to &(n) € poly(log™™ (n)) RW
oracle calls on inputs of size n.

Proof. Let A be an arbitrary set in BPP// log(kﬂ)* and M a probabilistic Turing machine with
advice f € log(kH)
S (0, 1/2)

Let M’ be a RW fair probabilistic Turing machine with unknown parameter y(f), the encoding
of f, and let 75 € R be such that v1 +v2 < 1/2. Let w be a word such that |w| < n. Theorem 4
assures that M’ can estimate, up to adding constants, 3 log(¢é(n))) = 1 log ((log(k)(n))m) (which
for m large gives an arbitrary constant multiple of log*+1) (n)) bits of y(f), and, thus, M’ can read
f(n) in scheduled protocol time 7' = 2 and in machine polynomial time, with an error probability
bounded by 2. We have that P(‘yes’) = 1—o and P(‘no’) = o. By definition, the machine can also
make a sequence of fair coin tosses of polynomial length. Therefore, M’ can decide A in polynomial

time, with error probability bounded by v1 + 2 < 1/2. O

*, which decides A in polynomial time with error probability bounded by

Taking the special case k = 0, we have the following complementary result to Theorem 3:

Corollary 1. Every set in BPP//logx is decidable in polynomial time by a RW fair probabilistic
Turing machine that can make up to £(n) € poly(n) RW oracle calls on inputs of size n.

In order to state and prove upper bounds, we need the following auxiliary result. This uses the
query tree T, a tree with two branches — ‘yes’ and ‘no’ — every time a query is made. The probability
of taking a path down the tree is just the product of the probabilities of the edges taken at every
vertex.
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Theorem 6. Let A be the set decided by a RW Turing machine, or RW fair probabilistic Turing
machine, M with unknown parameter o that can make up to £(n) calls to the RW oracle, for inputs
of size n, with error probability bounded by v < 1/4. If M’ is an identical RW machine, except with
unknown parameter & and the probability of absorption F', such that

[F(0,T) — F(5,T)] < %@1) ,

then, for any word of size < n, the probability of M’ making an error when deciding A is < 3/8.

Proof. We know that M and M’ make at most £(n) calls to the oracle, in such a way that the query
tree T associated to both, has maximum depth £(n). Let w be of size not greater than n. Let D be
the assignment of probabilities to the edges of 7 corresponding to the unknown parameter o and
‘yes’ probability F'(o,T) and D’ be the assignment of probabilities given by the unknown parameter
& and ‘yes’ probability F(&,T). Since |F(0,T) — F(6,T)| < 1/8¢(n), the difference between any
particular probability is at most

1

8¢(n) -

Invoking Proposition 11 of [16], we have two different cases:

— w ¢ A: In this case, an incorrect result corresponds to M’ accepting w. The probability of
acceptance Py (T, D’) for M’ is

PA<T;D/) S PA(TvD) + |PA(T7D/) _PA<T5D)|
<v+&(n)k
3

R

11
8¢(n) 4

— w € A: In this case, an incorrect result corresponds to M’ rejecting w. The probability of
rejection Pr(7T,D’) for M’ is

PR(TaD/) < PR(TaD) + |PR(T’DI) - PR(TvD)|

<v+&(n)k
1 1 1 3
< - = -
_7+&M8ﬂm 17373
In both cases, the error probability is bounded by 3/8. ]

Let F(o,T)|., denote the first m bits of the probability F'(o,T). The next theorem is a corollary
of the previous:

Theorem 7. Let A be the set decided by RW fair probabilistic Turing machine M with unknown
parameter o that can make up to £(n) calls to the RW oracle, for inputs of size m, with error
probability bounded by v < 1/4. If M, is an identical fair probabilistic Turing machine, with
unknown parameter &, but with the exception that the probability that the oracle returns ‘yes’ is

given by F'(0,T)|1og ¢(n)+3, then My, decides the same set as M in the same time, but with error
probability bounded by 3/8.
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Now we state and prove upper bounds.

Theorem 8. [Upper bounds] For every k, every set decided in polynomial time by a RW Turing
machine, or RW fair probabilistic Turing machine, that can make up to &(n) = poly(log™™ (n)) calls
to the RW oracle, where n is the size of the input, is in BPP// log(]”'l)*.

Proof. Let A be a set decided in polynomial time p(n) and with error probability bounded by 1/4
by a RW Turing machine M with unknown parameter o that can make up to &(n) € poly(log(k) (n))
calls to the oracle. We specify a probabilistic Turing machine M’ with advice f(n) = F(0,T)|iog ¢(n)+3
to decide A. We have f € log(kH)*.

By Theorem 7, we know that an RW Turing machine with ‘yes’ probability f(n) decides the
same as M for words of size < n, but with error probability < 3/8. The value f(n) = F(0)|iog ¢(n)+3
is a dyadic rational with denominator 2°8§("+3_ Thus, m = 2198843 £(n) € [0, 21°8€(M)+3)] §5 an
integer. Consider k = log £(n)+3 fair coin tosses, interpreted as a sequence of bits. The machine M’
then tests if 79 ...7x < m, where 7175 ... 7% is now interpreted as an integer. If the test is true, the
machine returns ‘yes’, otherwise it returns ‘no’. The probability of returning ‘yes’ is m/2F = f(n),
as required. The time taken is polynomial in n. O

From Theorem 4 and Theorem 8, we get the following corollary:

Theorem 9. The class of sets decidable in polynomial time by RW fair probabilistic Turing ma-
chines that can make up to poly(log(k)(n)) calls to the RW oracle, for inputs of size n, is exactly
BPP//log*+Y«.

As we want the RW Turing machines to run in polynomial time, the maximum number of oracle
calls that we can allow is polynomial. For that bound, the corresponding class is BPP//logx. Thus,
if we restrict more and more the number of queries to the oracle, we can obtain a fine structure
of BPP//logx. Observe that if k is a very large number, the machine is allowed to make only few
calls to the oracle, but the advice is smaller, so the number of bits that the machine needs to read
is also smaller.

5 The hierarchy

We explore some properties of advice classes (see [3], [23], and [6]).
If f: N — X*is an advice function, then we use |f| to denote its size, i.e., the function |f] :
N — N such that |f|(n) = |f(n)|, for every n € N. For a class of functions, F, |F| = {|f|: f € F}.

Definition 3. A class of advice functions is said to be a class of reasonable advice functions if:

1. for every f € F, |f| is computable in polynomial time;

2. for every f € F, |f] is bounded by a polynomial;

3. for every f € F, |f] is increasing;

4. |F| is closed under addition and multiplication by positive integers;

5. for every polynomial p of positive integer coefficients and every f € F, there exists g € F such
that | flop < |gl.

Definition 4. Let r and s be two total functions. We say that r < s if r € o(s). Let F and G be
classes of advice functions. We say that F < G if there exists a function g € G such that, for every

feF, 1f1<lgl
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We have log(kH) =< log(k)7 for all £ > 0. Now, we just need to know the relation between the
non-uniform complexity classes of BPP, induced by the relation < in the advice classes. Remember
that a set is said to be tally if it is a language over an alphabet of a single symbol (e.g. {0}). Now,
consider the set of finite sequences over the alphabet Y ordered first by size and then alphabetically.
The characteristic function of a set A C X* is the unique infinite sequence x4 : N — {0,1} such
that, for every n, xa(n) is 1 if, and only if, the n-th word in that order is in A. The characteristic
function of a tally set A is a sequence where the i-th bit is 1 if, and only if, the word 07 is in A.
The following theorem generalizes the related theorem of [3], [23] and [6], where it is proved for the
deterministic case.

Theorem 10. If F and G are two classes of reasonable sublinear advice functions ¢ such that
F < G, then BPP//F C BPP//G.

Proof. Trivially, BPP//F C BPP//G. Let linear be the set of advice functions of size linear in the
size of the input and 7.linear be the class of advice functions of size nn, where n is the size of the
input and 7 is a number such that 0 < n < 1. There is an infinite sequence v whose set of prefixes is
in BPP//linear but not in BPP//n.linear for some n sufficiently small.”. Let g € G be a function
such that, for every f € F, |f| < |g|. We prove that there is a set in BPP//g that does not belong
to BPP//f, for any f € F.

A tally set T is defined in the following way: for each n > 1,

5, = 4 Nislm 0n=l9ltm)if |gl(n) < m
" o" otherwise

T is the tally set with characteristic string 8182533 - - -. With advice 7]|4/(n), it is easy to decide T,
since we can reconstruct the sequence 31/ - - - 3,, with (n? 4+ n)/2 bits, and then we just have to
check if its n-th bit is 1 or 0. We conclude that T € P/g C BPP//qg.

We prove that the same set does not belong to BPP// f. Suppose that some probabilistic Turing
machine M with advice f, running in polynomial time, decides T" with probability of error bounded
by &

1

4lgl(n)
Since | f| € o(]g]), then, for all but finitely many n, |f|(n) < n|g|(n), for arbitrarily small , meaning
that we can compute, for all but finitely many n, |g|(n) bits of v using an advice of length 7.|g|(n),
contradicting the fact that the set of prefixes of v is not in BPP//n.linear. The reconstruction of
the binary sequence 7| |4/(n) is provided by the following procedure:

9~ log(lgl(n) _

procedure
begin
input n;
T =)
Compute |g|(n);

6 F is a class of reasonable sublinear advice functions if it is a class of reasonable advice functions such
that, for every f € F, |f| € o(n).

7 We can take for v the Chaitin Omega number, 2

8 E.g. see Proposition 6.17 in [2]. The probability of error of a given probabilistic machine that decides T
in polynomial time can be reduced below any fixed value just by iteration.
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for i:= "2;” to ”2;" +]g/(n) do begin
Query 0° to T by running machine M with advice f(4);
if “YES” then z := z1 else x := z0;

end for;

output z

end.

The queries are made simulating machine M which is a probabilistic Turing machine with error

probability bounded by 2~ l0g(4lgl(n) — m. Thus, the probability of error of M’ is bounded by

1 1
- 4 .
4lg|(225m) Alg] (252 + |g|(n))

As |g| is increasing, the error probability is bounded by

s X |g|(n),
4lgl(5m)
which, for n > 3, is bounded by
T lglm) =
4g(n) 4

As we are considering prefix advice classes, it is useful to derive the following corollary:

Theorem 11. If F and G are two classes of reasonable sublinear advice functions such that F < G,
then BPP//F* C BPP//Gx.

Proof. The proof of 10 is also a proof that BPP//F C BPP//G*, because the advice function used
is v]|g|(n), Which is a prefix advice function. Since BPP//Fx C BPP//F, the statement follows. [J

We have already seen that, for all £ > 0, log(kﬂ) =< log(k). In particular, this is true for k£ > 1
and we have the following infinite descending chain

s =< log(4) < log(?’) < log(z) < log.
Therefore, by Theorem 11, we have also the descending chain of sets
.-~ C BPP//1logW% C BPP//log®x C BPP//log® C BPP//logx ,

that, according with Theorem 9, coincide with the classes of sets decided by RW fair probabilistic
Turing machines that can make up to

-+ € poly(log™®(n)) C poly(log® (n)) < poly(log(n)) < poly(n)

calls to the RW oracle, respectively.
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6 Conclusion

Summary. We introduced RW fair probabilistic Turing machine specified as fair probabilistic
Turing machines having access to a random walk experiment on a line. We then proved that the
class of sets decidable in polynomial time by RW fair probabilistic Turing machines that can make
up to poly(log®)(n)) calls to the oracle is exactly BPP// log®* Vs, where log™® is the class of
advice functions f such that |f(n)| € O(log™ (n)).

We proved that, if F and G are two classes of reasonable sublinear advice functions such that
F < G, then BPP//F C BPP//G. Although this result was already discussed for the deterministic
case in [3,6,23], the probabilistic case seems not to have been considered.

Then, we presented a fine structure of BPP//log* based on counting oracle calls:

.-~ C BPP//logW% C BPP//log®x C BPP//1logPx C BPP//logx,

that coincide with the structure of classes of sets decided by RW fair probabilistic Turing machine
that can make up to

-+ ¢ poly(log™ (n)) < poly(log™ (n)) < poly(log(n)) & poly(n)
calls to the RW oracle, respectively.

Open Problem. Together with the transfinite chain of advice classes presented in [6] and [19], we
also have a transfinite chain of non-uniform probabilistic classes:

.+~ C BPP//10g*)% C --- C BPP//1og“)% C --- C BPP//log'®x C BPP//logx.

In fact, the chain of non-uniform classes can be continued, where log(“’) = Nken log(k) is a non-
empty class (as shown in [6,19] for diverse transfinite classes). However, we do not know if there is
a correspondence between these complexity classes and the classes decided by RW fair probabilistic
Turing machines with bounded number of oracle calls, since we only proved such a correspondence
for advice classes of the form 1og(k), with k& € N. At present, we do not know how to encode a
function f € log(w)* into a real number.
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