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Abstract

We review how inductive methods operate on recursive data to uncover
empirical laws as those of Physics, as well as the research programme of
weakening learning criteria aiming at identifying the class of recursive
functions. We think that this work should be better known, namely as
of applications to understand large scale limitations of scientific discov-
ery. Methods of recursion theoretic learning theory are also revised to
cope with difficulties in the cases of infinite self-reference of identification
theory.

There are two main concerns in this paper. The first is to convince the
reader that the set of recursive relations is a good model of the universe of
potential empiric laws. The second is to make the point that any such law
can potentially be discovered by an unconventional scientist that accepts
to weaken the criteria of what is “to know a law”.

This paper can be read by any patient reader with some experience in
programming.

1 Introduction and motivation

An empirical law is quite generally an algebraic relation of some simplicity.
In fact, as far as we know, no one has found in the entire history of science an
empirical relation that, abstracting from the type of the constants and variables,
cannot be expressed by an elementary relation. Thus, saying that the universe
of recursive relations — those relations that can be expressed by computers
with the elementary relations occupying the lowest level of complexity — is
too restrictive to express Nature (up to fixed precision concrete measurements)
sounds ridicule. In this paper we will make the point that no other relations
can be learned from Nature.

In some sciences, like Physics, laws get two different formulations, either
they have a microscopic or local formulation, generally introduced by a dif-
ferential equation, or they have a macroscopic description. Electromagnetic
Theory of Maxwell follows both descriptions in a dialog between microscopic
and macroscopic presentations. Both microscopic and microscopic laws have
syntaxes obeying to simple rules. From one we can get the other, e.g., from
a microscopic law we can get the macroscopic counterpart by numerical inte-
gration (or just integration). In this case, the computer programs might look
heavier than those representing elementary relations and we can discuss if they
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are still placed in lower levels of the recursive relations. In [6, 4, 5] we prove
that a large family of differential equations can be numerically be solved in the
lowest levels of the recursive relations. We can even discuss if there is a law to
be that escapes to the recursive formulation. Of course, such laws cannot be
used to predict, a fundamental aspect of a model. In fact, as said above, they
cannot even be formulated.

Scientific theories have been build, but not always, by abduction from a set
of empirical facts. These laws are relations between measurements and have
been expressed either by algebraic relations or by differential equations. The
previous paragraph suggests that all these laws can be inferred in the limit from
observations. This statement may appear unconvincingly since, although the
relation / law is known in finitely many points, there are still infinitely many
other points where the relation can possibly be arbitrarily defined. We will see
that cannot be the case for all the recursive functions. If the natural laws are
sufficiently simple, then, in a sense that we will make precise bellow, all the laws
can be learned after finitely many observations and expressed in a conventional
way such like Kepler’s third law of planetary motion, Boyle’s law of ideal gases,
Galileo’s law of free fall, Ohm’s law, Coulomb’s law of electrical forces, etc. As
the natural laws become complex, we may need unconventional ways to express
them, in a way that only rarely occurred in the Sciences.

Conventional scientists write mathematical formulas on paper using some
conventional universal grammar. Alternatively, the scientist can write an equiv-
alent computer program, provided either as common text or as a number code.
We will consider encodings of programs written in some programming language
into the natural numbers (N). The encoding techniques are quite common in
computer science. They can be easily understood. Suppose that we want to
encode all the possible written English texts (such like computer programs)
into the natural numbers. First we order the texts by size, i.e. the number of
symbols in each text, then, for each size, we order the texts in the alphabetic
order of character occurrence in the text. Then the first text receives number
0, the second number 1 and so forth. 1

Learning an empirical law in the sciences (as Physics), is comparable to
solving a quiz: e.g., given instances of a relation as (1⊕4, 5), (2⊕5, 12), (3⊕6, 21),
(8 ⊕ 11, ?), we question whether we can extend this sequence in a consistent
way. As a working example, we suggest Galileo’s similar quiz in his book of
1638 (Discourses on Two New Sciences), that by performing a sequence of lab
experiments in inclined planes using rolling balls, established the laws governing
velocity and distance as functions of time. When Galileo was confronted with
his own data, reproduced in Table 1, she came about with the law

distance = α× time2 .

An account of learning free fall law from a table, or the grammar rules of
our native language, either from observations, or by listening to native language

1Specific encoding techniques for scientific laws and Physics are discussed in [21]. In the
former paper, the author provides several encoding functions for the rationals and the laws of
Physics conceived in a discrete world of some precision.
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speakers, was formalised by Daniel Gold in 1967 in [12]. More abstract devel-
opments of Gold’s idea where done in the late seventies by Lenore Blum and
Manuel Blum in [2] and John Case and Karl Smith in [10] (as an extension of
[9]) inter alia. From those times on, recursion-theoretical learning theory was
established as a specialization in algorithms.

Time (T ) Distance (D) D/T D/T 2

0.1 0.098 0.98 9.8
0.2 0.392 1.96 9.8
0.3 0.882 2.94 9.8
0.4 1.568 3.92 9.8
0.5 2.450 4.90 9.8
0.6 3.528 5.88 9.8

Table 1: Idealized data obeying the law of uniform acceleration (see Magie 1935,
pp. 456 – 472, or Pat Langley, Herbert A. Simon, Gary L. Bradshaw and Jan
M. Zytkow 1987, pp 11 in [17]).

There is not much ontological differences between solving the quiz and solv-
ing the observations in a lab, up to some expected observation errors that we
will ignore. The quiz (1⊕4, 5), (2⊕5, 12), (3⊕6, 21), (8⊕11, ?) can be imagined
as a sample of points from the graph of the function (m + n,m(n − 1)). (The
reader conjectures that the answer to the quiz is (8 ⊕ 11, 80).) Galileo’s quiz
is given as a sample of the graph of the function (distance, time). An empiri-
cist would be able, in principle, to identify a set of such laws from an infinite
number of possible mathematical relations. Moreover, an empiricist identifies
the law after having observed a finite sample/sequence of the infinite graph of
the relation, no matter the order of observations. More observations can either
corroborate or refute the law (according with Karl Popper’s methodology), and
in the latter case produce a theory change, that is a reformulation of the pre-
vious law. Persistently, if the law is not complex enough, the empiricist will
end up learning the law in the limit, after sufficient enough but finite number
of experiments and observations.

There is much in common between children learning grammar and scientists
learning the laws of Nature. Namely, both children and the scientists are exposed
only to positive instances. Parents, in general, do not provide negative instances;
negative instances such as manifestations of “levitation is forbbiden” is not
provided by Nature.

We assume that empirical laws are recursive relations and that scientific
methods are recursive relations as well. This is the computationalist hypothesis
(see the book of Kevin Kelly [16] and also the introductory article of John Case
[8]). E.g., method M, on input the observations from an experiment (such
like the looking-up table of (time,distance) in a free fall experiment), outputs
a computer program “Galileo” that establishes the law: on input of the values
assigned to some variables (as the time), Galileo outputs the predicted value of
other variables (as the distance). Assuming that a law by its own nature refers
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to a recursive relation, we accept that a law written in standard fashion and
a computer program are interchangeable. We refer to the computer program
“Galileo” as a scientist or as a scientific method. 2

The point of Philosophy of Science that we will be discussing in this paper
too is that inductive methods have identified very elementary laws, let us say
elementary relations.

2 Computability

Consider any common programming language X (such as the well known lan-
guage JAVA). Consider all programs P that we can write having as input a
number 3 n and as output another number ψ(n). In theoretical computer sci-
ence, with generality, abstract objects are encoded as numbers given as inputs
to programs P : a set, or a list of (natural, integer, or rational) numbers can
be encoded into a single number; the same applies to digital pictures such has
graphs and other structures of visual mathematics; computer programs written
in X can also be encoded as numbers. With the encoding procedures, we can
input a number n into a program P that first decodes n, let us say, into the
code m of another program P ′ and an input k to P ′. We write n = 〈m, k〉 to
denote that n is the pairing of numbers m ad k. To sum up: everything that
can be considered for programming can be encoded into the natural numbers.

Programs in X (X-programs for short) with input n eventually halt or run
forever. As a crucial statement in computability we have the undecidability of
the halting problem: there is no program H written in X such that, given a
number, decoded into a X-program P of code m and an input number k to P ,
H outputs 1 if P halts on k and 0 if P does not halt on k.

We define a partial recursive function ψ as the full collection of pairs (n, ψ(n)),
i.e. input/output, of some program P , such that P halts on each input n of
the collection providing ψ(n) as output. For the remaining values of n, if any,
the function is said to be undefined. A partial recursive function is also called
a computable function. If the collection contains a pair for each value of n ∈ N,
then we say that the function ψ is recursive. The set of all recursive functions is
denoted by R. If there exists a program P for a recursive function ψ containing
only FOR loops (of the kind FOR k := a TO b DO), then the function is said to
be primitive recursive. If the FOR loops are nested up to a priori well known
fixed number,4 then the function is said to be elementary. Computing recursive
functions that are not primitive recursive requires WHILE loops implementing
unbounded search procedures.

Consider now programs P as before but with output 1 or 0. We define
a recursively enumerable set S (r.e. S for short) as the collection of inputs

2A famous introduction to automated scientific discovery is the book by Pat Langley et al.
[17].

3By number we refer to an element of the set of natural numbers (denoted by the symbol
N), unless otherwise specified.

4That depends on the very basic functions available in the language X.
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for which a program P generates output 1. If, besides this property, either P
or another 1-equivalent X-program P ′ 5 answers 0 to all the inputs not in S
(meaning that P ′ halts for all inputs), then we say that S is recursive. In this
case P ′ is said to be a decision procedure for S. If ψ is a partial (or total) function
computable by the program P , then by dom(ψ), the domain of ψ, we denote
the set of input values for which P halts. This set is recursively enumerable.
It can also be proved that each recursively enumerable set coincides with the
domain of some computable function. A set (either recursive or just recursively
enumerable) defined by an X-program P of code e is denoted by We. A function
defined through an X-program P of code e is denoted by φe. Note that W and
φ are conventionally fixed symbols and only the code e changes.

Sometimes it is useful to consider also programs in X for functions ψ with
two input numbers m,n and output ψ(m,n), instead of encoding m and n into
a single number. There are two fundamental results to recall (see Rogers [13]).

First, the so-called s–1–1 theorem states that, if the value of m is fixed yet
arbitrary, then we can find a computable function g such that g(m) provides
a number code of a program for ψ(m,n) now as a function of n with m fixed.
Since m is arbitrary, we get program codes g(0), g(1), g(2), ... for ψ(0, n),
ψ(1, n), ψ(2, n), ..., respectively. Using the conventional symbol φ, we may
write ψ(m,n) = φg(m)(n).

Second, there is an important theorem due to Stephen Kleene that states
that there exists a number e coding for an X-program P , such that P on input n
outputs the value of ψ(e, n). This is a subtle statement, because e appears both
as datum and program code. As an example, Kleene’s theorem can be applied
to prove that the set of recursive functions ψ such that ψ(0) is the code of an
X-program for ψ itself is not empty. This collection of functions constitutes the
set SD of self-describing functions that will be considered below.

Let us see how to do it.
From any recursive function f (for which we know that an X-program P

exists) we will build a new function g ∈ SD. Consider the auxiliary function h
of two inputs such that, for every numbers m,n,

h(m,n) =

{
m if n = 0

f(n− 1) if n > 0
.

That that function h is computable is witnessed by the following informal
X-program P ′: on input the natural numbers m and n, P ′ tests n for 0 first; if
n = 0, then P ′ outputs the number m that it received as input together with
n; else, if n > 0, then P ′ runs the existing subroutine P , witnessing that ψ is
computable, on input n − 1. Now, we see that Kleene’s theorem applied to h
states that there exists a number e such that, on input e and n, P ′ behaves
as the X-program of code e on input n. Consequently, we have that φe ∈ SD,
where φe(n) = h(e, n).

Finally, a few words about the complexity of programs. By counting assign-
ments or comparisons, or both, during an X-program execution, we can describe

5I.e., P and P ′ output 1 exactly with the same inputs.
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the evolution of the computation. Each assignment or comparison is called a
step. Let P be an X-program either for a set or for a function, n an input, and
i, j numbers. We write P (n)�j to say that P with input n halts in j or less steps
and P (n)�j i to say that P with input n outputs i in j or less steps.

It is difficult to suggest an empirical law in Physics that is not primitive
recursive on the natural numbers. However, we will be working with the set
of recursive functions that strictly includes the primitive recursive functions.
Thinking about laws that are expressed by means of differential equations, a
wide spectrum of numerical techniques over the real numbers are analyzed from
a complexity point of view in [3].

3 The empiricist

Information for empiricists is provided in experimental notes, scientific articles,
etc. E.g., original data for Galileo’s experiment is given as a table for a function:

0 1 2 3 4 5 · · ·
(0.1, 0.098) (0.2, 0.392) (0.3, 0.882) (0.4, 1.568) (0.5, 2.450) (0.6, 3.528) · · ·

where the numbers in the top line provide some (arbitrary) order to the exper-
imental data registered in the bottom line. In what follows we restrict numbers
to the non-negative integers or natural numbers N. As explained above, specific
encoding techniques into the natural numbers for scientific laws expressed by
means of rational/real numbers are discussed inter alia in [21].

A text T for a function is a map from numbers to pairs of numbers (n, value at n).
By T [t] we denote the sequence of the first t pairs of the text T , from the 0th
to the (t− 1)th pair, i.e. T [t] = T (0)T (1) · · ·T (t− 1), where T (i) is the pair of
numbers at position i in the sequence. Let

SEG = {T [n] : T is a text for a function and n is a number} ,

be the set of prefixes for recursive functions and INIT ⊂ SEG be the subset of
prefixes of texts for functions ψ ∈ R in increasing order of the independent vari-
able, as #ψ(0)#ψ(1)# · · ·#ψ(t−1)#, where # is a separation symbol between
numbers. 6 For each σ ∈ SEG, content(σ) provides the corresponding set of
pairs in σ and content(T ) provides the full set of pairs in the text T . Since σ
is a prefix for a function, no such pairs (m,n1) and (m,n2), with n1 6= n2, may
belong to content(σ). The sequence σ can also be seen as a partial function
from numbers to numbers, denoted by σ̂, defined as

σ̂(m) =

{
n if (m,n) ∈ content(σ)

undefined otherwise
.

6Note that, in this case, the ordering number of the pairs is implicit:

0 1 2 3 4 · · ·
(0, ψ(0)) (1, ψ(1)) (2, ψ(2)) (3, ψ(3)) (4, ψ(4)) · · ·
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The information for theorists is provided by scientific articles, books, etc. If
we think in a theory of Physics such as Maxwell’s Electromagnetic Theory, we
realize that the theoretical physicist, instead of looking at a quiz of numbers
(such as Galileo did), she looks at samples of empirical laws such as Coulomb’s
law of electrostatics, Ampère’s law for electric circuits, Faraday’s law of induc-
tion, etc., and, possibly by adding some new hypothesis (such as the new concept
of displacement current), she formulates a theory, herein seen as a recursively
enumerable collection of theorems. The scientist instead of a quiz of numbers or
relations is confronted with a quiz of “theorems”, or rather “theorems to be”,
and conjectures the code of recursively enumerable set, e.g. the set of theorems
induced by some axiomatization.

A text T for a set is a map from numbers (ordering) to numbers (encodings
of empirical laws). Again, T [t] = #T (0)#T (1)# · · ·#T (t − 1)#. We will be
using the set SEQ of prefixes of texts for sets. If T is a text for a set, then by
content(T ) we denote the set of numbers in T .

Although a parallel theory can be settled for sets, in this paper we focus
mainly on functions as expressions of natural laws.

Definition 1 (Scientific method, Gold [12])) A scientist or scientific method
(for functions) is a computable function of type SEG→ N.

We give now an idea how an empirical law could be algorithmically estab-
lished. Assume to start with that the scientist believes that all the empirical
relations are primitive recursive. Then the universe of natural laws can be en-
coded into the natural numbers by means of standard encoding method. Let us
assume for simplicity that the scientist is learning the number π given by its dec-
imal expansion obtained from successive measurements by means of successively
more sophisticated instruments. After a sufficiently long but finite sequence 3,
3.1, 3.14, 3.141, 3.1415,... of approximations of π, the scientist knows that such
a number is the theoretical π, a number that has a primitive recursive n-digit.
7 Let us see how the scientist discovers π...

Each time the suitable scientific method receives a new approximation of
π, it outputs the same or a new conjecture, that is (the code of) a computer
program that, for each number n, computes the nth-digit of the number being
identified. Suppose that the method M behaves in the following way: for each
finite sequence of approximations of π, M successively decodes the sequence of
natural numbers 0, 1, 2, 3, ..., into a sequence of X-primitive recursive programs,
until it finds the first conjecture (the first X-programme) consistent with the
input data seen thus far (see Algorithm 1). Soon or later, it will happen that for
some number p, the X-program of code p reproduces the digits of the “unknown”
π so far read. This p will be the conjecture of the scientist at that point. Input
of further approximations, will probably makeM change conjecture, one, twice,
three times... until ...

7We can say that a number ν, or a constant of Physics, is a recursive number if the nth
digit of its decimal expansion is given by some recursive function. The digits of π can be given
by a primitive recursive function.
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ScientistM(#ψ(0)#ψ(1)#ψ(2)# · · ·#ψ(n− 1)# : SEG) : N;
Var i, k ∈ N;
Begin

i := 0;
k := 0;
While k < n Do Begin

If φi(k) = ψ(k) Then k ← k + 1
Else Begin

k ← 0;
i← i+ 1

End
End;
Conjecture i

End

Figure 1: Scientist M identifies the class of primitive recursive functions.

Definition 2 (Convergence of scientist, Gold [12]) A scientist or scien-
tific method M converges to a X-program code p on text T for a function if, for
all but finitely many numbers k, M(T [k]) = p. A scientific methodM identifies
a text T if there is an X-program code p such that M converges to p on T and
p generates content(T ).

Definition 3 (Identification of functions, Gold in [12]) A scientistM Ex-
identifies a recursive function ψ if M identifies every text for ψ. A scientist M
Ex-identifies a set of functions Ψ if M identifies every function ψ from Ψ.

Identification of functions is called Ex-identification. Ex comes from Explain.
Note that the concept of convergence is a limit concept. No one knows, at a
particular time, if convergence is already achieved. Although this search for
a code serves the purpose of learning all primitive recursive functions,8 that
in our view includes the majority of known empirical laws of all sciences, the
convergence process is not good enough and the conjectures produced are not
satisfactory, for long prefixes of text are needed until the convergence to a final
hypothesis is met. However, it works... It works with this method and it may
work also with other methods of scientific discovery as well (see [17]), but that
is another story. In what follows, Ex is the class of all Ex-identifiable sets of
functions.

By rescaling and encoding the values of physical magnitudes, we can define
physical laws as relations between natural numbers. In a world of experimental
error, convergence can be addressed with a different definition:

Definition 4 (Scientific success on a single function) We say that the scientist
M identifies ψ ∈ R if there exists an e ∈ N and numbers p, ` ∈ N such that, for
t ≥ p, M(ψ[t]) = e and, for all t ∈ N, |φe(t)− ψ(t)| ≤ 2−`, where the line over
the functions means the decoding of natural numbers into rational numbers.9

8Or even an enlargement of the set of primitive recursive functions, yet strictly contained
in the set of recursive functions.

9In the standard context of learning theory, we take ` = +∞, and we have M converging
to e on ψ[t] and, for all t ∈ N, φe = ψ.
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To check that the class Ex is not empty consider two standard examples:
The set AEZ of (total) computable functions ψ identical to 0 almost everywhere
(Almost Everywhere Zero) and the set SD of all (total) recursive functions ψ
such that φψ(0) = ψ (Self Describing). To see that the set AEZ is in Ex, just
consider the scientist M that, on input σ ∈ SEG, constructs the canonical list
µ of the pairs (t, ψ(t)) where the ψ(t) is non-zero and outputs the code of the
programme Input x; If x ∈ dom(µ̂) Then µ̂(x) Else 0. As seen before in the
last paragraphs of Section 2, the set SD is also Ex-identifiable by the scientist
M that on input σ ∈ SEG outputs 0 until ψ(0) is seen and ψ(0) afterwards.

4 Total methods

We now discuss whether scientists or scientific methods can be considered total
maps.

Definition 5 We say that a scientific methodM is total on a recursive function
ψ if the methodM provides a conjecture for all time t, where time is the number
of pairs (with possible repetitions) in the input prefix σ of the graph of ψ. We
say that a scientific method M is total on a set S of recursive functions if M
is total on each function of S. Finally, M is total if M is total on the whole
set of recursive functions R.

We provide a proof of two very basic facts about scientific methods as in
Definition 2 such that (a) scientists can always output conjectures and (b) if a
scientist can do with the values of the function ordered in increasing values of
the independent variable, then other scientist can be devised to handled values
of functions in any order.

Scientist N (σ : SEQ) : N;
Begin

t := |σ|; % Size of data
Simulate t steps of method M on successively data σ[0], σ[1], σ[2], ..., σ[t];
If any of the runs M(σ[0]), M(σ[1]), M(σ[2]), ..., M(σ[t]) halts in t steps

Then Return the latest conjecture
Else Return 0

End

Figure 2: Method N constructed from the possibly partial method M.

Proposition 1 For each scientific method M for functions, there exists an-
other scientific method N for functions, algorithmically obtainable from M,
such that: (a) N is total and (b) if M identifies any recursive function ψ, then
N also identifies ψ.

For the proof, we consider any method M, assuming that it identifies any
given recursive function ψ ∈ S, and we algorithmically specify a total method
N that does the same.
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Let T be any text for ψ. On input observations T [t], the method N calls the
old method M to run for t steps, successively and orderly, on all the prefixes
of T [t], e.g. T [1] = T (0), T [2] = T (0)T (1), T [3] = T (0)T (1)T (2), ..., T [t] =
T (0)T (1) · · ·T (t − 1), and T [0] is the empty word. Then the method N takes
the longest prefix σ̃ of T [t] (the latest one) for which M outputs a conjecture
in t steps (see end of Section 2). In case that no conjecture was produced in
t steps for any prefix, the new method M outputs 0, otherwise the method
outputs M(σ̃). Method N is total. The algorithm is synthesized in Figure 2.

Let us now suppose that T is a text for a recursive function ψ. Then, there
exists an order p such that method M, on input T [p], converges to the final
conjecture and there exists a number q ≥ p such that, for j ≥ q, j steps are
enough forM to converge on T [p]. Thus, analysing data of size greater or equal
to q, N outputs the final conjecture on all prefixes of text T of size greater or
equal to q.

In general, a text for a function is not given in increasing order of the inde-
pendent variable, that is in the canonical form #ψ(0)#ψ(1)#ψ(2)# · · · (stand-
ing for (0, ψ(0)) (1, ψ(1)) (2, ψ(2)) ...), although any pair (i, ψ(i)) for a small
i occurs in any text for ψ, even though at a large distance from the first pair
in the text. As the next proposition states, any scientific method for canonical
text can be generalized to a scientific method for arbitrary texts.

Proposition 2 Let M be a method that Ex-identify the recursive function ψ.
If M converges to the conjecture e on the canonical text for ψ, then there exists
a method M̃ that converges to e on all texts for ψ.

Let T be a canonical text for ψ and M̃ be the method that, on input prefix
σ of text T , computes first the longest prefix σ̃ ∈ INIT such that all pairs in
σ̃ are also in σ and then calls M on σ̃. Note that such prefixes can always
be formed even if they require very long input sequences σ. Note also that, as
the size of σ grows towards infinity, both σ and σ̃ become texts for ψ, being σ̃
canonical. Then, since M Ex-identify ψ, we conclude that, if M converges to
e on the canonical text for ψ, then the scientist M̃ converges to e on all texts
for ψ.

From this point on, we will be consider only scientific methods that are total
maps. Moreover, without loss of generality, scientific methods for functions will
be operating only on canonical text.

5 Rationality revisited

Algorithmic learning opens the door to the foundations of formal scientific in-
quiry in what concerns the limits of algorithmic cognition and many aspects
of rationality of the scientific method. Several cognition strategies have been
discussed and cataloged in groups since the sixties. As an example, we discuss
consistency, a problem that was addressed by the Blums in [2].

The Blums required that at any time, conjectures should explain data so
far obtained: if M is a consistent method for a function ψ, then given text
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T for ψ, the successive conjectures M(T [0]), M(T [1]), M(T [2]), ..., M(T [n])
should be able to reproduce the information T [0] = #, T [1] = #ψ(0)#, T [2] =
#ψ(0)#ψ(1)#, ..., T [n] = #ψ(0)#ψ(1)# · · ·#ψ(n−1)#, respectively, given as
input. Moreover, we say thatM is consistent in a set of laws S ifM is consistent
with each law ψ in S. Then, a statement apparently against rationality can be
proven: that consistent methods have strictly less inductive power than those
that may not be consistent along the process of inquiry (until identification is
achieved). In other words, consistent algorithmic methods identify strictly less
functions than general, possibly non-consistent methods.10

Consistency of a scientist M on a recursive function f can be expressed as
f [n] ⊂ φM(f [n]). Let

[Ex]consistent = {S ⊆ Ex : S is Ex-identifiable by a consistent scientist} .

Proposition 3 [Ex]consistent ⊂ Ex.

We choose the set SD to prove the separation between Ex and [Ex]consistent.
Obviously SD ∈ Ex. Given input σ ∈ INIT , the scientist conjectures σ̂(0) and
it is done; given any input σ ∈ SEG, the scientist conjectures 0 until reading
σ̂(0). However, SD /∈ [Ex]consistent. To see why not, consider the function f
specified in Figure 3.

Function f(y, x : N) : N;
var σ : INIT ; i : N;
Begin

σ := (0, y);
For i := 1 To x Do

IfM(σ♦(i, 0)) 6=M(σ) Then σ := σ♦(i, 0) else σ := σ♦(i, 1);
Return σ̂(x)

End

Figure 3: M is any total scientist.

Now we apply Kleene’s Theorem to write φe(x) = f(e, x), with φe ∈ SD.
Note that limσ = T is a text for φe. The interesting point is that once we assume
that scientist M for SD is consistent, we get that either M(σ♦(i, 0)) 6=M(σ)
or M(σ♦(i, 1)) 6= M(σ), and, consequently, for every x ∈ N, M(φe[x + 1] 6=
M(φe[x]) meaning that the scientistM changes her mind infinitely many times
not converging to any code of φe, not Ex-identifying φe.

The previous result may appear as a consequence of the effort of the scientist
to keep consistency in every data for every recursive function, even for those
functions that are not her expertise. However, a strict concept of consistent
scientist may be introduced, the concept of class-consistent scientist. A scientist
M Ex-identifying a set S of recursive functions is said to be class-consistent if
she is consistent in every function belonging to S, but not necessarily consistent

10A more provocative way of stating this result is the following: if there are natural laws
populating the whole Turing universe, then there are laws that cannot be discovered by
consistent inductive methods.
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in the functions not belonging to S. This definition sounds like a scientist being
consistent in her own expertise. However, Janis Bārzdiņs̆ proved in [1], that
class-consistent scientists Ex-identify a strict subset of the Ex-identifiable sets.
I.e. such a scientist, or a method, have less identification power than those that
may standby in inconsistency during the learning phase, that is, before they
syntactically converge to the final hypothesis.

6 How elementary is a law of Nature?

If we consider the class of all empirical relations between measurable concepts
that can be derived from current scientific theories, we may wonder whether a
scientific method exists, according with Definitions 1, 2, and 3, that is capable
of identifying them all, given sufficient long histories of observations.

The answer to this question relies on the complexity of relations that can
be found in the natural sciences. Some empirical relations are direct algebraic
relations between quantities, such as Galileo’s, Kepler’s, or Ohm’s laws, etc.,
whereas some others come from the solution of differential equations, such as
Newton’s second law.

Since, in our case, relations between measurable concepts are to be provided
by suitable X-programs, we discuss first how expressive X is as a language.
The maximum computational power of imperative X-routines is achieved only
when we allow arbitrary nested WHILE loops (with syntax “WHILE ‘halting
condition” DO”), i.e. loops such that the number of their steps is eventually
unpredictable and are interrupted only when some condition becomes false (see
Section 2). Commonly, differential equations from Physics can be solved by
iterative methods that have the number of their steps bounded by exponentials
on the number of digits of precision.

As we saw in Section 2, primitive recursive functions can always be imple-
mented by means of FOR loops. If we allow an arbitrary number of composi-
tions of nested and sequential FOR loops, we get a collection of X-programs (and
therefore of primitive recursive functions) that halt for every input. The exact
correspondence of primitive recursive functions and this class of X-programs
was given for the first time by Meyer and Ritchie in [18]. As a consequence, the
primitive recursive functions can be enumerated and recursively encoded into
the natural numbers.

All primitive recursive functions are Ex-identifiable in the sense of Defini-
tions 1, 2, and 3 by a scientific method that consists of a methodical and orderly
examination of all possible X-programs that are made of arbitrary nested FOR
loops, by successive decodings of the natural numbers 0, 1, 2, . . . and providing
as output the first conjecture consistent with the input data/measurements done
thus far (see Section 3). If the relation is primitive recursive, sooner or later
a code number e will match the data. This method just shows that a “black
box” exists that on imputing arbitrary long yet finite sequence of data of each
empirical relation of some family, it outputs, after an arbitrary long but finite
number of steps, the code of a scientific law compatible with it.

12



It is difficult to say whether any empirical relation can be described by prim-
itive recursive functions over the rational numbers. If true, then the empirical
laws are identifiable in the limit and, since a single known method suffices, we
may conclude that there is unity in empirical science.

Larger classes of functions are Ex-identifiable by a single scientist, but the
set of all recursive functions (which is larger than any Ex-identifiable extension
of the primitive recursive functions) is not. In general, subclasses of the class R
of recursive functions cannot be identified in the limit by single general routines
(see [15]). The paradigm of induction (or Ex-identification) so far described
can be synthesised in the this way:

criterion 1: conventional scientists : A scientist converges syntactically
to a law, that is the scientist converge to a number p ∈ N such that φp is the
correct law.

7 Function identification with anomalies

Although we can Ex-identify sets of infinitely many recursive functions, the Ex
paradigm is not able to capture the full set R of recursive functions by means
of a single scientist or a single method. Possibly we can proceed in a different
way. Since a recursive function is an infinite object, surely we agree that to
identify the function in all but finitely many points is better than not identify
the function at all. By weakening identification criteria we might be able to
identify larger collections of sets of recursive functions, namely R itself.

Definition 6 (n-variant) We say that a partial recursive function ξ is an n-
variant of a function f ∈ R, if ξ coincides with f in all but finitely many points
in number not exceeding n (and we write f =n ξ).

Definition 7 (?-variant) We say that a partial recursive function ξ is an ?-
variant of a function f ∈ R, if ξ coincides with f in all but finitely many points
(and we write f =? ξ).

According to Robert Daley [11, 15], if a function ξ is a n-variant or a ?-
variant of a function f ∈ R, then, for each of the inputs where ξ differs from
f , either ξ is not defined, and it is called an error of omission, or it is defined
but its value differ from the corresponding value of f , and it is then called an
error of commission. E.g. finding a lack of agreement in a predicted trajectory
of a planet is an error of commission; not providing any answer at all (in finite
time) for the position of the planet at instant t is an error of omission.

Definition 8 (Exn-identification, Case and Smith [9, 10]) A computable sci-
entist Exn-identifies a function ψ ∈ R, if there exists an order p ∈ N such that,
for every t ≥ p, M on input ψ[t] conjectures the same code of an n-variant of
ψ. We say that the scientist M Exn-identifies S ∈ R if Exn-identifies every
function ψ ∈ S.
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A recursive function or a set of recursive functions is said to be Exn-
identifiable if there exists a scientist M that Exn-identifies that function or
set of functions (respectively).

Definition 9 (Ex?-identification, Blum and Blum [2]) A set S ∈ R is said to
be of class Ex? if every function ψ ∈ S is in Exn for some n ∈ N.

The former definition is equivalent to say that a computable scientist Ex?-
identifies the function ψ ∈ R, if there exists an order p ∈ N such that, for every
t ≥ p, M on input ψ[t] conjectures the same code of a ?-variant of ψ. We
say that the scientist M Ex?-identifies S ∈ R if Ex?-identifies every function
ψ ∈ S.

Definition 10 Ex, Exn, and Ex?, are the corresponding classes of sets which
are Ex-, Exn-, or Ex?-identifiable by computable scientists.

The class Ex0 will be denoted also by Ex.

8 The Ex hierarchy

The first task is to identify possible separations between the classes Exm and
Exn, for m 6= n, and between classes Exn and Ex?, for every n. For that
purpose we prove that there are non-Exn-identifiable recursive functions in each
new level n+ 1.

Definition 11 ASDn, for n ∈ N, is the set of all recursive functions ψ ∈ R
such that ψ(0) is an index for an n-variant of ψ, that is φψ(0) =n ψ. ASD?

is the set of all recursive functions ψ ∈ R such that ψ(0) is an index for an
?-variant of ψ, that is φψ(0) =? ψ.

The class ASD0 is just the same class SD. The class ASDn is Exn-
identifiable by a straightforward method: the scientist waits until the input
is long enough to include the value of the function at 0, i.e. the pair (0, ψ(0)),
and then she outputs the value ψ(0).

The proof of the separation Exn ⊂ Exn+1 is based in the following idea.
Considering an arbitrary scientist M that presumably Exn-identify ASDn+1,
we extend (in a function compatible way) a given prefix σ by suitable segments
τ ∈ SEG that make the scientist M changing her mind, i.e. M(σ♦τ) 6=M(σ)
(followed by σ := σ♦τ). If this process succeeds, Kleene’s Theorem guaranties
that the resulting limσ is a text for a function in ASDn+1 that the scientist
fails to Exn-identify. If the process cannot be continued just because from some
time onM does not change its mind, then the construction makes sure thatM
does not distinguish between n + 1 different functions in ASDn+1. To obtain
all these ASDn+1 different functions, Kleene’s Theorem is applied to a single
partial function undefined in n contiguous points.

Proposition 4 (Case e Smith [9, 10], Jain et al. [15]) For every n ∈ N,
ASDn+1 ∈ (Exn+1 − Exn).
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Function f(e, x : N) : N;
Const: n ∈ N;
Var: k, `, y : N; D : set of N ;
Begin

σ := (0, e); % σ stands for a finite approximation of f

` := 1; % Number of points in the domain of σ̂

D := {0}; % Domain of σ̂

While[1] true Do Begin
For y := 0 To n+ 1 Do % The n+ 2 possible continuations of σ

τy := σ ♦ (`, y) ♦ . . . ♦ (`+ n, y);
k := `+ n;
While[2] true Do Begin

k := k + 1
For y := 0 To n+ 1 Do Begin

τy := τy ♦ (k, 0);
If M(σ) 6=M(τy) † Then Exit[2]

End;
D := D ∪ {k};
If x ∈ D Then Return τ̂0(x);

End[2];
σ := τy ;
D := D ∪ {`, `+ 1, . . . , `+ n};
If x ∈ D Then Return σ̂(x);
` := k + 1

End[1]
End

Figure 4: Specification of a function f ∈ ASDn+1 that is not Exn-identifiable.

We define a function of ASDn+1 that escapes to Exn-identification. Suppose
that some total computable scientist M Exn-identifies ASDn+1 and consider
the (possibly partial) binary function f specified in Figure 4. For a fixed value
of e, if we list the stream of values of f as a function of x, then we get an infinite
sequence with prefixes of the form:

e a1 . . . a1︸ ︷︷ ︸
n+1

n1︷ ︸︸ ︷
0 . . . 0 a2 . . . a2︸ ︷︷ ︸

n+1

n2︷ ︸︸ ︷
0 . . . 0 . . . (1)

possibly ending with an infinite sequence of 0s, where the number of intermixed
0’s may vary from segment to segment. The values of the a’s are within n + 2
possible values from 0 to n+1. There are two cases to consider: (a) the internal
While[2] loop always terminates: function f obeys to the pattern (1); (b) from
some order on, the internal loop does not halt: in this case, the function f obeys
to the pattern:

e a1 . . . a1︸ ︷︷ ︸
n+1

n1︷ ︸︸ ︷
0 . . . 0 . . . ak . . . ak︸ ︷︷ ︸

n+1

nk︷ ︸︸ ︷
0 . . . 0⊥ . . .⊥︸ ︷︷ ︸

n+1

0ω (2)

i.e., function f is undefined in a segment of n + 1 input values followed by an
infinite number of 0s.
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Relatively to Figure 4, let e be a number provided by Kleene’s second recur-
sion theorem such that φe(x) = f(e, x).

In case (a), given the text limσ generated for the function f , the scientist
M is forced to change her mind infinitely often (as in Exit[2]), so that M does
not Exn-identify f ∈ SD ⊂ ASDn+1.

In case (b), i.e. whenever, for some value of x, the internal loop does not
terminate, the function f is undefined in n+ 1 contiguous points. Inter alia, we
list n + 2 functions that the scientist M cannot fully distinguish as can easily
be seen in the middle step marked by a † in Figure 4:

f0 = e a1 . . . a1︸ ︷︷ ︸
n+1

n1︷ ︸︸ ︷
0 . . . 0 . . . ak . . . ak︸ ︷︷ ︸

n+1

nk︷ ︸︸ ︷
0 . . . 0 0 . . . 0︸ ︷︷ ︸

n+1

0ω

f1 = e a1 . . . a1︸ ︷︷ ︸
n+1

n1︷ ︸︸ ︷
0 . . . 0 . . . ak . . . ak︸ ︷︷ ︸

n+1

nk︷ ︸︸ ︷
0 . . . 0 1 . . . 1︸ ︷︷ ︸

n+1

0ω

...

fn+1 = e a1 . . . a1︸ ︷︷ ︸
n+1

n1︷ ︸︸ ︷
0 . . . 0 . . . ak . . . ak︸ ︷︷ ︸

n+1

nk︷ ︸︸ ︷
0 . . . 0 n + 1 . . . n + 1︸ ︷︷ ︸

n+1

0ω

Therefore, with a permutation b0b1b2 · · · bn of n+ 1 different numbers from
0, 1, ..., n + 1, filling the n + 1 undefined cells of f , the scientist M can only
Exn-identify n+ 1 n-variants of the functions f0, f1, ..., fn+1 above, leaving at
least one to identify. Consider

f ′(x) =

{
y′ se x = `, . . . , `+ n
f(x) otherwise

,

where y′ ∈ {0, . . . , n + 1} is the value that the sequence b0b1b2 · · · bn cannot
cover. The scientist M does not Exn-identify f ′ ∈ ASDn+1. Since M is an
arbitrary scientist, we conclude that ASDn+1 /∈ Exn. Now, it is straightforward
to conclude that ASD? ∈ Ex?. Let us suppose that ASD? ∈ ∪n∈N Exn.
Then, there exists a k such that ASD? ∈ Exk. In particular, we have that
ASDk+1 ∈ Exk which contradicts Proposition 4. We have then the following
proposition:

Proposition 5 (Case and Smith [9, 10]) ASD? ∈ (Ex? − ∪n∈N Exn).

It follows that accepting anomalies increases the power of scientific inference,
in an infinite non-collapsing hierarchy of collections of classes of sets:

Proposition 6 Ex = Ex0 ⊂ Ex1 ⊂ Ex2 ⊂ · · · ⊂ Exn ⊂ · · · ⊂ Ex?.
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If a function ξ is a n-variant or a ?-variant of a function f ∈ R, then, for each
of the inputs where ξ differs from f , either ξ is not defined (error of omission) or
it is defined but its value differ from the corresponding value of f (error of com-
mission). Tolerating anomalies means that the scientist can forecast the system
up to a finite number of input values for which the conjecture does not provide
the right answer, either by diverging (error of omission) or not converging ap-
propriately (error of commission). Errors of commission can be corrected and
correspond to the points where the conjecture differs from the input tape. The
new conjecture that results from the elimination of commission errors is such
like a general law with exceptions. In [8] (page 7), talking about anomalous
index of refraction of X-rays, John Case explains that a few anomalies being
tolerated in final predictive explanations, came from anomalous dispersion: the
classical explanation for the degree of bending of “light” passing through a prism,
fails for the X-ray case, an anomalous case.

Since the general law holds for infinitely many points, a scientist that tol-
erates a finite number of errors can identify countably many more recursive
functions than a scientist that does not tolerate omissions. Note that the sup-
plement of functions that such a scientist can identify are not those partial
functions she conjectures, but recursive functions from R. The scientist identify
them up to a finite number of errors.

John Case writes in [8] Hence, tolerating anomalies strictly increases the
inferring power [...] The anomalies that must be exploited to prove the Exn-
hierarchy above are anomalies of omission or incompleteness: the predictive
explanation’s errors are where they loop infinitely with no prediction (see [9, 10])
[...] Hence, thanks to the unsolvability of the Halting Problem ([13]), Popper’s
Refutability Principle ([20]) is violated in a way Popper did not consider (see
[9, 10])!

Obviously, such a paradigm transgresses Popper’s strict doctrine. In fact,
we know that: ASD1 ∈ (Ex1 −Ex). However, a scientistM that converges to
the hypothesis e, might not be supporting Popper’s refutability, for the simple
reason that φe might not be defined on some input y. Hypothesis e may not be
falsified: (a) it is not known if the instance φe is undefined on some input y, and
(b) if so, programme {e} on input y does not halt, so that one cannot prepare
any experimental apparatus to refute “theory T on y”, given a basic statement
such as φe(y) 6= ψ(y), since it is not even known with generality if {e}(y) halts
or not and, consequently, produce a prediction refutable by observation.

Thus, another paradigm emerges that extends strict Ex-identification to a
world of scientific laws valid in all but finitely many cases:

criterion 2: almost conventional scientists : A scientist converges syn-
tactically to a law with exceptions, that is the scientist converges to a number
p ∈ N such that φp is the correct law up to finitely many errors or exceptions.

A scientist that permits a finite number of errors can state a law that al-
lows the simulation of the phenomenon for all but finitely many values of the
variables.
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We question now whether Ex? includes R...

9 Behaviourally correct identification

The proof that R is not in Ex? and therefore Ex? does not exhaustively cover
R is done by relaxing the restriction of convergence of scientists to single pro-
grammes. Although it leads to the definition of more liberal paradigms of iden-
tification, the fact is that an adequate paradigm of identification was already
defined by the time this proof was done:

Definition 12 (Bc-identification, Bārzdiņs̆ [1], Case and Smith [9, 10]) A
computable scientist M Bc-identifies the recursive function ψ ∈ R if there ex-
ists an order p ∈ N such that, for every n ≥ p, φM(ψ[n]) = ψ. We say that the
scientistM Bc-identifies a set of recursive functions S ⊆ R if, for every ψ ∈ S,
M Bc-identifies ψ.

The letters in Bc stand for Behaviourally Correct.

Definition 13 (Bcn-identification, Case and Smith [9, 10]) A computable sci-
entist M Bcn-identifies the recursive function ψ ∈ R if there exists an order
p ∈ N such that, for every t ≥ p, M(ψ[t]) is a code of a n-variant ξ of the func-
tion ψ. We say that the scientist M Bcn-identifies a set of recursive functions
S ⊆ R if, for every ψ ∈ S, M Bcn-identifies ψ.

Definition 14 (Bc?-identification, Case and Smith [9, 10]) A computable sci-
entist M Bc?-identifies the recursive function ψ ∈ R if there exists an order
p ∈ N such that, for every t ≥ p, M(ψ[t]) is a code of a ?-variant ξ of the func-
tion ψ. We say that the scientist M Bc?-identifies a set of recursive functions
S ⊆ R if, for every ψ ∈ S, M Bc?-identifies ψ.

The following statement sounds intriguing at first sight but it is straight-
forward to prove. Essentially, it says that all the recursive functions thus far
identified by (Ex-, Exn-, and Ex?-) scientists (converging syntactically) can be
identified with no errors (!) by the new scientists converging semantically. Such
a scientist converge to a single function but not to single programming code.

Let S ∈ Ex?, witnessed by scientist M, and ψ ∈ S. From scientist M, we
build a new scientistM′ which behaves as follows: M′ simulatesM on its own
input

σ[t] = (0, σ(0))(1, σ(1)) . . . (t− 1, σ(t− 1)) ,

getting code e =M(σ[t]), and builds from the same input a looking up ordered
list µ of the different pairs (i, σ(i)) occurring in σ[t]; with that index e and such
a list µ, the scientist M′ outputs the code of the programme of Figure 5.

Of course, the code of such a programme is always changing (since the con-
stant µ is changing), i.e. scientistM changes her mind infinitely often but, from
some order on, namely passed all anomalies of φe, the codes of the functions χ
are all different codes of the same ψ!
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Function χ(x : N) : boolean;
Const µ : list of N× N;

Begin
Case x of

x ∈ dom(µ̂) : Return µ̂(x);
x /∈ dom(µ̂) : Return {M(µ)}(x)

End
End

Figure 5: Scientist that witnesses the inclusion Exn ⊆ Bc.

We then conclude that

Proposition 7 (J. Steel cited by Case and Smith [10]) Ex? ⊆ Bc.

The proof that, for each n, Exn is strictly included in Bc can also be done
in a different way. Let S ∈ Exn, for some fixed n, be witnessed by scientistM,
and let ψ ∈ S. From scientistM, we build a new scientistM′ which behaves as
follows: Whenever σ contains more than n distinct points of ψ, M′ simulates
M on its own input σ[t], getting code e =M(σ[t]); thenM′ runs in parallel the
program {e} on every single non repeated item of σ and halts the computation
whenever less than n + 1 runs did not halt or converge to the wrong value;
finally, M′ corrects e on all these points and outputs a modified code e′. In all
the other cases, M′ is left undefined.

The scientists that are able to rewrite correct codes from conjecture to
conjecture can do what scientists converging syntactically to hypotheses with
finitely many errors can and more, without errors:

criterion 3: unconventional scientists : A scientist converges semanti-
cally to a law (with no exceptions), that is, from some order k on, the scientist
conjectures numbers pk, pk+1, . . . , such that, for all i ≥ k, φpi is a correct version
of the law.

10 Separation results for Ex? ⊆ Bc

The set of functions chosen to help in such a separation are introduced in the
next definition:

Definition 15 S is the set of all recursive functions ψ ∈ R such that, for all
but finitely many i, ψ(i) is an index of ψ, that is, for all but finitely many i,
φψ(i) = ψ.

We first argue that set S is not empty. The proof is straightforward. Let
f : N2 → N be defined as f(α, x) = α. Applying the s − 1 − 1 theorem to f ,
we write φs(α)(x) = α for some primitive recursive function s. Then Kleene’s
theorem provides a computable e such that φe(x) = e. The function φe takes
value e everywhere and belongs to S. Since there are infinitely many such
indexes, the set S is countably infinite.
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Proposition 8 S ∈ Bc.

For the identification of S ∈ Bc, the scientist just have to output the last
value of the function seen thus far in the input.

Let F denote the class of all partial functions with signature N → N. An
operator is a total function Φ : F → F .

We describe a way in which an operator can be defined by means of a com-
puter program P . The program P has access to its input, a text T for a function
f : N → N and a value n, to compute Φ(f)(n). The function f can be total or
partial. Let us assume that the computer program P operates in a way such
that, at any moment of the computation of P over f and n, only a finite number
of function pairs of T are available. We then say that the operator is recursive
and computed by the program P . If the program P searches the input stream
T not finding the required pair (i, f(i)), for some natural number i, of the graph
of f , then this search runs forever since the text for a function is always infinite
in extension, either by means of the repeated separation symbol #, or because
the values of the function are repeated infinitely many times. In the proofs
that follows, we will make extensive use of this concept. Note that an opera-
tor can be defined over non-computable functions, but to be recursive it has to
algorithmically transform the prefixes of the input function f into the prefixes
of the output function Φ(f), since at any time only a finite prefix of f , let us
say of some size k, is available to compute a prefix (0,Φ(f)(0)) (1,Φ(f)(1))
(2,Φ(f)(2)) ... (n− 1,Φ(f)(n− 1)) of size n.

The most relevant mathematical result on recursive operators for what to
follows is John Cases’s theorem:

Proposition 9 If Ξ is a recursive operator, then there is a recursive, mono-
tone increasing function h : N → N such that, for all n, x ∈ N, φh(n)(x) =
Ξ(h)(〈n, x〉), where 〈n, x〉 is the pairing or joint encoding of the values n and x.

We can now prove a separation between classes Ex? and Bc, so that Bc
criterion has more identification power than Ex? criterion. As a consequence,
we have that neither Exn, in any level, nor Ex? include the full setR of recursive
functions.

We first discuss the idea of the proof. We intend to construct from successive
prefixes σ0[0], σ0[1] · · ·σ0[n], a stepwise extension of some prefix σ0 ∈ SEG, a
total function lim σ̂0 ∈ S . This extension is done in a way such that the
“Ex?-”scientistM is compelled to change her mind infinitely many times, thus
failing to Ex?-identify the corresponding function lim σ̂0 (∈ S). To perform the
intended extension, we consider two other auxiliary extensible prefixes σ1 and
σ2 that, in the limit, may also become graphs of functions in S. WhileM does
not distinguish σ0 from σ1 or σ0 from σ2, the prefixes σ1 and σ2 are pointwise
extended. If no distinction is found, then M, a scientist that supposedly is
capable to Ex?-identify functions in S (up to finitely many errors), fails to
distinguish between σ1 and σ2 although in the limit the graphs of σ̂1 and σ̂2 differ
in infinitely many points. In the other way round, the scientist M conjectures
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differently on σ1 and σ0 or on σ2 and σ0. In this case σ0 is extended in a way
to follow either σ1 or σ2 but making the scientist to change her mind on the
extended text of σ0. From a stage m on, σ1 and σ2 are forced to follow σ0

in their values. The process continues, new prefixes in SEG being defined, σ0

being continued as one of the new σ2m+1 or σ2m+2, and the former σk, from
k = 1 to k = 2m, extended to follow σ0. If the extension procedure fails, we
get the same situation as discussed in the beginning, with the scientist being
unable to distinguish between two different functions in S, σ2m+1 or σ2m+2 for
some m. If the process can run forever, then the function with graph limσ0 has
values that are their own codes by application of theorem 9. Such a function
with graph limσ0 is not Ex?-identifiable by M and the proof is done.

Proposition 10 (Case and Smith [9, 10], Jain et al. [15]) Ex? ⊂ Bc.
We now discuss the proof in full detail. LetM be any (total) scientist. With

the help of the functional specified in Figure 6 and Proposition 9, we show that
the scientistM cannot Ex?-identify some functions in S. Considering the speci-
fication of Figure 6, in each execution of the “While” loop the program attempts
to define two new functions that in the limit and considering Proposition 9 are
in S. According with Proposition 9, there exists a total increasing (primitive)
recursive function h such that Ξ(h)(〈k, x〉) = φh(k)(x). The following are the
main characteristics of the specification applied to such function h:

Functional Ξ(h : N→ N; 〈k, x〉 : N) : N;
Var σ : N→ SEG; m, y, s : N; % Notation hn, σn;
Begin

y := 0;
σ0 := (0, h0);
If 〈k, x〉 = 0 Then Return h0;
For m := 0 To +∞ Do Begin

σ2m+1 := σ0;
σ2m+2 := σ0;
WhileM(σ2m+1) =M(σ0) AndM(σ2m+2) =M(σ0) Do Begin

y := y + 1;
σ2m+1 := σ2m+1♦(y, h2m+1);
σ2m+2 := σ2m+2♦(y, h2m+2);
If k ∈ {2m+ 1, 2m+ 2} And 〈k, x〉 = y Then Return hk

End While;
IfM(σ2m+1) 6=M(σ0) Then σ0 := σ2m+1 Else σ0 := σ2m+2;
For s := 1 To 2m Do σs := σs♦(|σs|, σ̂0(|σs|))♦ · · ·♦(y, σ̂0(y));
If k ≤ 2m And 〈k, x〉 ≤ y Then Return σ̂k(〈k, x〉)

End For
End

Figure 6: Recursive Ξ functional.

1. The sequences σ0, σ1, ..., σ2m, σ2m+1, σ2m+2 of SEG are all prefixes of
potential graphs of total functions of S. In each step m of the external
“For” loop the two graph prefixes σ2m+1 and σ2m+2 are created, and
whenever the “While” loop halts, the domain of each of the functions σ̂k,
from k = 1 to k = 2m, is updated in the internal “For” loop, so that they
follow the values of σ̂0.
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2. In the case that, at some final step m of the main “For” loop, the “While”
does not terminate, the prefixes σ0, σ1, ..., σ2m stand as graphs of partial
functions, but the functions lim σ̂2m+1 and lim σ̂2m+2 are totally defined.
The scientistM cannot Ex?-identify S since she is not able to distinguish
in the limit between φh(2m+1) and φh(2m+2). According to Proposition 9
and the specified functional, we have that φh(2m+1)(x) = h(2m + 1) and
φh(2m+2)(x) = h(2m+ 2), for every x ≥ x0, for some order x0:

Sn+1 ⊃ S 3 φh2m+1 = h0 h? · · ·h?︸ ︷︷ ︸
mix of even and odd indexes

h2m+1h2m+1 · · ·h2m+1 · · ·

Sn+1 ⊃ S 3 φh2m+2 = h0 h? · · ·h?︸ ︷︷ ︸
mix of even and odd indexes

h2m+2h2m+2 · · ·h2m+2 · · ·

These two functions are different since h is an increasing function by the
same Proposition 9, but the scientist M can only permit a finite number
of errors in Ex?-identification. Note that, although h is total, Ξ(h)(〈k, x〉)
is undefined for every k > 2m + 2, meaning that hk is a code of the
everywhere undefined function, for every k > 2m+ 2.

3. If the “While” loop halts for every m, then lim σ̂k is a total function, for
every k ∈ N. In this case, all the values of the total increasing recursive
function h, such that φhk

(x) = Ξ(h)(〈k, x〉), for every k ∈ N, are codes of
h itself. In this case, the scientistM cannot Ex?-identify S since she does
not converge on the text limσ0 as the guard of the “While” loop indicates.
Taking numbers i, j ∈ N, such that i 6= j, either φhi

and φhj
coincide in

all points, or φhi and φhj differ only in a finite number of points. The
first case is due to the fact that σ0 follows σk, for some k even or odd,
until some order `, and then σk follows σ0. The second case is due to the
fact that σ0 follows some σk, let us say for odd k, until some point x0,
and then both σk and σk+1 follows σ0, but then both σk and σk+1 will be
differing in finitely many points. Thus, for every k, hk is an index of h in
all but finitely many points k.

To sum up, the two cases to be considered are the following:

1. The “While” loop always terminate: φhk
∈ S, for every k ∈ N. Since M

should converge on φh0
[y] for sufficient large y, the scientist should change

her mind only finitely many times; however that is not the case due to the
guard of the “While” clause and the updates of the following “If” clauses.

2. The “While” loop does not terminate for some m: in this case, we take
the functions φh2m+1

and φh2m+2
, both in S. However, we have that

M(σ2m+1) = M(σ0) = M(σ2m+2), meaning that in the limit the sci-
entist M does not distinguish between φh2m+1 and φh2m+2 both in S.

As a consequence of the previous result we have that

Proposition 11 R /∈ Ex?.
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This last statement holds since Ex? does not contain all of the recursive
functions in S and consequently cannot contain R.

In our view the best example of Bc-identification is the case of learning neu-
ral networks, such like the learning of a function according with Kolmogorov’s
Theorem (see [14]). Neural nets are made of interconnected logic gates. Each
connection between two units is weighted. In the most general case, the “pro-
gram” is the table of interconnections and weights of dimension n × n for n
computation logic units. Weight zero means no connection between the re-
spective units. In the learning phase, that can endure forever, the weights can
be recomputed each time some new patterns/observations are classified. After
some time, this process induces only slight changes in the weights. Despite the
changes, the net is able to stabilise in correct classifications. In the common
case, some patterns are misclassified and can be considered exceptions, so that,
in the next section, we will consider Bc-identification with errors. Surprisingly,
this is one way to identify the full set R of recursive functions...

11 The Bc hierarchy

The set of functions chosen to help in the separations that follow is a slight
modification of S:

Definition 16 The set Sn, for n ∈ N, is the set of all recursive functions ψ ∈ R
such that, for all but finitely many i ∈ N, ψ(i) is an index for an n-variant of
ψ, that is, for all but finitely many i, φψ(i) =n ψ. S? is the set of all recursive
functions ψ ∈ R such that, for all but finitely many i ∈ N, ψ(i) is an index for
an ?-variant of ψ, that is, for all but finitely many i ∈ N, φψ(i) =? ψ.

Proposition 12 For all n ∈ N, Sn+1 ∈ Bcn+1.

The scientist outputs the last value of the function seen so far in the input.

Proposition 13 (Case and Smith [9, 10], Jain et al. [15]) For each n ∈ N,
Sn+1 ∈ (Bcn+1 −Bcn).

Again, we specify a recursive procedure that successively defines prefixes of
graphs of functions, σ0, σ1, ..., σn, ... Starting from σ0, the program searches
for m + 1 values where the conjecture M(σ0) is defined. Then σ0 is extended
to σ1 that differs from σ0 in the same m + 1 values thus found. At stage n,
starting from σn, the program searches for m + 1 values where the conjecture
M(σn) is defined. Then σ0 is extended to σn that differs from σ0 in the same
m + 1 values. In all stages the other σi, for i < n follow σ0: σ0, ..., σn−1 have
been defined in some specified domain; then σ0 follows σn up to m + 1 values
where σ0 and σn differ; from that point on, σ1, ..., σn follows σ0. For i, j ∈ N,
i 6= j, in the limit σi differs from σj in m+ 1 values. Then, in the limit limσ0 is
a text for a function h such that, for every k ∈ N, φhk

has values that are codes
of h itself up to m+ 1 errors.
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Functional Ξ(h : N→ N; 〈k, x〉 : N) : N;
Var σ : N→ SEG; i, j, q, y, y′, z, s, `0, . . . `m : N;
Begin

y := 0;
σ0 := ε;
For[1] j := 0 To +∞ Do Begin

For[2] (q, `0, . . . , `m, z) ∈ Lm+3(y) in lexicographical order Do Begin
σj := σ0♦(y + 1, hj)♦ · · ·♦(y + q, hj);
If[1] j = k And y + 1 ≤ 〈k, x〉 ≤ y + q Then Return hj ;
If[2] {M(σj)}(`0)�z And ... And {M(σj)}(`m)�z Then Exit[2]

End[2];
y′ := max{y + q, `m};
σj := σj♦(y + q + 1, hj)♦ · · ·♦(y′, hj);
For[3] i : y < i ≤ y′ Do

If[3] i /∈ {`0, . . . , `m} Then σ0(i) := σj(i)
Else If φM(σj)

(i) 6= h0 Then σ0(i) := h0 Else σ0(i) := σj(i);

For[4] s := 1 To j − 1 Do σs := σs♦(y + 1, σ̂0(y + 1))♦ · · ·♦(y′, σ̂0(y′));
If[4] 〈k, x〉 ≤ y′ And k < j Then Return σ̂k(〈k, x〉);
y := y′;

End[1]
End

Figure 7: A recursive Ξ functional. The “For[2]” loop is performed in the
lexicographical order. Lm+3(y) = {(q, `0, . . . , `m, z) ∈ Nm+3 : y < q < `0 <
· · · < `m < z}.

Let M be any (total) scientist. With the help of the functional specified in
Figure 7 and Proposition 9, we show that the scientist M cannot Bcn-identify
some functions in Sn+1. Let Lm+3(y) = {(q, `0, . . . , `m, z) ∈ Nm+3 : y < q <
`0 < · · · < `m < z}, a set of (m+3)-ordered tuples of positive integers. The value
of q refers to a step extension of the domain of the functions in construction;
the values `0, ..., `m are tentative points of convergence of some function of code
M(σj), for σj ∈ SEG; finally the value z is the number of steps of computation
of program code M(σj) allowed in the current tentative of convergence on the
inputs `0, ..., `m. The following are the main characteristics of the specification
where it is assumed that scientists are total:

1. The elements σ0, σ1, ..., σj of SEG are all prefixes of graphs of functions;
each prefix σk, from k = 0 to k = j is extended in each step of the
external “For[1]” loop, whenever the “For[2]” loop is interrupted. The
programme codeM(σj) is executed z steps on inputs `0, ..., `m; eventually,
for some tuple (q, `0, . . . , `m, z), the search is successful and the “For[2]”
loop is interrupted. After the successive executions of the “For[2]” loop,
the domain of function σ̂0 is extended in the “For[3]” loop, from {0, . . . , y}
to {0, . . . ,max{y + q, `m}}. The “For[4]” loop makes all the functions σ̂k
so far defined (for k = 1 to k = j − 1) to follow the values of σ̂0. Note
that, whenever the “For[2]” loop is non-terminating at final step j, σ0, σ1,
..., σj−1 are graphs of functions with finite domain, but limσj will always
be a text for a total function.

2. If the “For[2]” loop does not succeed at some final step j, even in the
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presence of a total function h given as input, then φhj comes to be a total
function in S, with constant value hj from some order on, for which the
scientist M fails to converge:

Sn+1 ⊃ S 3 φhj = h0 h1 · · ·hj−1︸ ︷︷ ︸
increasing repeated values

hjhj · · ·hj · · ·

In this case, the scientist M fails to Bcn-identify the function φhj
∈ S ⊆

Sn+1.

3. If the “For[2]” loop always succeeds and the function h is total, then, for
every j ∈ N, lim σ̂j comes to be a total function. Note that limσ0 is
defined under the clause “For[3]” and that T = limσ0 is a text for the
function Ξ(h)(〈k, x〉). In this case, all the values of the total increasing
function h, such that, for every k ∈ N, φhk

(x) = Ξ(h)(〈k, x〉), are (m+ 1)-
variants of the code of h itself. For some order x0, for every x ≥ x0,
M(T [x]) provides codes hj of the function lim σ̂0 such that φhj = lim σ̂j
differs from h in m+ 1 input values, meaning that the scientist M is not
able to Bcn-identify the function lim σ̂0 ∈ Sn+1, given the text T = limσ0.
In another words, we can say that, in this case, for every i and j, i 6= j,
lim σ̂i and lim σ̂j are (m+ 1)-variants.

As a corollary of Proposition 13, we have that

Proposition 14 (Case and Smith [9, 10], Jain et al. [15]) S? ∈ (Bc? −
∪n∈N Bcn).

It is straightforward to conclude that S? ∈ Bc?. Let us suppose that S? ∈
∪n∈N Bcn. Then, there exists a k such that S? ∈ Bck. In particular we have
Sk ∈ Bck and Sk+1 ∈ Bck which contradicts Proposition 13.

12 Does it end at Bc??

Taking into consideration the last result of the previous section, we conclude
the following consequence of the fact that Bc? −Bcn 6= ∅, for any n ∈ N:

Proposition 15 R /∈ Bcn, for any n ∈ N.

It follows again that, accepting anomalies, this time varying from hypothesis
to hypothesis, increases the power of scientific inference, in an infinite non-
collapsing hierarchy of classes of sets:

Proposition 16 Bc0 ⊂ Bc1 ⊂ Bc2 ⊂ · · · ⊂ Bcn ⊂ · · · ⊂ Bc?.
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ScientistM(σ[t] : SEG;x : N) : N;
Begin

For m := 0 To |σ| Do Begin
τ = ∅;
Decode m in its programme form {m};
% If programme m, on input i, does not halt after x transitions,

% then {m}(i)�≤x= ⊥;
For i := 0 To |σ| − 1 Do τ := τ♦(i, {m}(i)�≤x);
If τ = σ Then Return {m}(x)

End;
Return 0

End

Figure 8: This scientist searches for the code of a function provided by the
succession of prefixes of its graph.

Given data ψ[t] = (0, ψ(0))(1, ψ(1)) . . . (t− 1, ψ(t− 1)) and a single point x,
we now specify how to evaluate ψ(x), for arbitrarily large x.

Let {m}(i)�≤x denote the output of the programme code m on input i, if it
halts within x steps of computation; otherwise {m}(i)�≤x gives some indeter-
mination symbol.

A scientist M can be assembled as in Figure 8. Applying to this function
the s − 1 − 1-theorem we find an index s(σ[t]), where s is a (total) recursive
function, such that φs(σ[t])(x) = f(σ[t], x).11 We claim that there is an order p,
such that, for t ≥ p, s(σ[t]) is a ?-variant code for the recursive function ψ:

1. The code of the wanted ψ with prefix σ is certainly between 0 and a suf-
ficient large value of t = |σ| (the number of function pairs in σ); however,
even for sufficiently large t, convergence after x steps is only guaranteed
for sufficient large x.

2. For sufficient large values of x, the scientist has the time to witness
{m}(i) �≤x, for some m (1 ≤ m ≤ t), converging in all entries i (0 ≤
i ≤ t− 1);

3. Then for sufficient large values of t, the function φs(σ[t]) coincides with
the wanted ψ, up to a finite collection of errors, i.e. φs(σ[t]) = ψ for all x
greater than some order p;

4. Then the code s(σ[t]) is a ?-variant code of ψ and it is computable;

5. As t and x increases, depending on σ, even in the cases where scientist
conjectures a correct code, the code e of the ?-variant of the function ψ
may vary; the reason for this continuous mind change is due to the fact
that, for each t, the value of x at which m converges for all entries in σ[t]
varies with t;

6. Any recursive function becomes Bc?-identifiable;

11Note that the sequences σ ∈ SEG can be encoded into the natural numbers as well.
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7. The Bc?-identification is done by the computable scientist which on input
σ[t] outputs de code s(σ[t]).

In this way, we find scientists witnessing that R ∈ Bc?, that is:

Proposition 17 (Leo Harrington cited in Case and Smith [10], Jain et al.
[15])
R ∈ Bc?.

Reaching R, the universe of functions from where we started, we reach to-
tality, i.e. the full power of scientists. The class Bc? is then the maximum
expressive power in identification tasks.

Proposition 17 says that computable scientists have the power to distinguish
all (total) computable relations between physical magnitudes, if they permit a
finite, yet unlimited, but variable from hypothesis to hypothesis, number of
errors.

Once again, we recall that algorithmic scientific inference is based on asymp-
totic behaviour of functions, and that unlimited but finite number of errors
means a zero density of errors on the overall behaviour of each ?-variant of the
function. We conclude the ultimate paradigm that do for R.

criterion 4: unconventional scientists : A scientist converge seman-
tically to a law with exceptions, that is from some order k on, the scientist
conjectures numbers pk, pk+1, . . . , such that, for all i ≥ k, φpi is a correct ver-
sion of law up to finitely many omission errors or exceptions, not necessarily in
the same points.

13 Conclusion

We postulated a computable universe where the laws that rule observations
and measurements can be written as recursive relations. We review the way
how these laws can be algorithmically established in the limit. A very simple
algorithm can be used to learn all recursive functions if the unconventional
scientist permits a finite number of errors or exceptions and accept to converge
semantically to the laws. If the scientist does not accept laws with exceptions,
then the universe she can knows with a single universal method is a strict
subset of the recursive relations. Finally, if the universal method is supposed to
converge syntactically to final conjectures, then the the conventional scientist
becomes more limited in what she can learn.

The reader may question why to postulate that empirical laws are recursive
or even just a subset of the recursive functions. There is a formal reason. Let
us assume that some scientist observes the pulses of a bulb of light switching
between modes “on” and “off”, say 1 or 0, respectively. Let the time between
consecutive bits be of 1 second. A priori, we may think that any function
from time instants in N to the set {0, 1} is permitted, so that the universe of
possible sequences is K = 2N. The scientist start observing the sequence of
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bits and conjectures a possible law, at any new datum, at any new observation.
Historically, the syntax of rules used in the specification of empirical laws is
rather elementary. More generally, it would have a fully recursive grammar. In
fact there is no other way of doing it, since a non-recursive relation cannot be
expressed by finite means. Let us assume that the most powerful scientist 12

conjectures the least code of a recursive relation that mimics the sequence of
bits so far observed. If the sequence of bits is non-recursive, then the scientist
will be changing her mind infinitely often. However, if the scientist converges to
a code number then the sequence is recursive. Thus the scientist cannot decide
in the limit if the observations are recursive. However, the scientist can verify
in the limit (but not refute in the limit) the hypothesis that the observations
are recursive. Reciprocally, we can also conclude that the scientist can refute
in the limit if the observations are non-recursive, although she cannot refute
in the limit that the observations are recursive. Thus cognition of a scientific
law is verifiable in the limit but not refutable in the limit. Kevin Kelly in [16]
dedicates many pages of his book to convince the reader that the model universe
should be computable. So far it seems that scientific empiric laws are expected
to be of a recursive nature.

We also provided evidence from Machine Learning Theory that attempts
to go further than the primitive recursive relations 13 with a single universal
method imply a paradigm change on the character of a scientific law, in the
sense that a law with exceptions is not traditionally considered at the same
level of other scientific laws, but they have to be promoted as such in the view
of an enlargement of the class of empirical laws.

We also revived some criticism against Popper’s refutability in order to pro-
mote a kind of non-rational method in learning a scientific law.

Our proofs are based in the original formulation of Case and Smith [9, 10],
presented also in Osherson et al. book [15] and by Odifreddi in [19]. Some
constructions in previous work were found to be implicit applications of Case’s
Theorem in [7]. We adopted a explicit view of building up the functionals used
in the proofs, remaking the framework in this light.
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Fundação para a Ciência e Tecnologia, projeto FCT I.P.:UID/FIL/00678/2013.
The author is thankful to John Case for the motivation to invest in Learning
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