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Abstract Solving numeric, logic and language puzzles and paradoxes is
common within a wide community of high school and university students,
fact witnessed by the increasing number of books published by mathemati-
cians such as Martin Gardner (popular books as old as [2, 3]), Douglas Hof-
stadter (in one of the best popular science books on paradoxes [4], inspired
by Gödel’s incompleteness theorems), Patrick Hughes and George Brecht
(see [5]) and Raymond M. Smullyan (the most well known being [9, 10, 12]),
inter alia. Books by Smullyan (such as [9, 10]) are, however, much more
involved, since they introduce learning trajectories and strategies across sev-
eral subjects of mathematical logic, as difficult as combinatorial logic (see,
e.g., [10]), computability theory (see [9]), and proof theory (see [9, 12]).
These books provide solutions to their suggested exercises. Both statements
and their solutions are written in the natural language, introducing some
informal algorithms. As an exercise in Mathematics we wonder if an easy
proof system could be devised to solve the amusing equations proposed by
Smullyan in his books. Moreover, university students of logic could well
train themselves in constructing deductive systems to solve puzzles instead
of a non-uniform treatment one by one. In this paper, addressing students,
we introduce one such formal systems, a tableaux approach able to provide
the solutions to the puzzles involving either propositional logic, first order
logic, or aspect logic. Let the reader amuse herself or himself!

Keywords: Aspect logic; automatic reasoning; paradoxes; proof systems;
puzzles; tableaux.
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2 Solving Smullyan Puzzles with Formal Systems

1 Introduction

Popular puzzle books centered in natural language appear grouped in dif-
ferent classes. E.g., Jim Sukach (see [18, 19]) is known for his police stories
where the solution to each mystery is rooted in contradiction and Occam’s
razor arguments; Paul Sloane and Des MacHale in [8] developed training
strategies for lateral thinking based on partial information and possible dif-
ferent meanings words can get. Raymond M. Smullyan explores the logic of
natural language with the flavour of philosophical logic with self reference
(see [9, 10, 11, 12, 13, 14, 15, 16, 17]).

Modeling discourse and argumentation is basic to automatic reasoning or
to analyse natural language. Modeling natural language is an extraordinary
useful exercise in understanding the expressive power of logic connectives,
quantifiers, tense and modal aspects. Natural language is so tricky that
with a few simple syntactical assertions we can build paradoxes and very
difficult puzzles. Raymond M. Smullyan used this notorious fact to develop
a training program in logic, distributed in a variety of books that we can
map between popular science and mathematical logic textbooks, where the
concepts and operating rules are digested by the readers in sequences of
puzzles, interesting notes, all prefaced by short accounts on the basic ideas.

In this paper, directed to the students in the transition from high school
to university, we investigate the potentialities of two of such books, namely
[9, 12]. In [9], Raymond M. Smullyan, the famous mathematical logician,
pianist and magician, addresses the logical world of Knights and Knaves
and proceeds with proof theory. In the other book [12], Smullyan ad-
dresses mainly combinatorial algebras, although he revisits the same world
of Knights and Knaves.

We start by introducing formal language to model the universe of dis-
course. At any new feature of the natural language, we keep adding formal
language through new logical operators and rules to deal with the new sit-
uations.

The basic constituents of the discourse are the agents, either Knights or
truth tellers, those that speak the truth in any occasion, and Knaves, the
liars, those that always lie: T (X) means that agent X is a truth teller and
¬T (X) means that agent X is liar. Note that T (X) asserts that agent X
is a permanent truth teller and ¬T (X) asserts that agent X is a permanent
liar. Thus agents are invariant with respect to falsehood.

The next ingredient, discussed in Sections 4 and 5, is the claim operator
CX that reads agent X claims that. In this way, CXϕ reads agent X claims
that ϕ. Thus CY ¬T (D) is a formal statement that reads agent Y claims
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that agent D is a liar, or just, in a more common language, Arthur claims
that Dan is a liar, or Arthur once claimed that Dan is a liar, together with
all possible modalities of natural language. Assertion CY ¬T (D) can then
be seen as Arthur York once said that Dan was a liar. Section 4 illustrates
first the expressive power of the language with more simple cases. Of course,
we find limitations, e.g., Dan might have been a liar at that particular trial,
but he is not lying this time. However, since our agents are invariant with
respect to the truth, the language cannot capture time dependencies. It
would require more hard work on language operators and other complexities.
Some weak form of truthhood time dependency is nevertheless discussed in
Section 6, where agents have a time table for truth and falsehood.

We can expand expressive power if we allow quantification. With quan-
tification in Section 7 we can model assertions of the kind for all agent x,
we can find another agent y such that y will claim that both x and y are
constant liars.

More operators and subtleties can be introduced and modeled, respec-
tively, by the Smullyan reader. Besides getting acquainted with mathemat-
ical logic and the tableaux system, the reader may acquire skills to model
natural language and learning how to retrieve meaning from ambiguous sets
of sentences.

To introduce the main theme of Sections 4, 5, 6, and 7, we start with
a more rigorous specification of the language and the calculus in Section 2,
followed by some further notation in Section 3.

2 Signature, syntax and calculus

We define a system to express and prove propositions in the Smullyan’s
universe of Knights and Knaves. We adopt the notation and style of [7]. We
consider:

• Variables, also called agent variables, represented by lowercase letters
such as x, y, z, . . .

• Constant symbols or names, also called agent symbols, represented by
uppercase letters such as A,B,C, . . . ,X, . . .

• Two important predicate symbols, the truthhood symbol T depending
on the agent and the equality simbol ≡ depending on two agents.
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4 Solving Smullyan Puzzles with Formal Systems

Agent variables together with agent symbols constitute the so-called
terms. To define the sentences (we prefer here sentence to formula for we
are analising natural language), we use the constructors ¬ (negation), ∨
(disjunction) and C (claim):

• T (t) is a sentence whenever t is a term;

• t1 ≡ t2 is a sentence whenever t1, t2 are terms;

• (¬ϕ) is a sentence whenever ϕ is a sentence;

• (ϕ1 ∨ ϕ2) is a sentence whenever ϕ1 and ϕ2 are sentences;

• (Ctϕ) is a sentence whenever t is a term and ϕ is a sentence.

Notice that T (t) reads ‘agent t is a truth speaker’. The statement t1 ≡ t2
reads ‘agent t1 is agent t2’ in situations such like ‘the defendant (D) is Arthur
York (Y ). The last constructor is used to express agent claims; that is, the
sentence Ctϕ should be read as ‘agent t claims that ϕ is the case’. In
subsequent sections we will require new constructors and symbols.

The last step is the calculus of sentences, that is, a collection of inference
rules that allow the logician to obtain sentences that are logic consequences
of the hypotheses. Our rules of inference will take the form

Γ
∆

Γ
∆1 ∆2

where Γ is a set of sentences and ∆, ∆1 and ∆2 are non-empty sets of
sentences. When Γ = ∅ the rule of inference is called an axiom. The second
rule type above (more involved) intuitively means ‘whatever is derivable
both from ∆1 and ∆2 is derivable from Γ’. This is a top-down system of
inference branching downwards.

For a given set (collection) of sentences Γ, the set of sentences derivable
(we will say provable) from Γ is defined as follows:

• Hypotheses: every sentence in Γ is provable from Γ;

• Principle of excluded middle: every statement ϕ is such that ϕ ∨ ¬ϕ
is provable from Γ;

• Disjunction: every statement provable both from Γ∪{ϕ1} and Γ∪{ϕ2}
is (considered) provable from {ϕ1 ∨ ϕ2} ∪ Γ;
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• Negative disjunction: if the statement ¬(ϕ1 ∨ ϕ2) is provable from Γ,
then ¬ϕ1 and ¬ϕ2 are both provable from Γ;

• True claim: for any sentence ϕ and term t, if Ctϕ and T (t) are both
provable from Γ, then ϕ is also (considered) provable from Γ;

• False claim: for any sentence ϕ and term t, if Ctϕ and ¬T (t) are both
provable from Γ, then ¬ϕ is also (considered) provable from Γ;

• Absurd: for any sentences ϕ and ψ, if ϕ and ¬ϕ are both provable
from Γ, then ψ is provable from Γ;

• Reflexivity: for any term t, we have that t ≡ t is provable from Γ;

• Symmetry: for any terms t1 and t2, if t1 ≡ t2 is provable from Γ, then
also t2 ≡ t1 is provable from Γ;

• Transitivity: for any terms t1, t2, and t3, if both t1 ≡ t2 and t2 ≡ t3
are provable from Γ, then so is provable from Γ the sentence t1 ≡ t3;

• Congruence for T : for any terms t1 and t2, if both t1 ≡ t2 and T (t1)
are provable from Γ, then T (t2) is provable from Γ;

• Congruence for C: for any terms t1 and t2, for any sentence ϕ, if both
statements t1 ≡ t2 and Ct1ϕ are provable from Γ, then Ct2ϕ is also
provable from Γ;

Notice that by provable in the previous list of case rules we mean in one
step of reasoning we can infer that. Of course, this concept of provability is
rooted in the rules of thought that we might accept or not. We may invest
some time in analising the rules one by one to see if any of them troubles
our mind.

The above rules can be represented in a proof tree notation. For example,
the true claim can be represented as

T (t),Ctϕ
ϕ

and the disjunction can be represented as

ϕ1 ∨ ϕ2
ϕ1 ϕ2
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6 Solving Smullyan Puzzles with Formal Systems

We now illustrate how to prove a statement that derives (is provable)
from a set of hypotheses or premises. For example, consider any sentences ϕ1
and ϕ2 and let the hypotheses be Γ = {ϕ1∨ϕ2,¬ϕ1∨ϕ2}, i.e., the premises
or hypotheses are two: ϕ1 ∨ϕ2 and ¬ϕ1 ∨ϕ2, meaning ‘hypothesis 1: either
ϕ1 is the case or ϕ2 is the case’ and ‘hypothesis 2: either ¬ϕ1 is the case
or ϕ2 is the case’. We now prove that ϕ2 can be proved from Γ, statement
that the reader surely accepts without proof since it seems quite obvious. The
reader should analise each line on top of the rules of provability introduced
above:

1. ϕ1 ∨ ϕ2 and ¬ϕ1 ∨ ϕ2 are the hypotheses Γ to start with (hypothesis
rule);

2. Every statement that can be proved both from Γ∪ {ϕ1} and Γ∪ {ϕ2}
can be proved from Γ since ϕ1 ∨ ϕ2 ∈ Γ (disjunction rule);

3. ϕ2 is provable from Γ∪{ϕ2}, since ϕ2 is itself an hypothesis in Γ∪{ϕ2}
(hypothesis rule);

4. Every statement that can be proved both from Γ ∪ {ϕ1} ∪ {¬ϕ1} and
Γ ∪ {ϕ1} ∪ {ϕ2} is provable from Γ ∪ {ϕ1}, since ¬ϕ1 ∨ ϕ2 ∈ Γ (again
disjunction rule);

5. ϕ2 is provable from Γ∪{ϕ1}∪ {ϕ2}, since ϕ2 is itself an hypothesis in
Γ ∪ {ϕ1} ∪ {ϕ2} (hypothesis rule);

6. ϕ2 is provable from Γ ∪ {ϕ1} ∪ {¬ϕ1}, since the context contains a
contradiction, ϕ1 and ¬ϕ1 (absurd rule);

7. ϕ2 is provable from Γ ∪ {ϕ1} by steps 4, 5 and 6;

8. ϕ2 is provable from Γ by steps 2, 3 and 7.

It is useful to present the above reasoning in the compact form of a proof
tree as follows:

ϕ1 ∨ ϕ2,¬ϕ1 ∨ ϕ2
ϕ1 ∨ ϕ2,¬ϕ1 ∨ ϕ2, ϕ1

ϕ1 ∨ ϕ2,¬ϕ1 ∨ ϕ2, ϕ1,¬ϕ1
ϕ2

ϕ1 ∨ ϕ2,¬ϕ1 ∨ ϕ2, ϕ1, ϕ2

ϕ1 ∨ ϕ2,¬ϕ1 ∨ ϕ2, ϕ2
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The reader can follow the steps of the proof from 1 to 8 above in the
proof tree, and he or she should do it before starting reading the next sec-
tions. Reading proof trees help in assigning meaning to their branches and
understanding sentence decomposition. The reader may look to a proof tree
such as that one above as a dense and illegible pile of symbols. We can
guaranty to the reader that all those symbols are easy to read, it will be
enough a slight effort in the beginning.

This method is due to Raymond M. Smullyan himself and put in practice
by Richard C. Jeffrey. Deductive systems can be deeply studied in several
old and new good books such as [1], [6] or [7].

We can rigorously define a proof tree as a finite rooted tree with a map
that assigns to each node a set of statements. Moreover, each node that
is not a leaf represents an instantiation of some rule of inference, and its
children are the possible conclusions of that rule. Using this notion, we can
prove an equivalence between proving that a sentence is derivable from a set
of hypotheses and providing a proof tree.

Proposition 1. Let Γ be a set of sentences and γ a sentence. Then we
write Γ ` γ if and only if there is a proof tree such that

• Γ is the set of sentences assigned to the root node;

• γ is a member of every set of sentences assigned to a leaf
node.

In a proof tree, we use branching to introduce additional hypotheses (the
only use of branching is via the disjunction rule). When we say that γ is a
member of every set of sentences assigned to a leaf node, this means that
in any branch of the tree (that is, in every choice of additional hypotheses)
we can derive γ, which intuitively means that γ is derivable from the root
node.

3 Useful rules and constructors

We have listed in the previous section some rules of inference, which form
the core of our deduction system. However, we can prove additional rules
(obtainable by the core rules) that can be helpful in reducing the size of
the proof trees. For example, an useful rule is obtained by combining the
principle of excluded middle and disjunction.

Proposition 2 (Cut rule).
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8 Solving Smullyan Puzzles with Formal Systems

ϕ ¬ϕ

Proof: The above is a simplification of

ϕ ∨ ¬ϕ
ϕ ¬ϕ

Proposition 3 (Double negation).

¬¬ϕ
ϕ

Proof: To prove the above rule simply apply the cut rule in ϕ:

¬¬ϕ
¬¬ϕ,ϕ ¬¬ϕ,¬ϕ

ϕ

We also want to express sentences using constructors ∧ (conjunc-
tion), → (implication), and ↔ (equivalence). These can be expressed as
abbreviations, in terms of ∨ and ¬:

• (ϕ1 ∧ ϕ2) abbr= ¬(¬ϕ1 ∨ ¬ϕ2);

• (ϕ1 → ϕ2) abbr= ¬ϕ1 ∨ ϕ2.

• (ϕ1 ↔ ϕ2) abbr= (¬ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ¬ϕ2).

We can also state and prove the correspondent rules for conjunction,
negative conjunction, implication and negative implication, equivalence and
negative equivalence. We shall present only one of these rules.

Proposition 4 (Conjunction).

ϕ1 ∧ ϕ2
ϕ1, ϕ2

Proof: To prove the above rule simply apply the negative disjunction and
the double negation:

ϕ1 ∧ ϕ2
abbr= ¬(¬ϕ1 ∨ ¬ϕ2)

¬¬ϕ1
ϕ1

¬¬ϕ2
ϕ2
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Before moving to the problems, we present a useful technique to simplify
a proof tree. Each time we use the absurd rule, we can write the symbol ∗
to denote any sentence (since from absurd any sentence is derivable). Then,
we only need to look at the leaves of the proof tree that do not have this
symbol. For instance, here is an alternate proof of the double negation:

¬¬ϕ
¬¬ϕ,ϕ ¬¬ϕ,¬ϕ

∗
4 The census taker — I claimed (level I)
We start with the most simple modeling exercises. The puzzles from this

section are taken from [9].

The census taker Mr. McGregor once did some fieldwork on
the Island of Knights and Knaves. On this island, women are
also called Knights and Knaves. McGregor decided on this visit
to interview married couples only.

Smullyan in [9]

4.1 And

McGregor knocked on one door; the husband partly opened it
and asked McGregor his business. ‘I am a census taker’, replied
McGregor, ‘and I need information about you and your wife,
Which, if either, is a Knight, and which, if either, is a Knave?’

‘We are both Knaves!’ said the husband angrily as he
slammed the door.

What type is the husband [H] and what type is the wife [W ]?
Smullyan in [9]

That the husband is a Knave is denoted by ¬T (H) and the same for
his wife ¬T (W ). The conjunction of both potential facts is denoted by
¬T (H) ∧ ¬T (W ). The complexity is added when we realize that ¬T (H) ∧
¬T (W ) is the statement of the husband. Thus the husband claims that
¬T (H)∧¬T (W ) or, in simple symbolic terms, CH(¬T (H)∧¬T (W )). Now,
we apply the calculus to see if we can say something about the nature of
husband and wife. Consider the following proof tree:
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10 Solving Smullyan Puzzles with Formal Systems

CH(¬T (H) ∧ ¬T (W ))
CH(¬T (H) ∧ ¬T (W )), T (H)
T (H),¬T (H) ∧ ¬T (W )
T (H),¬T (H),¬T (W )

∗

CH(¬T (H) ∧ ¬T (W )),¬T (H)
¬T (H),¬(¬T (H) ∧ ¬T (W ))
¬T (H),¬¬T (H) ∨ ¬¬T (W )

¬T (H),¬¬T (H)
∗

¬T (H),¬¬T (W )
¬T (H), T (W )

We conclude that {CH(¬T (H) ∧ ¬T (W ))} ` ¬T (H), T (W ), hence the
husband (H) is a Knave and his wife (W ) is a Knight.

4.2 If-Then

The next home visited by McGregor proved more of a puz-
zler. The door was opened timidly by a rather shy man. After
McGregor asked him to say something about himself and his
wife, all the husband said was: ‘If I am a Knight, then so is my
wife.’

McGregor walked away none too pleased. ‘How can I tell any-
thing about either of them from such a noncommittal response?’
he thought. He was about to write down ‘Husband and wife
both unknown’, when he suddenly recalled an old logic lesson
from his Oxford undergraduate days. ‘Of course,’ he realised, ‘I
can tell both their types!’

What type is the husband [H] and what type is the wife [W ]?
Smullyan in [9]

‘If I am a Knight, then so is my wife’ is denoted just by T (H)→ T (W ),
i.e., ‘I am a Knight’, T (H), implies ‘my wife is a Knight’, T (W ). Consider
the following proof tree:

CH(T (H)→ T (W ))
T (H),CH(T (H)→ T (W ))
T (H), T (H)→ T (W )
T (H),¬T (H) ∨ T (W )

T (H),¬T (H)
∗

T (H), T (W )

¬T (H),CH(T (H)→ T (W ))
¬T (H),¬(T (H)→ T (W ))
¬T (H), T (H),¬T (W )

∗
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Notice that, in the proof tree, we used the fact that ¬(T (H) → T (W ))
is equivalent to T (H) ∧ ¬T (W ) (T (H),¬T (W ) in the bottom right of the
tree, just before the asterisk). We conclude that {CH(T (H) → T (W ))} `
T (H), T (W ), hence both the husband and his wife are Knights.

4.3 If-and-Only-If

When the census taker interviewed the third couple, the hus-
band said: ‘My wife and I are of the same type: we are either
both Knights or both Knaves.’

What can be deduced about the husband and what can be
deduced about the wife?

Smullyan in [9]

‘My wife and I are of the same type’ can be denoted by T (H)↔ T (W ).
Consider the following proof tree:

CH(T (H)↔ T (W ))
T (H),CH(T (H)↔ T (W ))
T (H), T (H)↔ T (W )

T (H), T (W )

¬T (H),CH(T (H)↔ T (W ))
¬T (H),¬(T (H)↔ T (W ))

¬T (H), (T (H) ∧ ¬T (W )) ∨ (¬T (H) ∧ T (W ))
¬T (H), T (H) ∧ ¬T (W )
T (H),¬T (H),¬T (W )

∗

¬T (H),¬T (H) ∧ T (W )
¬T (H), T (W )

Notice that, in the proof tree, we used the fact that ¬(T (H) ↔ T (W ))
is equivalent to (T (H) ∧ ¬T (W )) ∨ (¬T (H) ∧ T (W )). We conclude that
{CH(T (H) ↔ T (W ))} ` T (W ), hence the wife is a Knight. However, we
are not able to conclude whether the husband is a Knight or a Knave, one
leaf says yes and the other says no.

5 The trials of Arthur York — I claim that I
claimed (level II)

On the following subsections we analyse several puzzles introduced in [10]
and then solve them using the calculus introduced in Sections 2, 3 and 4.

We begin with the trials of Arthur York.
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12 Solving Smullyan Puzzles with Formal Systems

Inspector Craig of Scotland Yard was called to the Island
of Knights and Knaves to help find a criminal named Arthur
York. What made the process difficult was that it was not known
whether Arthur York was a Knight or a Knave.

Smullyan in [10]

5.1 The first trial of Arthur York

One suspect was arrested and brought to trial. Inspector
Craig was the presiding judge. Here is a transcript of the trial:

Craig: What do you know about Arthur York?
Defendant: Arthur York once claimed that I was a Knave.
Craig: Are you by any chance Arthur York?
Defendant: Yes.
Is the defendant [D] Arthur York [Y ]?

Smullyan in [10]

To start with the set of sentences, we have first to write them in the
formal language. It should be straightforward: (a) that Y stands for Arthur
York and D for the defendant, (b) that the last answer should be modeled
by the defendant claims that he is Arthur York, or D claims that D ≡ Y ,
or simply CDD ≡ Y , (c) the first answer corresponds to D claims that Y
claimed that ¬T (D), i.e., CDCY ¬T (D). We join the two sentences in the
same set Γ = {CDCY ¬T (D),CDD ≡ Y }, and apply to it our calculus.
Consider the following proof tree:

CDCY ¬T (D),CDD ≡ Y
CDCY ¬T (D),CDD ≡ Y, T (D)

CDCY ¬T (D), T (D), D ≡ Y
CY ¬T (D), T (D), D ≡ Y

CY ¬T (D), T (D), D ≡ Y, T (Y )
T (D), D ≡ Y, T (Y ),¬T (D)

∗

CDCY ¬T (D),CDD ≡ Y,¬T (D)
CDCY ¬T (D),¬T (D),¬D ≡ Y
¬T (D),¬D ≡ Y,¬CY ¬T (D)

We provide the explanation of a proof tree once in this section. All the
other proof trees read in the same way.

The branching results from one application of the cut: either the de-
fendant speaks the truth, or what he says is false, that is, either T (D)
or ¬T (D). In the left branch, we conclude first that, since the defendant
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speaks the truth and claims that he is Arthur York, the defendant is indeed
Arthur York; and then what he first claims is true, that is, that Arthur York
claimed that the defendant is a liar; then we conclude that Arthur York says
the truth, i.e., T (Y ); and finally that the defendant is a liar; the contradic-
tion between T (D) and ¬T (D) is marked with asterisk. The branch is closed
and no information was obtained! In the right branch, we first conclude that
what the defendant said in second place is false, i.e., that the defendant is
not Arthur York; finally, since the defendant is a liar, we conclude that it is
not true that Arthur York once claimed that the defendant is a liar.

We conclude, looking at the right leaf, that {CDCY ¬T (D),CDD ≡
Y } ` ¬T (D),¬D ≡ Y , hence the defendant is not Arthur York. He is also
a Knave.

5.2 The second trial of Arthur York

Another suspect was arrested and brought to trial. Here is a
transcript of the trial:

Craig: The last suspect was a queer bird; he actually claimed
to be Arthur York! Did you ever claim to be Arthur York?

Defendant: No.
Craig: Did you ever claim that you are not Arthur York?
Defendant: Yes.
Craig’s first guess was that the defendant [D] was not Arthur

York [Y ] , but are there really sufficient grounds for acquiting
him?

Smullyan in [10]

The first claim of the defendant is straightforward. The second statement
is that the defendant claims that the defendant claimed that ¬D ≡ Y , i.e.,
CDCD¬D ≡ Y . Consider the following proof tree:

CD¬CDD ≡ Y,CDCD¬D ≡ Y
T (D),CD¬CDD ≡ Y,CDCD¬D ≡ Y

T (D),¬CDD ≡ Y,CD¬D ≡ Y
T (D),¬CDD ≡ Y,¬D ≡ Y

¬T (D),CD¬CDD ≡ Y,CDCD¬D ≡ Y
¬T (D),¬¬CDD ≡ Y,¬CD¬D ≡ Y
¬T (D),CDD ≡ Y,¬CD¬D ≡ Y
¬T (D),¬D ≡ Y,¬CD¬D ≡ Y

We conclude that {CD¬CDD ≡ Y,CDCD¬D ≡ Y } ` ¬D ≡ Y (notice
that the statement ¬D ≡ Y is the unique logic consequence of the premises
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14 Solving Smullyan Puzzles with Formal Systems

that can be inferred in this proof tree), hence the defendant is not Arthur
York. We are not able to conclude whether the defendant is a Knight or a
Knave, one leaf says yes and the other says no.

5.3 The third trial of Arthur York

‘Don’t despair,’ said Craig to the chief of the island police,
‘we may find our man yet!’

Well, a third suspect [D] was arrested and brought to trial.
He brought with him his defense attorney [A] , and the two made
the following statements in court.

Defense Attorney: My client is indeed a Knave, but he is
not Arthur York.

Defendant: My attorney always tells the truth!
Is there enough evidence either to acquit or convict the de-

fendant?
Smullyan in [10]

That ‘My attorney always tells the truth’ is denoted by CDT (A). The
statement of the defense attorney can be encoded into CA(¬T (D) ∧ ¬D ≡
Y ). Consider the following proof tree:

CA(¬T (D) ∧ ¬D ≡ Y ),CDT (A)
CA(¬T (D) ∧ ¬D ≡ Y ),CDT (A), T (D)

CA(¬T (D) ∧ ¬D ≡ Y ), T (D), T (A)
T (D), T (A),¬T (D) ∧ ¬D ≡ Y
T (D), T (A),¬T (D),¬D ≡ Y

∗

CA(¬T (D) ∧ ¬D ≡ Y ),CDT (A),¬T (D)
CA(¬T (D) ∧ ¬D ≡ Y ),¬T (D),¬T (A)
¬T (D),¬T (A),¬(¬T (D) ∧ ¬D ≡ Y )
¬T (D),¬T (A),¬¬T (D) ∨ ¬¬D ≡ Y

R
Right subtree (R):

¬T (D),¬T (A),¬¬T (D) ∨ ¬¬D ≡ Y
¬T (D),¬T (A),¬¬T (D)
¬T (D),¬T (A), T (D)

∗

¬T (D),¬T (A),¬¬D ≡ Y
¬T (D),¬T (A), D ≡ Y

We conclude that {CA(¬T (D) ∧ ¬D ≡ Y ),CDT (A)} ` ¬T (D),¬T (A),
D ≡ Y , hence the defendant is Arthur York. We also conclude that the
defendant and his attorney are both Knaves.
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5.4 The father

On the next day Inspector Craig came across a native who
said: ‘My father once said that he and I are different types, one
a Knight and one a Knave.’

Is it possible that his father really said that?
Consider the following proof tree:

Smullyan in [10]

CSCF (T (S)↔ ¬T (F ))
T (S),CSCF (T (S)↔ ¬T (F ))
T (S),CF (T (S)↔ ¬T (F ))

L

¬T (S),CSCF (T (S)↔ ¬T (F ))
¬T (S),¬CF (T (S)↔ ¬T (F ))

with the left tree L:

T (S),CF (T (S)↔ ¬T (F ))
T (S), T (F ),CF (T (S)↔ ¬T (F ))
T (S), T (F ), T (S)↔ ¬T (F )

∗

T (S),¬T (F ),CF (T (S)↔ ¬T (F ))
T (S),¬T (F ),¬(T (S)↔ ¬T (F ))
T (S),¬T (F ), T (S)↔ T (F )

∗
We conclude that {CSCF (T (S) ↔ ¬T (F ))} ` ¬T (S), hence the son is

lying.

6 Day-Knights and night-Knights — I claimed at
night (level III)

There is a strange place called Subterranea. It is a city com-
pletely underground; the inhabitants have never seen the light
of the day. Clocks, watches and all other timepieces are strictly
forbidden. Yet the inhabitants have an uncanny sense of time;
they always know when it is day and when it is night. Each in-
habitant is of one of two types — day-Knights and night-Knights.
The day-Knights tell the truth during the day and lie during the
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16 Solving Smullyan Puzzles with Formal Systems

night; the night-knights tell the truth during the night and lie
during the day.

Visitors to the city are allowed, but of course they may not
bring any timepieces with them. Any visitor to the city is bound
to become disoriented; after a few days she or he loses all sense
of when it is day and when it is night.

Smullyan in [10]

In this section, and only in this section, we modify the semantics of the
claim operator in order to solve time dependencies. Let us add language to
model the novelty.

To reason about inhabitants of Subterranea, we need to adapt our logic.
We remove the truthhood symbol T and replace it with the symbolD (D(X)
should be read as ‘X is a day-Knight’). We also introduce the propositional
constant symbol DAY that reads ‘now (that I did my claim) it is day’. Of
course ¬DAY reads ‘now (that I did my claim) it is night’. Thus, the set of
sentences or statements is now augmented in order to contain:

• D(t) is a statement whenever t is a term;

• DAY is a statement.

Notice that D(t) should be interpreted as ‘agent t is a daytime truth
speaker’, i.e., ‘agent t speaks the truth during the day and is a liar during
the night’. We also introduce five new very intuitive rules of inference:

• Congruence for D: for any terms t1 and t2, if both t1 ≡ t2 and D(t1)
are provable from Γ, then D(t2) is provable from Γ;

• For any statement ϕ and agent X if we can prove CXϕ, D(X), and
DAY, then we have a proof of statement ϕ;

• For any statement ϕ and agent X if we can prove CXϕ, ¬D(X), and
DAY, then we have a proof of statement ¬ϕ;

• For any statement ϕ and agent X if we can prove CXϕ, D(X), and
¬DAY, then we have a proof of statement ¬ϕ;

• For any statement ϕ and agent X if we can prove CXϕ, ¬D(X), and
¬DAY, then we have a proof of statement ϕ;
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To see that these rules are self-evident, just translate them into the
natural language. E.g., for the first: if Arthur claims that ϕ is the case,
Arthur speaks the truth during the day and it is daytime, then surely ϕ is
the case. E.g., for the last: if Arthur claims that ϕ is the case, Arthur is a
liar at daytime but it is at night, then surely ϕ is the case.

6.1 The night-Knight

On one occasion an inhabitant said: ‘I am a night-Knight
and it is now day.’ Was he a day-Knight or a night-Knight? Was
it then day or night?

Smullyan in [10]

The sentence translates into the premise CX(¬D(X) ∧DAY). Consider
the following proof tree:

CX(¬D(X) ∧DAY)
CX(¬D(X) ∧DAY),DAY

L
CX(¬D(X) ∧DAY),¬DAY

R

Left subtree (L):

CX(¬D(X) ∧DAY),DAY
DAY, D(X),CX(¬D(X) ∧DAY)

DAY, D(X),¬D(X) ∧DAY
DAY, D(X),¬D(X)

∗

DAY,¬D(X),CX(¬D(X) ∧DAY)
DAY,¬D(X),¬(¬D(X) ∧DAY)

DAY,¬D(X), D(X) ∨ ¬DAY)
DAY, D(X),¬D(X)

∗
DAY,¬DAY,¬D(X)

∗

Right subtree (R):

CX(¬D(X) ∧DAY),¬DAY
¬DAY, D(X),CX(¬D(X) ∧DAY)
¬DAY, D(X),¬(¬D(X) ∧DAY)
¬DAY, D(X), D(X) ∨ ¬DAY
¬DAY, D(X) ¬DAY, D(X)

¬DAY,¬D(X),CX(¬D(X) ∧DAY)
¬DAY,¬D(X),¬D(X) ∧DAY

¬DAY,¬D(X),DAY
∗
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We conclude that {CX(¬D(X) ∧ DAY)} ` ¬DAY, D(X), hence the in-
habitant was a day-Knight speaking during the night. Notice that, as soon
as the cut between D(X) and ¬D(X) is done, we applied one of the four
rules of inference: if CX(¬D(X) ∧ DAY) and D(X) and DAY, then we
conclude that ¬D(X) ∧DAY, and so on...

6.2 Two simultaneous questions

On another occasion I asked an inhabitant two questions:
‘Are you a day-Knight?’ and ‘Is it now day?’ He replied: ‘Yes
is the correct answer to at least one of your questions.’ Was he
[X] a day-Knight or a night-Knight? Was it then day or night?

Smullyan in [10]

The sentence should be read as ‘I am a day-Knight or it is now day’,
which translates into the premise CX(D(X)∨DAY). Consider the following
simplified proof tree:

CX(D(X) ∨DAY)
D(X),CX(D(X) ∨DAY)

L
¬D(X),CX(D(X ∨DAY)

R
Left subtree (L):

D(X),CX(D(X) ∨DAY)
DAY, D(X),CX(D(X) ∨DAY)

DAY, D(X), D(X) ∨DAY
DAY, D(X) DAY, D(X)

¬DAY, D(X),CX(D(X) ∨DAY)
¬DAY, D(X),¬D(X) ∧ ¬DAY
¬DAY, D(X),¬D(X)

∗
Right subtree (R):

¬D(X),CX(D(X) ∨DAY)
DAY,¬D(X),CX(D(X) ∨DAY)

DAY,¬D(X),¬D(X) ∧ ¬DAY
DAY,¬D(X),¬DAY

∗

¬DAY,¬D(X),CX(D(X) ∨DAY)
¬DAY,¬D(X), D(X) ∨DAY

¬DAY,¬D(X), D(X)
∗

¬DAY,¬D(X),DAY
∗

We conclude that {CX(D(X) ∨ DAY)} ` DAY, D(X), hence the inhab-
itant was a day-Knight speaking during the day.
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6.3 The two brothers

I once came across two brothers A and B and did not know
the type of either, nor did I even know whether they were of the
same type. I also did not know whether it was day or night at
the time. Here is what they said:

A: At least one of us is a day-night.
B: A is a night-Knight.
I then knew the type of each and whether it was day or night.

Smullyan in [10]

The first sentence translates into the premise CA(D(A)∨D(B)) and the
second sentence translates into the other premise CB¬D(A). Consider the
following proof tree:

CA(D(A) ∨ D(B)), CB¬D(A)
CA(D(A) ∨ D(B)), CB¬D(A), DAY

L
CA(D(A) ∨ D(B)), CB¬D(A), ¬DAY

R
Left subtree (L):

CA(D(A) ∨ D(B)), CB¬D(A), DAY
CA(D(A) ∨ D(B)), DAY, D(B), CB¬D(A)

CA(D(A) ∨ D(B)), DAY, D(B), ¬D(A)
DAY, D(B), ¬D(A), ¬(D(A) ∨ D(B))
DAY, D(B), ¬D(A), ¬D(A) ∧ ¬D(B)

DAY, D(B), ¬D(A), ¬D(B)
∗

CA(D(A) ∨ D(B)), DAY, ¬D(B), CB¬D(A)
CA(D(A) ∨ D(B)), DAY, ¬D(B), ¬¬D(A)

DAY, ¬D(B), D(A), D(A) ∨ D(B)
DAY, ¬D(B), D(A) DAY, ¬D(B), D(A), D(B)

∗

Right subtree (R):

CA(D(A) ∨ D(B)), CB¬D(A), ¬DAY
CA(D(A) ∨ D(B)), ¬DAY, D(B), CB¬D(A)
CA(D(A) ∨ D(B)), ¬DAY, D(B), ¬¬D(A)

¬DAY, D(B), D(A), ¬(D(A) ∨ D(B))
¬DAY, D(B), D(A), ¬D(A) ∧ ¬D(B)
¬DAY, D(B), D(A), ¬D(A), ¬D(B)

∗

CA(D(A) ∨ D(B)), ¬DAY, ¬D(B), CB¬D(A)
CA(D(A) ∨ D(B)), ¬DAY, ¬D(B), ¬D(A)

¬DAY, ¬D(B), ¬D(A), D(A) ∨ D(B)
¬DAY, ¬D(B), ¬D(A), D(A)

∗
¬DAY, ¬D(B), ¬D(A), D(B)

∗

We conclude that {CA(D(A)∨D(B)),CB¬D(A)} ` DAY, D(A),¬D(B),
hence A was a day-Knight, B was a night-Knight and it was then day.
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6.4 The two inhabitants

On another occasion I came across two inhabitants A and B
who made the following statements:

A: Both of us are day-Knights.
B: That is not true!
Which one should be believed?

Smullyan in [10]

The first sentence translates into the premise CA(D(A) ∧ D(B)) and
the second sentence translates into the other premise CB¬(D(A) ∧D(B)).
Consider the following proof tree:

CA(D(A) ∧ D(B)), CB¬(D(A) ∧ D(B))
CA(D(A) ∧ D(B)), CB¬(D(A) ∧ D(B)), DAY

L
CA(D(A) ∧ D(B)), CB¬(D(A) ∧ D(B)), ¬DAY

R
Left subtree (L):

CA(D(A) ∧ D(B)), CB¬(D(A) ∧ D(B)), DAY
CA(D(A) ∧ D(B)), DAY, D(A), CB¬(D(A) ∧ D(B))

D(A) ∧ D(B), DAY, D(A), CB¬(D(A) ∧ D(B))
DAY, D(A), D(B), CB¬(D(A) ∧ D(B))

DAY, D(A), D(B), ¬(D(A) ∧ D(B))
DAY, D(A), D(B), ¬D(A) ∨ ¬D(B)

DAY, D(A), ¬D(A), D(B)

∗
DAY, D(A), D(B), ¬D(B)

∗

CA(D(A) ∧ D(B)), DAY, ¬D(A), CB¬(D(A) ∧ D(B))
¬(D(A) ∧ D(B)), DAY, ¬D(A), CB¬(D(A) ∧ D(B))

Right subtree (R):

CA(D(A) ∧ D(B)), CB¬(D(A) ∧ D(B)), ¬DAY
CB¬(D(A) ∧ D(B)), ¬DAY, D(A), CA(D(A) ∧ D(B))
CB¬(D(A) ∧ D(B)), ¬DAY, D(A), ¬(D(A) ∧ D(B))

CB¬(D(A) ∧ D(B)), ¬DAY, ¬D(A), CA(D(A) ∧ D(B))
CB¬(D(A) ∧ D(B)), ¬DAY, ¬D(A), D(A) ∧ D(B)
CB¬(D(A) ∧ D(B)), ¬DAY, ¬D(A), D(A), D(B)

∗
We conclude that {CA(D(A)∧D(B)),CB¬(D(A)∧D(B))} ` ¬(D(A)∧

D(B)), hence the second inhabitant was telling the truth, they are not of
the same type! We are not able to conclude the type of any brother nor
whether it was day or night.
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7 The sociologist — for every one I claimed (level
IV)

In this last section we return to the same interpretation of the claim
operator as in Sections 3, 4 and 5 and introduce quantified sentences. To
that end, we use the constructor ∀. Agents are again either constant truth
tellers or constant liars.

We update the inductive definition of sentences of Section 2 with:

• (∀xϕ) is a sentence whenever x is an agent variable and ϕ is a sentence.

We can also talk about the bounded and free variables of a sentence
ϕ, defined as usual. We can also denote by [ϕ]xt the sentence obtained by
replacing in sentence ϕ all free occurences of variable x by term t. We
also say that a variable is fresh with respect to a sentence ϕ if it does not
occur (either free or bounded) in ϕ. Finally, we can introduce new rules of
inferences for these connectives:

• universal: for any sentence ϕ, variable x and term t such that ∀xϕ is
a provable sentence, then [ϕ]xt is also a provable sentence, as long as
t is an agent symbol or t is an agent variable that does not become
bound after the substitution;

• negative universal: for any sentence ϕ and variables x, z such that
¬(∀xϕ) is provable, then we have that ¬ [ϕ]xz is also provable, as long
as z is a fresh variable in ϕ.

We can also express the constructor ∃ as an abbreviation:

• ∃xϕ abbr= ¬(∀x¬ϕ).

Proposition 5 (Existential quantifier).

∃xϕ
z is a fresh variable with respect to ϕ

[ϕ]xz

Proof: The proof is left to the reader.
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7.1 Inspector Craig meets the sociologist

On the final day, Inspector Craig met a sociologist who was
visiting the island. He gave the following report:

‘I have interviewed all the inhabitants of this island and I
have observed a curious thing: For every native x, there is at
least one native y such that y claims that x and y are both
Knaves.’

Does this report hold water?
Smullyan in [10]

That ‘x and y are both liars’ is easy to denote by ¬T (x) ∧ ¬T (y). That
y himself claims that fact is represented by Cy(¬T (x) ∧ ¬T (y)). The full
sentence resumes to the use of quantifiers: ∀x∃yCy(¬T (x) ∧ ¬T (y)). The
derivation uses the rules above, together with the abbreviation relative to
the existential quantifier. Notice in the following subtree that the existential
quantifier is replaced by substituting the fresh variable z for y:

∀x∃yCy(¬T (x) ∧ ¬T (y))
∀x∃yCy(¬T (x) ∧ ¬T (y)), ∃yCy(¬T (x) ∧ ¬T (y))
∀x∃yCy(¬T (x) ∧ ¬T (y)),Cz(¬T (x) ∧ ¬T (z))

L R
The subtrees L and R are just the result of a cut relative to T (z) (and

¬T (z)). Left subtree (L):

T (z),Cz(¬T (x) ∧ ¬T (z))
T (z),¬T (x) ∧ ¬T (z)
T (z),¬T (x),¬T (z)

∗

Notice in the following subtree that the existential quantifier is again
replaced by substituting the fresh variable w for y. Then the fresh variable
refers to a new agent w and a cut relative to T (w) solves the problem. Right
subtree (R):
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∀x∃yCy(¬T (x) ∧ ¬T (y)),¬T (z)
¬T (z),∃yCy(¬T (z) ∧ ¬T (y))
¬T (z),Cw(¬T (z) ∧ ¬T (w))

¬T (z), T (w),Cw(¬T (z) ∧ ¬T (w))
¬T (z), T (w),¬T (z) ∧ ¬T (w)
¬T (z), T (w),¬T (z),¬T (w)

∗

¬T (z),¬T (w),Cw(¬T (z) ∧ ¬T (w))
¬T (z),¬T (w),¬(¬T (z) ∧ ¬T (w))
¬T (z),¬T (w), T (z) ∨ T (w)

¬T (z),¬T (w), T (z)
∗

¬T (z),¬T (w), T (w)
∗

We conclude that from ∀x∃yCy(¬T (x) ∧ ¬T (y)) we can derive any sen-
tence, hence the sociologist gave a false report. Indeed the report holds
water!

8 Concluding remarks

We introduced logic operators guided by the need of modeling successively
more complex features of the natural language. To each logic operator we
associated a semantics based on derivation rules to reason about sets of sen-
tences of the language — a calculus of sentences. Finally, we considered
proof trees as a means to solve in a uniform way puzzles and language para-
doxes from a few popular science books on logic by Raymond M. Smullyan.

The idea is to endow the student with the capacity of solving language
problems with the help of automatic reasoning. This method reduces the
difficulty of solving some classes of Smullyan puzzles to a modeling issue.

The extension of the method to further puzzles is left to the interested
student.
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