
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

VULNERABILITIES DETECTION AT RUNTIME AND
CONTINUOUS AUDITING

MESTRADO EM SEGURANÇA INFORMÁTICA

Bruno Octávio Horta Lourenço

Dissertação orientada por:
Prof. Doutora Ibéria Vitória de Sousa Medeiros

e co-orientado pelo Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves

2020

Acknowledgments

First I would like to express my gratitude to Professor Ibéria Medeiros for guiding
this project by the relevant advice and observations that have been given, and for always
being available to help and contribute to this project success.

To Professor Nuno Neves, for his co-orientation, I thank the availability and trust
provided unconditionally, which contributed decisively to my success.

A huge thanks to my family, and especially to my wife Cristina and daughter Alice,
who form a strong foundation to reach my goals through love, strength, patience, support,
determination, and encouragement.

Finally, I would like to thank my parents who gave me support and availability that
greatly contributed to this work.

This work was partially supported by the national funds through Fundação para a
Ciência e a Tecnologia (FCT) with reference to PTDC/CCI-INF/29058/2017, project
SEAL, and LASIGE Research Unit (UIDB/00408/2020).

i

I dedicate this work to the love of my life, my wife Cristina, a companion of all hours,
who contributed decisively to the conclusion of this dissertation, with always pertinent

suggestions. To my daughter Alice, who gave a special meaning to my existence and has
given me great moments and happiness.

Resumo

Na atualidade, a integração de funcionalidade e segurança em aplicações é um desafio.
Existe a noção de que a segurança é um processo pesado, requer conhecimento e con-
some o tempo dos programadores, contrastando desta forma com a visão relativa à funci-
onalidade. Independentemente destes desafios, é importante que as organizações tratem
da segurança nos seus processos ágeis, pois os ativos crı́ticos da organização devem ser
protegidos contra potenciais ataques. Uma forma de evitar que os ataques tenham su-
cesso passa por integrar ferramentas que possam ajudar a identificar vulnerabilidades de
segurança durante a fase de desenvolvimento das aplicações e sugerir métodos para a sua
correção.

Segundo o Instituto Gartner, mais de 75% dos problemas com segurança na Internet
são devidos a vulnerabilidades exploráveis a partir das Aplicações Web (Web Apps). A
maior parte das Web Apps são naturalmente vulneráveis devido às tecnologias adotadas na
sua concepção, à forma como são desenhadas e desenvolvidas, e ao uso de vários objetos
e recursos, além da integração de outros sistemas. Frequentemente observa-se que são
priorizados os aspetos funcionais que atendem a área de negócios, enquanto os requisitos
de segurança ficam em segundo plano.

Os ataques a Web Apps podem causar problemas de variados nı́veis de impacto, como
por exemplo: interrupção ou queda de desempenho do serviço; acesso não autorizado a
dados confidenciais e estratégicos; roubo de informação e clientes; fraudes e modificação
de dados no fluxo das operações; perdas financeiras diretas e indiretas; prejuı́zos à ima-
gem da marca da empresa; perda da lealdade dos clientes e gastos extraordinários com
incidentes de segurança. Os riscos de ataques mais comuns são genericamente conheci-
dos e podem ser previstos com antecedência, pois são listados pela Open Web Application
Security Project (OWASP), e dentre eles, três dos principais são: SQL Injection (SQLi);
Cross-Site Scripting (XSS); Broken Authentication e Session Management. Os ataques
mais graves são aqueles que, quando realizados sobre vulnerabilidades da Web App, não
serão detetados de imediato e resultam no acesso a dados sigilosos do negócio, da infra-
estrutura, ou de clientes, e que podem ser posteriormente organizados para realizar um
ataque de impacto mais relevante, ou uma fraude. Neste contexto, um novo paradigma
surge no que se refere à auditoria em ambientes web.

v

O conceito de Auditoria Contı́nua (AC) emerge como uma nova solução de auditoria
que responde a novas necessidades, sendo um tema recente que tem sido objeto de pesqui-
sas e aposta de organizações. O modelo tradicional de auditoria, baseado em análises pon-
tuais e descontı́nuas, torna-se cada vez mais inadequado à dinâmica atual da informação
e aos sistemas que a gerem. Atualizações constantes de aplicações e as alterações nas
configurações do sistema podem introduzir vulnerabilidades e deixar uma organização
suscetı́vel a ataques. Portanto, para manter os dados seguros, os sistemas e dispositivos
devem ser verificados continuamente para identificar e relatar vulnerabilidades à medida
que são descobertas. Este conceito traduz-se numa enorme mudança na filosofia tradici-
onal da auditoria para um paradigma de AC que torna possı́vel uma intervenção e ação
corretiva mais cedo. Desta forma, é necessário que as organizações adotem uma metodo-
logia que permita aos auditores independentes, fornecer garantias por meio de relatórios
sobre a ocorrência de eventos ao longo da vida do sistema. Esses eventos, quando moni-
torizados em tempo real, permitem desvios a serem detetados e relatados para aumentar a
velocidade e a eficácia da resposta pelos elementos responsáveis pela tomada de decisão.

As organizações estão sujeitas a vários tipos de auditorias que têm diferentes finalida-
des, como a qualidade, o ambiente, a operação ou a gestão. Estes processos seguem um
perı́odo de tempo para validar e analisar o que já foi feito e o estado atual da organização.
Na segurança da informação, a AC visa garantir a monitorização em tempo real do sistema
e o risco dos ativos da empresa. Para além disso, permite avaliar o nı́vel de segurança atual
do sistema, monitorizar o sistema em tempo real, aumentando a eficiência da descoberta
e mitigação de vulnerabilidades. Os testes de intrusão, são geralmente um complemento
para a AC. Num processo contı́nuo em que não existe esse comportamento invasivo, as
análises de vulnerabilidades são realizadas com o auxı́lio de ferramentas automáticas ao
longo do tempo para observar e monitorizar o estado do sistema e as ações corretivas as
serem tomadas.

O objetivo desta tese é propor uma abordagem e desenvolver uma ferramenta que
permitirá detetar ataques do tipo Injection Attacks (IA) ou Cross-Site Request Forgery
(CSRF) em Web Apps, no caso de estas estarem a recorrer ao mecanismo Cross-Origin
Resource Sharing (CORS). Para efetuar a deteção de IA, a ferramenta terá a capacidade
de analisar os links externos que são passados no atributo href a que uma Web App se
liga, com o intuito de verificar se estes estão comprometidos. Para a deteção de CORS
a ferramenta analisará todos os links internos passados no atributo src para verificar se
estes invocam métodos XMLHttpRequest utilizados para chamadas de CORS. Estes
dois tipos de ataques estão sempre associados, contribuindo para um IA bem-sucedido. O
IA é uma classe de ataques que depende da injeção de dados numa Web App, causando
a execução ou interpretação de dados mal-intencionados de maneira inesperada. Exem-
plos de ataques desta classe incluem SQLi, HTML Injection, XSS, Header Injection, Log
Injection e Full Path Disclosure. Estes são os ataques mais comuns e bem-sucedidos na

vi

Internet devido aos seus numerosos tipos, grande superfı́cie de ataque e complexidade
necessária para os proteger.

O CORS é um mecanismo do browser que permite o acesso controlado a recursos
localizados fora de um determinado domı́nio. Ele estende e adiciona flexibilidade à Same
Origin Policy (SOP). No entanto, este mecanismo também oferece potencial para ataques
baseados em vários domı́nios, se a polı́tica de CORS de um site estiver mal configurada ou
implementada. O CORS não pretende ser uma proteção contra ataques de Cross-Request
como o CSRF.

Tendo em conta o anteriormente descrito relativamente a IA e CORS, a ferramenta
desenvolvida permite a deteção de vulnerabilidades em Web Apps em AC. O foco funda-
mental está nos links externos e internos da Web App. Corre num servidor web, disponi-
bilizando este serviço aos utilizadores na internet, permitindo analisar ligações externas e
internas de uma determinada Web App. Para as ligações externas irá detetar evidências de
IA, atribuindo uma classificação de benigno ou maligno às ligações externas identificadas.
Para os links internos, verifica se existem chamadas de Cross-Origin mais especificamente
CORS. Desta forma um utilizador poderá submeter o URL da sua Web App que irá ser
analisado pela ferramenta Vulnerabilities Detector at Runtime and Continuous Auditing
(VuDRuCA) que recorre a um mecanismo de AC.

A ferramenta VuDRuCA emprega técnicas de crawling para navegar nas páginas da
Web App e obter a informação pretendida. Utiliza ainda a API do Virus Total para analisar
URLs, identificando conteúdo malicioso detetável por antivı́rus e scanners de Web Apps.
Como backend a ferramenta utiliza uma base de dados relacional que armazena todos os
dados recolhidos para que estes possam ser analisados, contribuindo para a apresentação
de indicadores.

Na fase de avaliação a ferramenta foi testada utilizando uma amostragem de 100 URLs
de Web App que recorrem à tecnologia AJAX. Para estes foram contabilizados o número
de sites externos e internos da Web App. Após uma primeira análise foram escolhidos
30 Web Apps para categorização, medição dos tempos de execução para deteção de links
externos e internos e várias outras métricas relativas aos tempos de execução. Finalmente
para testar o motor de AC foram selecionados 10 URL de Web Apps que na sua maioria
recorrem a CORS. Nestas 10 Web Apps foi identificada a tecnologia de Content Manamg-
ment System (CMS) utilizada. O módulo de AC, efetuou ainda uma análise durante um
perı́odo de 5 dias, com intervalos de 24h, para validar se existia a introdução de novos
links externos ou se algum destes estava comprometido. Relativamente aos links internos
foi validado se existiam novos links internos e se estes recorriam a CORS.

Palavras-chave: vulnerabilidades, aplicações web, auditoria contı́nua, auditoria estática
de código, segurança de software.

vii

Abstract

Nowadays integrating applications agility and security is an extremely challenging pro-
cess. There is the notion that security is a heavy process, requiring knowledge and con-
suming time of the development teams. On the other hand, the acquisition of Web Ap-
plications (Web Apps) is often achieved through contracted services because companies
do not have the necessary software developers. Taking this fact into account, the risk of
obtaining a product implemented by poorly qualified developers is a reality.

The main objective of this thesis is to propose a solution and develop a tool that will
detect some forms of Injection Attacks (IA) or Cross-Site Request Forgery (CSRF) attacks
in Web Apps. The latter is due to the fact that Web Apps sometimes employ Cross-Origin
Resource Sharing (CORS). Some statistics demonstrate that these attacks are some of the
most common security risks in Web Apps. IA is a class of attacks that relies on inputting
data into a Web App to make it execute or interpret malicious information unexpectedly.
Examples of attacks in this class include SQL Injection (SQLi), Header Injection, Log
Injection, and Full Path Disclosure.

CORS is used by browsers to allow controlled access to resources located outside a
given domain. It extends and adds flexibility to the Same Origin Policy (SOP). However,
this mechanism also offers the potential for Cross-Domain based attacks if a site’s CORS
policy is misconfigured. CORS is not intended to be a protection against Cross-Request
attacks like the CSRF.

The developed tool, called VuDRuCA, allows the detection of vulnerabilities associ-
ated with IA and CORS in Web Apps. It runs on a web server, providing this service to
users on the internet, allowing them to analyse external and internal links of a particular
Web App. For the external links, it will detect evidence of IA, assigning a benign or a
malign classification to the identified external links. For internal links, there is a check
for Cross-Origin calls, specifically CORS.

VuDRuCA uses crawling techniques to navigate through the pages of the Web App
and obtain the desired information. It also uses the Virus Total API, which is a free
online service that parses URLs, enabling the discovery of malicious content detectable
by antivirus and website scanners. As a backend, it uses a relational database to store the
collected data so that it can be retrieved and analysed, reporting the presence of security
indicators.

ix

Keywords: vulnerabilities, web applications, continuous auditing, static code auditing,
software security.

x

xii

Contents

List of Figures xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Contribution . 3
1.4 Thesis Structure . 3

2 Context and Related Work 5
2.1 Vulnerabilities . 5

2.1.1 Injection . 7
2.1.2 Cross-Site Scripting . 8

2.2 Static Analysis . 11
2.3 Fuzzing . 13
2.4 Symbolic Execution . 14
2.5 Oracles . 16

3 Vulnerabilities Detection at Run Time and Continuous Auditing 19
3.1 Continuous Auditing for Detecting Vulnerabilities 19
3.2 CORS Exploitation . 21

3.2.1 Summary of SOP and CORS . 25
3.3 Architecture to Support CORS Detection 26
3.4 Main Modules . 27

3.4.1 Web Crawler . 27
3.4.2 Storage . 28
3.4.3 Continuous Auditing . 29

4 Implementation of VuDRuCA 31
4.1 Main Modules . 31
4.2 Main Engine Routines . 32
4.3 Continuous Auditing Engine Routines 35
4.4 Example of Execution and Detection Case 38

xiii

5 Evaluation 41
5.1 AJAX Use-Case Characterization . 41
5.2 Experimental Phases . 42

5.2.1 First Phase: 100 Web Apps . 42
5.2.2 Second Phase: 30 Web Apps . 44
5.2.3 Third Phase: 10 Web Apps for CA 47

6 Conclusion 51
6.1 Future Work . 52

Bibliography 57

xiv

xvi

List of Figures

2.1 An example of the steps to perform an SQLi attack. 8
2.2 SQLi vulnerability formed in phpmyadmin. 8
2.3 An example of the steps to perform XSS reflected [10]. 9
2.4 An example of the steps to perform a XSS stored attack [10]. 10
2.5 A DOM XSS vulnerabilty in previous versions of the phpmyadmin tool. . 11

3.1 Tempered origin URL under REQUEST [1]. 23
3.2 Response from the REQUEST [1]. 24
3.3 Vulnerabilities Detection at Runtime and CA architecture. 27
3.4 Storage database model. 28

4.1 VuDRuCa modules routines. 33
4.2 VuDRuCA CA for main Web App URL routine. 33
4.3 VuDRuCA CA for external Web App links routine. 34
4.4 VuDRuCA CA for internal Web App links routine. 34
4.5 Main interface. 39
4.6 Rep. and Ass. submodule results for the https://www. greenanysite.com/. . 39
4.7 Site CORS internal analysis result for the https://www. greenanysite.com/. 39
4.8 Task Scheduler routine. 40

xvii

Chapter 1

Introduction

Nowadays, the web is the most relevant and powerful platform for all new software appli-
cations. As a result, new Web Applications (Web Apps) are constantly being developed,
making the security of such applications become increasingly important. In parallel, the
number of reported Web Apps vulnerabilities grows every year, whether they are pub-
lished in specialized databases (e.g., Common Vulnerabilities and Exposures (CVE)) or
discovered internally in the organizations. These vulnerabilities can pose a serious risk of
exploitation and may result in system compromise, information leaks, or denial of service.
But more serious than this is that vulnerabilities in Web Apps can prove costly for orga-
nizations. These costs may include direct financial losses, increases in required technical
support and tarnished image and brand.

The Open Web Application Security Project (OWASP) is an example of an open com-
munity that is dedicated to enabling organizations to develop, purchase, and maintain
applications that can be trusted. The OWASP Top Ten lists the 10 most dangerous cur-
rent Web Apps security flaws, along with effective methods of dealing with them [8].
Project members include a variety of security experts from around the world who share
their knowledge of vulnerabilities, threats, attacks, and countermeasures. But the main
issue is, how should software engineers develop secure Web Apps? Different develop-
ers have diverse opinions regarding which language, framework, or vulnerability-finding
tool tends to yield more secure software. For example, the choice of the programming
language has an important influence on the security of the Web Apps as the offered con-
structs may facilitate or prevent certain classes of attacks. In any case, as it is always
possible to introduce bugs in the applications, it is necessary to select the most effective
testing methods. This could help to reduce risk and allocate resources more appropriately.

1.1 Motivation

Web Apps are increasingly used to provide services available on the Web. As they are
developed and integrate various technologies, new types of vulnerabilities have been ob-

1

Chapter 1. Introduction 2

served. Also, the number of languages that are used to develop Web Apps can open novel
attack vectors for malicious actors and new vulnerabilities.

Currently, 25.7% of the vulnerabilities in CVE are classified as either SQL Injections
(SQLi) or Cross-Site Scripting (XSS) [43], occurring most of the time in Web Apps.
Briefly, SQLi makes it possible to rewrite a query made by a Web App to a database,
which could create unexpected behavior and result in either data loss or disclosure (e.g.,
by leaking user names and associated passwords). In contrast, a XSS vulnerability allows
attackers to inject malicious code into the client part of the Web App and thereby change
the behavior of the code executing in the browser, potentially leaking authorization and/or
private information.

Another challenge is related to the fact that HTML5 is an emerging stack for next-
generation applications. It is enhancing browser capabilities and enabling the execution
of Rich Internet Applications in the context of modern browser architectures. Interestingly
HTML5 can run on mobile devices making it even more complicated. HTML5 supports
a combination of various components like XMLHttpRequest (XHR), Document Object
Model (DOM), Cross-Origin Resource Sharing (CORS) and enhanced HTML/Browser
rendering. It also brings several new mechanisms to the browser which were not seen be-
fore, like local storage, web SQL, WebSocket, web workers, enhanced XHR and DOM-
based XPATH to name a few. Consequently, HTML5 has an enhanced attack surface
and points of exploitation for attackers. By leveraging these new mechanisms, malicious
actors can craft stealth attacks and silent exploits which are hard to detect and have a sig-
nificant impact [6].

In this way, it is increasingly important to have tools that identify vulnerabilities in
different languages of web programming before an application is put into production or
even when it is already deployed. We consider that Continuous Auditing (CA) is a must-
have, which will allow continuous monitoring of the systems and assessing the risks to
the company’s assets, increasing the efficiency of vulnerability discovery and mitigation.

The main objective of this dissertation is to propose a solution and develop a tool
named VuDRuCA (Vulnerabilities Detector at Runtime and Continuous Auditing) allow-
ing the detection of vulnerabilities in a Web App in CA. It enables the discovery of vul-
nerabilities associated with Injection Attacks (IA) and the CORS mechanisms. The tool
runs on a web server, providing this service to users, allowing the analysis of the external
and internal links of a particular Web App. For the external links, it will detect evidences
of IA, assigning a classification of benign or malignant to the identified external links.
For the internal links, it checks for Cross-Origin calls, related to CORS. This way, a user
can submit his Web App URL that will be analised by VuDRuCA.

Chapter 1. Introduction 3

1.2 Objectives

This thesis has two objectives. The first objective is to study ways to identify and de-
tect possible indicators of compromise in Web Apps and verify if those are using Cross-
Domain requests. For that purpose, we will present a methodology to analyse client-side
code returned to the user, performing an HTML and JavaScript (JS) continuous code anal-
ysis to detect possible compromised Web Apps or Cross-Domain calls.

The second is to develop a solution and its implementation in a tool for using the CA
approach. The tool will use crawling techniques and a commercial external entity called
Virus Total (VT) to analyse the external links. For the internal links, the tool will use
an internal routine to find CORS calls used to send XHR that is mostly implemented in
JavaScript programming language. It is used to send HTTP or HTTPS requests directly
to a web server and load the server’s response data directly back into the script.

1.3 Contribution

The main contributions of the thesis are:

• A study of web vulnerabilities, especially the ones associated with CORS; in addi-
tion, CA is considered to understand how to monitor a Web App over a time period;

• An architecture to continuously audit Web Apps, analysing their external links for
malware related problems and internal links against CORS. The VuDRuCA tool
implements the architecture;

• Carry out an assessment of the developed tool, namely capturing execution times
for site analysis alone or through continuous auditing; the number of external links
detected per application as well as their classification; the number of internal links
per Web App and invoked CORS calls.

1.4 Thesis Structure

This thesis is organized as follows:

• Chapter 2 briefly explains some relevant concepts and provides a fundamental con-
text for the work;

• Chapter 3 presents the proposed architecture, describing the main components as
well;

• Chapter 4 discusses the current implementation of the tool VuDRuCA, explaining
in more detail each module;

Chapter 1. Introduction 4

• Chapter 5 evaluates and validates the tool;

• Finally, Chapter 6 provides conclusions of the developed research and discusses
future work that can be built upon the base architecture.

Chapter 2

Context and Related Work

This chapter describes a few classes of web vulnerabilities and presents and discusses
some related work that is relevant in this context. The chapter is structured in the follow-
ing sections:

• Section 2.1 looks into several vulnerability classes that are referenced by OWASP
as some of the most critical for Web App;

• Section 2.2 details various tools and techniques used in static analysis;

• Section 2.3 looks into fuzzing techniques and fuzzers that implement each tech-
nique;

• Section 2.4 reports some knowledge about symbolic execution;

• Section 2.5 exposes related work about oracles.

2.1 Vulnerabilities

In a general way, security vulnerabilities are bugs that were accidentally introduced dur-
ing software development. It is important to refer that not all bugs are vulnerabilities,
only those that might be exploited or used to compromise the system can be considered a
vulnerability. The Microsoft Security Response Center (MSRC) defines a security vulner-
ability as a weakness in a product that could allow an attacker to compromise the integrity,
availability, or confidentiality of that product [40].

• Integrity refers to the trustworthiness of a resource. An attacker that exploits a
weakness to modify data silently and without authorization is compromising the
integrity of a product;

• Availability refers to the possibility to access a resource. An attacker that exploits a
weakness in a product, denying appropriate user access to it, is compromising the
availability;

5

Chapter 2. Context and Related Work 6

• Confidentiality refers to limiting access to information in a resource in order to
avoid disclosure to unauthorized parties. An attacker that exploits a weakness in
a product to access non-public information is compromising the confidentiality of
that product.

For our work, the fundamental reference for Web App vulnerabilities is the ”OWASP
Top 10 - The Ten Most Critical Web Applications Security Risks” [8]. In Section 3.2,
we will focus on a special class of vulnerabilities that are becoming more relevant as it
is exposed to the increasing use of different technologies and programming languages in
Web Apps.

Before we talk about classes of vulnerabilities, we will address the types of client and
server-side attacks. Attacks targeted at individual client computers are called client-side
attacks. These are usually directed at web browsers and instant-messaging applications.
Client-side attacks are a major font for attackers today. As network administrators and
software developers fortify the perimeter, attackers need to find a way to make the victims
open the door for them to get into the network.

These attacks target vulnerabilities in client applications that interact with a malicious
server or process malicious data. Here, the client initiates the connection that could result
in an attack. To achieve this, hacker entices users to click a link, open a document, or
somehow get to a website controlled by a malicious entity. If a user does not interact with
a server, there is no risk because the client does not process any potentially harmful data
sent from the server. A typical example of a client-side attack is a malicious web page
targeting a specific browser vulnerability that would give the malicious server complete
control over the client system. Saxena et al. [48] explains that the complexity of the
client-side components of Web Apps has exploded with the increase in popularity of web
2.0 applications. Nowadays, traditional desktop applications, such as document viewers,
presentation tools and chat applications are commonly available as online JavaScript (JS)
applications. The authors present the term client-side validation (CSV) vulnerabilities
as new vulnerability class. A typical Web 2.0 application has two parts: a server-side
component and a client-side component. The server-side component processes the user’s
request and generates an HTML response that is sent back to the browser. The client-side
code of the Web App, typically written in JS, receives the HTML response from the server.
The client-side component executes in the web browser and is responsible for processing
input data and dynamically updating the view of the web.

CSV vulnerabilities belong to the general class of input validation vulnerabilities but
are different from traditional web vulnerabilities like SQL injection (SQLi) and Cross-
Site Scripting (XSS) (see later parts of the section). For example, one type of CSV vul-
nerability involves data that enters the application through the browser’s cross-window
communication abstractions and is processed completely by JS code, without ever being
sent back to the webserver. Another type occurs when a Web App sanitizes input data be-

Chapter 2. Context and Related Work 7

fore embedding it in its initial HTML response but does not sanitize the data completely
and allows for its use in the JS component.

In a server-side attack, an attacker submits a malicious input that gets executed on the
server. This malicious input could be submitted in many different ways, including web
form elements and URL parameters. Since the malicious input needs to be crafted and
submitted in a manner that forces the back-end applications on the server to process it,
the attacker usually needs to gain an understanding of the back-end applications. This
knowledge can be gained for instance by using an information disclosure attack. In any
case, depending on the kind of back-end applications, the type of attacks also vary.

In the rest of this section, we will explain two classes of vulnerabilities that are par-
ticularly relevant for our work.

2.1.1 Injection

Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted
data is sent to an interpreter as part of a command or query. In this case, we are dealing
with a server-side attack. The attacker’s hostile data can trick the interpreter into executing
unintended commands or accessing data without proper authorization.

SQL injection (SQLi) is one of the most dangerous vulnerabilities that a Web App
can be prone to. When a user’s input is being passed unvalidated and unsanitized as
part of an SQL query that means that the attacker can manipulate the query itself and
force it to return different data than what it was supposed to return [8]. Figure 2.1 shows
how to carry out an SQLi attack. The attacker inserts a SQL command or conditional
logic into the input field, such as a student ID number of 117 OR 1=1;-- then, the
resulting query is sent to the database (steps 1 and 2). Normally the query would search
the student’s table for the matching ID sent with the injected code. With the attacker,
the predicate is always true because ID OR 1=1; executes to true independently of the
value of ID. As a result, the database will return all data from the student’s table back to
the attacker (steps 3 and 4).

Another example of an SQLi is shown in Figure 2.2, which is a vulnerability that
existed in previous versions of the tool phpmyadmin. Due to missing validation of the
user-provided parameters (represented in Figure 2.2 as the variable $scale), it was pos-
sible to inject SQL code that would run with the privileges of the user control. This gives
read and write access to the configuration tables of the database, and possibly read access
to some other table for which the tool has the necessary privileges. The vulnerability was
fixed by adding a numeric validation check to the $scale variable.

Chapter 2. Context and Related Work 8

Figure 2.1: An example of the steps to perform an SQLi attack.

Figure 2.2: SQLi vulnerability formed in phpmyadmin.

2.1.2 Cross-Site Scripting

Cross-Site Scripting, commonly abbreviated to XSS, refers to a client-side attack where
an attacker uses a Web App to send malicious code, generally in the form of a JS script,
to a different end-user. Since the browser of the user thinks the script came from a trusted
source, the malicious script can access cookies, session tokens, or other sensitive infor-
mation retained by the browser and used with that site [2]. Matthew et al. [29] refer that
XSS vulnerabilities are difficult to prevent because it is tricky for Web Apps to anticipate
the client-side semantics. An XSS attack occurs when:

• Data is inserted in a Web App through an untrusted source (most frequently a web
request);

• Data is included in dynamic content that is sent to a user browser without being
validated for malicious content.

The malicious content sent to the web browser often takes the form of a segment of JS, but
may also include HTML, Flash, or any other type of code that the browser may execute.

Chapter 2. Context and Related Work 9

The variety of attacks based on XSS is almost limitless, but they commonly include trans-
mitting private data, like cookies or other session information, to the attacker, redirecting
the victim to web content controlled by the attacker, or performing other malicious oper-
ations on the user’s machine under the guise of the vulnerable site. Since the malicious
content runs with the same privilege as the trusted content from the web server, it can
steal the victim’s private data or take unauthorized actions on the user’s behalf.

To prevent XSS vulnerabilities, all the untrusted content from users in web pages
must be sanitized. However, proper sanitization is very challenging. One could let the
server sanitize the untrusted content before delivering it to the browser. However, when a
browser interprets certain content differently from what the server intends, attackers can
take advantage of this discrepancy, as exemplified in the Samyworm [11], one of the fastest
spreading browser worms to date. Alternatively, one could let the client sanitize untrusted
content. However, without the server’s help, the client cannot distinguish between trusted
and untrusted content in the web pages.

There are three main categories of XSS attacks: reflected, stored and DOM.

With reflected XSS, the malicious script is not retrieved from storage but is instead
reflected the user browser by the server. When a user is tricked into clicking on a malicious
link, the injected code is included in the request that goes to the vulnerable web site,
which sends the attack back to the user’s browser. The browser will execute the script as
the source is considered trusted.

As an example, in Figure 2.3, the perpetrator embeds a malicious script into a hy-
perlink, enabling the viewing of user session cookies. The link is sent to the victim via
email to fool her to click on it. The script is executed by the Web App and reflected back
to the victim’s browser. Lastly, the browser sends the session cookies to the perpetrator,
enabling access to the victim’s private data.

Figure 2.3: An example of the steps to perform XSS reflected [10].

Chapter 2. Context and Related Work 10

XSS stored are based on the same principle of reflection of attacker-supplied data.
The difference is that in these cases the vulnerable website stores the malicious script
permanently and reflects/sends that data to any user accessing it. In this way, the same
scripts, that are used to exploit XSS vulnerabilities by reflection can be used to exploit
XSS vulnerabilities by storage. The victim retrieves the script from the server when it
requests the stored information.

As an example, in Figure 2.4 we can see that the perpetrator discovers a website
having a vulnerability that enables the script injection. The perpetrator injects a malicious
script that steals each visitor’s session cookies. This stealthy approach involves using JS
to create a new, albeit broken, image that points to a cookie catching script. For each
visit to the website, the malicious cookie catching script is activated. Finally, the visitor’s
session cookie is sent to the perpetrator.

Figure 2.4: An example of the steps to perform a XSS stored attack [10].

XSS DOM is an attack wherein the attack payload is executed as a result of modifying
the DOM “environment” in the victim’s browser, so that the client-side code runs in an
“unexpected” manner. That is, the page itself does not change, but the client-side code
contained in the page executes differently due to the malicious modifications that have
occurred in the DOM environment. This differs from the stored and reflected XSS attacks,
wherein the attack payload is placed in the response page due to a server-side flaw.

An example of code vulnerable to a XSS DOM is shown in Figure 2.5, based on a
vulnerability that existed in previous versions of the phpmyadmin tool. The vulnerability
was exploited by using specially crafted MySQL table comments that included a mali-
cious script. An example of a malicious script would be an AJAX call that sends the
contents of document.cookie to a website that the attacker controls. The attacker
could then use the session cookie to log in as the victim. Later on, the development team
fixed the vulnerability by applying the htmlspecialchars() sanitization function to
line 2.

Chapter 2. Context and Related Work 11

Figure 2.5: A DOM XSS vulnerabilty in previous versions of the phpmyadmin tool.

2.2 Static Analysis

One way to deal with security vulnerabilities is to wait until the bugs are exploited by an
attacker, then produce a patch that one hopes fixes the problem without introducing new
flaws, and whine when system administrators do not install patches quickly enough [27].
Not surprisingly, this approach has proven largely ineffective.

The solutions for reducing software flaw damage can be grouped into two categories:

• Mitigate the damage that flaws can cause.

• Eliminate flaws before the software is deployed.

For the first category, there are techniques that limit security risks from software bugs,
which include modifying program binaries to insert runtime checks or running applica-
tions in restricted environments that limit the harm they may do. The second category
is related to techniques to detect and correct software flaws. They include human code
reviews, testing, and static analysis. Functional testing is typically ineffective for finding
security vulnerabilities.

Tosin et al. [45] states that developers do not code with the mindset of an attacker
because they care more about delivering functionalities. Common coding mistakes and
inadvertent programming errors are weaknesses that often evolve into exploitable vul-
nerabilities. The reality is that about 70-percent of reported attacks are performed at the
application layer rather than the network layer [30]. Integrating Static Analysis Tools
(SAT) could be envisaged to help developers program defensively.

Static analysis techniques analyse the source code directly. Thus, using static analysis
lets us make claims about all possible program executions rather than just a particular
test-case execution. From a security viewpoint, this is a significant advantage. There is
a range of static analysis techniques, offering tradeoffs between the required effort and
analysis complexity. At the low-effort end are standard compilers, which perform type
the checking and other simple program analyses. At the other extreme are full program
verifiers that attempt to prove complex properties about programs. They typically require
a complete formal specification and use automated theorem provers. These techniques

Chapter 2. Context and Related Work 12

have been effective but are almost always too expensive and cumbersome to use on normal
programs.

There are works that apply a lightweight form of analysis. Gustavo et al. [32] de-
scribe Splint, a tool that performs an analysis similar to those done by a compiler. Hence,
they are efficient and scalable, and they can detect a wide range of implementation flaws
by exploiting annotations added to the program the focus in not, however, looking for
vulnerabilities.

Historically, static analysis tools were used to prove the absence of bugs inside a pro-
gram, and they were particularly effective in specific application domains [32]. Typically,
a predefined set of rules is used to find vulnerabilities, such as searching for the use of
insecure library functions, buffer overflows or insufficient input data validation. One ex-
ample of a basic static code analysis tool is flawfinder [5]. Flawfinder examines C and
C++ source code and reports possible security weaknesses sorted by risk level. It does this
by checking the code for potentially dangerous functions like strcpy(), which does an
unbounded copy of a string from a source to a destination. The function does not check
whether the destination buffer is big enough to store the source, which can easily lead to
a buffer overflow if the programmer did not validate this beforehand.

Tools like flawfinder do not actually check for validation and leave it up to the user
to verify. It is not hard to imagine that this leads to numerous false positives, which
can be a little disheartening to the programmer who has to check each reported potential
vulnerability manually. To provide better results, many tools employ a technique called
taint checking as part of the static analysis. The main idea behind taint checking is that
any variable that can be modified (either directly or indirectly) by input coming from an
external user has to be considered tainted, as it has the potential to contain malicious
data. Variables that are derived from tainted variables become tainted as well. Static code
analyzers use taint checking by finding potentially vulnerable functions (so-called sinks)
and then trace back their parameters to see if they were tainted. If a parameter is a constant
variable set by the programmer, the analyzer will not report it. If the tool believes that the
variable could be modified by the external user, it will list it as a potential vulnerability
[40].

RIPS is used for the automated detection of security vulnerabilities in PHP appli-
cations [9]. It tokenizes the code (lexical analysis) based on a PHP tokenizer exten-
sion and performs semantic analysis to build a program model. It performs backward-
directed inter-procedural taint analysis of sensitive sinks, based on previously analyzed
variable assignments. Its strength is the ability to scan PHP applications very fast for
PHP-specific vulnerabilities. It supports the detection of 15 different vulnerability types,
including XSS, SQLi, Local File Inclusion (LFI), and others. However, experimental
studies demonstrate that RIPS generates a high number of false positives because it does
not use an abstract syntax tree or control flow graph, and lacks support for object-oriented

Chapter 2. Context and Related Work 13

code.
WAP is another static analysis and data mining tool for the detection and correction of

input validation vulnerabilities in Web App written in PHP [13]. WAP detects and corrects
several classes of vulnerabilities, including SQLi and XSS among others. This tool does
taint analysis to track malicious inputs inserted at entry points ($ GET, $ POST arrays)
and to verify if they reach some sensitive sink (PHP functions that can be exploited by
malicious input). After the detection, the tool uses data mining to confirm if the vulnera-
bilities are real or false positives. In the end, the real vulnerabilities are corrected with the
insertion of the fixes (small pieces of code) in the programs.

SATs play an important role to ensure the product meets the quality requirements.
SATs exercise application source code and check for violations. The reality is that to
date the vast majority of critical vulnerabilities are found by manual analysis of code by
security experts. Despite this, different studies have investigated why developers do not
use SAT to find bugs or how developers interact with such tools when diagnosing poten-
tial security vulnerabilities. Findings show that false positives and the way warnings are
presented are barriers to use. Similarly, deep interaction by developers with the tool’s
results can create challenges of cognitively demanding tasks that could threaten the use of
such tools [50]. Baca et al. [18] evaluated the use of a commercial static analysis tool to
improve security in industrial settings. They found that, although the tool reported some
relevant warnings, it was hard for developers to classify them. In addition, developers
corrected false positive warnings, which created vulnerabilities in previously safe code.
Hofer et al. [33] have used some other metrics to guide tools’ selection such as instal-
lation, configuration, support, reports, errors found, and whether the tools can handle a
whole project rather than parsing single files. Other researchers have also performed inde-
pendent quantitative evaluations of static analysis tools with regard to their performance
to detect security weaknesses [45].

2.3 Fuzzing

Fuzzing is one of the most effective approaches to find vulnerabilities in large software.
The technique consists in feeding the target application with unexpected inputs to look
for abnormal program termination. The crucial step in fuzzing is to choose relevant un-
expected inputs, likely to reveal potential vulnerabilities [36].

Fuzzing was first introduced by Miller on a project to promote the reliability of Unix
systems [36]. In this project, Miller confirmed that when arbitrary input values were
delivered to the program under test, they created an exception and the program was shut
down. This experience evolved into the fuzzing concept, which injects random values
into the software with the expectation of bringing the execution to an expected state.

Fuzzing can be divided into dumb fuzzing and smart fuzzing depending on the way the

Chapter 2. Context and Related Work 14

inputs are generated. Dumb fuzzing is the simplest form of fuzzing technology because
input values are produced with random data. This approach, however, has difficulty to
find inputs that go beyond the initial validation layer of the software, and therefore code
coverage is restricted.

Smart fuzzing generates appropriate values for the input format of the target through
software analysis and error generation. However, there is a disadvantage in that it re-
quires specialized knowledge to analyze the target software, and it may take a long time
to generate a suitable model for the software. Fuzzing mutation is a test technique for
modifying input data samples to make novel test cases that are tried in the target software
[36]. Recently, an evolutionary technique has been introduced that generates a new input
based on feedback on the response of the target software [36].

George et. al [39] examined 32 recently published works on fuzz testing and studied
their experimental evaluations. They suggest a procedure that should be followed by
any researcher that develops a new fuzzer algorithm (call it A). The researcher should
empirically demonstrate that A provides an advantage over the status quo, namely:

• Choose a compelling baseline fuzzer B to compare against;

• Get a sample of target programs for the benchmark suite;

• Select a performance metric to measure A and B when they are run on the bench-
mark suite; ideally, this metric is the number of bugs identified by crashing inputs;

• Choose a meaningful set of configuration parameters, e.g., the seed file (or files) to
start fuzzing with, and the duration of an experiment.

They found that none of the fuzz testing evaluations that were considered carried out
all of the above steps properly (though some got close). This is bad news in theory, and
after carrying out more than 50000 CPU hours of experiments, they believe it is bad news
in practice too.

2.4 Symbolic Execution

Symbolic execution is a technique that explores feasible paths in the program by setting
inputs to symbolic values rather than a real value [36]. It was first proposed in King’s
paper in 1975 [37]. This test technique was developed to verify if a specific condition in
the software could be violated by the input values.

The technique can be divided into offline symbolic execution and online symbolic exe-
cution. Offline symbolic execution chooses only one path in the program to create a new
input value by resolving the path predicate [31]. The program must be processed from
the beginning to explore other paths, and so there are disadvantages because it causes
overhead due to re-execution.

Chapter 2. Context and Related Work 15

Online symbolic execution replicates states and computes novel path predicates at
every point where the symbolic executor encounters a branch statement. There is no
overhead associated with re-execution with the online method, but the downside is that it
requires the storage of all status information and the simultaneous processing of multiple
symbolic paths, leading to significant resource consumption.

In order to solve this problem, a hybrid form of symbolic execution was suggested.
The hybrid symbolic execution saves state information as in online symbolic execution
whenever a branch statement is executed and proceeds until memory is exhausted [22].
When there is no more space to save, there is a switch to the offline symbolic execution
and a path search is performed.

In recent years, the concolic execution has been proposed, which is a method of test-
ing by substituting an actual value (Concrete Value) in particular symbolic variable, and
testing with a mixture of concrete and symbolic values. This technique is a technique
of generates a new input value by solving a path expression branching statements. The
reason for executing with that is constructed based on the actual value is that if the sym-
bolic executor encounters a difficult problem (and it takes a long time or does not solve
the problem) then the test could no longer be performed. However, if the actual value is
substituted, a deeper path search becomes possible.

Abeer et al. [17] pursue an automated exploit generation approach in Web App. Given
an application, the goal is to automatically construct a sequence of malicious HTTP re-
quest inputs that direct an application’s execution to a vulnerable sink. The starting point
to the approach is static analysis: the creation of models of the Web App behavior along
its paths that are based on symbolic execution. From here, there are two scalability chal-
lenges that must be overcome to make the exploit finding successful. The first one in-
volves path selection: what are the paths that one must explore to make opportunistic
exploit generation successful? The approach makes the observation that it is possible to
prioritize the traversal of the paths by using their constraint solving costs, such that one
we efficiently identifies paths that lead to a successful exploit. The second issue is about
persistent database states: how to deal with database queries that may be present along
the paths that are explored. This issue becomes particularly important in the context of
second-order attack creation, where a vulnerable query, say, is exploited to store some
data that is subsequently read from a (second) exploit sink.

Cristian et al. [20] presented KLEE, a symbolic execution tool capable of auto-
matically generating tests that achieve high coverage on a diverse set of complex and
environmentally-intensive programs. When KLEE runs a program, it tries to explore ev-
ery possible path. This is done by executing the program symbolically, i.e., tracking all
constraints on inputs marked symbolic as each instruction is run. When a conditional
that depends on a symbolic input is encountered, a constraint solver is used to determine
which direction the path will follow. In some cases execution is not constrained to follow

Chapter 2. Context and Related Work 16

a single path, the condition can be true or false depending on the input, and the execution
conceptually forks. When this happens, KLEE clones the current process and follows
both paths, adding the appropriate constraint to the path conditions of each process.

Torben et al. [34] present THAPS a vulnerability scanner for Web Apps written in
PHP. THAPS is fundamentally a taint analysis tool based on the symbolic execution of
PHP. It is in the symbolic execution engine that vulnerabilities are detected and where
reports are generated, containing details of each (potential) bug. To identify vulnerabil-
ities, the taint analysis identifies where user input is able to enter the application, called
a source, and how it is propagated through the application. If the tainted data reaches
critical points of the application, where it is able to alter the outcome of the application,
it has reached a sink. Every time tainted data reaches a sink without being properly sani-
tized first, a vulnerability is reported. To simulate all the possible outcomes the analysis
might need to store several (many) values for the same variable because of assignments
inside different code branches. Whenever there are multiple values a simulation has to be
performed on each of these. THAPS stores the values in a variable storage, which also
records what branch of the code the value belongs to.

2.5 Oracles

A test oracle, or just oracle, is a mechanism for determining whether a test has passed
or failed. One of the most effective ways to produce test oracles is to use a model of
the target software and generate complete tests, including both input data and expected
results, directly from the model. The model, in this case, is exactly what the name implies:
it incorporates the most important aspects of the target, but not every detail (if it did
include all details, it would be equivalent to the system itself) [7].

The most common form of oracles is proxy servers. A proxy can be placed between a
service and a client in order to monitor what kind of traffic is going through. Divya et al.
[44] present FlowWatcher, an HTTP proxy that mitigates data disclosure vulnerabilities
in unmodified Web Apps. FlowWatcher monitors HTTP traffic and shadows part of an ap-
plication’s access control state based on a rule-based specification of the user-data-access
(UDA) policy. The UDA policy states the intended data ownership and how it changes
based on observed HTTP requests. FlowWatcher detects violations of the UDA policy by
tracking data items that are likely to be unique across HTTP requests and responses of
different users.

Anyi et al. [41] propose an SQL Proxy-based Blocker (SQLProb). SQLProb harnesses
the effectiveness and adaptivity of genetic algorithms to dynamically detect and extract
users’ inputs for undesirable SQL control sequences. Compared to state-of-the-art pro-
tection mechanisms, this method does not require any code changes on either the client,
the web-server or the back-end database. Rather, the system uses a proxy that seamlessly

Chapter 2. Context and Related Work 17

integrates with existing operational environments offering protection to front-end web
servers and back-end databases.

Iberia et al. [42] proposed a way to detect and block attacks at runtime without pro-
grammer intervention inside a database. They call this approach SElf-Protecting daTabases
preventIng attacks (SEPTIC). The paper focus is on the two main categories of attacks re-
lated to databases: SQLi attacks, which continue to be among those with the highest risk
and for which new variants continue to appear, and stored injection attacks, which also
involve SQL queries. For SQLi, they propose detecting attacks essentially by comparing
queries with query models that were previously learned in an earlier training phase. For
stored injection, they propose having plugins to deal with specific attacks before data is
inserted in the database.

Chapter 2. Context and Related Work 18

Chapter 3

Vulnerabilities Detection at Run Time
and Continuous Auditing

This chapter focusses on the detection of Cross-Origin Resource Sharing (CORS) vulner-
abilities. It proposes an architecture for a new vulnerability detection tool along with the
key concepts and modules it relies on. The architecture resorts to crawling techniques to
find links (external and internal) in the Web App and analyses them to check for possible
dangerous strings related to CORS. The analysis is targeted to web pages produced/re-
turned by the Web App and is performed at run time, allowing for Continuous Auditing
(CA). The chapter is organized as follows: Section 3.1 provides an overview of CA. Sec-
tion 3.2 describes the implications of CORS in modern Web Apps and the problems they
may bring. Section 3.3 offers, respectively, an overview of the architecture, and a more
detailed look into each module that composes the architecture.

3.1 Continuous Auditing for Detecting Vulnerabilities

Organizations are subject to various types of audits for different purposes, such as quality,
environmental, operational or management. These processes follow a well defined time
schedule to validate and analyse what has already been done and the current state of the
organization. However, the competitive demands for organizations and, consequently, the
need for innovation, promoted changes in the way web audit is done. CA assists the audi-
tor in developing his or her opinion since it enables the evaluation of the relevant events
that are observed in real-time, using automated and continuous processes. According to
Camargo [21], CA is related to:

produces results [. . .] within a short period of time after the occurrence of a relevant
event, i.e., it performs process control tests continuous] [. . .] [using] technology tools,
[. . .] [allowing] identify nonconformities, trends, and risk indicators

Silva [52] observed that the execution of CA is based on the date surrounding a given

19

Chapter 3. Vulnerabilities Detection at Run Time and Continuous Auditing 20

event, and whenever possible in real-time. The data supporting the analysis should be
reliable, assisting auditors and managers in decision-making and also facilitating early
detection of fraudulent reports.

According to Costa [24], to conceive a CA comprehensive approach, there is the need
to achieve resource optimization and rationalization through continuous and integrated
types of audit, through which the same entity is subject. Here, CA contributes not only to
the traditional monitoring tasks but also to the efficiency of an entity. Table 3.1 shows the
fundamental differences between a Traditional Audit (TA) and a CA.

Traditional Auditing Continuous Auditing
Held periodically Continuously performed
Reactive approach Proactive approach
Manual process Automated process
Sampling tests Whole population based tests
Tests take performance and human judgment into account Tests take modeling of analytical data

for subsequent monitoring into account
Reports are prepared periodically Reports are produced continuously

or frequently

Table 3.1: Traditional Auditing vs Continuous Auditing.

In the context of security, the concept of CA emerges as a novel audit paradigm likely
to respond to new needs of a very dynamic environment where novel software is contin-
uously developed and integrated into production systems. The traditional model of audit-
ing, based on punctual and discontinuous analyses, becomes increasingly inadequate to
the current dynamics of information and the systems that manage it. The application of
updates and changes to the system configurations can introduce vulnerabilities and leave
an organization susceptible to attacks. Therefore, to keep the data secure, one should
check systems and devices continuously to detect flaws as they are discovered and re-
ported to the organizations [12].

Pinto et al. [46] mention that there is a change in the traditional philosophy of “look
back” audit to a CA paradigm that makes it possible to take corrective actions earlier.
As such, there is a need for organizations to adopt a methodology that allows indepen-
dent auditors to track the occurrence of events over the life of the system. These events,
when monitored in real-time, allow audit parameter deviations to be found and reported,
allowing to increase the speed and effectiveness of the responses by the decision-makers.

Continuous security auditing is intended to ensure real-time monitoring of the systems
and the risks to the company’s assets, not only to assess the current security level as well
as monitor the system in real-time, increasing the efficiency of vulnerability discovery
and mitigation. The information monitoring and review influences the risk approach both
in terms of methodology and tools based on various tests.

Intrusion tests, for instance, help to identify weaknesses and potential improvements
to complement the continuous audit, as they allow the identification of vulnerabilities and

Chapter 3. Vulnerabilities Detection at Run Time and Continuous Auditing 21

with this information simulate the behavior of an attacker. Since it is a highly specialized
and technical type of test, it delivers immense value to organizations with the reported
information. However, they might be limited in target, time, and radius and sometimes
they depend on legal issues. For a continuous process where there is no such intrusive
behavior, vulnerability analysis can be carried out with the aid of automatic tools over
time to observe system status and take corrective actions to fix identified problems. In our
work, we follow this last approach, to continuous monitor Web App while searching for
the introduction of new CORS vulnerabilities.

3.2 CORS Exploitation

Web Apps play an important role in most organizations. CORS is a mechanism that uses
additional HTTP headers to tell a browser to let a Web App running at one origin (do-
main) to have permission to access selected resources from a web server at a different
domain. CORS breaks the limitations imposed by the Same-Origin Policy (SOP) of tra-
ditional HTML, allowing exchanges between various web servers in different networks.
A Web App executes a cross-origin HTTP request when it asks for a resource that has
a different origin (domain, protocol, and port) than its own origin. CORS is mainly im-
plemented with the XMLHttpRequest (XHR), which is supported nowadays by almost
every browser.

According to Chou [23], a webpage can retrieve data from a URL via XHR with-
out refreshing its page. XHR also plays a very important role in AJAX applications.
With AJAX, the JS creates XHR objects that can make requests and receive responses
asynchronously, updating the display as responses are received. For example, consider
Google Maps. When someone goes to Google Maps and searches for a location and
slides the map, the browser uses AJAX to make calls to the server to retrieve the images
that make the map. In this way, the map changes dynamically, but the remainder of the
page is static and does not need to be redrawn with each alteration.

Jorg et al. [49] referred that XHR allows a web page to send arbitrary HTTP requests
to any web server. This is different from just opening an URL or submitting an HTML
form since with XHR the web page has full control over all HTTP headers to address
the sort of issue, the CORS standard was developed to enable controlled cross-domain
requests to be done:

• In a preflight request, the browser asks for access to a resource in a different domain.
It sends an origin header with the source domain (Origin: http://a.com) to the target
web server requesting CORS privileges;

• The target web server may answer with an error message (access denied) or with
a CORS header (such as Access-Control-Allow-Origin: http://a.com) to grant the
access;

Chapter 3. Vulnerabilities Detection at Run Time and Continuous Auditing 22

• Based on the response, the browser proceeds with the execution.

The XHR object has a number of methods and properties. The following are the most
used to perform a Cross-Origin request:

• open: Specifies the properties of the request, but does not actually initiate a con-
nection.

• send: Creates the connection to this property and specifies the function that should
be called when the state changes to ready.

• setRequestHeader: Defines the header value of an HTTP request. It is called af-
ter calling the open() method, but before invoking the send() method. If this
method is called many times with the same header, the values are added to form a
single HTTP request header.

• getAllResponseHeaders: Returns all the response headers, separated by Carriage
Return Line Feed (CRLF), as a string, or returns null if no response has been re-
ceived yet. If a network error happens then an empty string is returned.

• readyState: The ready state is a property of the XHR object. It enables the scripting
code to determine in what state the response from a server is. It has five possible
values:

– 0: The request is uninitialized;

– 1: The request has been set up;

– 2: The request has been sent;

– 3: Waiting for response;

– 4: The response has arrived and is complete.

As mentioned before, under the restrictions imposed by the SOP, XHR can only be
used to access a URL in the same domain. The restriction was eased when CORS ap-
peared. CORS allows developers to send cross-domain requests using similar codes for
requests inside the same domain. The concern about using CORS is that it increases the
chances of cross-site attacks. A hacker can easily use the features of CORS to launch
Cross-Site Request Forgery (CSRF) attacks. Farah et al. [28] describe a CSRF attack as
follows: First, the victim user logs into the target website and gains access. The hacker
then tricks the victim user, who visits a malicious website, into unknowingly running a
malicious script that sents requests through the browser to the target website. Since the
hacker script uses the victim’s privileges to transmit the request, it can access the confi-
dential data of the victim in the target site. This attack is difficult to identify in the system
log as there are no unusual events.

Chapter 3. Vulnerabilities Detection at Run Time and Continuous Auditing 23

Three common vulnerabilities found on CORS are: misconfigured wildcard (*) in the
CORS headers; Trusting pre-domain wildcard as origin; and using XSS to make requests
to cross-origin sites.

The first vulnerability is related to misconfigurations and incorrect usage of wildcards
such as (*), under which domains are allowed to request resources. This is usually set
as default, which means that any domain can access resources on the target site. As an
example, we can consider the request below that is performed by the browser to the target:

GET/api/userinfo.php
Host: www.victim.com
Origin: www.victim.com

When the above request is sent by the browser, the following response might be re-
ceived:

HTTP/1.0 200 OK
Access-Control-Allow-Origin:*
Access-Control-Allow-Credentials:true

In this example, the Access-Control-Allow-Origin header is configured with a wild-
card (*). It means that any domain can access the resources in the target web site.

In Figure 3.1, we can see an example of the exploitation of this sort of vulnerability,
where the attacker can fetch user information like Name, User-ID, and Email-ID and send
this information to an external server. To achieve this, he modifies the REQUEST Origin
to the attacker domain.

Figure 3.1: Tempered origin URL under REQUEST [1].

Since the target site shares information with any site, it can be exploited by us-
ing a domain https://testing.aaa.com (see Figure 3.1). The malicious server of domain
https://testing.aaa.com embeds in the returned pages to the browsers some exploit code
to steal confidential information from the vulnerable application (in www.target.com).
When users open https://testing.aaa.com in the browser, the browser retrieves the sensi-
tive information and sends it to the attacker server.

The second form of CORS is when a misconfiguration allows information sharing with
domain names that are partly validated. For example, consider the following request:

GET/api/userinfo.php
Host: provider.com
Origin: requester.com

Chapter 3. Vulnerabilities Detection at Run Time and Continuous Auditing 24

And the response to the above request would be:

HTTP/1.0 200 OK
Access-Control-Allow-Origin:requester.com
Access-Control-Allow-Credentials:true

Now, imagine that the user browser makes the following request, indicating as Origin
a malicious web server:

GET/api/userinfo.php
Host: example.com
Connection: close
Origin: attackerrequester.com

The unassuming target server would respond with the following answer, allowing
requests from an attacker controlled server:

HTTP/1.0 200 OK
Access-Control-Allow-Origin: attackerrequester.com
Access-Control-Allow-Credentials: true

The reason why this permission might be given is a possible backend badly configured
validation such as the following, which allows any origin to make requests as long as the
domain ends with requester.com:

if ($_SERVER[’HTTP_HOST’] == ’*requester.com’)
{
//Access data
else{ // unauthorized access}
}

In Figure 3.2, the host domain provider.com trusted all origins that ended with host
name requester.com such as attackerrequester.com. So, the attacker tempered the origin
header to attackerrequester.com and proceeded with the request. This can be exploited

Figure 3.2: Response from the REQUEST [1].

the same way as in the first misconfiguration. The attacker can create a new domain with
the name consisting of the whitelisted domain name. Then, he can embed that malicious
site with exploits that will fetch sensitive information from the victim’s site.

Chapter 3. Vulnerabilities Detection at Run Time and Continuous Auditing 25

The third form of attack is related to the fact that a usual defense mechanism that de-
velopers employ against CORS exploitation is to whitelist domains that frequently request
access for information. However, this solution might not be entirely secure because even
if one of the subdomains of the whitelisted domain is vulnerable to other exploits such as
XSS, it can enable CORS attacks to succeed. The following code shows the configuration
in the victim web server that allows subdomains of requester.com to access resources of
provider.com:

if ($_SERVER[’HTTP_HOST’] == ’*.requester.com’)
{
//Access data
else{ // unauthorized access}
}

Lets imagine that users have access to sub.requester.com but not requester.com, and
lets assume that sub.requester.com is vulnerable to XSS.

The attacker can exploit provider.com by using a XSS attack. Two applications exist in
different domains. The provider CORS application is hosted on provider.com and another
application is hosted on pavan.requester.com which is vulnerable to XSS.

Using this vulnerable XSS subdomain, we are able to fetch sensitive information from
provider.com. The attacker injects a malicious JS payload in the “Name” parameter of a
request to pavan.requester.com. When the page loads, the script gets executed and fetches
sensitive information from the provider.com.

3.2.1 Summary of SOP and CORS

Many developers misunderstand the SOP and what CORS brings to the table. There are
many badly informed developers stating that SOP prevents cross-site requests, and there-
fore avoids CSRF. This is not the case! All that SOP does is prevent a response from being
read by another domain (origin). This is irrelevant to whether a CSRF attack is successful
or not. The only time SOP comes into play with CSRF is to prevent any token from being
read by a different domain.

As a conclusion, what CORS does is relax SOP. It does not increase security, as it
simply allows some exceptions to take place. Some browsers with partial CORS support
allow cross-site requests. However, they do not allow custom headers to be appended. As
we saw in the examples, in CORS supported browsers, the Origin header cannot be set,
preventing an attacker from spoofing this information.

Given the above, our solution to detect CORS is not related to additional HTTP head-
ers that CORS uses but instead, our approach crawls the JS code to find interesting strings
related to CORS. As mentioned, CORS uses the JS XHR object to make requests for data
and providing more interactivity to the web page. The intention is to find functions like
open, send, setRequestHeader, getAllResponseHeaders or readyState which represents
that the Web App is using CORS.

Chapter 3. Vulnerabilities Detection at Run Time and Continuous Auditing 26

3.3 Architecture to Support CORS Detection

This section presents the architecture of our solution along with the key concepts and
modules it relies on. The architecture enables the analysis of web pages produced/returned
by a Web App with regards to possible vulnerabilities related to external and internal links,
which are associated with CORS. For the architecture presented, the term external link is
associated with the HTML href attribute of a given external web page URL, which
specifies the linked resource. Hyperlinks require the href attribute because it specifies a
location, i.e., the URL of the page where the link goes to. In the following example, the
link News has a hyperlink to the external resource https://provider.com/news/.

News

An internal link is associated to a resource on the same domain. The attribute src in
a tag is the path to a file or resource that the HTML document wants to reference. For ex-
ample, if we had a custom JS file named script.js and wanted to add its functionality
to our HTML page, we would point to the file script.js in the .html file:

<script src="../news/js/script.js"></script>

For the internal links, as mentioned before, the approach also uses crawling techniques
in the web pages produced/returned by a Web App to look for interesting strings related
to CORS. In particular, it determines if the source code associated with the internal link,
usually a JS or AJAX, contains functions related to CORS, such as the ones presented in
the previous section.

The main components of the architecture are presented in Figure 3.3. It is composed
of three main modules as follows:

1. Web Crawler: this is an engine that navigates through the HTML DOM (Document
Object Model) tree of the web pages, to get nodes that might be of interest to be
further analysed and monitored. Sometimes it is called a spider or spiderbot and is
used for data collection in many application areas. It is able to search, extract and
collect links, data, images, and emails from web sites;

2. Storage: this module is responsible for storing the results from the web crawler
module for future use. All data searched and collected by the web crawler is stored
in a database. It supports the same CA engine to store the audit results and the
current state of web pages produced/returned by the Web App. Storage employs
the traditional relation mode that is a representative data model, suitable as the
underlying model of a Relational Database Management System (RDBMS), which
is based on the principle that all data is stored in tables;

3. Continuous Auditing: this module implements the mechanism that allows CA of the
monitored sites. It is composed of two submodules: Reputation & Assessment and
Site Internal Analysis. The submodules are responsible, respectively, for analysing

Chapter 3. Vulnerabilities Detection at Run Time and Continuous Auditing 27

periodically the external and internal links, and determining the current state of the
web pages produced/returned by the Web App. The first submodule uses a Virus
Total (VT) Application Programming Interface (API) to analyse the external URLs
found. VT is an online tool that allows analysing files and URLs, enabling the
identification of malicious content detectable by antivirus and website scanners.
The second submodule is responsible for detecting CORS callings in the internal
links identified for the Web App. For the detection, it searches for strings related to
CORS in the Web App JS pages.

Each of the modules and submodules has a specific task in the application.

Figure 3.3: Vulnerabilities Detection at Runtime and CA architecture.

3.4 Main Modules

This section provides a more detailed description of the components that form the archi-
tecture.

3.4.1 Web Crawler

The Web Crawler is a program that visits web sites, and obtains their pages plus other
data in order to create indexes, working as a librarian. The crawler looks for information
on the web sites, which it assigns to certain categories. Then, the pages are indexed
and cataloged so that the obtained information is retrievable and can be evaluated. The
crawler works as a service that is programmed to visit sites that have been submitted by
their owners for testing, as new sites or sites that have been updated.

Chapter 3. Vulnerabilities Detection at Run Time and Continuous Auditing 28

Our crawler is capable of navigating through the DOM tree of the web pages. Accord-
ing to the DOM specification, every HTML tag is an object. Nested tags are ”children”
of the enclosing one. All these objects are accessible using JS and we use them to find
the links in the a href tag, for the external links, and script src tag for the internal
links.

3.4.2 Storage

The Storage module employs a database using a relational model. This module stores
the findings collected during the crawling search, i.e., all the external and internal links
found during the analysis of the web pages. This information is stored to facilitate future
analysis since the site is crawled more than once, we associate to each interaction of
information collection a version number. Figure 3.4 shows the database model including
the following tables:

Figure 3.4: Storage database model.

• wa main url: Stores the URL of the web pages of the Web App that will be moni-
tored. It uses a field to store the URL to analyse, another to log the time when the
request was made and one more to save the verdict returned by the Virus Total (VT)
analysis to determine the Web App state.

• wa external url: Keeps all the external URLs that were found during the crawling
phase. It saves the external URLs of the analysed Web App.

Chapter 3. Vulnerabilities Detection at Run Time and Continuous Auditing 29

• wa external url status: Stores the sources of the VT analysis and the status of the
analysis. It has fields to save the date of the analysis, the source of the analysis and
the status of the URL as benign or malign.

• wa external url count: Maintains the information related to indicators like execution
times and the number of URLs.

• wa internal url: Stores all the internal links found during the crawling phase of the
web pages, and that were returned by the Web App.

• wa internal url count: Saves the information related to CORS on the internal links
found during the crawling phase of the CA module and indicators like execution
times, number of URLs and XHR methods called.

3.4.3 Continuous Auditing

The Continuous Auditing module ensures real-time monitoring of the Web App. This
module works after a Web App is first analysed. It uses the Operating System (OS)
Task Scheduler to periodically perform a routine task, which supports the analysis of the
URLs of the WA already stored. It is composed of two submodules called Reputation &
Assessment and Site Internal Analysis.

The CA module collects the URLs from the Web App stored in the database and
already analysed. Then, it will crawl the Web App pages to verify the prior assessment of
external links by resending the links found during the new crawling to the VT using the
Reputation and Assesment submodule.

The Site Internal Analysis submodule will search for internal links and re-analyse
them to detect CORS callings. It will search for interesting functions in the web pages
produced by the Web App. The submodule performs a static analysis of the code. It
searches for the JS script src tag to get the URLs and carry out a crawling to web
pages returned by the Web App to find if there are new interesting strings related to
CORS calls. It searches all the interesting strings related to JS XHR objects, which have
the methods open, send, setRequestHeader, getAllResponseHeaders or
readyState are quered. If these strings are found then it is possible that the Web
App has a CORS vulnerability.

In both submodules, new links may be found, either due to changes made by the
developers or by an attacker.

Chapter 3. Vulnerabilities Detection at Run Time and Continuous Auditing 30

Chapter 4

Implementation of VuDRuCA

This chapter presents our current implementation of the proposed architecture, in a tool
we call VuDRuCA. Section 4.1 describes the main components of the tool and explains
some aspects of the code we developed, and Section 4.2 gives an example of the tool
execution and CORS vulnerability detection.

VuDRuCA is a tool for CA in Web Apps regarding its external and internal links. As
a web server PHP interpreter solution to store and run the Web App, we used a free and
open-source cross-platform stack package developed by Apache Friends named XAMPP
(Windows, Apache, MySQL, PHP and Perl). It consists of an Apache HTTP Server that
interprets scripts written in PHP and Perl programming languages. Since most actual web
server deployments use the same components as XAMPP, it makes transitioning from
a local test server to a live server possible. Since XAMPP supports PHP, we used this
open source general-purpose scripting language to build our tool, considering that it is
especially suited for web development and can be embedded into HTML.

4.1 Main Modules

As a backend system storage model, the tool uses a MySQL Relational Database Man-
agement System (RDBMS). Next, we will describe the modules that compose it:

• Web Crawler module: this module uses the Virus Total (VT) API and the PHP lan-
guage with the Client URL Library (CURL) to navigate on HTML DOM tree of
the Web Apps. The crawler searches for external and internal links. Therefore,
each page (HTML and PHP) of the Web App is visited by the crawler, looking for
internal and external links to store them in the database, through the storage mod-
ule. CURL provides a library (libcurl) for transferring data using various protocols,
including HTTP and HTTPS, which are the ones we need to focus on.

• Storage module: this module uses a MySQL RDBMS to create, update, administer
and interact with a relational database. All the external and internal links, the results

31

Chapter 4. Implementation of VuDRuCA 32

of the VT analysis and the detection of CORS methods are stored on database tables
with the associated classification (malign/benign, CORS detected/not detected).

• Continuous Monitoring module: this module is responsible for the CA monitoring
of the analysed Web Apps. All the URL links of the Web App stored in the database
are crawled once after the first analysis takes place. The process to find external and
internal links will be repeated periodically. To do this, the OS task scheduler is used
to call a routine every 24h. This way, for the links that already exist in the database,
the module executes two tasks. First, it requests to VT the current state of the
external links. To do so, VT receives a link and performs an inspection over 70
antivı́rus scanners and URL/domain blacklisting services. Second, it analyses the
JS files associated with the internal links in order to find CORS vulnerabilities.

• Console to display warnings: For the external links the tool will give a verdict based
on the VT result with color:

– Green: The external link was analysed by VT and is not malicious.

– Red: The external link was analysed by VT and is classified as malicious by
antivirus sources.

– Black: The tool did not find external links in the Web App.

For the internal links and CORS findings, the tool will give a verdict with color:

– Green: The internal links were checked and there are no matches for CORS.

– Red: The internal links were checked and there are matches for CORS.

– Black: The analysis did not find internal links in the Web App.

For the external links, it uploads, scans and returns a report without the need of using
the VT website interface. PHP scripts interact with the VT public interface and access the
information generated by it. In order to use the API, we sign up with the VT Community
and get a public API key that is used in all scripts. The scripts resort to the CURL library
to transfer data from the Web App. For the internal links, we use a method that searches
for interesting strings related to CORS.

Basically, VuDRuCA has two principal routines: Main engine and CA. Figure 4.1
illustrates the former and Figures 4.2, 4.3, 4.4 represent the later.

In the next two sections, we will describe the routines that were used in the VuDRuCA
main engine and the 3 routines that constitute the CA engine.

4.2 Main Engine Routines

The main engine carries out the analysis of the Web Apps submitted to VuDRuCA. Next,
we will describe the five routines that compose the engine according to Figure 4.1.

Chapter 4. Implementation of VuDRuCA 33

Figure 4.1: VuDRuCa modules routines.

Figure 4.2: VuDRuCA CA for main Web App URL routine.

• Web App main URL: This routine is responsible for the analysis of the main URL
of the Web App. The main URL is sent to VT to be checked. To analyse the URL,
VT will perform a scan of the site associated with the URL and then it will return a
report describing the main findings.

Chapter 4. Implementation of VuDRuCA 34

Figure 4.3: VuDRuCA CA for external Web App links routine.

Figure 4.4: VuDRuCA CA for internal Web App links routine.

• CURL & JSON Decode for main URL: The VT report is returned in a JSON re-
sponse. It needs to be parsed to get the values to be served in an associative array.
For our study, the keys that are required are the result, detect and verdict. The
information is then stored in the database.

• Crawl for Web App external links: After analysing the main URL, this routine
crawls the files of the Web App to find external links. To do this, it parses the
DOM tree of the analysed URL to find the tag attribute href. The found URLs are
classified as external if they have http:// or https://. The external links will be sent
to VT to perform a scan and get a report as for the main URL Web App.

• CURL & JSON Decoder: The returned JSON response is also parsed to obtain the
verdict for the external links as benign or malign.

• Crawl for Web App internal links: If a URL is classified as internal then the cor-
responding DOM tree is searched to find URLs on script tags. All the inter-

Chapter 4. Implementation of VuDRuCA 35

nal URLs are parsed to find strings related to CORS. A few examples are: cors,
XMLHttpRequest, open, setRequestHeader, getAllResponseHeaders,
send and readyState. The results are also stored in the database.

4.3 Continuous Auditing Engine Routines

The CA engine consists of three routines. One routine serves to crawl the Web App’s
main URLs already entered in the database (Figure 4.2). The other two routines allow
the CA engine to check the external and internal links of the Web Apps (Figures 4.3 and
4.4). The method used to crawl is similar to the one used in the first analysis (described in
the previous section). It uses CURL and the VT API for the external links and interesting
CORS strings for the internal links.

• Continuous Auditing routine for main Web App URLs: The routine for the main
URL analysis uses the same approach as the first analysis. First, it gets the Web
Apps URLs from the database and performs a scan, followed by producing a report
using the VT API. After it parses the returned JSON response to get the values for
the keys result, detected and verdict.

• Continuous Auditing routine for external URLs: This routine gets all the main URLs
from the database. As performed by the main engine routine, it uses a crawler to
get the links passed on the href attribute and sends them to be analysed by the
VT API. The external links found are saved to compare with the initial analysis and
find if there are new external links in the Web Apps.

• Continuous Auditing routine for internal URLs: This routine obtains all the URLs
from the database and uses the crawler to get the links passed on the src attribute.
It then verifies if these links are performing CORS calls or if there are more new
internal links that do a CORS call.

1 $sql5 = "SELECT * FROM db_site.webapp_to_analyse WHERE url_a=’$url_a’;";
2
3 $result = $conn->query($sql5);
4
5 if ($result->num_rows != 0)
6 {
7 $message=($url_a . " is already analysed and in continuous auditing!!!!");
8 echo "<script type=’text/javascript’>alert(’$message’);</script>";
9 }

Listing 4.1: Verifying if the Web App is already analysed and in continuous auditing.

Next, we will present some examples of the PHP code that implements the described
routines. The first subroutine determines if the main URL of the Web App is already
in the database since it is a core task of the solution is the CA. If the Web App URL is

Chapter 4. Implementation of VuDRuCA 36

already in the database, then a CA is in course. A subroutine using a SQL query will get
all the Web App URLs already stored and analysed to perform this check (Listing 4.1).

If the URL for the Web App to analyse is not in the database, a subroutine will check
if the request follows the HTTP format, using a regular expression (Listing 4.2).

1 if(!preg_match(’/\b(?:(?:https?):\/\/|www\.)
[-A-Z0-9+&@#\/%=˜_|$?!:,.]*[A-Z0-9+&@#\/%=˜_|$]/i’, $url_a))

2 {
3 echo "<h3>";
4 echo "Input value is not an url (need to begin with http:// or https://)";
5 echo "</h3>";
6 }
7 else
8 {
9 echo "<h3>";

10 echo "Time:\n";
11 print_r($date_time);
12 echo "
";
13 print_r("Main page: " . $url_a);
14 echo "</h3>";
15 }

Listing 4.2: Check if the Web App URL is in HTTP format.

Next, the VT API is called to perform a scan of the main URL using CURL facilities
(Listing 4.3).

1 $scan_url_a = array(’apikey’ => $virustotal_api_key,’url’=> $url_a);
2 $ch = curl_init();
3 curl_setopt($ch, CURLOPT_URL, ’https://www.virustotal.com/vtapi/v2/url/scan’);
4 curl_setopt($ch, CURLOPT_POST, True);
5 curl_setopt($ch, CURLOPT_VERBOSE, 1);
6 curl_setopt($ch, CURLOPT_RETURNTRANSFER ,True);
7 curl_setopt($ch, CURLOPT_POSTFIELDS, $scan_url_a);
8 $result=curl_exec ($ch);
9 $status_code_scan_vt = curl_getinfo($ch, CURLINFO_HTTP_CODE);

Listing 4.3: VT API scan request using CURL.

After performing the scan, a report is generated and stored in an associative array (Listing
4.4).

1 $report_url_a = array(’apikey’ => $virustotal_api_key,’resource’=> $url_a);
2 $ch= curl_init();
3 curl_setopt($ch, CURLOPT_URL, ’https://www.virustotal.com/vtapi/v2/url/report’);
4 curl_setopt($ch, CURLOPT_POST, True);
5 curl_setopt($ch, CURLOPT_VERBOSE, 1);
6 curl_setopt($ch, CURLOPT_ENCODING, ’gzip,deflate’);
7 curl_setopt($ch, CURLOPT_USERAGENT, "gzip, My php curl client");
8 curl_setopt($ch, CURLOPT_RETURNTRANSFER ,True);
9 curl_setopt($ch, CURLOPT_POSTFIELDS, $report_url_a);

10 $report_vt_result_url_a=curl_exec($ch);
11 $report_vt_status_code_url_a = curl_getinfo($ch, CURLINFO_HTTP_CODE);

Listing 4.4: VT API report request using CURL.

In order to get relevant information from the response, we must decode and parse it from
the returned array named scans. The important keys for the classification of the site are
result and detected. If the value for the key detected is 1 then the verdict is
true, which means that the site is malign (Listing 4.5).

Chapter 4. Implementation of VuDRuCA 37

1 $report_json_url_a = json_decode($report_vt_result_url_a, true);
2 $scan_url_a = $report_json_url_a[’scans’];
3 $value = ’’;
4 $result = ’’;
5 $detected = ’’;
6 $veredict = false;
7
8 foreach ($scan_url_a as $value)
9 {

10 $source = key($scan_url_a);
11 $result = $value[’result’];
12 $detected = $value[’detected’];
13
14 switch($detected)
15 {
16 case 1:
17 echo($source . " classification: " . $result . "");
18 echo "
";
19 $verdict = true;
20 break;
21 }
22 next($scan_url_a);
23 }
24 unset($value);

Listing 4.5: Parsing the associative array to check the verdict.

The timestamp and verdict results will be stored in a database table for the Web App
main URL analysis. After the analysis of the main Web App URL, another subroutine
will crawl the main URL to find the external and internal links. The subroutine uses the
DOM tree to find nodes with a tag a and attribute href. Using a regular expression it is
possible to identify if the link found is external or not (Listing 4.6).

1 $dom = new DOMDocument()
2 @$dom->loadHTML($html);
3
4 foreach($dom->getElementsByTagName(’a’) as $link)
5 {
6 $external_link = $link->getAttribute(’href’);
7
8 if (preg_match(’/\b(?:(?:https):\/\/|www\.)[-A-Z0-9+&@#\/%=˜_|$?!:,.]*
9 [A-Z0-9+&@#\/%=˜_|$]/i’, $external_link))

10 {
11 ...

Listing 4.6: Crawl the DOM tree to find the href attribute.

All the links classified as external will be sent to VT to be scanned and get a final re-
port. The VT API will use CURL to get a JSON response. The returned report will
be parsed to get the key:value result, as explained previously for the main Web App
URL. Therefore, this result will be used to get the verdict benign or malign using the
same process as for the main Web App URL. The external links found are stored on the
database. For the internal links the tool will perform a CORS analysis. For this analysis it
will crawl the DOM tree to find the tag script and attribute src. All the links on this
node are parsed to find interesting strings related to CORS, namely the methods cors,
XMLHttpRequest, open, setRequestHeader, getAllResponseHeaders, send
and readyState. In Listing 4.7 we can see the piece of code responsible to detect this

Chapter 4. Implementation of VuDRuCA 38

interesting strings.

1 $scripts = $dom->getElementsByTagName(’script’);
2
3 foreach($scripts as $script)
4 {
5 $scriptSrc = $script->getAttribute(’src’);
6
7 if ($scriptSrc!=’ ’)
8 {
9 $ch1 = curl_init($scriptSrc);

10 curl_setopt($ch1, CURLOPT_URL, $scriptSrc);
11 curl_setopt($ch1, CURLOPT_RETURNTRANSFER, 1);
12 curl_setopt($ch1, CURLOPT_CONNECTTIMEOUT, 30);
13 $html = curl_exec($ch1);
14
15 $dom = new DOMDocument();
16 @$dom->loadHTML($html);
17
18 $usingCORS = substr_count($html, "cors");
19 $usingXHRCount = substr_count($html, "XMLHttpRequest");
20 $usingXHROpen = substr_count($html, "open");
21 $usingXHRSetRequestHeader = substr_count($html, "setRequestHeader");
22 $usingXHRGetAllResponseHeaders = substr_count($html, "getAllResponseHeaders");
23 $usingXHRSend = substr_count($html, "send");
24 $usingXHRReadyState = substr_count($html, "readyState");
25 ...

Listing 4.7: Crawling for CORS strings.

A flag is used to identify CORS methods and print the result related to the detection. For
the CA auditing engine, we employ three routines. One for the main, other for the external
and one more for the internal links which are using a technique similar to the presented
before.

4.4 Example of Execution and Detection Case

This section presents an execution example, for the approach and architecture we propose.
The user starts by introducing a URL of the Web App to analyse in the text box ”Enter
the URL to analyse” and clicks on the ”Start scan” button (see Figure 4.5). The tool will
automatically begin the crawling of the Web App to find external links and internal links.
The main interface also presents the last three Web Apps that were analysed and their
status, in this case benign (see Figure 4.5).

All the external links are sent to VT using a public API. When the analysis completes,
the result is presented as in Figure 4.6. If the external site is not identified as malicious,
the final verdict is benign (green), otherwise, it is malign (red).

The internal links are analysed to find interesting strings related to CORS. The results
of this analysis are showed in Figure 4.7. The CORS functions found are identified in red
color.

For the CA of the analysed Web App, the model uses a Task Scheduler routine every
24h as illustrated in Figure 4.8. This routine will check the Web App to find new external
links and CORS vulnerabilities in the internal links. PHP scripts will run as programed in

Chapter 4. Implementation of VuDRuCA 39

Figure 4.5: Main interface.

Figure 4.6: Rep. and Ass. submodule results for the https://www. greenanysite.com/.

Figure 4.7: Site CORS internal analysis result for the https://www. greenanysite.com/.

the task scheduler to perform a CA.

Chapter 4. Implementation of VuDRuCA 40

Figure 4.8: Task Scheduler routine.

Chapter 5

Evaluation

The main objective of this chapter is to test and evaluate the capabilities of the VuDRuCA
tool. The tool detects possible malicious external links and CORS invocation in the inter-
nal links of the Web Apps analysed. After the site’s first analysis, it uses a CA approach
to evaluate periodically both types of links and report their state.

For our purpose, a malicious link is related to a potential compromise of a Web App
that is attacked using an injection of a malicious input, for example, an HTML injec-
tion that inserts a malicious instruction through the attribute href from the tag a or the
attribute src on a tag script that points to a malicious site. Concerning this, it is sup-
posed that the tool is capable of detecting if a Web App has external links pointing to
malicious sites or is invoking Cross-Domain requests. Thus, some questions should be
answered:

1. Are the external links of the Web App trustworthy?

2. Which internal links are using CORS?

3. Is the CA module efficient while analysing Web Apps?

5.1 AJAX Use-Case Characterization

There are some problems that developers can observe while building a Web App, such as
a browser that refuses to access a remote resource. Usually, this happens when the Web
App executes an AJAX Cross-Domain request with the jQuery interface, a Fetch API or
a plain XMLHttpRequest (XHR). As a result, the AJAX request is not performed and
data is not retrieved because the browser does not permit such access.

This issue is related to the security policy that defines the rules of how a web page can
access an external resource (e.g., fonts, AJAX requests). Under the SOP, web browsers
do not allow a web page to access resources whose origin differs from that of the current
page. As explained before, the origin is considered to be different when the scheme, host-

41

Chapter 5. Evaluation 42

name or port of the resource does not match with the page. Overcoming the limitations
of SOP security is possible using CORS.

CORS is a mechanism that defines a procedure in which the browser and the web
server interact to determine whether to allow a web page to access a resource from a
different origin. Nowadays, many of the AJAX sites use Cross-Domain requests. Also,
the AJAX attack surface is larger than “normal” applications. All the typical attacks work
against the AJAX interface, as it is made easier by the large amounts of client-side code
that performs business logic and has to understand the application flow.

AJAX uses a XHR object for all communication with a server-side application, fre-
quently a web service. A client sends a request to a specific URL on the same server as
the original page and can receive any kind of reply from the server. These replies are often
snippets of HTML, but can also be XML, JSON, image data, or anything else that JS can
process. XHR objects retrieve the information of all servers on the web which could lead
to various other attacks.

To evaluate VuDRuCA over our AJAX use-case, we created a list of 100 AJAX sites.
The list was built based on three sources:

• AJAX Goals at: ”http://www.ajaxgoals.com/ajax-applications.html”

• BuiltWith at: ”https://trends.builtwith.com/websitelist/AJAX-Libraries-API”

• Kiko at: ”http://kiko.com/html/social/index.html”

After collecting the 100 AJAX sites, we analysed all of them with our tool and the results
are presented in the tables of Section 5.2. Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6, give an
overview of these 100 Web Apps, whereas the remaining tables allow for a more detailed
study of the behavior of the tool.

5.2 Experimental Phases

The evaluation was carried out in 3 phases. There was a first phase in which the 100 Web
Apps were analysed regarding the existence of external and internal links. In the second
phase, a subset of 30 Web Apps was selected to be categorized in relation to the number
of external and internal links, and execution times. Finally, 10 Web Apps of the group of
30 were used to test the CA mechanism.

5.2.1 First Phase: 100 Web Apps

This phase was carried to verify the specificity of VuDRuCA. As described earlier, the
tool was designed to identify external and internal links using crawling techniques. To
demonstrate that it is possible the detection of malicious links, which are available for the
user to click, only the href attribute was checked. From the tests it was observed that

Chapter 5. Evaluation 43

Nr. URL
External

links VT analysis
a href

Internal
links CORS analysis
script src

1 https://www.chegg.com/play/ Benign Without Links

2 https://bobshideout.com/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

getAllResponseHeaders;
send;

readyState.
3 http://www.virtual-whiteboard.co.uk/ Benign Without Links

4 https://www.formassembly.com/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

getAllResponseHeaders;
send;

readyState.
5 https://tiddlywiki.com/ Without Links Without Links

6 http://www.greenanysite.com/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

send;
readyState.

7 https://www.talkdigger.com/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

getAllResponseHeaders;
send;

readyState.
8 https://study.com/ Benign Without CORS
9 https://map.search.ch/ Benign Without Links

10 http://www.sudokucraving.com/game.php Without Links Without Links

Table 5.1: List of 100 AJAX sites analysed by the VuDRuCA tool - 1/6 .

the implemented routine on VuDRuCA is able to find this type of attribute. In addition,
for the detection of CORS, the tool looked into scripts to verify the presence of methods
that make requests to remote resources.

From the 100 AJAX Web Apps reviewed, some are classified as not having external
links in the sense that they do not resort to the href or script attribute. Some tests
showed that Web Apps main URL can pass links using other attributes such as: img,
canvas, link, iframe, object, embed and link. However, for the external links,
these are not available for the user to click, thus being outside of our study. Regarding
internal sites, the considered attribute was the src. This attribute was generally used for
links and internal site functionalities.

The results are shown in Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 (note that the table
had to be divided in several subtables that are displayed in the following pages). If
the tool found that the URL has external links, then the result from the VT analysis
should indicate either Benign or Malign. If the Web App does not have external links
then the result should be Without links. For the internal links, the tool lists the interesting
strings associated with CORS, like XMLHttpRequest, open, setRequestHeader,

Chapter 5. Evaluation 44

Nr. URL
External

links VT analysis
a href

Internal
links CORS analysis
script src

11 https://www.t-mobile.com/ Withou Links

CORS;
XMLHttpRequest;
setRequestHeader;

send;
readyState.

12 http://www.rpad.org/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

send;
readyState.

13 https://roundcube.net/ Benign Without Links

14 https://www.education.com/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

send;
readyState.

15 https://www.rapha.cc/eu/en/ Benign Without CORS
16 https://www.protopage.com/ Benign Without CORS
17 http://www.pressdisplay.com/pressdisplay/pt/Interstitial.aspx Benign Without CORS
18 http://www.pitstreet.com/cgi-bin/pitstreet/login.pl Benign Without Links
19 http://code.jalenack.com/periodic/ Benign Without Links
20 https://dvd.netflix.com/SignIn?nextPage=/Top100 Benign Without CORS

Table 5.2: List of 100 AJAX sites analysed by the VuDRuCA tool - 2/6 .

getAllResponsesHeaders, send and readyState.
If the tool detects CORS links, the tables present the XHR methods found. If the Web

App has internal links but is not using CORS then the analysis is classified as Without
CORS. Lastly, a Web App without internal links is displayed as Without Links. Overall,
the results showed that there were no malign external sites discovered in the 100 Web
Apps. For the internal links, there were 20 Web Apps that were using CORS methods, 17
that had internal links but without CORS methods, and the remaining 63 Web Apps had
no links associated with scripts.

5.2.2 Second Phase: 30 Web Apps

After analysing the 100 Web Apps, the second phase processed a sample of 30 Web Apps.
This selection is due to the fact that some sites do not use the elements required for the
CA analysis and sites without links do not contribute to the intended analysis. We divided
the 30 sites into different categories considering the execution times of the VuDRuCA
analysis as well as the number of external and internal links found by the tool.

The results are presented in Table 5.7 and they show that the 30 Web Apps belong
to 12 categories (Column 3) regarding technologies and services. VuDRuCA found 1258
external links, 238 internal links (Columns 4 and 5) and takes about 2563 sec. (43 min.)
on average to analyse a site. Regarding the median, we observed that the tool takes 1097
sec. (18 min.) to analyze the site with 19 external links and 7 internal links. The standard
deviation shows a significant variability on the time spent testing a site (3924 sec. or

Chapter 5. Evaluation 45

Nr. URL
External

links VT analysis
a href

Internal
links CORS analysis
script src

21 https://www.movietickets.com/ Benign Without CORS

22 https://www.toysrus.com/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

send;
readyState.

23 http://www.xgames.com/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

send;
readyState.

24 http://mawisoft.com/ Benign Without Links
25 http://www.informationsarchiv.biz/ Benign Without Links
26 http://www1.xfiles.hotels-x.net/search/compare/hotels/index.html Benign Without Links
27 https://home.pandorabots.com/home.html Benign Without Links
28 https://www.google.com/maps Benign Without CORS

29 https://www.target.com/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

send;
readyState

30 http://paramoreredd.com/ Benign Without CORS
31 http://htmledit.squarefree.com/ Benign Without Links
32 https://www.dutchpipe.org/ Benign Without CORS
33 https://1976design.com/blog/ Bening Without CORS
34 http://digg.com/spy Benign Without Links
35 http://diegogiacomelli.com.br/ Bening Without CORS
36 http://www.calendarhub.com/ Without Links Without Links
37 http://www.hotels-balearic-islands.com/en/bandnews.html Without Links Without Links
38 https://del.icio.us/ Without Links Without Links

39 https://www.foxsports.com/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

send;
readyState

40 https://www.amazon.com/ Benign Without Links

Table 5.3: List of 100 AJAX sites analysed by the VuDRuCA tool - 3/6 .

65 min.). It is also possible to verify that each site analysed has a standard deviation of
63 external links and 6 internal links. For the 30 AJAX sites, we chose 12 categories
regarding technologies and services used by the Web Apps.

The Business category contains sites that provide the latest business news on stock
markets, financial and earnings. They give a view of the world markets in streaming,
charts, stock tickers and quotes. Career is related to employment. The sites allow em-
ployers to post job requirements for a position to be filled by candidates. Games includes
all gaming platforms such as betting, lotteries, and casinos. The House category includes
household products and real estate. Mobile has mobile brandmarks and mobile operators.
Movies is related to streaming movies platforms. News offer current news and opinions,
such as those sponsored by newspapers and general-circulation magazines. Photo in-
cludes store and share photos platforms. The Shopping category contains web apps that

Chapter 5. Evaluation 46

Nr. URL
External

links VT analysis
a href

Internal
links CORS analysis
script src

41 https://www.enozom.com/ Benign Without CORS
42 https://www.zillow.com/ Without Links Without Links

43 https://finance.yahoo.com/tech/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

send;
readyState

44 https://www.flickr.com/ Without Links Without CORS
45 https://search.yahoo.com/ Without Links Without Links
46 http://www.aventureforth.com/?p=13 Without Links Without Links
47 http://www.tagworld.com/ Without Links Without Links
48 https://basecamp.com/retired/tadalist Benign Without CORS
49 http://sproutliner.com/ Without Links Without Links

50 https://www.houzz.com/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

send;
readyState

51 https://www.bing.com/maps?FORM=LGCYVD Without Links Without Links
52 https://outlook.live.com/owa/ Benign Without CORS

53 https://www.clickondetroit.com Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

send;
54 https://24sevenoffice.com/uk/ Benign Without Links
55 https://maps.a9.com/ Without Links Without Links
56 https://www.objectgraph.com/ Without Links Without Links
57 http://ajaxwrite.com/ Benign Without Links

58 https://www.ebay.com/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

send;
59 https://www.ask.com/ Without Links Without Links
60 http://askalexia.com/ Benign Without Links

Table 5.4: List of 100 AJAX sites analysed by the VuDRuCA tool - 4/6 .

feature on-line promotion or sale of general goods and services such as electronics, flow-
ers, jewelry and music. It also includes on-line auction services such as eBay, Amazon,
Priceline. Social represents platforms to build social networks or social relations among
people who share similar interests, activities, backgrounds or real-life connections. Sports
has web apps that pertain to recreational sports and active hobbies like fishing, hunting,
jogging, as well as organized, professional and competitive sports. Blogs are platforms
where a writer or a group of writers share their views on an individual subject. The re-
sults show that most of the Web Apps are categorized as Shopping and Blogs followed by
Social category. From the analysis of Table 5.7 we can conclude that all categories use
CORS which makes these Web Apps vulnerable, opening a range of attack surfaces.

Chapter 5. Evaluation 47

Nr. URL
External

links VT analysis
a href

Internal
links CORS analysis
script src

61 https://www.backbase.com/ Without Links Without Links
62 http://www.bloxpress.org/ Benign Without CORS
63 https://www.box.com/ Benign Without Links

64 http://www.colr.org/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

send;
readyState

65 https://www.sephora.com/ Benign Without CORS
66 http://www.toolani.de/ Without Links Without Links
67 http://www.podcast-tuneup.com/ Without Links Without Links
68 http://www.adworks.ro/ Without Links Without Links
69 http://www.madebysofa.com/ Without Links Without Links
70 http://www.monofactor.com/ Without Links Without Links
71 http://www.alexbuga.com/ Without Links Without Links
72 http://www.panic.com/coda/ Without Links Without Links
73 http://www.arcinspirations.com/ Without Links Without Links
74 http://www.dibusoft.com/ Without Links Without Links
75 http://www.jasonjulien.com/ Without Links Without Links
76 http://www.engageinteractive.co.uk/ Without Links Without Links
77 http://www.jwhanif.net/ Without Links Without Links

78 https://br.wordpress.com/ Benign

CORS;
XMLHttpRequest;

open;
send;

readyState

79 http://helldesign.net/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

send;
readyState

80 http://www.nebonmedia.com/ Without Links Without Links

Table 5.5: List of 100 AJAX sites analysed by the VuDRuCA tool - 5/6 .

5.2.3 Third Phase: 10 Web Apps for CA

Finally, we selected 10 sites out of the 30 to be monitored in CA. We run VuDRuCA for
5 days with a CA every 24h and registered the results in Table 5.8. We considered the
first day as the evaluation baseline, and in the subsequent days the checks were repeated
to determine if the Web Apps suffer any changes.

To identify the Content Management Systems (CMS) used by the Web Apps that are
analysed in CA, we employed the tool Wappalyzer that is a cross-platform utility that
uncovers the technologies utilized on websites. For the sample we can conclude that
WordPress is largely the most common CMS.

After reviewing the CA results over the 5 days, we found that there are some changes
in the number of internal and external links in a few of the Web Apps reviewed. Although
the differences found are not significant, we can see that internal and external links are
introduced in Web Apps. For example, for the external links, we discovered that Web
Apps 4, 39 and 50 suffered a change in the number of these links. The baseline of external
links for Web App 4 was 16 on day 1 but on day 4 the number increased to 17. For site

Chapter 5. Evaluation 48

Nr. URL
External

links VT analysis
a href

Internal
links CORS analysis
script src

81 http://www.pikaboo.be/ Without Links Without Links
82 http://www.mariusroosendaal.com/ Benign Without Links
83 http://paramoreredd.com/ Benign Whitout Links
84 http://www.mariusroosendaal.com/ Benign Without Links
85 http://dragoninteractive.com/ Benign Whitout Links

86 https://www.click2houston.com Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

send;
readyState

87 http://www.cssmoon.com Without Links Without Links
88 http://www.playgroundblues.com/ Without Links Without Links
89 http://kyanmedia.com/ Without Links Without Links
90 http://www.komodomedia.com/ Benign Without Links
91 https://www.click2houston.com Without Links Without Links
92 http://www.vitamin-j.de/ Without Links Without Links
93 http://cliframework.com/ Without Links Without Links
94 http://www.h4x3d.com/ Without Links Without Links
95 http://www.designflavr.com/ Benign Without Links
96 http://www.trashstars.com/ Benign Without Links
97 http://www.authenticstyle.co.uk/ Withou Links Withou Links
98 http://www.jedarecords.it/ Without Links Without CORS
99 http://www.djfolio.com/ Withou Links Without Links

100 https://br.wordpress.com/ Benign

CORS;
XMLHttpRequest;

open;
setRequestHeader;

getAllResponseHeaders;
send;

readyState.

Table 5.6: List of 100 AJAX sites analysed by the VuDRuCA tool - 6/6 .

39 the baseline was 67 external links, however, on day 2 we observed 71, on day 3 it was
70, and on day 4 it returned to 67. For Web App 50 the base is 230 and we observed 233
external links on day 2 and 236 on day 3. In these cases, the introduced links continue to
be classified as benign. This result means that these links were intentionally introduced
by Web Apps developers while performing updates. If results were obtained on external
links classified as malicious, this could mean that malicious users injected code on the
Web Apps.

For the internal links, only a change on Web App 78 was identified. The baseline for
this Web App was 3 internal links but then it changed to 2 on days 2, 3 and 4. In this case, a
reduction in the number of internal links should signify code updates. The CA evaluation
also had the goal to show that Web Apps have their code constantly changed. However,
being the Web App vulnerable to various types of injection attacks, this could lead to
unintended changes. These are really the most dangerous and exploited by malicious
actors.

To summarize, we can state that VuDRuCA is able to analyse external links passed
in the href attribute of the tag a using the VT API. Of the analysed Web Apps, no
malicious external links were found. Regarding the detection of internal links passed in

Chapter 5. Evaluation 49

Nr. URL Category
Nr.

External
links

Nr.
Internal

links

Execution
Time (sec.)

2 https://bobshideout.com/ Blogs 1 13* 62
4 https://www.formassembly.com/ Social 16 31* 967
6 http://www.greenanysite.com/ Shopping 3 6* 162
7 https://www.talkdigger.com/ Blogs 25 6* 1559
8 https://study.com/ Career 24 11 1363
11 https://www.t-mobile.com/ Mobile - 13* 4
12 http://www.rpad.org/ Games 36 7* 2233
14 https://www.education.com/ Career 12 9* 709
15 https://www.rapha.cc/eu/en/ Shopping 42 12 2690
20 https://dvd.netflix.com/SignIn?nextPage=/Top100 Movies 3 7 183
21 https://www.movietickets.com/ Movies 8 5 497
22 https://www.toysrus.com/ Shopping 173 5* 10877
23 http://www.xgames.com/ Sports 60 4* 3187
29 https://www.target.com/ Shopping 5 7* 224
32 https://www.dutchpipe.org/ Web Development 1 1 31
33 https://1976design.com/blog/ Blogs 36 3 1725
35 http://diegogiacomelli.com.br/ House 21 5 1227
39 https://www.foxsports.com/ Sports 69 13* 4061
41 https://www.enozom.com/ Mobile 4 12 253
43 https://finance.yahoo.com/tech/ Business 32 12* 1757
44 https://www.flickr.com/ Photo - 2 1
50 https://www.houzz.com/ House 230 4* 14442
58 https://www.ebay.com/ Shopping 227 9* 13989
62 http://www.bloxpress.org/ Web Development 5 2 282
64 http://www.colr.org/ Photo 4 10* 228
65 https://www.sephora.com/ Shoping 1 5 64
78 https://br.wordpress.com/ Social 73 3* 4620
79 http://helldesign.net/ Web Development 61 12* 3887
86 https://www.click2houston.com/ News 21 8* 1308

100 https://www.chasethetrend.com/ News 89 11 5657

Total 1258 238 76881
Average 42 8 2563
Median 19 7 1097

Standard Deviation 63 6 3924

Table 5.7: Characterization of 30 AJAX sites for CA (* Link with CORS).

the src attribute of the tag script, we can conclude that many of the Web Apps relax
the SOP using the CORS technique. We can also affirm that the VuDRuCA CA module
is efficient in the analysis of Web Apps, taking into account that it detects the alteration
of the links passed in the attributes of the referred tags. Although a 24h period has been
chosen for the period of the analysis, it can be fine-tuned according to the rigor required
for the audit.

Chapter 5. Evaluation 50

B
aseline

C
A

D
ay

1
2

3
4

5

N
r.

C
M

S
Int.

links
E

xec.
tim

e
E

xt.
links

E
xec.

tim
e

Int.
links

E
xec.

tim
e

E
xt.

links
E

xec.
tim

e
Int.

links
E

xec.
tim

e
E

xt.
links

E
xec.

tim
e

Int.
links

E
xec.

tim
e

E
xt.

links
E

xec.
tim

e
Int.

links
E

xec.
tim

e
E

xt.
links

E
xec.

tim
e

2
Facebook

13*
1

1
61

13*
5

1
61

13*
1

1
61

13*
2

1
61

13*
1

1
61

4
W

ordPress
34*

26
16

915
34*

24
16

916
34*

24
16

917
34*

21
17

976
34*

21
17

976
14

Facebook
9*

5
13

762
9*

4
13

763
9*

4
13

764
9*

4
13

762
9*

5
13

762
20

B
ootstrap

7
1

3
185

7
1

3
183

7
1

3
184

7
1

3
186

7
1

3
185

35
R

uby
on

R
ails

5*
2

21
1225

5*
3

21
1221

5*
3

21
1223

5*
2

21
1222

5*
2

21
1219

39
W

ordPress
13*

5
67

3851
13*

5
71

4091
13*

5
70

4030
13*

5
67

3851
13*

5
67

3851
41

B
ootstrap

12
4

4
244

12
4

4
244

12
4

4
245

12
4

4
244

12
4

4
244

50
W

ordPress
4*

3
230

14044
4*

3
233

14226
4*

2
236

14414
4*

2
230

14044
4*

3
230

14042
78

W
ordPress

3*
2

73
4464

2*
1

73
4469

2*
1

73
4457

2*
1

73
4464

3*
2

73
4460

100
W

ordPress
11*

2
89

5403
11*

4
89

5406
11*

4
89

5408
11*

3
89

5403
11*

2
89

5402
Total

111
51

517
31154

110
54

524
31580

111
51

517
31154

110
45

523
31213

111
51

517
31141

Average
11

5
52

3115
11

5
52

3158
11

5
52

3115
11

5
52

3121
11

5
52

3114
M

edian
10

3
19

1070
10

4
19

1069
10

3
19

1070
10

3
19

1099
10

3
19

1067
Standard

D
eviation

9
7

71
4309

9
7

72
4366

9
7

71
4309

9
6

71
4306

9
7

71
4309

Table
5.8:C

A
results

execution
for5

days
(*

L
ink

w
ith

C
O

R
S).

Chapter 6

Conclusion

This thesis allowed the development of the VuDRuCA tool that allows analyzing client-
side code using HTML and JavaScript (JS) programming languages in Web Apps. Through
crawling techniques, the tool analyzes possible compromises caused by injections attacks
of the type HTML injection (HTMLi) in links to the external sites that are clickable by
the user. It also identifies cross-origin calls used in AJAX technology to perform Cross-
Origin Resource Sharing (CORS). This methodology is widely used in Web Apps today
and can pose a threat if it is misconfigured or used, open an attack surface for malicious
actors.

The use of the Virus Total (VT) commercial API presents some problems, namely
when a large number of Web Apps are sent to analyse. In order to be able to analyze a
large number of Web Apps, sleeps had to be used in the code of the application in order
to cause a delay and give the VT time to be able to efficiently return the analysis of the
Web App.

Related to the three phases for the VuDRuCA evaluation, we can conclude that in for
the first phase, no malign sites were found in the external links passed in the tag a with
the href attribute. Regarding the analysis of internal links, the routines used allowed the
identification of CORS calls in Web Apps developed in AJAX. Of the 10 Web Apps, 20
were identified that resorted to CORS, 17 with internal links but that did not make CORS
calls and 63 that did not have links in the script tag with the src attribute.

For the second phase, VuDRuCA identified 1258 external links and 238 internal links.
The tool took 2563 sec. (43 min.) on average to analyze a Web App. The median
obtained allows concluding that VuDRuCA takes about 1097 sec. (18 min.) to analyze a
Web App with 19 external links and 7 internal links. The time shown is reasonable taking
into account the aforementioned in relation to sleep to introduce a delay in the analysis
and thus allow the sending of several Web App. The standard deviation obtained allows
concluding that the data related to the execution times are spread over a range of values
with a large amplitude in which the minimum execution time is 1 sec. and the highest is
14442 sec ..

51

Chapter 6. Conclusion 52

For to the third phase, where 10 Web Apps of the 30 were selected to be monitored in
CA, over a period of 5 days, with a periodicity of 24 hours, we found that there are some
changes in the number of internal and external links, in some of the Web Apps. Although
the differences found are not significant, we can see that internal and external links are
introduced or removed.

For external links, we identified that Web Apps 4, 39 and 50 had changed. The base-
line for Web Apps 4 links was 16 on day 1, but on day 4 the number increased to 17. Site
39, the baseline was 67 links, however, on day 2, we observed 71, on day 3, it was 70,
and on day 4 it returned to 67. For Web App 50, the baseline was 230 and we observed
233 external links on day 2 and 236 on day 3.

In these cases, the links introduced continued to be classified as benign. This result
means that these links were intentionally introduced by the developers when performing
updates. If results were obtained with links classified as malicious, this could mean that
malicious users had injected code into the Web Apps.

For internal links, only one change was identified in Web Apps 78. The baseline had
3 internal links, being changed to 2 on days 2, 3 and 4. In this case, a reduction in the
number of internal links. The evaluation of the AC was essential to demonstrate that Web
Apps and Sites have their code constantly being changed.

However, since Web Apps are vulnerable to various types of injection attacks and mis-
configurations, unintended changes can happen and those are really the most dangerous.

6.1 Future Work

For future work, we believe that the results showed that the CA is a proactive approach
that permits to automate the detection of changes in Web Apps and determines if they
are associated with vulnerabilities. The CA allows the modeling of analytical data for
subsequent monitoring to be taken into account instead of human judgment. Besides
these advantages, it can generate alerts and produce reports frequently. In the future,
the tool could be enhanced by integrating other malware analysis tools, such as Hybrid
Analysis, Any.run or Analyz. Although VuDRuCA does not perform the analysis of http
headers, this could be an additional feature to check if the server hosting the Web App
is allowing CORS, for example, through additional fields such as Access-Control
Allow Origin.

Bibliography

[1] “3 Ways to Exploit Misconfigured Cross-Origin Resource
Sharing (CORS) pavan kumar,” https://www.we45.com/blog/
3-ways-to-exploit-misconfigured-cross-origin-resource-sharing-cors, accessed:
2019-10-15.

[2] “Cross-site scripting (XSS),” https://owasp.org/www-community/attacks/xss/, ac-
cessed: 2019-09-11.

[3] “Find security bugs,” https://find-sec-bugs.github.io/, accessed: 2019-4-08.

[4] “Findbugs - find bugs in java programs,” http://findbugs.sourceforge.net/, accessed:
2019-4-08.

[5] “Flawfidner home page,” https://dwheeler.com/flawfinder/, accessed: 2019-09-18.

[6] “HTML5 top 10 threats stealth attacks and silent exploits,” https://media.blackhat.
com/ad-12/Shah/bh-ad-12-HTML5 Top 10 Shah WP.pdf, accessed: 2019-12-12.

[7] “NIST 800-142 pratical combinational testing,” https://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-142.pdf, accessed: 2019-07-10.

[8] “OWASP top 10 - 2017 the ten most critical web applications security
risks,” https://www.owasp.org/images/7/72/OWASP Top 10-2017 %28en%29.pdf,
accessed: 2019-09-09.

[9] “Re-inforce programming security,” https://en.wikipedia.org/wiki/RIPS, accessed:
2019-12-09.

[10] “Reflected cross site scripting (xss) attacks,” https://www.imperva.com/learn/
application-security/reflected-xss-attacks/, accessed: 2019-8-13.

[11] “Samy (computer worm),” https://en.wikipedia.org/wiki/Samy (computer worm),
accessed: 2019-5-14.

[12] “Vulnerability assessment remediation,” https://security.berkeley.edu/
continuous-vulnerability-assessment-remediation-guideline, accessed: 2019-
10-14.

53

https://www.we45.com/blog/3-ways-to-exploit-misconfigured-cross-origin-resource-sharing-cors
https://www.we45.com/blog/3-ways-to-exploit-misconfigured-cross-origin-resource-sharing-cors
https://owasp.org/www-community/attacks/xss/
https://find-sec-bugs.github.io/
http://findbugs.sourceforge.net/
https://dwheeler.com/flawfinder/
https://media.blackhat.com/ad-12/Shah/bh-ad-12-HTML5_Top_10_Shah_WP.pdf
https://media.blackhat.com/ad-12/Shah/bh-ad-12-HTML5_Top_10_Shah_WP.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf
https://en.wikipedia.org/wiki/RIPS
https://www.imperva.com/learn/application-security/reflected-xss-attacks/
https://www.imperva.com/learn/application-security/reflected-xss-attacks/
https://en.wikipedia.org/wiki/Samy_(computer_worm)
https://security.berkeley.edu/continuous-vulnerability-assessment-remediation-guideline
https://security.berkeley.edu/continuous-vulnerability-assessment-remediation-guideline

Bibliography 54

[13] “Web application protection,” http://awap.sourceforge.net/, accessed: 2019-12-09.

[14] “Your teammate for code quality and security,” https://www.sonarqube.org/, ac-
cessed: 2019-4-08.

[15] “Federal office for information security, ”BSI - study a penetration testing model”,”
2018.

[16] “ISO/IEC 27005 - information technology - security techniques - information secu-
rity risk managment,” 2018.

[17] A. Alhuzali, B. Eshete, R. Gjomemo, and V. Venkatakrishnan, “Chainsaw: Chained
automated workflow-based exploit generation,” 2016, in Proceedings of the ACM
SIGSAC Conference.

[18] D. Baca, B. Carlsson, K. Petersen, and L. Lundberg, “Improving software security
with static automated code analysis in an industry setting,” Softw., Pract. Exper.,
vol. 43, pp. 259–279, 2013.

[19] M. Bohme, V. Pham, and A. Roychudhury, “Coveragebased greybox fuzzing as
markov chain,” 2016, in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security.

[20] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs,” 2008, in Proceedings of the
USENIX Conference on Operating Systems Design and Implementation.

[21] A. Camargo, “Painel técnico VI - auditoria contı́nua,” 2012, in Seminário Controlos
Internos and Compliance.

[22] S. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem on binary
code,” 2012, in Proceedings of the IEEE Symposium on Security and Privacy.

[23] Chou and P.-H., “The pratical aspect of ajax security (chinese version),” 2008, mas-
ter Thesis - Department of Information Managment - Shih Hsin University.

[24] R. F. Costa, “O futuro da auditoria no contexto dos enterprise resource planning,”
2015, in Universidade de Aveiro.

[25] D. Davidson, B. Moench, S. Jha, and T. Ristenpart, “FIE on firmware: finding vul-
nerabilities in embedded systems using symbolic execution,” 2013, in Proceedings
of the USENIX Conference on Security.

[26] D. Evans and D. Larochelle, “Larochelle, d.: Improving security using extensible
lightweight static analysis. ieee softw. 19, 42-51,” Software, IEEE, vol. 19, pp. 42 –
51, 02 2002.

http://awap.sourceforge.net/
https://www.sonarqube.org/

Bibliography 55

[27] ——, “Improving security using extensible lightweight static analysis,” IEEE Soft-
ware, vol. 19, pp. 42–51, 2002.

[28] Farah, T., Shojol, M, Hassan, M, Alam, and D, “Assessment of vulnerabilities of
web applications of bangladesh: A case studyof XSS and CSRF,” 2016, in Proceed-
ings of the International Conference on Digital Information and Communication
Technology and its Applications.

[29] M. Finifter and D. Wagner, “Exploring the relationship between web applications
development tools and security,” 2011, in Proceedings of the USENIX Conference
on Web application.

[30] E. Fong and V. Okun, “Web application scanners: Definitions and functions,” 2007.

[31] P. Godefroid, M. Levin, and D. Molnar, “Automated whitebox fuzz testing,” Network
and Distributed System Security Symposium, pp. 151–166, 01 2008.

[32] G. Grieco, G. Grinblat, and L. Mounier, “Toward large-scale vulnerability discover-
ing using machine learning,” 2016, in Proceedings of the ACM Conference on Data
and Application Security and Privacy.

[33] T. Hofer, “Evaluating static source code analysis tools,” 2010.

[34] T. Jensen, H. Pederse, M. Olesen, and R. Hansen, “Thaps: automated vulnerability
scanning of php applications,” 2012, in Proceedings of the Nordic Coference on
Secure IT Systems.

[35] B. Johnson, Y. Song, E. Hill, and R. Bowdidge, “Why don’t software developers
use static analysis tools to find bugs?” 2013, in Proceedings of the International
Conference on Software Engineering.

[36] J. Jurn, T. Kim, and H. Kim, “An automated vulnerability detection and remediation
method for software security,” Sustainability, vol. 10, p. 1652, 2018.

[37] J. King, “Symbolic execution and program testing,” 1976, commun. ACM.

[38] ——, “Symbolic execution and program testing,” Commun. ACM, vol. 19, pp. 385–
394, 1976.

[39] G. Klees, S. Wei, and M. Hicks, “Evaluating fuzz testing,” 2018, in Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security.

[40] J. Kronjee, “Discovering vulnerabilities using data-flow analysis and machine learn-
ing,” 2018, in Proceedings of the International Conference on Availability, Reliabil-
ity and Security.

Bibliography 56

[41] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou, “Sqlprob: A proxy-based archi-
tecture towards preventing sql injection attacks,” in Proceedings of the 2009 ACM
Symposium on Applied Computing.

[42] I. Medeiros, M. Beatriz, N. Neve, and M. Correia, “Hacking the dbms to prevent
injection attacks,” 2016, in Proceedings of the Sixth ACM Conference on Data and
Application Security and Privacy.

[43] I. Medeiros, N. Neves, and M. Correia, “Automatic detection and correction of web
application vulnerabilities using data mining to predict false positives,” 2014, in
Proceedings of the International Conference on World Wide Web.

[44] D. Muthukumaran, D. O’Keeffe, C. Priebe, D. Eyers, B. Shand, and P. Pietzuch,
“Flowwatcher: Defending against data disclosure vulnerabilities in web applica-
tions,” 2015, in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security.

[45] T. Oyetoyan, B. Milosheska, M. Grini, and D. Cruzes, “Myths and facts about static
applications security testing tools: an action research at telenor digital,” 2018, in
Proceedings of the International Conference on Agile Software Development.

[46] F. T. Pinto, “Auditoria contı́nua: Um novo paradigma de auditoria,” 2011.

[47] R. Russel, L. Kim, L. Hamilton, and M. McConley, “Automated vulnerability detec-
tion in source code using deep representation learning,” 2018, in Proceedings of the
IEEE International Conference on Machine Learning and Applications.

[48] P. Saxena, S. Hanna, P. Poosankam, and D. Song, “FLAX: systematic discovery of
client-side validation vulnerabilities in rich web applications,” 2010, in Proceedings
of the Network and Distributed System Security Symposium.

[49] J. Schwenk, M. Niemietz, and C. Mainka, “Same-origin policy: Evaluation in mod-
ern browsers,” 2017, in Proceedings of the USENIX Security Symposium.

[50] J. Smith, B. Johnson, and E. Murphy-Hill, “Questions developers ask while diag-
nosing potential security vulnerabilities with static analysis,” 2015, in Proceedings
of the Joint Meeting on Foundations of Software Engineering.

[51] O. V. and B. P. Delaitre A., “NIST samate: static analysis tool exposition (sate) iv,”
2012.

[52] S. Washington, “Auditoria continua de dados como instrumento de automação do
controlo empresarial,” 2012, master Thesis - São Paulo University.

Bibliography 57

[53] Y. Xie and A. Aiken, “Static detection of security vulnerabilities in scripting lan-
guages,” 2006, in Proceedings of the ACM SIGSAC Conference.

	List of Figures
	Introduction
	Motivation
	Objectives
	Contribution
	Thesis Structure

	Context and Related Work
	Vulnerabilities
	Injection
	Cross-Site Scripting

	Static Analysis
	Fuzzing
	Symbolic Execution
	Oracles

	Vulnerabilities Detection at Run Time and Continuous Auditing
	Continuous Auditing for Detecting Vulnerabilities
	CORS Exploitation
	Summary of SOP and CORS

	Architecture to Support CORS Detection
	Main Modules
	Web Crawler
	Storage
	Continuous Auditing

	Implementation of VuDRuCA
	Main Modules
	Main Engine Routines
	Continuous Auditing Engine Routines
	Example of Execution and Detection Case

	Evaluation
	AJAX Use-Case Characterization
	Experimental Phases
	First Phase: 100 Web Apps
	Second Phase: 30 Web Apps
	Third Phase: 10 Web Apps for CA

	Conclusion
	Future Work

	Bibliography

