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Abstract   

Anthropogenic infrastructures are major drivers of human-related effects in the Anthropocene, and 

several important negative impacts on different taxa and habitats have been described. In the case of 

birds these impacts include, for example, habitat loss, mortality and changes in behaviour, which can 

have major consequences on the viability of populations.  

The main objective of this thesis was to study how anthropogenic infrastructures influence the 

distribution and movements of several bird species, in order to identify management actions and 

support conservation strategies. The thesis focuses on bustards and raptors species in the Iberian 

Peninsula, which are known to be vulnerable to human infrastructures such as roads, power lines and 

wind farms. Census data, mortality events in power lines and GPS tracking databases were used to 

study the interactions between infrastructures and the little bustard (Tetrax tetrax), great bustard 

(Otis tarda), black kite (Milvus migrans) and Iberian imperial eagle (Aquila adalberti).  

In general, this thesis shows that infrastructures, such as roads, power lines and wind turbines, can 

play an important role in species’ distribution (little bustard) and use of space (black kite and little 

bustard), and may even contribute to accentuate negative population trends (little bustard). 

Additionally, species features (e.g. morphology or behaviour) and ecology are essential to understand 

how they are affected and vulnerable to infrastructures. Guidelines for the management of 

infrastructures and conservation measures targeting vulnerable species are proposed. 

 

Keywords: Iberian Peninsula, mitigation, mortality, movement ecology, wildlife tracking  
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Resumo 

As infraestruturas antropogénicas são atualmente elementos indissociáveis do Antropoceno, sendo 

responsáveis por vários impactos negativos em diferentes taxa e habitats. A perda de habitat, as 

mudanças de comportamento e a mortalidade são apontadas como os principais efeitos das 

infraestruturas nas aves. 

O principal objetivo desta tese foi o de estudar como as infraestruturas antropogénicas afetam a 

distribuição e o uso do espaço pelas aves, com vista à identificação de ações de gestão das 

infraestruturas, bem como apoiar estratégias de conservação da biodiversidade. A tese foca-se em 

espécies de abetardas e de aves de rapina da Península Ibérica, conhecidas por serem vulneráveis às 

infraestruturas humanas, como as estradas, linhas elétricas e parques eólicos. Utilizaram-se dados de 

recenseamento, dados de eventos de mortalidade e bases de dados de seguimento por GPS para 

estudar as interações entre as infraestruturas e o sisão (Tetrax tetrax), a abetarda (Otis tarda), o 

milhafre preto (Milvus migrans) e a águia imperial Ibérica (Aquila adalberti). 

De uma forma geral, os resultados desta tese mostram que infraestruturas, tais como estradas, linhas 

elétricas e aerogeradores, podem influenciar de forma importante a distribuição de espécies (sisão) e 

o uso do espaço (sisão e milhafre preto), podendo até contribuir para acentuar as tendências de 

declínio das populações (sisão). Por outro lado, tanto as características (e.g. morfológicas e 

comportamentais) como a ecologia das espécies são essenciais para se compreenderem os efeitos 

causados pelas infraestruturas. São propostas várias diretrizes para a gestão das infraestruturas e 

também medidas de conservação direcionadas para as espécies estudadas. 

 

Capítulo 2: A gestão agrícola e as infraestruturas como principais determinantes do declínio 

populacional do sisão  

Neste estudo, analisámos os fatores que contribuíram para o acentuado declínio da população de 

sisão na Península Ibérica desde o início do século. Com base nos dados dos censos da espécie em 

Portugal (2003-2006 e 2016), testámos o efeito da disponibilidade de habitats, da densidade de gado, 

da densidade de infraestruturas lineares e da implementação de medidas agroambientais, na variação 

espacial e temporal da densidade da espécie. Os nossos resultados mostram que os fatores que 

influenciam as densidades de sisão mudaram ao longo do tempo. Em 2003-2006, quando a espécie 

ocorreria em elevadas densidades, a disponibilidade de habitat adequado foi o único preditor que 

explicava a densidade da espécie. No entanto, em 2016, quando a densidade populacional baixou, 

outros preditores ganharam importância; nomeadamente áreas com maiores densidades de gado (em 
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particular gado bovino) e com uma maior extensão de linhas elétricas tinham menores densidades de 

sisão. Os declínios populacionais durante o período de estudo foram mais acentuados em áreas com 

densidades mais elevadas, sugerindo que a qualidade dos habitats nestes locais se deteriorou devido 

a mudanças na gestão do gado e das pastagens. Áreas com maior densidade de linhas elétricas foram 

também as que perderam mais aves, provavelmente devido ao efeito de exclusão e a maiores níveis 

de mortalidade por colisão com estas infraestruturas. As medidas agroambientais foram capazes de 

amortecer o declínio da espécie, dado que as áreas onde estas foram implementadas tiveram menores 

flutuações populacionais negativas. No geral, os nossos resultados mostraram que atualmente o sisão 

carece de habitats de qualidade e com baixa densidade de infraestruturas lineares e que a espécie 

beneficiaria de densidades de gado inferiores e do alargamento geográfico da implementação de 

medidas agroambientais. 

 

Capítulo 3: Habitat e configuração das linhas elétricas como principais responsáveis pelo risco de 

colisão de duas espécies de abetarda  

Neste trabalho analisámos os padrões espacio-temporais de mortalidade e os fatores de risco de 

colisão de duas espécies simpátricas, ameaçadas e propensas a colisões: a abetarda e o sisão, com 

base nos registos de colisão recolhidos ao longo de 280 km de linhas de transmissão no sul de Portugal, 

entre 2003 e 2015. Os nossos dados mostram que os incidentes em linhas elétricas não são uniformes 

no espaço e no tempo, e que as variações encontradas estão relacionadas com os requisitos 

ecológicos, os padrões de distribuição e o comportamento das espécies. Embora ambas as espécies 

façam voos substanciais entre áreas de habitat adequado, as colisões são mais prováveis em linhas 

que atravessam pelo menos 20% (para o sisão) ou 50% (para a abetarda) de habitats agrícolas abertos. 

A configuração das linhas elétricas também é um fator importante, pois postes mais altos e com maior 

número de níveis verticais de cabos apresentam um maior risco de colisão. Foi igualmente identificado 

um pequeno, mas significativo, efeito positivo da sinalização dos cabos na redução das colisões de 

sisão, mas o mesmo não foi identificado para a abetarda, possivelmente devido a limitações da nossa 

amostra. Devem ser implementadas medidas de mitigação para evitar colisões destas espécies, que 

incluem o planeamento da localização das linhas, a utilização de configurações de linhas e postes 

adequados, bem como a sinalização dos cabos, sempre que as linhas elétricas atravessem áreas com 

mais de 20% de habitats abertos, inclusivamente fora das áreas protegidas. 
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Capítulo 4: Movimentos pós-reprodutores e seleção de habitat das áreas de paragem migratória de 

um migrador de curta distância  

Neste capítulo, estudámos as paragens durante as viagens migratórias do sisão, uma espécie 

ameaçada e migradora de curta distância. Utilizando dados espaciais recolhidos por GPS / GSM de alta 

resolução, seguimos 27 machos reprodutores de sisão no sul de Portugal entre 2009 e 2011. Os 

movimentos pós-reprodutores foram estudados através de modelos dinâmicos Brownian Bridges, de 

forma a identificar os principais locais de paragem, e modelos lineares mistos generalizados foram 

usados para estudar a seleção de habitat nesses locais. Durante estes movimentos, os machos fizeram 

essencialmente voos noturnos, fazendo paragens frequentes e curtas, de forma a alcançar 

rapidamente as áreas de pós-reprodução. A maioria das aves fez paragens durante a viagem pós-

reprodutora (83%), independentemente da distância total percorrida (média de 64,3 km), e a maioria 

das paragens (84%) durou menos de 24 horas. As aves usavam principalmente áreas agrícolas não 

irrigadas e irrigadas como locais de paragem, evitando outros usos do solo e topografias acidentadas. 

Identificou-se um efeito negativo da proximidade a estradas, mas não a linhas elétricas. A elevada 

frequência de paragem durante os movimentos de pós-reprodução, apesar das curtas distâncias 

percorridas, juntamente com o comportamento migratório noturno, pode expor esta ave a riscos 

adicionais de colisão com linhas elétricas. Deduzimos ainda que, mesmo para migrantes de curta 

distância, a conectividade do habitat entre as áreas de reprodução e pós-reprodução é provavelmente 

uma questão importante para a conservação. 

 

Capítulo 5: Os aerogeradores causam perda de habitat funcional para aves planadoras migradoras  

Neste capítulo modelámos o efeito de exclusão provocado pelos aerogeradores em milhafres-preto. 

Seguimos 130 aves no estreito de Gibraltar, uma área onde estão instalados vários parques eólicos. 

Usámos modelos Brownian bridges para estimar a utilização do espaço pelas aves e modelos aditivos 

mistos para analisar o efeito da proximidade dos aerogeradores, bem como da disponibilidade das 

correntes ascendentes de origem térmica e orográfica, na densidade de utilização da paisagem. Os 

nossos resultados mostram que áreas até aproximadamente 674 m de distância dos aerogeradores 

são menos usadas do que o esperado, e este efeito é tão mais acentuado quanto maior a proximidade 

aos aerogeradores. Estimámos que 3-14% da área adequada para voos planados nesta região esteja 

afetada por parque eólicos. No geral, apresentamos evidências de que os impactos do setor de energia 

eólica sobre as aves são maiores do que o anteriormente reconhecido. Além da mortalidade por 
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colisão, o comportamento de evitamento dos aerogeradores representa uma perda de habitat, em 

particular nos corredores migratórios.  

 

Capítulo 6: Movimentos dispersivos e adequabilidade de habitat para uma ave de rapina 

globalmente ameaçada, revelados por seguimento remoto de alta resolução  

Neste trabalho, usámos equipamentos GPS/GSM para estudar os padrões espácio-temporais de 

movimentos e a adequação do habitat de águias imperiais ibéricas imaturas. Durante a fase de 

dispersão, seguimos 12 aves ao longo, em média, de 243 dias e reunimos ca. 38.000 localizações. 

Utilizamos modelos Brownian bridges para identificar áreas de assentamento, e aplicamos modelos 

Maxent para prever áreas adequadas para aves não territoriais na Península Ibérica. As águias 

viajaram principalmente no centro e no sul da Península Ibérica, onde há habitats mais adequados 

para a espécie, embora uma ave tenha atravessado o Estreito de Gibraltar até o norte da África. As 

águias jovens permaneceram nas áreas de assentamento durante a maior parte de sua vida imatura 

(ca. 90% de tempo), normalmente viajando alternadamente entre diferentes áreas de assentamento. 

Estas áreas localizam-se, em média, a 208 km do ninho de origem. Durante os meses mais frios, as 

aves exibiram um comportamento sedentário, realizando menos movimentos do que durante o resto 

do ano. Os nossos resultados mostram que estas águias preferem paisagens dominadas por sistemas 

agroflorestais e matagais, com uma topografia suave e aridez elevada. Por outro lado, recolhemos 

evidências de que as águias imaturas viajam para mais longe do que identificado anteriormente, talvez 

devido a um aumento da competição intraespecífica. Este fator pode ser responsável pela expansão 

da área de distribuição da espécie, incluindo da área de reprodução. O nosso modelo preditivo pode 

ajudar a orientar futuras ações de gestão focadas nesta espécie. 

 

Palavras-chave: ecologia do movimento, mitigação, mortalidade, Península Ibérica, seguimento 

remoto   
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General introduction 

1. EFFECTS OF ANTHROPOGENIC INFRASTRUCTURES ON WILDLIFE 

Infrastructures are fundamental facilities to human societal living, providing commodities and 

services, such as the transportation of goods and people or the supply of energy and water (NRC, 

2009). Roads, railways, electric grids and telecommunications are some examples.  

Roads are the most studied infrastructures regarding their effects on biodiversity and ecology. This is 

probably because roads are widespread and continuously increasing, but also because the 

implementation of a road may have major effects on the surrounding landscape in addition to those 

caused by the structure itself (Ibisch et al., 2016). This is particularly noticeable in pristine areas, like 

tropical forests, where a new road, by allowing access to previously remote areas, promotes land-use 

changes and human disturbances to biodiversity (e.g. resource extraction, human settlement, 

wildfires or hunting), often with irreversible impacts on ecosystems (Ibisch et al., 2016; Laurance et 

al., 2014, 2009, 2001). Such “contagious” effects, exacerbate the human footprint assigned to roads 

(Laurance, 2015).  

However, due to the increasing human demand for energy, energy infrastructures like power lines, 

gas pipelines, and wind farms are also expanding and receiving further attention from the scientific 

and conservation communities. Linear infrastructures are usually long, occur in all types of landscapes 

and are virtually omnipresent, crossing many natural and semi-natural habitats. Infrastructures also 

tend to have a clustered spatial pattern, as successive developments tend to occupy existing corridors 

or nearby areas, contributing to a hyperfragmentation of the landscape (Trombulak and Frissell, 2000). 

Energy production facilities, like hydropower plants or wind farms, also tends to be located in more 

remote areas that have to be crossed to supply big consuming areas such as cities. Additionally, new 

human facilities usually imply multiple infrastructures. For example, the construction of a new railway 

often requires new train stations, with associated roads that allow the access of passengers and 

maintenance workers, and new power lines and electrical substations may be also deployed.  

The widespread and continuous increase of infrastructures makes them a major driver of human-

related effects in the Anthropocene, and several negative impacts have been described to affect 

different taxa and habitats, including land-use degradation, population fragmentation or animal 

mortality. Some positive effects, such as the creation of microhabitats or the provisioning of perches 

and nesting sites have also been described (Berg et al., 2016; Morelli et al., 2014). However, there is a 
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general consensus that the cumulative effects across taxa are very negative (Fahrig and Rytwinski, 

2009; van der Ree et al., 2015).  

In this chapter I introduce some of the major negative effects of anthropogenic infrastructures on 

wildlife, focusing on the ones with more impact on birds, in order to contextualize the topics studied 

in the following chapters of this thesis.  

1.1. HABITAT EFFECTS   

Habitat loss due to the implementation of the physical components of the structure itself is the first 

habitat alteration caused by infrastructures. The magnitude of habitat loss depends on the area 

occupied by the infrastructure and the area used during its construction, so it is expected to be larger 

in big projects like highways, when compared to power lines, where usually only the base of the power 

pole occupies ground space. Species with small home ranges in natural areas are the most likely to be 

affected by habitat loss due to infrastructures (Fahrig and Rytwinski, 2009; Pearce-Higgins et al., 2009). 

Besides this change to an artificial land-use, several infrastructures imply a permanent vegetation 

change along their corridors or surroundings, due to safety reasons. One example are power lines 

installed in forests, whose corridors are permanently managed in order to avoid that trees and tall 

vegetation reach and interact with the aerial cables, causing power cuts or even fire (Luken et al., 

1991).  

When an anthropogenic infrastructure is installed it may also contribute to the fragmentation of 

native ecosystems and the creation of edge effects (Andrews, 1990; Laurance et al., 2009; Sánchez-

Zapata et al., 2016; Trombulak and Frissell, 2000), that are widely known for having deleterious effects 

on wildlife (Ewers and Didham, 2005; Fahrig, 2003). Additionally, land-use degradation is also 

expected to occur in areas contiguous to anthropogenic infrastructures, and can even exceed the 

amount of habitat directly cleared by the structure (van der Ree et al., 2015). Road use and 

maintenance are known to be sources of pollution of heavy metals, salt, dust, ozone, and nutrients, 

contributing to the degradation of aquatic and terrestrial habitats (Laurance et al., 2009; Trombulak 

and Frissell, 2000). Anthropogenic infrastructures may also facilitate the spread of exotic species by 

providing habitat due to vegetation disturbance, stressing or removing native species, and allowing 

easier access and movement for wild or human dispersion vectors (Laurance et al., 2009; Trombulak 

and Frissell, 2000). 

Several studies have shown that in general the density of birds and mammals is reduced in the vicinity 

of anthropogenic infrastructures. A meta-analysis on this topic found that the effect of infrastructures 

can extend for up to 1 km radius for birds, and around 5 km for mammals (Benítez-López et al., 2010). 
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Such displacement may be related to changes in the habitat (habitat loss, degradation or 

fragmentation), but is may also result from shifts in animal behaviour, individual mortality or a 

combination of these effects. In fact, disentangling the mechanisms beyond reduced density in the 

vicinity of infrastructures is still not fully accomplished, and those mechanisms may vary across taxa 

(Laurance, 2015).  

1.2. BEHAVIOURAL EFFECTS 

Infrastructures may change an animal’s behaviour through shifts in: home ranges, movement 

patterns, reproductive success, escape responses, and physiological states (Trombulak and Frissell, 

2000).  

Changes in space use and movement are probably the most noticeable behavioural effects, and occur 

because individuals (i) avoid the infrastructure itself, (ii) avoid the disturbance caused by the structure 

(e.g. traffic, noise, lights, pollution, predators) or (iii) are attracted to the structure (Rytwinski and 

Fahrig, 2015; Walters et al., 2014). An experiment that applied traffic noise to a roadless area found 

that bird abundance was highly reduced and some species even disappeared in the periods of noise. 

This shows that traffic noise can be a major driver of road effects on birds and is independent of 

changes in habitat, mortality or other disturbance sources (McClure et al., 2013). In fact, noise is 

known to affect birds through direct stress, as it masks the arrival of a predator or the associated alarm 

calls, and because it interferes with acoustic communications, mainly during the breeding season 

(Slabbekoorn and Ripmeester, 2008). Also, the birds that stayed in the noisy roadless area ended 

having worse body condition and a decreased stopover efficiency (ability to improve their body 

condition over time) during migration (Ware et al., 2015). The latter result points out that 

infrastructure effects can extend far beyond the way animals distribute and move through the space 

occupied by it, and that it can affects animal physiology.  

In some cases, anthropogenic infrastructures can even represent a barrier to free movement, mainly 

to non-flying animals. The barrier effect can be physical, when an individual cannot cross an 

infrastructure, or behavioural, when an individual may be physically able to do it but does not do so, 

due to unfavourable environmental conditions or perceived risk (Barrientos and Borda-de-Água, 

2017). Ultimately, barrier effects can contribute to a decrease in the functional connectivity and 

increase the genetic differentiation of populations or the genetic distance among individuals 

(Holderegger and Di Giulio, 2010). 

In contrast, there are some species that are even attracted to infrastructures. An example are the 

power line poles, frequently used by raptors as perches for hunting and roosting, or used as a support 
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for nesting sites for multiple species (Benítez-López et al., 2010; Mainwaring, 2015). However, such 

an attraction may, for example, increase the risk of predation of species that are prey for these raptors 

and may thus contribute to their decline (Walters et al., 2014). Such a mechanism has been proposed 

to explain, at least partially, the reduced density of grouse species near oil and gas structures (Dinkins 

et al., 2014) or bustards species near power lines (Silva et al., 2010).  

1.3. MORTALITY   

Mortality of animals occurs at all types of infrastructures and it is probably the most well documented 

effect of anthropogenic infrastructures on wildlife. Virtually all terrestrial animals, from insects to 

large mammals, risk colliding with vehicles travelling on roads (Forman et al., 2003). Flying birds can 

collide with the overhead power lines or those of the telephone network (Bevanger, 1998, 1994; Janss, 

2000), and even with wind turbines (Drewitt and Langston, 2008, 2006). Also, birds that perch on 

power line poles may be electrocuted, if their body simultaneously contacts with exposed energized 

wires or components with different electrical potentials (Bevanger, 1998, 1994).  

Species-specific features, like morphology, sensorial perception, flock and flight behaviour, and 

individual conditions may influence the mortality risk due to an infrastructure, and explain why not all 

animal groups or species are equally prone to this type of mortality (Bernardino et al., 2018; Marques 

et al., 2014; Sánchez-Zapata et al., 2016). Regarding birds, Strigiformes (nocturnal raptors) are 

particularly vulnerable to colliding with vehicles (Guinard et al., 2012), while poor fliers like bustards 

are at higher risk of colliding with power lines (Janss, 2000), and raptors are particularly vulnerable to 

being caught by rotating wind turbines (Beston et al., 2016) or to be electrocuted on power lines 

(Janss, 2000).  

Mortality levels also depend on site-specific features, like habitat, topography, food-abundance or 

weather conditions (Bernardino et al., 2018; Marques et al., 2014; Sánchez-Zapata et al., 2016). For 

example, power lines in open areas like bogs or pastures, in areas with high bird abundance (e.g. 

wetlands) or crossing migration corridors or daily routes between foraging and roosting grounds, 

usually have higher bird collision rates (Bernardino et al., 2018; Sánchez-Zapata et al., 2016). There 

are also some project-specific features that can increase the mortality risk, like road size and traffic 

intensity (Forman et al., 2003), the number of vertical wire levels of power lines and wire height 

(Bernardino et al., 2018), the power line pole configuration (Janss and Ferrer, 2001) or the wind 

turbine height (Marques et al., 2014). 

In the United States, the estimates of bird mortality from anthropogenic causes ranges from hundreds 

of millions for vehicle collisions, tens of millions for power line collisions, millions of power line 
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electrocutions, and hundreds of thousands for wind turbine collisions (Loss et al., 2015). Such high 

numbers suggest that anthropogenic mortality is widespread and may have demographic 

consequences. This has indeed been demonstrated to occur for some species of several groups (Boves 

and Belthoff, 2012; Jones, 2000; Mumme et al., 2000; Sergio et al., 2004; Shaw et al., 2010). In addition 

to removing individuals from the populations, anthropogenic mortality can be biased towards a 

certain age, sex or even behaviour (Boves and Belthoff, 2012; Ferrer and Hiraldo, 1992; Morinha et 

al., 2014; Palacín et al., 2017; Sergio et al., 2004), what can introduce extra unbalance to population 

dynamics.  

1.4. MITIGATION STRATEGIES 

There is a general consensus that a multistep approach is necessary to mitigate the effects of 

infrastructures on wildlife. This involves first acting with a strategic scope and then moving to a local 

scale. The mitigation hierarchy is the rule beyond the Environmental Impact Assessment (EIA) 

framework and has the following sequential steps: (i) avoidance – impacts should be avoided 

wherever possible; (ii) minimisation – the effects should be minimised; (iii) remediation – the area 

affected during the construction phase or after the project decommissioning should be restored or 

rehabilitated; and (iv) compensation – the residual impacts that could not be avoided, minimised or 

remediated should be compensated during the operation (Arlidge et al., 2018; Phalan et al., 2018).  

The avoidance phase is the most critical, as it is the most certain and effective way to reduce the 

impacts on biodiversity, and could also avoid the need for costly minimization and compensatory 

measures (Bernardino et al., 2018; Laurance et al., 2014; Marques et al., 2014; Phalan et al., 2018; 

Sánchez-Zapata et al., 2016; Weller, 2015). This can be achieved with a careful spatial planning that 

selects the location of the new infrastructure that has the least impact on biodiversity. This can be 

done, for example, by selecting locations away from protected areas or other important sites for 

nature conservation, avoiding key areas for species particularly vulnerable to the impacts caused by 

the infrastructure, promoting a spatial aggregation of human structures, avoiding the creation of new 

vegetation clearings, and minimizing habitat fragmentation.   

Minimization is still necessary for most infrastructures, even if the avoidance phase was correctly 

implemented. At this stage the project management should engage in finding the best technical 

options to reduce impacts. For example, animal mortality is almost certain in some infrastructure 

types, even in areas with low ecological value, and can be reduced if roads are fenced and wildlife 

crossing structures are built (Weller, 2015). Regarding power lines, it is possible to implement pole 

designs that prevent birds from being electrocuted (López-López et al., 2011; Tintó et al., 2010). Still, 
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wind turbine operation can be interrupted in periods of high bird or bat activity, significantly reducing 

mortality (Tomé et al., 2017; Weller and Baldwin, 2012).  

The third step should be to aim to remediate the biodiversity loss within the footprint of the 

infrastructure project (Arlidge et al., 2018). This may happen: in areas temporarily used during the 

project construction, but that are not needed after the project is completed; at the margins of the 

infrastructure, where exotic vegetation can be managed or vegetation can be planted in bare soil; or 

at the end of the life-cycle of the project, when management actions are undertaken to recreate the 

initial habitat conditions.  

Compensation, the final step, should be a last resort and only considered if the previous steps do not 

reduce adverse impacts to an acceptable level. It assumes that negative effects on biodiversity can be 

quantified and balanced elsewhere, through positive management interventions such as the 

restoration of degraded habitat, the protection of areas where there is an imminent or a projected 

loss, or the improvement of biological parameters (e.g. promoting an increase in birth rate or a 

decrease in mortality rate) of the species affected by the project. This is a controversial stage of the 

mitigation hierarchy, mainly because there are limits to what is possible to compensate and because 

this mechanism is often used to legitimise developments which would not otherwise have been 

permitted (Phalan et al., 2018; Walker et al., 2009). 

2. BIRD TRACKING AND MOVEMENT ECOLOGY 

The movement of an individual, defined as a change in spatial location across time, is a fundamental 

characteristic of life and plays a major role in most ecological and evolutionary processes (Nathan et 

al., 2008). Animal movement plays a central role in several questions of animal ecology. Understanding 

how and why animals move and how this process is linked to external factors is central to understand, 

for example, (i) how and why animal use resources, (ii) how and why animals interact among 

themselves or (iii) how and why they compete and reproduce (Cagnacci et al., 2010; Demšar et al., 

2015). Movement is, therefore, directly linked to spatial ecology and species distributions, and is 

essential to forecast the impact of anthropogenic actions, like habitat fragmentation, climate change 

or the introduction of exotic species (Demšar et al., 2015; Nathan et al., 2008).  

The analysis of animal movement currently adopts a Lagrangian approach which quantifies movement 

based on tracks of individuals rather than whole populations (Nathan et al., 2008). This is possible due 

to recent advances in tracking technologies, where miniaturized radio transmitters, global positioning 

system (GPS) or cellular and satellite networks are now available, leading to increased autonomy and 
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data collection capacity. But mainly to the possibility of tracking more individuals, which enables 

developing powerful models that can then be inferred for the whole population. This has in turn 

permitted a growth in knowledge about animal movements and spatial ecology (Bridge et al., 2011; 

Giuggioli and Bartumeus, 2010). These technologies have also changed the way ecologists collect data 

by moving the point of observation from the observer to the observed animal (Cagnacci et al., 2010; 

Demšar et al., 2015), and overcoming human biases during data collection, which can occur, for 

example, when studying long-distance migrations or deep-ocean movements, or when observations 

are done during harsh climacteric conditions (e.g. fog or snow) or during the night (Hebblewhite and 

Haydon, 2010).  

Research in movement ecology was boosted by the development and widespread use of GPS 

telemetry (Figure 1), which has allowed the collection of data about animal location with 

unprecedented temporal and spatial resolution (Cagnacci et al., 2010; Tomkiewicz et al., 2010). These 

technologies started to be deployed on large-bodied animals, but advances in miniature devices 

(smaller and lighter weight) are widening the range of species on which they can be used (Tomkiewicz 

et al., 2010).  

 

Figure 1 -  Attachment of a solar GPS/GSM tracking device on a little bustard (left) and release of the tagged 
bird (right).  
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GPS telemetry-based research has brought major benefits to nature conservation and management, 

not only by allowing the modelling of the importance of habitats to animals with an unprecedented 

rigour but also to increase our knowledge about human impacts on animals (Hebblewhite and Haydon, 

2010). However, it also brings new challenges to biodiversity conservation, particularly of nomadic or 

migratory species, which have large and/or seasonal home ranges (Runge et al., 2014), and where 

maintaining connectivity is key (Allen and Singh, 2016). It is now clear that traditional approaches to 

conservation, such as the creation of protected areas, need to be complemented with strategies that 

are flexible in time and/or space, accounting for particularities in the life cycle of all the species (Allen 

and Singh, 2016; Runge et al., 2014).  

Movement ecology has been widely used to study the effects of anthropogenic infrastructures on 

wildlife. It was used to identify large scale phenomena occurring across species (Tucker et al., 2018), 

to understand how animals use the landscape when a new structure is developed (Dahl et al., 2013; 

Grilo et al., 2012; Polfus et al., 2011; Pruett et al., 2009; Roeleke et al., 2016; Whittington et al., 2005), 

to identify barrier effects (Rondinini and Doncaster, 2002; Shepard et al., 2008), to quantify mortality 

rates (González et al., 2007; Marcelino et al., 2017; Schaub et al., 2010; Schaub and Pradel, 2004; Väli 

and Bergmanis, 2017), and to help design mitigation techniques (Bastille-Rousseau et al., 2018; 

Colchero et al., 2011; Katzner et al., 2012; Miller et al., 2014).   

3. GENERAL INTRODUCTION TO THE STUDIED SPECIES  

3.1. LITTLE BUSTARD 

The little bustard Tetrax tetrax (Linnaeus, 1758) is a medium sized bird from the Order Otidiformes 

and Family Otididae, with a fragmented Palaearctic distribution (Birdlife International, 2018). 

Currently, it has two widely separated breeding populations, one in Western Europe, mainly in the 

Iberian Peninsula and France, and the other in Southern Eurasia, mainly in Russia and Kazakhstan 

(Iñigo and Barov, 2010).  

The species is a steppe bird, which has adapted to dry grasslands and extensive arable and pastoral 

lands, and in the western range it is highly dependent on farming habitats and management (Iñigo 

and Barov, 2010). It is a polygynous species with an exploded lekking mating system, where territorial 

males gather in key locations during the breeding season that are then visited by females with the 

single purpose of mating (Jiguet et al., 2000; Morales et al., 2001; Ponjoan et al., 2012). The little 

bustard is considered a migratory or partially migratory species, with most of the individuals showing 

a migratory behaviour. In the eastern range the species has an obligatory migratory population 
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undertaking long migratory journeys, while in Iberia short- or medium-distance movements to post-

breeding or wintering grounds are the norm (García de la Morena et al., 2015).  

Globally, the species is classified as Near Threatened (Birdlife International, 2018), while in Europe its 

status is Vulnerable (Birdlife International, 2004). Iberia is considered key for the Little Bustard, as by 

the end of the XX century this area was considered a stronghold for the species, despite declining  in 

Spain since the 1990s’ (Iñigo and Barov, 2010). In recent years, the species numbers have dropped 

dramatically in Iberia: a mean population decline of 49% was recorded in Portugal from 2003-2006 to 

2016 (Silva et al., 2018) and an equivalent decline of 48% was recorded in Spain from 2005 to 2016 

(García de la Morena et al., 2018). Changes in farming practices have modified the agricultural 

landscape and, hence, the loss of little bustard habitat has been indicated as the main reason for its 

decline (Silva et al., 2018; Traba and Morales, 2019). Additionally, adult birds have shown an annual 

survival rate of 67%, the lowest number known for bustard species, and there is a high anthropogenic 

mortality rate (Marcelino et al., 2017).  

Collision with power lines is the main anthropogenic cause of mortality of the little bustard, affecting 

3.4 - 3.8% of adult birds per year (Marcelino et al., 2017). This is the highest mortality rate per collision 

with power lines ever recorded for a species. Morphological characteristics and bird sensorial 

perception are key species-specific features that explain such a high mortality rate (Bevanger, 1998; 

Janss, 2000; Martin, 2011; Martin and Shaw, 2010), but behavioural changes across seasons were also 

considered relevant (Silva et al., 2014). In addition to mortality, little bustards also avoid the vicinity 

of anthropogenic infrastructures, mainly to roads and power lines. The proximity of roads was found 

to have a negative effect on little bustard space use during the breeding season (García et al., 2007; 

Osborne and Suárez-Seoane, 2007; Santangeli and Dolman, 2011; Santos et al., 2016; Suárez-Seoane 

et al., 2002), and a similar pattern has been described for power lines (Lourie, 2016; Santos et al., 

2016; Silva et al., 2010). 

3.2. GREAT BUSTARD 

The great bustard Otis tarda (Linnaeus, 1758) is also a steppe bird of the Order Otidiformes and Family 

Otididae, with highly fragmented populations across the Euro-Asiatic range, from Portugal to China 

(Birdlife International, 2018). The Iberian Peninsula harbours a large majority (>60%) of the great 

bustards worldwide and is thus a key for the conservation of the species (Palacín and Alonso, 2008).  

It occurs in lowlands and undulating open countryside with relatively low levels of annual rainfall, and 

is well adapted to agricultural landscapes presenting high crops diversity with low intensity cultivation 

and disturbance (Morales and Martín, 2002; Nagy, 2009). Great bustards exhibit a lek-like mating 
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system, similar to the little bustard, and have an accentuated sexual dimorphism, with big and heavy 

males that are among the heaviest living flying birds (Morales and Martín, 2002). The western 

population (including Iberia) is partially migratory, and some birds make seasonal short distance 

movements (Palacín et al., 2009). 

Population numbers have declined throughout the 19th and 20th century and the species is classified 

as Vulnerable, both at European and global levels (Birdlife International, 2018; Nagy, 2009). Currently, 

the great bustard is particularly vulnerable to the loss and degradation of its habitat through 

agricultural intensification, land-use changes, increased mortality caused mainly by power lines, and 

low reproductive success (Birdlife International, 2018; Nagy, 2009). 

Like the little bustards and other Otididae species, great bustards are highly vulnerable to colliding 

with overhead wires. The species is considered a “poor flier” with a reduced manoeuvrable flight 

capacity caused by their heavy body and relatively small wings (Rayner, 1988). Moreover, their eye 

morphology makes them blind in the direction of travel (Martin and Shaw, 2010), failing to see ahead. 

Finally, they also gather in large flocks during a large part of the year. All these characteristics increase 

their collision risk with power lines (Bernardino et al., 2018) making power lines the main source of 

anthropogenic mortality for the species. Moreover, collision with power lines has been described to 

induce changes in the migratory patterns of great bustards; migrant birds have a higher mortality rate 

due to collisions than sedentary ones (21.3% vs. 6.3%), so the proportion of resident birds has greatly 

increased during a 15-year period (Palacín et al., 2017). Eliminating or reducing the mortality rate due 

to collisions with power lines has been the target of several conservation projects focusing on the 

species (Barrientos et al., 2012; Janss and Ferrer, 1998; Marques et al., 2007; Raab et al., 2012, 2011). 

3.3. BLACK KITE  

The black kite Milvus migrans (Boddaert, 1783) is a medium-size diurnal raptor, from the Order 

Accipitriformes and Family Accipitridae. It is widely distributed and can be found in Europe, Asia, Africa 

and Australia. It is presumably the raptor species with the largest range and also the most abundant 

one and, although there is evidence indicating that some populations are declining, it is classified as 

Least Concern at a global level (Birdlife International, 2018). 

This raptor is a generalist species and can occupy a large variety of habitats, but it shows a preference 

for locations near water bodies like rivers, lakes and other wetlands. Black kites are food opportunists, 

and can either hunt live preys or scavenge, spending long periods soaring and gliding in search of food 

resources (Cramp and Simmons, 1980). They can also feed on the litter of landfills (Martín et al., 2016). 

Black kite flight is highly dependent of uplift availability, as their circular soaring flight occurs in areas 
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of high thermal uplift potential and linear soaring is associated with locations with higher orographic 

uplift (Santos et al., 2017).  

Populations from the Palearctic have a migratory behaviour, wintering in sub-Saharan Africa. During 

the migratory journey birds gather in large flocks (Agostini and Duchi, 1994) and the species is the 

most common soaring species crossing Spain and the Strait of Gibraltar (100,000 - 150,000 birds 

annually) during the post-breeding migration (Martín et al., 2016). In this region, black kites are likely 

to frequently interact with wind farms, as ca. a thousand wind turbines are displaced in the southern 

part of Cádiz, Spain, towards the Strait of Gibraltar (IECA, 2015), and collisions with wind turbines have 

already been reported for the species (Ferrer et al., 2012).  

3.4. IBERIAN IMPERIAL EAGLE  

The Iberian imperial eagle Aquila adalberti (Brehm, 1861) is a large raptor (Order Accipitriformes and 

Family Accipitridae), endemic to the western Mediterranean region, that currently breeds exclusively 

in the Iberian Peninsula (Birdlife International, 2018). The species uses a great variety of landscapes, 

but the majority of breeding couples are located on plains and in mountain ranges with patches of 

Mediterranean forest as well as in agroforestry systems (montados or dehesas) (González et al., 2008). 

However, the Iberian imperial eagle is a super-specialist predator, and its occurrence is highly 

associated with a large abundance of the wild rabbit Oryctolagus cuniculus (Linnaeus, 1758), the 

species’ main prey (Ferrer and Negro, 2004; González and Oria, 2004; R. Sánchez et al., 2008).   

It is a long-lived species and wild birds can reach 23 years of age (González et al., 2006). Breeding birds 

are territorial, monogamous and sedentary, and occupy their territories year-round, defending them 

from the intrusion of other raptors (Sánchez et al., 2008). Like other long-lived raptors, the juveniles 

of this species have a transient period during which they undergo long-distance trips away from their 

birth area and use different temporary settlement areas that are usually revisited (Ferrer, 1993; 

González et al., 1989). They usually start exhibiting territorial behaviour when they are 4.5 years old 

(González et al., 2006).  

The species is classified as Vulnerable globally and is considered one of the rarest raptors in the world 

(Birdlife International, 2017; Sánchez et al., 2008). Currently, the breeding population includes less 

than 500 pairs, and is increasing and recovering from a major decline which peaked during the 1970s’ 

with only 38 breeding pairs in Spain (Ortega et al., 2009). Human persecution (for predator control 

and museum collections) and the decline of the rabbit populations due to viral diseases are indicated 

as the main drivers of the crash of the species. National and regional plans as well as several 

conservation projects targeting the Iberian imperial eagle were undertaken in Spain since the end of 
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the 20th century and more recently in Portugal, which has contributed to the recovery of the species 

(González et al., 2008).  

Nowadays, the major treats to the species include the lack of food resources, i.e. rabbits, and the high 

anthropogenic mortality due to electrocution on power line poles and illegal poisoning (González and 

Oria, 2004). Electrocution on power lines has been reported as the main known cause of death for the 

species (mainly affecting non-adult eagles), accounting for ca. 60% of mortality (González et al., 2007). 

Across Iberia efforts have been made to correct hazardous electric pylons and most of the new power 

lines use safer designs that prevent the electrocution of large raptors (López-López et al., 2011). 

Hence, the implementation of anti-electrocution devices in highly risky locations has been one of the 

main actions of plans and projects promoting the conservation of the Iberian imperial eagle.  

4. THESIS AIMS AND OUTLINE 

The main objective of this thesis is to study how anthropogenic infrastructures affect and shape the 

distribution and movement of bird species in order to identify management actions and support 

conservation strategies. It focuses on four species, two bustards and two raptors, due to their 

vulnerability to infrastructures and conservation interest of the species itself or of the geographic 

areas studied.  

After this general introduction, the dissertation includes five chapters, each one corresponding to a 

research manuscript, followed by a general discussion of the overall findings. In Chapter 2 we analyse 

the main drivers behind the population decline of the little bustard since the beginning of the 

millennium, and test the effects of habitats alterations, as well as roads and power line networks. The 

species has suffered a major decline in a decade both in Portugal and Spain, and previous studies are 

not fully conclusive on the factors leading to such a step decline. In Chapter 3 we focus on the drivers 

of collision with power lines of the two most vulnerable species to such mortality source in Iberia. We 

pooled data on bustards’ collision with power lines collected during 13 years in Portugal to understand 

the drivers responsible for the collision risk. We describe the spatial and temporal patterns of collision 

and determine the relative importance of habitat, power line technical features, and wire marking, 

which allowed us to propose improvements to current mitigation measures targeting these species.  

In Chapters 4, 5 and 6 we took advantage of three pre-existing GPS tracking databases to deepen our 

insight on the interactions between birds and anthropogenic infrastructures, and to contribute to the 

mitigation of impacts. In Chapter 4 GPS-tracking data was used to study the stopover ecology and 

habitat selection of the little bustard during the post-breeding movements, a period with high 
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mortality due to collision with overhead cables, focusing on the effects of linear infrastructures on the 

species habitat selection. In Chapter 5 we modelled the displacement effect of wind turbines on 

migrant black kites tracked by GPS, while accounting for habitat suitability for soaring flights. This 

analysis was performed in a migratory bottleneck from the Western European–West African Flyway, 

used by thousands of soaring birds each year, and where a high number of wind farms are operating. 

Finally, in Chapter 6 GPS-tracking data was used to describe the movements and the use of settlement 

areas by immature Iberian imperial eagles, and to identify areas potentially suitable for the species 

during the non-territorial phase of their life-cycle. Such data can be used to identify priority areas for 

the implementation of management actions focusing on this species. 

The individual chapters of this dissertation are:  

 Chapter 2: Grassland management and infrastructures as major drivers of the population 

decline of an endangered grassland bird 

 Chapter 3: Habitat and power line configuration as major drivers of collision risk in two 

bustard species 

 Chapter 4: Male post-breeding movements and stopover habitat selection of an endangered 

short-distance migrant, the Little Bustard Tetrax tetrax 

 Chapter 5: Wind turbines cause functional habitat loss for migratory soaring birds 

 Chapter 6: Dispersal movements and habitat suitability of a globally threatened raptor 

revealed by high resolution tracking  
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Grassland management and infrastructures as major drivers of the 

population decline of an endangered grassland bird 

ABSTRACT 

European grassland birds have been facing major global population declines, mainly due to changes 

in agricultural policies and practices associated with livestock production. In this study we analyzed 

the factors related to the steep population decline of the little bustard in Iberia since the beginning of 

the 21st century. We used the data from the species census in Portugal (2003-2006 and 2016) and 

tested the effect of habitat availability, grazing management, linear infrastructures density and 

implementation of agri-environmental measures, on the spatial and temporal variation of the species 

density across its distribution area. Our results showed that the drivers explaining spatial variations in 

little bustard density changed across time. In 2003-2006, when the species occurred in high densities, 

habitat availability was the only predictor affecting little bustard density. However, in 2016, when the 

population density was lower, other predictors gained importance, with the species abundance having 

stronger declines in areas with higher stocking rates and proportion of cattle, and with higher power 

line density. Population declines across the study period were larger in areas that held higher 

densities, suggesting that the quality of these grasslands deteriorated due to changes in livestock 

management. Areas with higher densities of power lines also lost more birds, probably due to 

avoidance behavior and higher mortality levels. Agri-environmental measures were able to buffer the 

species decline. Overall, our results show that the little bustard is currently lacking high quality 

grassland habitat with reduced levels of linear infrastructures. The species would benefit from a 

reduction of the cattle density and with further implementation of agri-environmental measures.  

Keywords: agriculture, Common Agricultural Policy, conservation, grazing, habitat degradation, 

farmland management, population tendency, Tetrax tetrax 

1. INTRODUCTION  

Natural and semi-natural grasslands across the world are known for their high biodiversity value 

(Dengler et al., 2014; Tilman and Downing, 1994; Watkinson and Ormerod, 2001). However, they are 

highly prone to changes in management with negative impacts on biodiversity, including conversion 

to arable land, intensification or abandonment (Dengler et al., 2014). Intensification in persisting 

grasslands is often expressed in an increased use of fertilizers and pesticides, or increases in livestock 

density (Donald et al., 2002, 2001). In Europe, changes in livestock management have been pushed by 
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the Common Agricultural Policy, and coupled payments (per livestock head) have been promoting 

increased livestock numbers, mainly cattle (Fragoso et al., 2011; Ribeiro et al., 2014). 

Semi-natural grasslands or pseudosteppes in the south-western Iberia peninsula are recognized as key 

farmlands for biodiversity in Europe, mainly due to their importance for threatened grassland bird 

species (Hoogeveen et al., 2004; Lomba et al., 2014; Moreira et al., 2005; Suárez et al., 1997). The 

extensive traditional management of such systems creates a quite heterogeneous and diverse 

landscape throughout the year, due to the extensive cultivation of cereals and legume crops on a 

rotational basis to support sheep raising. However, such systems are being rapidly replaced by highly 

specialized cattle livestock systems for beef production and a consequent increase of permanent 

pastures (Fragoso et al., 2011; Ribeiro et al., 2014). Although, such changes maintain grasslands they 

potentially reduce the quality of the habitat, by promoting land-use homogeneity, changing the 

harvest dates or altering the structure of the vegetation (Faria et al., 2016; Santana et al., 2017; Stoate 

et al., 2009). Additionally, other sources of disturbance and mortality, as roads and power lines, are 

increasingly affecting bird populations depending on grasslands (Hagen et al., 2011; Lee and Power, 

2013; Marques et al., in press; Reijnen et al., 1996, 1995; Silva et al., 2010b). 

The little-bustard (Tetrax tetrax) is a Near Threatened grassland bird (Birdlife International, 2018). In 

Iberia, which holds the majority of the population of the species in the Western Europe (Iñigo and 

Barov, 2010), the species is classified as Vulnerable (both in Spain and Portugal; Madroño et al. 2004; 

Cabral et al. 2005), but the species status has been proposed to change to Endangered due to recent 

population declines (García de la Morena et al., 2018). Here, the species depends on grasslands mainly 

during the breeding season (Morales et al., 2005; Moreira et al., 2012; Silva et al., 2010a), and several 

conservation areas (Special Protection Areas; SPA) have been created in core distribution areas for the 

species. Also, agri-environment schemes promoted by the Common Agricultural Policy (CAP) have 

been targeting this species inside SPA (Stoate et al., 2009), which farmers can voluntarily embrace, 

receiving a compensatory payment for management options benefiting this species and other 

grassland birds. In spite of this, the species numbers dropped dramatically since the beginning of the 

21st century: a mean population decline of 49% was recorded in Portugal from 2003-2006 to 2016 

(Silva et al., 2018) and a decline of 48% was recorded in Spain from 2005 to 2016 (García de la Morena 

et al., 2018). Habitat loss due to agricultural intensification were associated with previous declines 

and extinctions of the species throughout the Europe (Iñigo and Barov, 2010). However, the evidences 

collected so far reveal that the declines in the Iberian Peninsula may not be fully explained by such 

drivers. In Portugal, for example, the decline in absolute male densities was stronger within Special 

Protected Areas (SPAs) when compared with areas without conservation status, even though the 
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amount of grassland habitat coarsely remained constant (Silva et al., 2018). Also, in Spain, the area of 

potential habitat has only been reduced by 17%, far below the species population decline (García de 

la Morena et al., 2018). These indicators suggest that habitat loss is certainly not the only main driver 

of decline, a deterioration of habitat quality in remaining grasslands, as a consequence of changes in 

management, may play an important role (García de la Morena et al., 2018; Silva et al., 2018). 

Additionally, to land use and management changes, the increase of linear infrastructures, such as 

power lines and roads, known to be a driver of little bustard mortality and habitat selection during the 

breeding season (García et al., 2007; Osborne and Suárez-Seoane, 2007; Santangeli and Dolman, 2011; 

Santos et al., 2016; Silva et al., 2010b; Suárez-Seoane et al., 2002) might contribute to explain the 

observed trends.  

In this study, we used the data collected during two little bustards’ census in Portugal, where 51 areas 

spread across the species distribution area were sampled in 2003-2006 and then again in 2016, to 

access the main drivers affecting spatial and temporal variations in little bustard density. Using such 

regional scale, we analyzed the effect of four main potential drivers on spatial variations of little 

bustard densities, for each time period and temporal variations across periods: (i) the availability of 

the grassland habitat, i.e. habitat quantity; (ii) livestock density as a proxy of habitat quality; (iii) the 

amount of linear infrastructures, and (iv) the existence of agri-environmental schemes.  

2. MATERIAL AND METHODS  

2.1. LITTLE BUSTARD DATA  

Little bustard male densities were surveyed in two different time periods, 2003-2006 and 2016 (Silva 

et al., 2018), across 51 areas (totaling ca. 150,000 ha; mean = 2,889 ha; range = 1,657 – 9,997 ha)) 

located in the Alentejo region, southern Portugal (Figure 1). The region concentrates the large majority 

of the breeding population of the species (Equipa Atlas, 2008). Bird density was estimated following a 

standardized protocol targeting male birds, as females have a cryptic behavior and are hard to detect 

(Delgado and Moreira, 2010; Juana and Martínez, 1996; Morales et al., 2005). A network of point 

counts defined along non-paved roads, distanced by 600 m from each other and from paved roads or 

inhabited houses, was used to census birds in each area, covering an average density of approximately 

1.0 points/km2 per survey (range 0.47-3.00). In all 51 areas, 1,526 and 1,441 survey points were 

sampled in 2003-2006 and in 2016, respectively (differences due to changes in road availability). Still, 

99% of all sampling points were replicated in the exact same location of the previous survey. At each 

point location, little bustard males were counted within a 250 m radius during 5 minutes at early 
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morning and late afternoon, during April and May. For further details on little bustard census see 

Moreira et al. (2012) and Silva et al. (2018).  

 

 

Figure 1 – Location of the 51 survey areas in Alentejo, Portugal. 

2.2. POTENTIAL DRIVERS OF BUSTARD POPULATION DENSITY 

For each survey period, and for each of the 51 areas, information on four major types of potential 

drivers of spatial and temporal changes in little bustard densities were gathered (Table 1): 

2.2.1 Habitat availability 

We quantified the amount of permanent pastures, non-irrigated annual crops and fallow land, the 

major land use types considered suitable for the species (Moreira et al., 2012; Silva et al., 2014, 2010a), 

in each area. Land use data was collected from the official land cover maps of Continental Portugal for 

2007 and 2015 (DGT, 2018), publicly available on-line at 

http://mapas.dgterritorio.pt/geoportal/catalogo.html. We used land use classes 2.1.1 and 2.3.1 as our 

cartographic base for non-irrigated annual crops and permanent pastures, respectively. This 

information was later refined to match the census years based on (i) Google Earth and Bing images 
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and (ii) field validation. The proportion of the total surface of each area covered by suitable habitat 

was estimated (Table 1). 

Table 1 - Description and summary statistics for the predictor variables used to model little bustard density 
during the breeding season in Alentejo, Portugal. Means, standard deviation, and range are provided for 

continuous variables and frequency per classes is presented for the categorical variable. 

Variable  Description  Mean (SD)  Range  

Habitat Proportion of the survey area covered with potential 
breeding habitat: non-irrigated annual crops, permanent 
pastures and fallow land  

0.51 (0.25) 0 - 0.98 

Stocking rate Density of cattle and sheep livestock units per area of 
pastures and fallow land (LU/ha) 

0.89 (0.59) 0.21 – 3.00 

Cattle proportion Proportion of cattle in the stocking rate 0.68 (0.19) 0 – 0.95 

Roads Density of roads in each survey area. The length of the 
structures at the survey area boundaries was divided in 
half (km/km2) 

0.31 (0.19) 0 – 0.70 

Power lines Density of power lines in each survey area (km/km2) 0.46 (0.28) 0.01 – 1.41 

Agri-environmental 
schemes  

Agri-environmental schemes are implemented (Y) or not 
(N) in the survey area (census 2003-2006/ census 2016) 

Y: 5/ 9 
N: 46/ 42  

- 

 

2.2.2 Grazing management  

Agricultural statistics were used to characterize livestock densities in our survey areas, focused on the 

two main livestock grazers of the region: cattle and sheep. Two variables were estimated: (1) stocking 

rate, i.e. the number of livestock units (LU) per area of pastures and fallow land (stocking rates were 

calculated according to the following ratio: bovine = 1 LU; adult sheep = 0.15 LU), and (2) the 

proportion of cattle in the total (cattle + sheep) stocking rate (Table 1). Both variables were derived 

from the results of the national agrarian census (RGA – Recenseamento Geral Agrícola) of 1999 and 

2009, complemented with information obtained from Instituto Nacional de Estatística regarding the 

amount of pastures and fallow land (INE, 2011, 2001). We used the smallest administrative region in 

the country (i.e. Freguesia) as our unit, and applied a weighted mean based on the area occupied by 

of each Freguesia in our individual survey areas to obtain an estimate for each area. Due to the 

temporal lag between the little bustards’ census and the available data on livestock we used the mean 

value between 1999 and 2009 data as a proxy of average grazing intensity in our sampled areas. Some 

obtained values of estimated livestock densities were considered artificially high (in 3 of the sampled 

areas), as they do not represent the real density of livestock in the field and are probably related to 

livestock in stables or grazing in other regions. So, we set densities to a maximum of 3 LU/ha, 

corresponding to the highest values estimated by direct counts in the field. 
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2.2.3 Linear infrastructures  

We gathered data on the distribution of the paved roads and of the power line network during both 

censuses and calculated their density (km/km2) per study area (Table 1). We used the data from Open-

StreetMap contributors, namely the classes: motorway, trunk, primary, and secondary (Haklay and 

Weber, 2008), to identify the main paved roads. For power lines, we mapped both the transmission 

(> 110 kV) and the distribution (< 110 kV) networks, based on data provided by the electric companies 

in Portugal (REN and EDP). Both data were validated for each census period based on Google Earth, 

Bing images and field checks. The length of the roads at the boundaries of the survey areas was 

downweighted when calculating its density, by dividing the length in half, as it was considered that 

only one side of the structure potentially influenced the bustard population within the study area. This 

prevalence of roads bordering study areas was particularly high in designated areas, whose 

administrative limits are often delineated using roads. 

2.2.4 Agri-environmental measures 

To check if agri-environment mechanisms promoted under the CAP contributed to the observed 

densities and population trends, we included a predictor describing if agri-environmental measures 

were implemented in each study area, in any of the time periods (Table 1).   

2.3. DATA ANALYSIS  

First, we used Generalized Linear Mixed Models (GLMM) to test if little bustard density and potential 

drivers (habitat, stocking rate, cattle proportion, roads and power lines) varied across census, using 

the census year as a fixed factor and the sampled area as a random effect. These models were fitted 

in R (R Core Team, 2016) with the packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 

2017). 

To access the main drivers influencing the density of the little bustard across the study region, in each 

survey, we first performed two models that assessed the factors influencing spatial variations in bird 

densities separately for each census date (hereafter referred to as spatial models). These models 

included the density in each survey area as the response variable, and the predictors included: 

breeding habitat availability, stocking rate, cattle proportion, road density, power line density and 

presence/ absence of agri-environmental measures (Table 1). In each spatial model the predictors 

value corresponded to the one collected for the sampled year, except for the two grazing predictors, 

where we used the mean value of the available data as described above. A third model, the population 

variation model, assessed the factors underlying spatial patterns of changes in the little bustard 
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density. In this model the variation in bird density across time (census 2016 – census 2003-2006) was 

the response variable. As predictors, we included the mean values of breeding habitat availability, 

stocking rate, cattle proportion, road density, power line density and presence/ absence of agri-

environmental measures (Table 1), which aimed to access the main global pressures in each survey 

area. Additionally, we included the little bustard density in the first census as a predictor, as the 

magnitude of the absolute variation in density is constrained by the initial value in the area.  

We used Spearman correlation coefficient and variance inflation factors to check for collinearity 

between the explanatory variables (Zuur et al., 2009). Variance inflation factors values (all < 2.0) and 

pairwise correlation between explanatory variables (all |r|<0.55) were low for our dataset, so all 

variables were used in the analysis.  

Generalized Additive Models (GAM) were used to fit the three models, thereby accounting for 

potential non-linear responses (Wood, 2017; Zuur et al., 2009). The spatial models were fitted using a 

Gaussian distribution and a logarithmic link function, ensuring that fitted values were positive. To 

model the variation on the density values across census we used a Gaussian distribution with an 

identity link function. For the three models the optimal smoothing parameter was estimated by 

restricted maximum likelihood estimation (REML), and a basis dimension (k = 3) was defined to allow 

some complexity in the functions, while avoiding over-fitting the data. The models were fitted in R (R 

Core Team, 2016) with the package mgcv (Wood, 2018).  

The modelling procedure involved the fitting of the full model, followed by backward elimination of 

non-significant (p > 0.05) variables to find the optimal model. The final model adequacy was evaluated 

by plotting residuals versus fitted values and explanatory variables, and the model fit was evaluated 

by the proportion of the null deviance explained (Zuur et al. 2009). Spline correlogram plots with 95% 

pointwise confidence intervals calculated with 1,000 bootstrap resamples were used to check for 

spatial autocorrelation in model residuals (Bjørnstad and Falck, 2001). We assumed that variable 

selection and parameter estimation were unbiased if there was no significant autocorrelation in model 

residuals (Rhodes et al., 2009). Correlograms were estimated in R with the ncf package (Bjørnstad, 

2016). 
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3. RESULTS  

3.1. MAJOR CHANGES BETWEEN CENSUS  

The mean little bustard density significantly declined from 2.68 ± 0.38 males / ha in 2003-2006 to 1.44 

± 0.28 males / ha in 2016 (Table S1, Figure 2). Most of the sampled areas (n = 35) showed a negative 

trend between the two censuses and the species disappeared on 12 of them. In contrast, little bustard 

density increased in 12 areas.  

Habitat availability significantly declined from 0.57 ± 0.03 to 0.45 ± 0.04 (Table S1, Figure 2), with 

declines in 28 of the sampled areas. Losses of favorable habitat over 5% were recorded in 19 areas 

and 6 areas had losses greater than 40%, reaching a maximum of 89%.  

There was a significant global increase of the estimated stocking rate, although this parameter even 

reduced in 16 of the areas, and the proportion of cattle in the total stocking rate experienced a major 

and also significant increase (Table S1, Figure 2), across the whole region. An overall significant 

increase of the linear infrastructures also occurred across the study periods (Table S1, Figure 2). Roads 

grown from 0.27 km/km2 ± 0.03 in 2003-2006 to 0.33 ± 0.03 km/km2 in 2016, while power lines 

increased from 0.43 km/km2 ± 0.04 to 0.49 ± 0.04 km/km2.  

 

Figure 2 – Variation (mean and standard errors) in the little bustard density and the environmental predictors 
between the two census periods (2003-2006 and 2016). The grazing regime predictors (stocking rate and cattle 
proportion) are presented for 1999 and 2009, the only periods with livestock statistics available for the survey 

areas.   
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3.2. DRIVERS OF SPATIAL VARIATIONS IN LITTLE BUSTARD DENSITIES FOR EACH PERIOD 

In the first census (2003-2006), habitat availability was the only significant predictor of spatial 

variation in little bustard densities, with higher densities occurring in areas with more habitat.  In the 

2016 census, habitat availability was also important, but the model also included variables related to 

grazing management (the species was more abundant in areas with intermediate levels of stocking 

rate (ca. 1.5 LU/ha) but lower levels of proportion of cattle in the total stocking rate (<60%)), existence 

of agri-environmental measures (benefiting bird densities) and densities of power lines (negative 

effect of increasing power line densities) (Table 2 and Figure 3). This latter model had a much higher 

explanatory power compared to the former one (79.7% vs 24.6%). 

 

 

Figure 3 – Generalized additive model partial effects for the two spatial models of the relationship between 
the little bustard density in each census (2003-2006 and 2016) and the environmental predictors. Shaded areas 

represent 95% confidence intervals. The y-axis shows the contribution of the fitted centered smooth terms s 
(names of the predictor, estimated degrees of freedom) to the response variable (little bustard density in each 

census). Ticks in the x-axis represent the location of observations along the predictor. 
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Table 2 – Summary statistics for the three GAM models: the two spatial models tested the effect of the environmental predictors on the little bustard density in each 
census period (2003-2006 and 2016) and the population variation model tested the effect of the environmental predictors on the delta in little bustard density across 

census (2016 – 2003-2006). SE – Standard error; t – T statistics; edf – Estimated degrees of freedom; F – F statistics. 

 Model coeficients Estimate SE t edf F p-value 
Deviance 
explained 

Spatial models         

Census 1 (2003-2006) Intercept 0.87 0.16 5.49   0.000 24.6% 
Density ~ Habitat    1.00 14.82 0.000  

Census 2 (2016) Intercept -0.52 0.28 -1.86   0.011 79.7% 
Density ~ Agri-environmental measures 0.73 0.27 2.72   0.009  
 Habitat    1.74 4.06 0.021  
 Stocking rate    1.90 4.31 0.025  
 Cattle proportion    1.83 4.82 0.011  
 Power lines    1.00 5.22 0.027  

Population variation  model        

Density variation ~ Intercept -1.43 0.17 -8.57   0.000 81.7% 
 Agri-environmental measures 1.06 0.52 2.05   0.047  
 Density census 2003-2006    1.80 86.11 0.000  
 Habitat_mean    1.70 7.53 0.002  
 Cattle proportion_mean    1.83 7.10 0.004  
 Power lines_mean    1.00 5.19 0.028  
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3.3. DRIVERS OF LITTLE BUSTARD DENSITY VARIATIONS 

Regarding the population variation model (Table 2 and Figure 4), larger declines in little bustard 

density occurred in areas with higher densities in the first census, a larger proportion of cattle in the 

stocking rate, more power lines, and where there were no agri-environmental measures 

implemented. Areas with a high proportion of available habitat (>40%) were the ones with smaller 

losses.   

 

Figure 4 – Generalized additive model partial effects for the population variation model of the relationship 
between the delta in little bustard density across census (2016 – 2003-2006) and the environmental 

predictors. Shaded areas represent 95% confidence intervals. The y-axis shows the contribution of the fitted 
centered smooth terms s (names of the predictor, estimated degrees of freedom) to the response variable 

(delta in little bustard density between census). Ticks in the x-axis represent the location of observations along 
the predictor. 

4. DISCUSSION  

4.1. CHANGES IN BUSTARD DENSITIES AND THEIR DRIVERS ACROSS TIME  

 Changes in bustard densities 

There was an overall reduction of little bustard density in our study areas, from 2003-2006 to 2016, 

matching the patterns previously reported for the whole region (Silva et al. 2018).  

 Changes in habitat quantity and quality 
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Global changes in key population drivers likely explain the observed trends. First, there was a 

reduction of available habitat across time. The major losses were observed in areas allocated to recent 

irrigation projects, which converted grasslands to permanent crops such as olive groves or vineyards. 

These were usually located outside SPA. Second, even in the remaining grasslands, habitat 

degradation likely occurred, due to different reasons: (i) from 2000 to 2016 the number of beef cattle 

increased 48% in the Alentejo region, while sheep declined 27% (Fig. S4; INE, 2019), what likely led to 

the observed overall increase of the stocking rate. (ii) Accordingly, the area devoted to hay production 

has been increasing in the region to ensure the demands of plant biomass for cattle, which causes 

changes in vegetation structure and directly affects little bustards through adult mortality and nests 

destruction, as haying produces shorter stubbles and occurs on average 1 month earlier then the 

harvest of cereal grain crops in our region (Faria et al., 2016). Changes in livestock also iii) represent 

the loss of the traditional rotation system based on cereal production and its heterogeneous habitat, 

mainly a significant reduction of fallow land (Fig. S4; INE, 2019). In fact, a recent work linked the loss 

of fallow lands with the overall decline of farmland birds, including the little bustard, in Spain (Traba 

and Morales, 2019). All these shifts in land use and livestock management were promoted by the 

Common Agricultural Policy reform of 2003 (Fragoso et al., 2011; Ribeiro et al., 2014). (iv) Finally, there 

was an overall increase of anthropogenic infrastructures within the sampled areas. These are known 

to negatively impact on little bustard populations through direct mortality (Marcelino et al., 2017; 

Marques et al., in press) and habitat degradation (García et al., 2007; Osborne and Suárez-Seoane, 

2007; Santangeli and Dolman, 2011; Santos et al., 2016; Silva et al., 2010b; Suárez-Seoane et al., 2002). 

4.2. DRIVERS OF SPATIAL VARIATIONS IN LITTLE BUSTARD DENSITIES 

 The importance of habitat availability 

As expected, habitat availability was a relevant driver of spatial variations in bustard densities in both 

census, confirming that grasslands are key to the little bustard during the breeding season. However, 

the remaining predictors where only relevant in the second census, maybe because the species 

occurred in high densities in 2003-2006 and birds occupied both optimal and suboptimal habitats, 

whereas when the densities declined, birds redistributed through areas with better habitat 

characteristics and avoided less suitable areas. Additionally, the species was exposed to higher levels 

of drivers that did not occur in the first census. 

 Grassland habitat quality driven by changes in livestock management  

The little bustard response to grazing changed across time. During 2003-2006 the species did not show 

a response to such predictors, while areas with intermediate levels of stocking rate and with lower 
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proportions of cattle (< 60%) were preferred in 2016 (Figure 3), when there was also an overall 

increase of livestock intensity. Such variations across census suggests that the changes in grazing 

management, altered the habitat quality of the grasslands and therefore the response of the birds to 

our predictors. Similarly to our results for 2016, previous studies found that intermediate levels of 

cattle grazing were good for the little bustard (Faria et al., 2012; Reino et al., 2010) and the highest 

densities of the species in Alentejo were even recorded in areas grazed by cattle during 2007-2008 

(Silva et al., 2010a). However, the increase of stocking rates with a higher proportion of cattle 

observed in several areas in 2016 seemed not favorable for the species.  

 Power lines effects 

Little bustard densities declined with the increase of power line densities during the second census. 

Power lines are known to affect the spatial distribution of the little bustard, although it is not clear if 

due to an increased perceived predation risk or neophobia (Silva et al., 2010b; Walters et al., 2014). 

The effect of power lines was only noticeable when the population was decreasing, probably because 

birds selected areas of higher habitat suitability, avoiding areas populated by power lines; whilst birds 

were forced to also occupy less suitable locations (i.e. with higher power lines densities) when the 

species density was higher, because no additional territories were available in locations of high habitat 

suitability. Additionally, power lines are a cause of anthropogenic mortality for the little bustard 

(Marcelino et al., 2017), with high fatalities numbers during the beginning of the breeding season 

(Marques et al., in press), what can also contribute to the reduction of density of the species at 

breeding areas.  

 Agri-environmental measures promote grassland birds’ populations 

Areas benefiting from agri-environmental schemes had higher densities during the second census. 

This result confirms that such management measures, including the promotion of the extensive cereal 

rotation system and the adjustment of agricultural works (e.g. harvest time), can contribute to 

maintain higher density populations and mitigate the overall population decline.  

4.3. DRIVERS OF TEMPORAL CHANGES IN POPULATION DENSITIES 

 Largest declines in higher density areas – a reflex of significant loss of habitat quality? 

The regional variations in population densities were quite variable across areas (ranging from losses 

from 6.9 males/ ha to gains of 2.9 males/ ha), suggesting that the driving forces behind such changes 

vary across the region and with the specificities of each area. 
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Major density declines occurred in areas highly suitable for the species, i.e. in areas where the species 

occurred in higher densities during the first census. Areas with higher densities were the ones where 

the magnitude of the impacts of habitat loss and degradation, as well as the overall population decline, 

could be more clearly expressed, suggesting the loss of male densities in remaining areas was limited 

by their already low densities.  

 Amount of habitat attenuated the decline 

Habitat quantity was also relevant to attenuate the decline of the species between 2003-2006 to 2016, 

as study areas with the largest expanses of grasslands (> 40% of the study area surface) where the 

ones with smaller density losses (some even with gains). Large and continuous grasslands are known 

to host high density values for the species in Portugal (Moreira et al., 2012; Silva et al., 2010a), and 

our results suggest that such landscapes have more resilient populations, which are able to buffer the 

general population decline. Little bustards preference for larger landscapes is probably due to their 

exploded lek mating system, as larger fields allow greater aggregations of males, which are preferred 

and are more visited by females, and have lower disturbance levels, high proportion of nesting females 

and lower rates of predation as a result of reduced edge effects (Silva et al., 2010a). 

 Effects of livestock (proportion of cattle) 

Areas dominated by cattle livestock were the ones with higher reductions of little bustard density 

across census. Such finding also suggests that the higher cattle densities and the underlying changes 

in land use management are causing changes in the quality of grasslands habitats (see section 4.1).  

 Impact of power lines (and roads) 

Areas with a higher density of power lines had major densities losses between census, further 

suggesting that such infrastructures affect the grassland habitat quality, by promoting fragmentation 

and avoidance behaviors of little bustards, as well as mortality of the species.  

The fact that the road network was not relevant in explaining little bustard spatial variation was 

unexpected, as roads are responsible for habitat fragmentation and a source of human presence and 

disturbance (Fahrig and Rytwinski, 2009), and are known to affect the spatial distribution of the little 

bustard during the breeding season (e.g. Suárez-Seoane et al. 2002; García et al. 2007; Osborne & 

Suárez-Seoane 2007; Silva et al. 2010b; Santangeli & Dolman 2011). This may happen because the 

effect of roads was masked by the one from power lines. In fact, both linear structures tend to occur 

spatially clustered, with power lines and roads running parallel, and we had a moderate positive 

correlation between these predictors in our dataset (r=0.39, p-value=0.004, Pearson's correlation). 
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 Agri-environmental measures produce positive outcomes  

The density variations across time confirmed that agri-environmental measures attenuate the decline 

of the little bustard, confirming that such agriculture policies contribute with positive outcomes for 

the conservation of grasslands species like the little bustard and for High Nature Value Farmlands in 

general.   

4.4. A FUTURE FOR THE LITTLE BUSTARD   

Habitat quantity and quality is key to the little bustards’ populations. The species needs large expanses 

of grasslands, with few anthropogenic structures as power lines and roads, that fragment the 

landscape and cause mortality of the species. The production of livestock in grasslands need to be 

properly managed, with lower or lower-intermediate levels of grazing and avoiding practices, as earlier 

mowing, which cause adult mortality and nest losses during the breeding season.  

Our study shows that areas with agri-environmental management were able to hold back the decline 

of the little bustard, revealing that agri-environmental schemes are having successful outcomes 

regarding the conservation of grassland birds. Therefore, we believe that only changes in the 

agriculture policies can revert the decline of the little bustard and maintain the population of the 

species at an adequate conservation status as the EU Bird Directive (2009/147/EC) aims. This can be 

achieved through a reinforcement of the attractiveness of agri-environment schemes with a support 

for an extensive livestock production following the traditional low-impact practices.  

Authorities should also implement monitoring programs focused on grassland species and their 

habitats that allows to detect the effect of the agriculture practices and its changes across time. Future 

studies should address the habitat features that being affected by present livestock management. 

Although our population variation model had a good performance in explaining our data (ca. 80% 

deviance explained), we believe that the decline of the species in Alentejo is not only related to 

pressures occurring during the breeding season. In fact, multiple threats, as decreased habitat quality 

in breeding areas, loss of post-breeding and wintering areas and high mortality rates, may be acting 

in a synergic way, pushing the species to an extinction vortex (Brook et al., 2008). The annual survival 

rate of little bustards in Iberia is just 67% (Marcelino et al., 2017), similar to the one estimated for 

western France when the population was declining during the 90s (Inchausti and Bretagnolle, 2005). 

Anthropogenic mortality, mainly due to collision with power lines and illegal hunting, is quite high in 

the species (ca. 7-7.4% annually) and has similar levels to the mortality due to predation (ca. 7.7-8.7% 

annually; Marcelino et al. 2017). On top of lower survival rates, the species may also be losing post-
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breeding and wintering habitat at a fast rate, as key areas for the non-breeding season lack 

conservation status (Silva et al., 2007, 2014; Silva and Pinto, 2006). Little bustards are short-distant 

migrants (Alonso et al., 2019; García de la Morena et al., 2015) that move to more productive 

agriculture areas during the dry season, in search of green vegetation (Alonso et al., 2019; Silva et al., 

2007). However, Alentejo is facing major landscape changes during the 21st century, and large 

expanses of open agriculture lands have been transformed into permanent crops as olive groves, 

almond plantations and vines or permanent pastures, in fact, the area devoted to annual crops 

decrease 58%, while permanent crops increased 11% from 2000 to 2016 (Figure S4; INE, 2019).  

Therefore, a successful recovery of little bustards’ populations will imply a better management of the 

grassland habitat but also wide conservation actions that reduce the anthropogenic mortality levels 

and conserve the non-breeding habitat.   
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SUPPLEMENTARY MATERIAL 

 

Table S1 – Summary statistics for the GLMM models analyzing changes in little bustard density and our 
predictors (breeding habitat availability, stocking rate, cattle proportion, roads, power lines) across the two 

census (2003-2006 and 2016).  

Model coeficients Estimate SE t p-value  

GLMM1: little bustard density  
Intercept 2.680 0.334 8.02 0.000 
Census 2016 -1.239 0.301 -4.12 0.000 

GLMM2: breeding habitat availability 
Intercept 0.567 0.035 16.23 0.000 
Census 2016 -0.116 0.027 -4.25 0.000 

GLMM3: stocking rate 
Intercept 0.805 0.083 9.745 0.000 
Census 2016 0.163 0.056 2.921 0.005 

GLMM4: cattle proportion 
Intercept 0.598 0.024 24.99 0.000 
Census 2016 0.157 0.015 10.44 0.000 

GLMM5: roads 
Intercept 8.507 1.359 6.258 0.000 
Census 2016 1.660 0.458 3.625 0.000 

GLMM6: power lines 
Intercept 0.425 0.040 10.632 0.000 
Census 2016 0.067 0.013 5.286 0.000 
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Figure S1 – Validation plots for the spatial model of the census 2003-2006: residuals versus fitted values and 
residuals versus explanatory variables. A Spline correlogram describing the spatial autocorrelation in the 

residuals is presented in the bottom right corner. Lines represent the estimate (in the middle) and the 95% 
confidence envelopes (external lines) using 1000 bootstrap resamples (Bjørnstad and Falck, 2001). 
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Figure S2 – Validation plots for the spatial model of the census 2016: residuals versus fitted values and 
residuals versus explanatory variables. A Spline correlogram describing the spatial autocorrelation in the 

residuals is presented in the bottom right corner. Lines represent the estimate (in the middle) and the 95% 
confidence envelopes (external lines) using 1000 bootstrap resamples (Bjørnstad and Falck, 2001). 
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Figure S3 – Validation plots for the population variation model: residuals versus fitted values and residuals 
versus explanatory variables. A Spline correlogram describing the spatial autocorrelation in the residuals is 
presented in the bottom right corner. Lines represent the estimate (in the middle) and the 95% confidence 

envelopes (external lines) using 1000 bootstrap resamples (Bjørnstad and Falck, 2001). 
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Figure S4 – Agricultural trends in Alentejo from 1999/2000 to 2016: a) sheep and cattle beef (number of 
animals), and b) dry cereals, permanent crops and permanent pastures (ha) (INE 2019). 
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Habitat and power line configuration as major drivers of collision risk 

in two bustard species 

ABSTRACT 

Collision with power lines is a major cause of mortality in many bird species. Understanding the biotic 

and abiotic factors increasing collision risk is therefore important to minimize mortality by increasing 

the efficiency of mitigation measures, such as power line re-routing or wire marking. Here, we used 

collision events registered from 2003 to 2015 along 280 km of transmission power lines in southern 

Portugal, to analyse spatiotemporal patterns and collision risk factors in two sympatric, threatened, 

and collision-prone species: the great bustard (Otis tarda) and the little bustard (Tetrax tetrax). We 

found that the occurrence of collisions was not uniform across space and time, and variations could 

be explained by the species’ ecological requirements, distribution patterns, and behaviour. Although 

both species make substantial flights between areas of suitable habitat, collisions were far more likely 

in power line sections with more than 20% (for the little bustard) or 50% (for the great bustard) of 

open farmland habitat in the surroundings. Power line configuration was also important, as taller 

pylons and those with a higher number of wire levels posed a higher risk for both species. We found 

a small but significant effect of wire marking reducing collisions in the little bustard, but could not 

confirm a similar effect in the great bustard, possibly due to data constraints. Mitigation measures for 

preventing bustard collisions, including adequate route planning, line configuration and wire marking, 

should be implemented whenever power lines cross areas with >20% of open habitat, even outside 

protected areas. 

Keywords: anthropogenic mortality; birds; collision risk; mitigation; Otis tarda; Tetrax tetrax; 

transmission lines 

1. INTRODUCTION  

Collisions with power lines represent an important source of anthropogenic mortality for birds 

(Bevanger, 1998; Drewitt & Langston, 2008; Loss et al., 2015). In the United States, for example, tens 

of millions of birds are estimated to die annually due to collision with power lines (Loss et al., 2014). 

There is evidence of population-level effects on some threatened collision-prone species (e.g. 

Marcelino et al. 2018; Shaw et al. 2017, 2010).  
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The main strategies to mitigate bird collision with power lines include (i) power line route planning 

that avoids important areas of occurrence and flight paths, (ii) choosing power line configurations with 

lower collision risk, and (iii) increasing wire visibility through the attachment of markers like spirals or 

flappers (Bernardino et al., 2018). Wire marking is frequently used in areas of conservation importance 

for birds, although with variable or unknown effectiveness (Jenkins et al., 2010; Barrientos et al., 

2012).  

The planning and implementation of mitigation actions requires a good understanding of the biotic 

and abiotic drivers of bird collision with power lines. However, relatively little is known about such 

drivers (Loss et al., 2015) mainly because collision risk is species-specific and thus hard to model. 

Moreover, most published studies focus on single sites, and assessments at a large spatial scale are 

rare (Silva et al., 2014). These reasons may explain why some of the most common recommendations 

of good practice in the installation of power lines are not supported by scientific evidence (Bernardino 

et al., 2018). One example is the power line configuration: wire height, the number of levels of wires 

and the spacing between them are assumed to influence the collision risk, but there is still little 

scientific evidence to support it (Bernardino et al., 2018).  

Gruiformes, including bustards, are highly prone to collisions with power lines due to their 

morphological features and visual perception (Bevanger, 1998; Janss, 2000; Martin & Shaw, 2010), 

and there are many studies on interactions between power lines and bustards (e.g. Janss & Ferrer, 

2000; Raab et al., 2011; Burnside et al., 2015; Mahood et al., 2016; Shaw et al., 2017). However, few 

focused the identification of the factors contributing to collision risk for this group. In South Africa, 

Shaw et al. (2017, 2010) modelled the collision risk of the blue crane (Anthropoides paradiseus) and 

the Ludwig’s bustard (Neotis ludwigii) using fatality events. Such models revealed some of the factors 

that put birds at risk but were unable to identify the location or configuration characteristics that make 

some power lines particularly dangerous. In Europe, Silva et al. (2014) used an alternative approach 

to assess collision risk without using collision records and developed a spatially-explicit risk model for 

the little bustard (Tetrax tetrax) based on habitat suitability, population densities, and bird flight 

behaviour.  

In the Iberian Peninsula, the sympatric great bustard (Otis tarda) and little bustard are known to be 

highly prone to collision with overhead wires. Both species are considered “poor fliers”, having a less 

manoeuvrable flight due to their heavy body and relatively small wings (Rayner, 1988), and their eye 

morphology makes them blind in the direction of travel (Martin & Shaw, 2010). These features are 

known to make species prone to collision (Bernardino et al., 2018). The great bustard is a Globally 
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Threatened species (Birdlife International, 2017). Collision with power lines is a main source of 

anthropogenic mortality for the species, and has been described to induce changes in its migratory 

patterns; migrant birds have a higher mortality rate due to collisions than sedentary ones (21.3% vs. 

6.3%), so the proportion of resident birds has largely increased during a 15-year period (Palacín et al., 

2017). The little bustard is a Near Threatened species (Birdlife International, 2017) that has 

experienced large population declines during the last decade (García de la Morena et al., 2017; Silva 

et al., 2018). A recent study found that the annual survival rate of adult little bustards in Iberia, which 

hosts the largest population in Western Europe (Iñigo and Barov, 2010) is just 67%, the lowest known 

value for wild bustard species. Moreover, 3.4 to 3.8% of this population collides annually with power 

lines, representing the main anthropogenic source of mortality in the species (Marcelino et al., 2017). 

Therefore, collisions with these structures are likely to have population-level effects on both species.  

Great and little bustard use similar habitats and both make regional migrations, but differences in 

morphology and behaviour may result in distinct collision risk patterns and drivers. In this study, we 

aimed to identify and contrast the main drivers of collision risk in these two sympatric collision-prone 

species. We gathered and pooled data collected during 13 years in southern Portugal, along 280 km 

of transmission power lines, to determine for both species: (i) the spatial and temporal patterns of 

collision; (ii) and the relative importance of habitat, power line technical features, and wire marking, 

as determinants of collision risk. Results are discussed to suggest improvements to mitigation 

measures targeting these species. 

2. METHODS 

2.1. STUDY AREA 

This study was conducted in the Alentejo region (ca. 27,000 km2), in southern Portugal (Figure 1). The 

landscape is characterized by plains or low hills (up to 1000 m above sea level) and land-use is 

dominated by (i) agricultural areas (ca. 40%), mainly permanent crops like olive groves or vineyards 

and open areas occupied by non-permanent crops and pastures (ca. 47% of the agricultural areas); (ii) 

forests (ca. 20%), mainly silvo-pastoral sparse woodlands dominated by holm oak (Quercus 

rotundifolia) or cork oak (Quercus suber) (INE, 2011; DGT, 2014). The climate is typically Meso-

Mediterranean and Thermo-Mediterranean, characterized by hot, dry and long summers and by mild 

and wet winters (Rivas-Martínex et al., 2002).  
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Alentejo harbours the whole Portuguese breeding population of great bustard (ca. 1,150 birds; Pinto 

et al. 2005) and 90-95% of that of little bustard (ca. 8,900 males Silva et al. 2018). The main breeding 

areas of both species are inside Special Protected Areas (Figure 1), but key areas during post-breeding 

and winter lack conservation status (Silva & Pinto, 2006; Silva et al., 2007, 2014). The Special Protected 

Area status requires the implementation of management actions that include the mitigation of bird 

collision risk, namely through the installation of wire-marking devices in new power lines. 

The total length of the transmission power line network in the region is 1,239 km (Figure 1), mainly 

150 kV and 400 kV power lines. Wire-marking was implemented in some line sections, mainly those 

inside Special Protected Areas. In general, wire-marking devices were installed on both earth wires, 

assembled in an alternated way, to produce a visual spacing effect, in profile, of 1.5 - 5 m. The large 

majority of such devices were spirals with a diameter of 30 cm (white and red/orange), but small 

spirals with ~10 cm of diameter (grey or white and red/orange) and rotative flappers (FireFly) were 

also used. 

 

 

FIGURE 1. Great bustard and little bustard breeding range (Equipa Atlas 2008) and transmission (150-400 kV) 
power line network in Portugal (left panel). Surveyed sections of the power line network and Special Protected 

Areas with open habitats in the study area – Alentejo (right panel). 
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2.2. DATA COMPILATION  

We compiled data from the nine studies on bird collision with transmission power lines done in 

Alentejo from 2003 to 2015, all promoted by the company that manages the Portuguese transmission 

network (REN – Redes Energéticas Nacionais). These studies included (i) a national assessment of bird 

mortality at transmission power lines, (b) two studies focusing on wire-marking effectiveness, 

performed by non-governmental organizations and by the public administration, and (iii) six 

monitoring programs of single power lines carried out within the scope of Environmental Impact 

Assessment processes (Supplementary Table 1).  

This resulted in a total of 280 km of power lines that were systematically surveyed at least once per 

season, which represents ca. 23% of the transmission grid in the region. Sampling effort was uneven 

across studies, e.g. study duration ranged from 12 to 67 months and the survey frequency varied from 

15 to 90 days (Supplementary Table 1). Collision data also varied in spatial and temporal detail, with 

the lower resolution data corresponding to the number of carcasses per 2-km power line section. Due 

to this distinct sampling effort and data details across studies, we divided the total sampled power 

line in 144 sections of ca. 2-km each (mean ± SD = 1,946 m ± 319; range: 755 – 2,767 m), and used the 

presence/absence of mortality of each species per section in our analysis (except for the temporal 

analysis). None of the studies characterized malfunctioning of the marking devices, as fall from the 

wire, flapper twist or colour changes.  

2.3. SEASONAL AND SPATIAL PATTERNS OF COLLISION  

The location of power line sections with bustard mortality events was registered for each species. 

Seasonal patterns (across the months of the year) of fatality by collision were estimated for each 

species, separately for power line sections inside and outside the Special Protected Areas network. 

The protected areas concentrate most of the individuals during the breeding season, so different 

collision patterns across time could be expected there. Only studies with a regular sampling effort of 

15 or 30 days reported bustards’ fatalities events with detailed temporal data, therefore the seasonal 

data presented here results from a constant annual survey effort. 

2.4. COLLISION RISK MODELLING  

To identify the main drivers of bustard collisions with power lines we selected a group of variables 

related to habitat availability, power line configuration, wire marking, and survey effort (Table 1). 

Great bustard and little bustard, both grassland species, have strict habitat requirements and are 
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typical of open and flat or gently undulating landscapes (Birdlife International, 2017). They are both 

short distance migrants, performing seasonal movements of up to 260 km in the case of great bustard 

and up to 300 km in the little bustard. A large proportion of birds (65% in the great bustard and 89-

96% in the little bustard) move from their breeding grounds to areas with higher food availability 

during late Spring and Summer (Rocha, 2006; García de la Morena et al., 2015; Palacín et al., 2017; 

Alonso et al., 2019). Collisions are more frequent during the post-breeding and wintering seasons 

(Silva et al., 2014; Palacín et al., 2017), when bustards make most migratory movements, so collisions 

events could be associated to some of the habitat types crossed during these movements, and not 

just to the habitats they normally use. Land cover information was extracted from COS2007 (DGT, 

2007) and different cover categories were merged into three broad classes, which are not likely to 

have changed much during the study period: open farmland, forest, and agro-forestry (Table 1). We 

used the dominant land cover type (in terms of total area) in a 1-km buffer adjacent to each power 

line section, as a surrogate of habitat availability in the close vicinity of the line. Additionally, we 

measured the proportion of open farmland in a 5-km buffer surrounding each power line section as 

an indicator of potential suitable habitat availability in the region. To characterize power lines each 

section was classified according to three main configurations: (i) small configuration (low pylon 

height), (ii) medium configuration (medium pylon heights), both with conductor wires displaced 

horizontally and two collision levels, and (iii) large configuration, with conductor wires displaced 

vertically and four collision levels, higher pylons, and larger distance between top and bottom wires 

(Figure 2). All three power line configurations have two earth wires above the conductors. A 

presence/absence variable was used to represent the presence of anti-collision devices (of any type) 

in each 2-km section. Finally, we included an indicator of survey effort (accumulated surveyed distance 

in all sampling visits, see Table 1), to account for potential survey bias among power line sections.  
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Table 1. Description and summary statistics of the predictor variables used to assess the drivers of collision risk 
of great bustard and little bustard. Means and range are provided for continuous variables and frequency per 

classes is presented for categorical variables (n=144 sampled transects). 

Variable Description (units) Mean (SD) / 

Frequency 

Range 

Open_Habitat Proportion of open farmland habitat in a 5 km buffer around 
the power line section (%): COS 2007 (DGT, 2007) 

0.43 (0.19) 0.14 – 0.87 

D_Habitat Dominant habitat in a 1 km buffer from the power line section 
(COS 2007; DGT 2007): open farmland (COS categories: 2.1.1, 
2.1.2, 2.3.1), forest (3.1.1, 3.1.2, 3.1.3, 3.2.4) and agro-
forestry (2.4.4)   

open: 81 

forest: 36 

agro-forestry: 27 

- 

Configuration Power line configuration (see Figure 2): S – small 
configuration, horizontal 150 kV; M – medium configuration, 
horizontal 400 kV; L – large configuration, vertical 150 or 400 
kV  

S: 77 

M: 36 

L: 29 

- 

Marking Wire markers devices to minimize collision 
(presence/absence)  

0: 90 

1: 54 

- 

Effort Total (accumulated) surveyed distance in all sampling visits 
(length of the power line section (km) x minimum number of 
samples) (km) 

48.3 (50.5) 4.6 – 265.5 

 

Figure 2. Characterization of the three main configurations of transmission power line pylons in Alentejo, 
Portugal. The solid dots represent the position of the conductor wires, while the open dots represent the earth 

wires. 
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We used Spearman correlation coefficient and variance inflation factors to check for collinearity 

between explanatory variables (Zuur et al., 2009). Variance inflation factors values (all < 1.6) and 

pairwise correlation between explanatory variables (all |r|<0.60) were low for our dataset, so all 

variables were used in the analysis. 

We assessed the global effect and relative importance of each explanatory variable with Boosted 

Regression Trees (De’Ath, 2007), using the dismo package (Hijmans et al., 2016) and following Elith et 

al. (2008) recommendations along the modelling process. Boosted Regression Trees is a non-

parametric machine-learning method that fits a large number of a simple classification or regression 

trees (models that relate a response to their predictors by recursive binary splits), whose predictions 

are combined to give more robust estimates of the response (De’ath & Fabricius, 2000; Elith et al., 

2008). Boosted Regression Trees major advantages include its capability to accommodate both 

continuous and categorical predictor variables, missing values, immunity to the effects of extreme 

outliers, and facility for fitting interactions between predictors (Leathwick et al., 2006). 

We built one Boosted Regression Trees model for each species, using the presence/absence of 

mortality on power line sections as the response variable. As input parameters we used the Bernoulli 

family, a tree complexity of three (i.e. the complexity of variable interactions that may be fitted), a 

0.0005 learning rate (the weight applied to individual trees) and 0.8 as the bag fraction (at each 

iteration, 80% of the data were drawn at random). Each model was built with a default 10-fold cross-

validation (using the function ‘gbm.step’). When fitting initial models (Supplementary Figure 1), some 

of the generated fitted functions had varying shapes without underlying ecological meaning. For 

example, the fitted function for the effects of open habitat on great bustard was quite variable for 

high proportions of this habitat type. Additionally, it seemed that collision risk for this species was 

higher in the presence of wire marking. Such patterns often result from combinations/interactions of 

variables in specific geographical contexts which, in spite of having no ecological meaning, contribute 

to increased model fit (Leathwick et al., 2006; Elith et al., 2008). For example, the higher likelihood of 

great bustard collisions in the presence of wire marking is likely to be an artefact resulting from the 

fact that most power lines that cross important areas for this species during the breeding season have 

been marked. Therefore, following Leathwick et al. (2006), we refitted the models by imposing 

monotonically increasing (for the proportion of open habitat and survey effort) or decreasing (for wire 

marking) constrained functions for some variables. Imposing monotonic trends reduces the total 

amount of deviance explained by the models, but it also decreases the likelihood of overfitting 

(Leathwick et al., 2006; Jorda et al., 2015) and avoids falsely attributing explanatory power to some 

variables (Smith et al., 2013). Model performance was assessed using the explained deviance (as a 
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percentage of the null deviance), correlation and area under the receiver operator characteristic curve 

(AUC), through cross-validated statistics (Buston & Elith, 2011). 

The relative importance of each variable in a model was estimated based on how often the predictor 

was selected and the improvement to the model as result of the selection (Buston & Elith, 2011). 

Importance values of variables were expressed as percentages (summing 100%). We used the function 

‘gbm.plot’ to build partial dependence plots and visualize the fitted functions from the Boosted 

Regression Trees models. Important interactions between predictor variables were visualized using 

the ‘gbm.interaction’ function. 

Due to its stochasticity component, each Boosted Regression Trees run provides slightly different 

results. Therefore, we performed 100 runs of ‘gbm.step’ to estimate the range (minimum and 

maximum values) for both the fitted functions, importance of variables, and cross-validated measures 

of model performance (Fernandes et al., 2016). 

We used spline correlogram plots with 95% pointwise confidence intervals calculated with 1,000 

bootstrap resamples to check for spatial autocorrelation in model residuals (Bjørnstad & Falck, 2001). 

We assumed that variable selection and parameter estimation were unbiased if there was no 

significant autocorrelation in model residuals (Rhodes et al., 2009). Correlograms were built with the 

function ‘spline.correlog’ from the ncf package (Bjørnstad, 2016).  

All analyses were performed in R 3.3.1 (R Core Team, 2016). 

3. RESULTS 

Bustard mortality with transmission power lines was extensively recorded in studies conducted in 

Alentejo. A total of 156 fatality events were recorded, 59 of great bustards and 97 of little bustards. 

Most (75%) of the fatality records resulted from 2 studies, one with a wide geographic range (42% of 

the total number of power line sections surveyed in the region) corresponding to 35% of the fatality 

events (Neves et al., 2005), and a local study that applied an intensive survey effort (15-days interval 

during 29 months) that found 40% of the events (Marques et al., 2007).  

3.1. SPATIOTEMPORAL COLLISION PATTERNS  

Collision events of both species exhibited a clustered spatial pattern at this regional scale (Figure 3). 

Great bustard collisions were concentrated in just 15 (10.4%) of the 2-km power line sections, 12 of 
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which also had little bustard fatalities. Little bustard collisions were more spread across the study area, 

occurring in a total of 42 sections (29.2%).  

 

Figure 3. Presence-absence of mortality events of great bustard and little bustard in each sampled power line 
section in Alentejo, Portugal. For visualization purposes, power lines sections are represented by its central 

point. 

The number of collision events varied along the year (Supplementary Figure 2). Most of the carcasses 

of great bustards were found inside Special Protected Areas (73%), while little bustards were more 

frequently found outside (55%). Inside Special Protected Areas, 65% of the collision records of great 

bustard occurred during the autumn (September to November), with a second peak in spring (18%, in 



 

Chapter 3: Drivers of collision risk in two bustard species  67 

 

April-May). Outside Special Protected Areas fatalities were concentrated between August and October 

(50%). Little bustard collision events were registered all year around. Inside Special Protected Areas 

fatality peaks were recorded during the breeding season (ca. 37% from March to May) and during the 

post-breading period (12% in July, and 39% from October to December). However, outside Special 

Protected Areas 62% of the little bustard collision events were concentrated in the dry months (July 

to September).  

3.2. FACTORS INFLUENCING BUSTARDS’ COLLISIONS  

The original (with unconstrained variables) Boosted Regression Trees model for great bustard 

(Supplementary Figure 1 and 3) explained 20.4% of the total deviance (AUC: 0.85 ± 0.02; Pearson’s 

correlation: 0.42 ± 0.03). The proportion of open habitat was by far the most important predictor, with 

a trend for increased likelihood of collision once this proportion reaches 50%. Survey effort, i.e. 

accumulated surveyed distance in all sampling visits (the larger the effort, the more likely a collision 

record, with an important threshold at about 120 km of accumulated effort) and power line 

configuration (lower likelihood of collision in small configuration) ranked second and third 

respectively. Wire marking and the dominant habitat near the section had lower importance. In the 

simpler model with the constrained variables (explained deviance: 15 ± 2.1%; AUC: 0.77 ± 0.01; 

Pearson’s correlation: 0.45 ± 0.02) the order of variable importance remained essentially the same, 

although wire marking and dominant habitat became even less relevant (Figure 4). Fitted functions of 

this model are shown in Figure 5. The most important interactions between variables (Supplementary 

Figure 4) suggest that the risk of collision with small configuration, when compared with other 

configurations, was much lower in regions with higher open habitat availability, and the effect of 

survey effort was particularly important in line sections with higher cover of open habitat. 
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Figure 4. Relative importance (%) (means and 95% confidence intervals) of the predictor variables used to 
model the presence/ absence of mortality of great bustard and little bustard by collision with transmission 
power lines in Alentejo, Portugal. The models were fitted imposing a monotonic increase to the variables: 

proportion of open habitat and survey effort, and a monotonic decrease to wire marking.  

Regarding the little bustard, the Boosted Regression Trees model with unconstrained variables 

explained 15.5% of the total deviance (AUC: 0.778 ± 0.01; Pearson’s correlation: 0.46 ± 0.02) 

(Supplementary Figure 3) and was quite similar to the model with the constrained variables (14.8 ± 

1.5% of explained deviance; AUC: 0.774 ± 0.01; Pearson’s correlation: 0.46 ± 0.02). The proportion of 

open habitat was also the most important variable (although the shape of the fitted function 

suggested a continuously increasing effect, rather than a threshold as for the great bustard), followed 

by power line configuration (higher likelihood of collision in large configuration; Figure 4 and 

Supplementary Figure 3). The likelihood to register little bustard collisions decreased with wire 

marking and increased with survey effort. Interactions between variables suggest a higher risk of 

collision in the large configuration at intermediate levels of habitat availability, when compared with 

other power lines configurations (Supplementary Figure 5). 

For all models, there was no significant auto-correlation in model residuals (Supplementary Figure 6). 
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b)  

 

Figure 5. Partial dependence plots (means and 95% confidence intervals) for the predictor variables influencing 
the presence/ absence of mortality of a) great bustard and b) little bustard by collision with transmission 
power lines in Alentejo, Portugal. The models were fitted imposing a monotonic increase to the variables: 

proportion of open habitat and survey effort, and a monotonic decrease to wire marking. Configuration: small 
configuration, horizontal at 150 kV; medium configuration, horizontal at 400 kV; large configuration, vertical at 

150 or 400 kV. Ticks across the bottom of each plot show the distribution of sites across the variable, in 
deciles. Intervals for fitted functions and relative importance represent the range (minimum and maximum 

values) for a set of 100 runs. 

 

4. DISCUSSION 

4.1. SPATIOTEMPORAL COLLISION PATTERNS  

Both bustard species exhibited clustered spatial patterns of collision with power lines. These patterns 

are probably related with the species’ distribution and abundance across the region, mainly 

determined by the availability of open habitats in flat areas and with lower human disturbance (e.g. 

Pinto et al., 2005; Silva et al., 2007; Equipa Atlas, 2008; Moreira et al., 2012). The importance of the 
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spatial distribution of the species was also evident when comparing collision patterns across species: 

collision events of great bustard occurred in areas where collisions of little bustards also occurred, but 

the opposite was not true, as the little bustard fatalities, although clustered in contiguous sections, 

are more spread in the study area. This might be explained by the larger and more widespread 

population of little bustard (see Figure 1). For both species fatalities were recorded both inside and 

outside Special Protected Areas. 

Temporal patterns in collisions across the annual cycle might be explained by differences in flocking 

behaviour, activity and flight patterns. In the case of the little bustard, the peak of mortality during 

the post-breading season is probably related with: (i) the migratory movements that some individuals 

perform from the breeding grounds to areas with higher food resources (Silva et al., 2007; García de 

la Morena et al., 2015) and the use of stop-over sites in areas with poor habitat conditions during such 

periods; (ii) the increased distance travelled daily searching for food (Silva et al., 2014); (iii) the higher 

frequency of flights at collision risk heights (Silva et al., 2014); and (iv) the gregarious behaviour during 

this season. The collision pattern of little bustard also varied across space: (i) there was a high number 

of collisions outside Special Protected Areas during summer (July to September), when birds leave the 

breeding grounds (Silva et al., 2007); (ii) there was a peak of mortality during the autumn (October to 

December) within Special Protected Areas, probably associated to the return to the breeding grounds 

after the onset of rains (García de la Morena et al., 2015); and (iii) a third mortality peak occurred 

during the beginning of the breeding season inside Special Protected Areas, which coincides with the 

onset of the mating period (March to May), when males settle in breeding sites and females perform 

movements between lekking areas. 

For the great bustard, although the annual distribution of birds in Alentejo is not well known, there is 

evidence that it is influenced by bird behaviour and local movements, as in the little bustard. The 

majority of fatalities occurred in late summer and autumn (September to November), when a large 

number of birds leave their breeding grounds in search of areas with higher food availability and 

individuals tend to gather in larger flocks (Rocha, 2006). This temporal pattern also matches the higher 

frequency of flights crossing a transmission power line observed by Marques et al. (2007).  

4.2. FACTORS INFLUENCING THE COLLISION RISK  

The availability of open farmland habitat was the main determinant of collision risk in both species, 

revealing that the presence of bustards’ habitat is the major collision driver for the species and 

suggesting that collision events are less frequent during the migratory journey, when birds cross other 
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habitat types, probably flying high over power lines wires. The probability of bustard collisions 

increased with the availability of open farmland in the region, although the threshold differed across 

species: little bustard collisions increased when more than 20% of open habitat was available, while 

this threshold increased to 50% in the case of the great bustard. This difference may reflect a stricter 

requirement of great bustards for open areas, compared to little bustards (Suárez-Seoane et al., 2002). 

This variable expressing the amount of available habitat at a larger landscape scale was more 

important than the dominant habitat in the close vicinity of the power line. However, the dominant 

habitat in a 1-km buffer was also relevant for the little bustard.  

The technical configuration of the power line also influenced collision risk. For the little bustard, the 

large configuration with four levels of wires, forming a bigger collision risk area (higher distance 

between top and bottom wires), posed a higher risk than the small and medium configurations, both 

with just two levels of wires. Also, the comparison between the two horizontal configurations (with 

similar distance between top and bottom wires) showed that higher lines pose a greater collision risk 

to little bustards. Although the effect of power line height on collisions is strongly dependent on flight 

altitude and maybe species-specific, higher power lines and the vertical configuration were pointed 

out as having a higher collision risk, as they represent a larger barrier to birds in flight, which tend to 

gain altitude to fly over the obstacle rather than passing below (Luzenski et al., 2016; Murphy et al., 

2016; Bernardino et al., 2018). Such behaviour increases the likelihood of a bird collision with the earth 

wires, that are thinner and less visible when compared with the phase conductors (see Bernardino et 

al. 2018). We highlight that although the importance of power line configuration has been previously 

suggested by several authors, this is the first study that finds strong evidence of such effect.   

For the great bustard, the large configuration also seemed to be riskier although the difference to the 

small configuration was not significant. However, our dataset may not be fully adequate to test 

different power line configurations in this species, as the three configurations were not evenly 

represented in the range of the species within the study area. In fact, most transmission lines crossing 

important areas for the great bustard were from the small configuration and only a few had medium 

configuration, which may explain the absence of records of collision with this type of power lines and 

the consequent predicted low collision risk  

Additionally, our results also showed that the power line configuration may interact with habitat 

features, as we found that power lines with a large configuration pose a higher collision risk to little 

bustard in areas with intermediate levels of open habitats (ca. 20 – 65%), when compared to the small 

and medium configurations. This may occur because the species tends to use areas with less suitable 
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or fragmented habitats during the non-breeding season (Silva et al., 2007), when the species also 

tends to fly at heights with higher collision risk (Silva et al., 2014).   

The influence of power line configuration in bustards’ collision risk suggests that distribution power 

lines, usually much lower and with a smaller collision risk area, are less risky to these birds when 

compared to transmission lines. However, the total length of the distribution grid is much larger (in 

Alentejo region the extension of distribution power lines is ca. 13,483 km (Silva et al., 2014) while the 

transmission network has 1,239 km), therefore it might represent an important mortality source as 

well.  

Our results suggest that wire marking devices have a significant but minor effect in the reduction of 

collisions in the little bustard. Previous studies showed that wire marking devices have a limited effect 

on bustard species, and only large spirals were found to have some effect on the great bustard (Janss 

& Ferrer, 1998; Barrientos et al., 2012). The data obtained in our study was insufficient to evaluate 

the effect of wire marking on this latter species, as most of the transmission power lines crossing the 

main range of the great bustard had marking devices, so it was difficult to separate habitat and 

mitigation effects. In fact, this may explain why the model fitted without imposing a monotonic trend 

showed that the power line sections marked with spirals had a higher risk of collision to the species. 

4.3.  IMPLICATIONS FOR BUSTARD CONSERVATION AND POWER LINE MONITORING   

The main determinant of collision risk for the great and little bustards is the amount of habitat in the 

region surrounding the power line route. Therefore, the best mitigation measure for future 

transmission power lines is to avoid the routing through areas with large expanses of open farmland 

habitat. For existing lines, burying the aerial wires would be the best practice for open farmlands 

(more than 50% of open habitats) at least in Special Protected Areas relevant for both bustard species, 

although this action is likely to be of difficult implementation due to its extreme high cost, and legal 

and technical issues (Raab et al., 2012; Bernardino et al., 2018). Whenever this is not possible, (1) we 

recommend the adoption of technical configurations with smaller pylons, a reduced number of 

collision levels (with less cables displaced vertically) and smaller distances between top and bottom 

wires. Additionally, (2) all transmission lines crossing areas with >20% of open habitats in a 5 km buffer 

should have marking devices to increase their visibility. Although this mitigation measure appears to 

have a fairly small effect on these species it can contribute to reduce the number of fatalities. The 

choice of the wire marking device should be based on the best scientific knowledge available, 

balancing the effectiveness and durability of each device (see Bernardino et al. 2018). Experimental 
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designs focusing on bustard species, based on a Before-After Control-Impact approach, should be used 

to identify the best devices for this bird group.  

The high prevalence of mortality caused by collision with power lines in both species (Palacín et al., 

2017; Marcelino et al., 2017), indicates that reducing such anthropogenic mortality is likely to have a 

positive effect on their populations. Such mitigation would be particularly important for the little 

bustard, as its population halved over the last 10–14 years (Silva et al., 2018). 

Our results also showed that the likelihood of finding a carcass increased with survey effort, mainly 

for the great bustard. Despite being larger birds, hence with a larger probability of detection during 

the carcass surveys (Ponce et al., 2010), a higher survey effort may be needed to detect great bustard 

collisions because those are uncommon events as (i) the species occurs in lower numbers when 

compared with the little bustard, and (ii) its fatality pattern is temporally more scattered, mainly 

outside Special Protected Areas. Therefore, monitoring schemes focussing on these species should 

include regular carcass surveys covering the whole spring, summer, and autumn periods. 
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SUPPLEMENTARY MATERIAL 

 

Table S1. List of studies on bird collision with transmission power lines in Alentejo region used in this analysis. 
The Table indicates the number of (2-km) power line sections surveyed, the power line configuration (S – small 

configuration, horizontal at 150 kV; M – medium configuration, horizontal at 400 kV; L – large configuration, 
vertical at 150 or 400 kV; see Figure 2), the total length of surveyed power lines (km), the study duration 

(months), the interval between consecutive surveys, and the total number of great and little bustard carcasses 
registered. 

Source  

No. power 

line sections 

surveyed 

Power line 

configuration 

Survey 

length (km) 

Study 

duration 

(months) 

Survey 

interval 

(days) 

No. of carcasses 

Great 

bustard 

Little 

bustard 

Neves et al., 2005 A 61 S, L 139 12 30 / 90 14 40 

Marques et al., 2007 B 6 S 11.2 29 15 32 30 

Marques et al., 2007 B 3 S 5.7 29 30 8 1 

Marques pers. data B 1 L 2.7 12 30 3 2 

Ecossistema 2007 C 15 S, M 41 12 30 0 11 

Procesl 2007, 2010 C 12 L 25 67 15 / 30 2 6 

Agripro Ambiente 

2007, 2008, 2009 C 

2  2.8 36 90 0 0 

Ecosativa 2009 C 15 M 26.5 24 30 / 90 0 5 

Infante et al. 2011 B 25 S 61.3 24 30 0 2 

Procesl 2012 C 10 L 22.5 24 15 0 0 

Procesl 2015 C 5 L 7.9 24 30 0 0 

A - national assessment; B - Wire-marking effectiveness study; C – monitoring program (from Environmental 

Impact Assessment process) 
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a)  

 

(figure continue in the next page…) 

 

Small           Medium          Large 

Configuration 



 

Chapter 3: Drivers of collision risk in two bustard species  82 

 

b) 

 

Figure S1. Partial dependence plots (means and 95% confidence intervals) for the predictor variables 
influencing the presence/ absence of mortality of a) great bustard and b) little bustard by collision with 
transmission power lines in Alentejo, Portugal. These models were fitted without imposing monotonic 

variations to the variables. Configuration: small configuration, horizontal at 150 kV; medium configuration, 
horizontal at 400 kV; large configuration, vertical at 150 or 400 kV (see Figure 2). Ticks along the xx axis of each 

plot show the distribution of sites across the variable, in deciles. Intervals for fitted functions and relative 
importance represent the range (minimum and maximum values) for a set of 100 runs.  

Small           Medium          Large 

Configuration 
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Figure S2 Seasonal variation in great bustard and little bustard collisions with transmission power lines 
(number of carcasses or remains) in Special Protected Areas (n = 40 great bustards; n = 41 little bustard) and 

outside Special Protected Areas (n = 12 great bustards; n = 26 little bustard).  
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Figure S3. Relative importance (%) (means and 95% confidence intervals) of the predictor variables used to 
model the presence/ absence of mortality of great bustard and little bustard by collision with transmission 
power lines in Alentejo, Portugal. These models were fitted without imposing monotonic variations to the 

variables. 

Great bustard model: 20.4 ± 1.9% explained deviance; AUC=0.849 ± 0.02 and Pearson’s correlation of 0.42 ± 0.03 
Little bustard model: 15.5 ± 1.6% explained deviance; AUC=0.778 ± 0.01 and Pearson’s correlation of 0.46 ± 0.02 
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a) 

 

 

b)  

 

Figure S4. 3D plots showing the interaction between the predictor variables in the great bustard model: a) 
proportion of open habitat in a 5 km buffer and power line configuration (small configuration, horizontal at 
150kV; medium configuration, horizontal at 400 kV; large configuration, vertical at 150 or 400 kV; see Figure 

2); b) sampling effort and proportion of open habitat.  
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Figure S5. 3D plots showing the interaction between the predictor variables in the little bustard model: 
proportion of open habitat in a 5 km buffer and power line configuration (small configuration, horizontal at 
150kV; medium configuration, horizontal at 400 kV; large configuration, vertical at 150 or 400 kV; see Figure 

2).  
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a)  

 

b) 

 

Figure S6. Spline correlograms describing spatial autocorrelation for the boosted regression trees residuals for 
models describing the presence/ absence of mortality of a) great bustard and b) little bustard in transmission 

power lines in Alentejo, Portugal. Lines represent the estimate (in the middle) and the 95% confidence 
envelopes (external lines) using 1000 bootstrap resamples (Bjørnstad and Falck, 2001).  
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Male post-breeding movements and stopover habitat selection of an 

endangered short-distance migrant, the Little Bustard Tetrax tetrax 

ABSTRACT 

Migratory decisions, such as the selection of stopover sites, are critical for the success of post-breeding 

migratory movements and subsequent survival. Recent advances in bio-logging have revealed the 

stopover strategies of many long-distance migrants, but far less attention has been given to short-

distance migrants. We investigated the stopover ecology of an endangered grassland bird, the Little 

Bustard Tetrax tetrax, a short-distance migrant in Iberia. Using high resolution spatial GPS/GSM data, 

27 male Little Bustards breeding in southern Portugal were tracked between 2009 and 2011. We 

studied post-breeding movements using Dynamic Brownian Bridges models to identify the main 

stopover sites, and Generalized Linear Mixed Models to examine habitat selection in stopovers. During 

their post-breeding movements, males were essentially nocturnal migrants, making frequent 

stopovers, while maintaining a relatively fast pace to reach more productive agricultural post-breeding 

areas. Stopovers occurred in most post-breeding movements (83%) regardless of the total distance 

covered (average 64.3 km), and most stopovers (84%) lasted less than 24 hours. Birds used mostly 

agricultural non-irrigated and irrigated croplands as stopover sites, and avoided other land uses and 

rugged terrain. There was a negative relationship between stopovers and the proximity to roads, but 

not to power lines. The high frequency of stopovers during post-breeding movements, despite the 

short distances travelled, together with the nocturnal migratory behaviour of bustards, may impose 

additional risks to a bird mainly threatened by collision with power lines in non-breeding areas. We 

also conclude that even for short distance migrants, habitat connectivity between breeding and post-

breeding areas is likely to be a key conservation concern. 

Keywords: grassland bird, migratory connectivity, movement ecology, stopover site selection. 

1. INTRODUCTION  

Post-breeding migratory movements are usually associated with a predictable seasonal change of 

environmental conditions and/or food availability (Dingle & Drake 2007, Hedenström 2008), but are 

also influenced by individual factors such as sex, age or role specialization during reproduction (e.g. 

Palacín et al. 2009). Migratory strategies and decisions along the trajectory, such as interrupting 

migration at particular stopover sites for resting and/or refueling (Newton 2008), play a key role in the 

success of the movement and subsequent survival (Alerstam et al. 2003, Legagneux et al. 2012). 
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Therefore, understanding migratory decisions including stopover use and habitat selection on route, 

is crucial to estimate population trends and risks, predict changes in migratory behaviour and develop 

appropriate conservation strategies (Shuter et al. 2011). In this context, a good knowledge of 

migratory connectivity, which refers to the extent to which animals from the same breeding area move 

to the same non-breeding areas (Newton 2008), is also important, especially for species with highly 

selective habitat preferences (e.g. Briedis et al. 2016). 

Recent advances in tracking technology have opened a new door for the study of avian migration 

(Robinson et al. 2010) and stopover ecology of a wider number of migrant species (e.g. Eraud et al. 

2013, Lemke et al. 2013, Evens et al. 2017). Despite that, the knowledge of the stopover ecology of 

many avian groups and species, and particularly of short-distance migrants, is still very limited (but 

see Strandberg et al. 2009, Newton et al. 2017, Röseler et al. 2017). 

The Little Bustard Tetrax tetrax is a medium-sized grassland bird, whose distribution is fragmented 

across the Palearctic range. Spain and Portugal are the stronghold of its western distribution, where 

the main breeding populations are mostly concentrated in the Extremadura, Castilla La Mancha 

(Spain) and Alentejo (Portugal) regions (De Juana & Martínez 1996, García de la Morena et al. 2006, 

Equipa Atlas 2008). The species has a Vulnerable conservation status in Europe, where it is mainly 

threatened by habitat loss and degradation (Silva et al. 2018), illegal killing and collision with power 

lines (Marcelino et al. 2017), and recent trends indicate a severe decline in their breeding numbers in 

parts of their range (Silva et al. 2018). Although Iberian Little Bustards have been considered mostly 

sedentary (e.g. Cramp & Simmons 1980, Villers et al. 2010), a recent and comprehensive tracking study 

found that most populations in the region are actually migratory or partially migratory (89% of all 

tracked individuals; García de la Morena et al. 2015), performing regular short or medium-distance 

movements to post-breeding and/or wintering sites (Silva et al. 2007, García de la Morena et al. 2015). 

The majority of male Little Bustards engage in these migratory movements in June/July, right after the 

breeding season and during the Iberian summer (García de la Morena et al. 2015) when temperatures 

and vegetation dryness reach their peak (Silva et al. 2007). In these post-breeding movements, birds 

head to northern, coastal or higher-altitude areas, where food availability and environmental 

conditions are expected to be more favorable (Silva et al. 2007, 2015, García de la Morena et al. 2015). 

Studies on stopover ecology of bustards are scarce and limited to a few long-distance bustard 

species/populations, such the Asian Houbara Bustard Chlamydotis macqueenii (e.g. Combreau et al. 

1999, Tourenq et al. 2004, Burnside et al. 2017) or the Asian Great Bustard Otis tarda dybowskii 

(Kessler et al. 2013). The stopover ecology of short-distance migratory bustards, such as the Iberian 

Little Bustard population, is completely unknown. 
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In the present study, we used a high-resolution tracking dataset, collected over a three-year period, 

to investigate the stopover ecology of Iberian Little Bustards during their post-breeding movements. 

Our specific aims were to characterize their migratory behaviour and use of stopovers (occurrence, 

number, duration and site-fidelity), and to study the influence of habitat structure (land cover and 

topography) and linear infrastructures (roads and power lines) in stopover habitat selection during 

post-breeding movements. 

2. METHODS 

2.1. FIELDWORK 

Capture and tagging of Little Bustards was carried out in several sites located in two main breeding 

areas, the Castro Verde and Vila Fernando SPAs (Special Protected Areas) (Figure 1), in the early 

breeding period (April to early May) of three consecutive years, from 2009 to 2011 (14, 7 and 6 

individuals, respectively). The capture method was targeted at males, using snares and a female decoy 

(Ponjoan et al. 2010). A Solar GPS Platform Transmitter Terminal (30 g PTT; Microwave Telemetry Inc.) 

was deployed on 27 adult breeding males, using a full harness made of Ribbon Teflon, weighing less 

than 4.7% of the birds’ mass. Transmitters were programmed to record a GPS position every 2 hours, 

with an accuracy of ± 18 m (Microwave Telemetry 2014). Eight of the 27 birds were tracked for more 

than one year (in one case up to three years).  

2.2. PRE-ANALYSIS OF TRACKING DATA 

Spatial data from the PTTs and cartographic data were handled with Quantum GIS 2.2.12 (QGIS 

Development Team 2013). Birds were considered sedentary whenever they remained within 15 km of 

their breeding site throughout the year (García de la Morena et al. 2015). A quarter of the post-

breeding movements (25.7%, n = 35) were preceded by a long-term permanence in pre-migratory 

staging areas (or secondary breeding areas; average duration = 26.1 days, range = 10.7 - 38.9 days). 

These areas were close, although clearly separated from, the main breeding area (average distance ± 

SD = 13.4 ± 4.8 km) and were not considered part of the subsequent post-breeding movement. 

Post-breeding movements were therefore only considered to occur when birds moved more than 15 

km away from their breeding areas, between May and August. To set the limits of each individual post-

breeding movement, we considered their breeding site or pre-migratory staging area as the ‘origin 

point’ of the migratory movement, while the ‘end point’ coincided with the arrival to the main post-

breeding area, the furthest location from the breeding site, where the majority of birds stayed for at 
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least two or three months. The boundaries of the movements were the last and first two fixes in the 

same position (or positions close to each other), located in the departure and destination areas, 

respectively. In a few cases (n = 6), birds had two main post-breeding areas, and their movement was 

subdivided accordingly. Those movements were included in all analyses, except for the estimation of 

arrival and departure dates, from breeding areas and to post-breeding areas, respectively. 

2.3. IDENTIFICATION AND CHARACTERIZATION OF STOPOVERS 

Movements and stopovers were characterized (occurrence, number and duration) through visual 

inspection of each individual movement. We considered areas in which birds stayed for at least two 

consecutive fixes along each individual’s post-breeding movement as stopover sites, excluding the 

departure and destination areas. Our data collection settings (see above) did not allow for the 

detection of stopovers with duration inferior to two hours. 

2.4. HABITAT SELECTION 

To identify the stopover locations to be included in the habitat modeling analysis, we used Brownian 

Bridge Movement Models (BBMMs; Horne et al. 2007, Sawyer et al. 2009, 2011). The BBMM were 

used to estimate the utilization distribution (UD) of individual bustards along the movement route, 

incorporating the distance and elapsed time between successive fixes, as well as the location error 

and the Brownian motion variance (BMV; Horne et al. 2007, Sawyer et al. 2009).  Since there is 

evidence that Little Bustards may migrate preferentially during the night (Silva et al. 2014), we 

assumed that their migratory behaviour was likely to differ between day and night. For that reason, 

we used a Dynamic BBMM, which is a version of BBMM that considers changes in behaviour when 

moving, namely changes in speed and direction, which can be defined for different time-windows (12 

h in our case, to differentiate the expected night and day periods). Within the sliding window, a 

Dynamic BBMM calculates different BMV values and compares the model fit using one or two 

estimates of BMV (Kranstauber et al. 2012, Lai et al. 2015, Palm et al. 2015). UDs between 50% and 

75% were used to outline the stopover areas, as they showed a good adjustment to the stopover 

relocations. The decision of using 50 or 75 UD was dependent on the extension of the movement, 

where after visual inspection, BBMM analysis of shorter post-breeding movements generally resulted 

in a good adjustment with 50% UD, while longer post-breeding movements showed better 

adjustments at the 75% UD level. Departure and arrival site locations (six fixes each) were included in 

the movement path considered in the Dynamic BBMM analysis, as a margin of fixes is required at each 

end of the window, depending on window and margin sizes (Kranstauber et al. 2012). 
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Figure 1. Outward post-breeding movements (n = 40) of Little Bustards (n = 27 individuals) breeding at Castro 
Verde and Vila Fernando SPAs. Capture locations (breeding sites) are indicated by white stars and special 

protected areas with importance for grassland birds are shown in grey. 

 

To characterize stopover habitat selection, Little Bustard fixes inside stopover areas were compared 

to an equal number of random points located in a region defined as a 2-km buffer outside these areas; 

these locations were considered pseudo-absences for modelling purposes. This approach was selected 
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for two key reasons. First, the goal of this analysis was to explore stopover habitat selection in the 

context of the migratory corridor rather than within the stopover site, and selecting potentially unused 

areas within the stopovers is likely to underestimate the availability of habitats in the surrounding 

landscape. Second, given that stopover areas were selected according to high UD areas, and 

considering the time interval between relocations (2 hours), this approach also maximizes the 

likelihood that locations selected as pseudo-absences represent unused, although available, locations. 

Habitat selection analysis was then carried out with presence / absence locations in relation to 

landscape variables known to be relevant for the Little Bustard (Silva et al. 2004, 2007, 2010). Land 

cover data was originally obtained from CORINE Land Cover (CLC) 2012 version 18.5 (EEA 2016). Level 

3 categories were reclassified into three relevant land cover categories: dry cropland, irrigated 

cropland, and other land uses (Table 1). Terrain ruggedness was calculated as the mean of absolute 

differences between the elevation of a cell and that of its surrounding cells (Wilson et al. 2007), using 

data from ASTER Global Digital Elevation Model (NASA 2009) and the function ‘terrain’ from the Raster 

package (Hijmans 2017) for R statistical software. Finally, we collected information on the distribution 

of the main roads from OpenStreetMap© contributors (classes: motorway, trunk, primary and 

secondary; Haklay & Weber 2008), and the distribution power lines for the whole study area and 

classified each point according to its distance to the nearest road and power line.  

 

Table 1. Description and summary statistics of the predictor variables used to model the habitat selection of 
Little Bustard at stopover sites (n = 381 locations at 61 stopover sites) during post-breeding movements. 
Means and range are provided for the continuous variables, and frequency per class is presented for the 

categorical variables.  

Variable Description (units) Mean (sd) / 

Frequency  

Range  

Land cover Corine Land Cover 2012 classes: Dry croplands 
(non-irrigated arable land 2.1.1, pastures 2.3.1, 
natural grasslands 3.2.1); Irrigated croplands 
(permanently irrigated land 2.1.2, rice fields 
2.1.3) and Other land uses (all remaining land 
cover classes) 

Dry croplands: 436 
Irrigated croplands: 97  
Other land uses: 229 

- 

Ruggedness Terrain ruggedness (30 m spatial resolution)  -0.43 (0.32) -0.94 - 1.49 

Distance to 
power lines 

Distance to distribution power lines (m) 777.9 (666.3) 0 - 4801 

Distance to 
roads 

Distance to the main roads (m) 
(classes: motorway, trunk, primary and 
secondary of OpenStreetMap©  (Haklay & 
Weber 2008) 

2581 (1940.1) 0 - 11000 
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2.5. CONSISTENCY IN THE USE OF BREEDING, POST-BREEDING AREAS AND STOPOVERS 

To quantify the fidelity to breeding and post-breeding areas, we calculated the percentage of spatial 

overlap between consecutive years of the same individual, given by the 95% UD (estimated by 

Brownian Bridges Models) in the breeding area (from 1 April to departure date) and post-breeding 

areas (see above) in each year. Similarly, the repeated use of stopover sites by the same individual in 

consecutive years was assessed by quantifying the overlap between stopover areas previously 

identified in the post-breeding movements (delimited by the 50-75% UD). 

2.6. STATISTICAL ANALYSES 

The effects of habitat, landscape and human infrastructure were tested using the presence and 

absence locations at stopover sites. We calculated the Pearson correlation coefficient and the variance 

inflation factor (VIF) between the explanatory variables to evaluate correlations and collinearity (Zuur 

et al. 2009). VIF values (all < 1.2) and pairwise correlations between explanatory variables (all |r| < 

0.60) were low for our dataset, so all variables were used in the analysis.  

Stopover habitat selection was modeled using Generalized Linear Mixed Models (GLMMs) with a 

binomial error distribution (Zuur et al. 2009). Bird identity was included as a random factor to address 

the spatial and temporal dependency of the replicated measures from each individual (Zuur et al. 

2009). As we expected a response at short ranges from the linear infrastructures, we applied a log-

transformation (log x+1) to the variables distance to roads and distance to power lines, so that short 

distances were more influential in the analysis. We computed GLMMs with all possible variable 

combinations, resulting in a total of sixteen models. To decrease model selection uncertainty and 

increase robustness of parameter estimates, we performed model averaging using an information 

theoretical approach by computing averaged parameter estimates from the best-selected models 

with ΔAICc < 10 (Burnham et al. 2011). Model performance was assessed through the deviance 

explained and conditional R2 of each selected model (Nakagawa & Schielzeth 2013, Johnson 2014). 

Analyses were undertaken in R (R Core Development Team 2014), using the package usdm to calculate 

VIF (Naimi et al. 2014), the package lme4 to run GLMMs (Bates et al. 2016) and the package MuMIn 

for multimodel selection and model averaging (Bartón 2013). 



 

Chapter 4: Stopover ecology of little bustards   98 

 

3. RESULTS  

3.1. POST-BREEDING MOVEMENTS 

From the 27 male Little Bustards tracked in the course of this study, only one individual from Vila 

Fernando showed a clear sedentary behaviour, remaining close to the breeding site all year round 

during two consecutive years (maximum distance from the breeding site = 7.7 km). All other 

individuals (96.3%) performed seasonal movements (Figure 1, mean departure date: 29 June), moving 

to areas further than 35 km (79% of all birds) from their breeding sites during the post-breeding period 

(average = 77.5 ± 65.5 km; range = 19.0 - 303.7 km). Most birds captured in Castro Verde (52%) headed 

north to post-breeding areas where irrigated agriculture is the dominant land use, while other 

individuals flew to more distant coastal SPAs (21%), such as the Tagus estuary and the Portuguese 

Southwest coast, also areas with a very high proportion of irrigated crops. Most birds from Vila 

Fernando moved east to the irrigated crops that surround the Guadiana river (70%). One individual 

engaged in a long-distance movement (of more than 300 km) reaching a post-breeding area located 

north of Plasencia, Spain. The large majority of post-breeding movements occurred during the night 

with 78% of these movements already starting in the night time period, and the remaining (22%) in 

late afternoon (roughly between 17:00 and 20:00) and finishing in the first hours of daylight or late 

night (Table 2). No birds were recorded flying in the hottest hours of the day, between 11 and 16h 

(considering all periods of continuous flight, including partial movements between stopovers and 

movements without stopovers, n = 124). 

3.2. STOPOVERS 

Eighty-four stopovers were identified and analysed through visual inspection. Stopovers occurred in 

more than 80% of the post-breeding movements (Table 2) and 76% of birds made one to three 

stopovers during their movements. There was a significant positive relationship between the distance 

travelled and the number of stopovers made by the birds (Pearson’s correlation: r32= 0.38, P = 0.028) 

although the occurrence of stopovers was still high (75%) in shorter-distance movements (< 50 km).  

The vast majority of stopovers (84%) were of short duration (Figs. 2 & 3), lasting less than 24 hours 

(Table 2). These short stopovers lasted most of the daylight period (64% of short stopovers), with birds 

arriving at late night/early morning and departing in the late afternoon or during the night (Table 2). 

Despite that, a substantial part of these short stopovers were carried out exclusively during night-time 

(36%) lasting only a few hours (88% of these nocturnal stopovers lasted up to 4 h). The distance 

travelled between stopovers (including departure and arrival to post-breeding areas) was different in 
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diurnal and nocturnal stopovers. While only 48% of diurnal stopovers were followed by a stop within 

the following ten kilometers of the movement, over 80% of night stopovers had a subsequent stop 

within the same distance (median distance travelled = 10.20 and 3.70 km, respectively; Mann-Whitney 

U = 445.0, n = 83, P = 0.008). 

The majority of stopover locations during these post-breeding movements were located outside SPAs 

(82.2%), contrasting with locations during the breeding period, mostly located within SPAs (85.4%, 

this dataset).  

Most birds tracked over consecutive years maintained a similar migratory behaviour (Figure 4 & Table 

3), using the same breeding (88% of birds, n = 8) and post-breeding areas (63% of birds). One exception 

was a bird that in the second year dispersed to a new breeding site, 87 km away from its previous 

breeding area. Despite the fidelity to the same post-breeding areas over consecutive years (Figure 4), 

there were no repetitions in the use of stopover sites by the same individuals (Table 3). 

 

Table 2. Description of stopovers during post-breeding movements of Little Bustards. 

 Descriptor Value 

 Number of post-breeding movements 40 
Number of stopovers1 84 
Number of tracked individuals 27 

   
Movement Departure date2 179.5 ± 22.2 (184) 

Arrival date2 184.0 ± 23.4 (189) 
Duration of movements (days)3 2.4 ± 2.4 (1.4) 
Movement range (km) 64.3 ± 55.7 (41.5) 

 Time of departure 23:21 ± 03:24 (00:00) 
 Time of arrival 06:24 ± 03:47 (07:00) 
   
Stopovers Occurrence of stopovers1 83.0% 

Number of stopovers per movement1 2.5 ± 1.4 (2.0) 
Duration of stopovers (hours) 20.5 ± 24.6 (16.0) 

 Time of departure 23:57 ± 04:09 (01:00) 
 Time of arrival 05:53 ± 03:28 (06:00) 
 Distance travelled between stops (km) 23.4 ± 27.8 (12.4) 

1 estimated from BBMM analysis and visual inspection;  
2 Julian date;  
3 Including stopovers; mean ± standard deviation, with median in brackets 
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Figure 2. Number and duration (in hours) of stopovers (n = 84) during the post-breeding movements (n = 40) of 
Little Bustards. 

 

 

Figure 3. Stopover locations of Little Bustards during their outward post-breeding movements. Capture 
locations (breeding sites) are indicated by black stars and special protected areas with importance for 

grassland birds are shown in grey. 
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Figure 4. Breeding and post-breeding areas (kernel 95% UD) of an individual male Little Bustard (91480) in two 
consecutive years, 2010 and 2011. 

 

Table 3. Percentage of spatial overlap in the use of breeding, post-breeding (50% and 95% UD) and stopover 
areas by eight male Little Bustards in consecutive years. 

Individual 
Number 
of years 

% Breeding 
overlap (95% UD) 

% Post-breeding 
overlap (95% UD) 

Stopover 
overlap% 

91469 2 20 77 0 
91470 2 45 59 0 
91471 2 37 0 0 
91474 2 0 0 0 
91479 2 38 11 0 
91480 3 13 - 48 55 - 69 0 
91481 2 14 0 0 
91482* 2 37 30 - 

  * resident individual  

3.3. HABITAT SELECTION ON ROUTE  

Brownian bridge models allowed the identification of 75 stopovers to be used for habitat selection 

modeling (fourteen were excluded due lack of habitat data or close proximity to post-breeding areas). 

The stopover habitat selection model averaging process retained 4 models (ΔAICc < 10; AIC range: 

932.94 - 942.21; deviance explained: 0.11 – 0.13; r2: 0.20 – 0.23). The selection of stopover sites was 

mostly influenced by land use and distance to roads, followed by terrain ruggedness (Table 4). In their 

stopover sites, Little Bustards used mostly irrigated cropland and non-irrigated areas composed by 

extensive traditional farming and pastures (see Figure 5). While there were no significant differences 

in the selection of the above land uses, other land uses were avoided, as was the proximity of main 
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roads and more rugged landscapes (Table 4). The selection of stopover sites was not influenced by the 

distance to power lines (Table 4). 

Table 4. Estimated coefficients of the model averaging procedure (based on four models with ΔAICc < 10), 
indicating the relative importance of the variable and the number of containing models. 

(Conditional average) Estimate Std. 
Error 

z value p-value Relative 
variable 

importance 

No. of 
containing 

models 

Intercept 1.623 0.584 2.774 0.006 - - 
Land cover:     1 4 
     Irrigated lands 0.219 0.255 0.855 0.392   
     Other land uses -1.706 0.209 8.152 < 0.001   
Ruggedness -0.839 0.287 2.924 0.003 0.97 2 
Log (Distance to power 
lines + 1) 

-0.005 0.056 0.090 0.928 0.27 2 

Log (Distance to roads + 1) 0.238 0.075 3.166 0.002 1 4 

The category non-irrigated lands is represented by the intercept values 

4. DISCUSSION  

4.1. POST-BREEDING MOVEMENTS AND STOPOVERS 

Although there is some evidence that Little Bustards migrate during the night (Villers et al. 2010), in 

contrast to other bustard species (e.g. Kessler et al. 2013), there is little information as to whether this 

is an obligatory or flexible migratory strategy. In this study, the great majority of male post-breeding 

movements were nocturnal or partially nocturnal (89.5%, n = 124) and birds avoided flying during 

most of the daylight period. One of the main potential advantages of nocturnal migration is to avoid 

predation (Alerstam 2009), but there are other compensations, such as using daylight hours to forage 

and refuel, minimizing load costs (e.g. Delingat et al. 2006). Furthermore, nocturnal migration has 

metabolic advantages, particularly for birds with an active flapping flight, as it is possible to minimize 

water loss (Klaassen 1996). Summer temperatures in Southern Portugal frequently exceed 35°C, 

particularly during midday hours, and Little Bustards are known to reduce their activity levels in 

response to extreme hot weather (Silva et al. 2015). For this relatively large bird species, flying 

preferentially during the night period will probably help to prevent water loss and avoid overheating 

during migratory movements. A potential disadvantage of night migration is an increased risk of 

collision with anthropogenic infrastructures, such as power lines, as many avian species show a weak 

or slower reaction to less-visible barriers during nocturnal flights, compared to during daylight (e.g. 

Deng & Frederik 2001, Murphy et al. 2016). 
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Figure 5. Example of a post-breeding movement of a Little Bustard (individual 91469_1_2009) that bred in 
Castro Verde in 2009: a) All fixes (black dots) during the year and post-breeding movement (black line); b) 

Utilization distribution (UD) during the post-breeding movement estimated from Dynamic Brownian Bridge 
models (stopover areas were identified using the 50 - 75% kernel UD); c) d) e) Stopover locations and land use 

(Light grey – Pastures and non-irrigated crops, Dark grey – irrigated crops, White – other land use). Star 
indicates breeding location. Note that the post-breeding movement was delimited between a pre-

migratory/second breeding area (see methods) and the main post-breeding area. 

During their post-breeding movements, male Little Bustards made one to three diurnal stopovers, 

which frequently lasted less than 24h (84%), between nocturnal flights. Overall, the occurrence of 

stopovers was high (> 80% of movements) even when the birds were covering a short migratory 

distance. The species is known to perform migratory movements of 400-600 km in a single night when 
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crossing the Pyrenees (Villers et al. 2010), which is a much larger distance than the one covered by 

Little Bustards in the south Portuguese plains during the post-breeding period. Additionally, with a 

ground flight speed of 65 km/h (Villers et al. 2010) and no evident geographic barriers (except for one 

individual that crossed Sierra de Gredos, Spain), most of the tracked birds could have completed their 

post-breeding movements in a single nocturnal flight of a couple of hours. This raises the question: 

Why do male bustards make stopovers in these short-distance migratory movements?  

The breeding period is an extremely demanding phase for male Little Bustards. Food resources are 

expected to decline throughout the breeding season (Silva et al. 2007) and their foraging activity is 

likely restricted due to high temperatures in early summer (Silva et al. 2015). In these short-distance 

movements, birds are also likely to perform their journeys in active flapping flight mode with high 

energy expenditure, rather than flying at altitudes where they could take advantage of tail winds 

(Liechti & Schmaljohann 2007, Mateos-Rodríguez & Liechti 2011).  It is thus likely that the birds need 

to make stopovers to refuel and rest, even during relatively short migratory flights. By making these 

‘obligate’ diurnal stops and moving preferentially during the night, Little Bustards may avoid 

unnecessary costs, while resting and refueling (also minimizing load costs) to resume the migratory 

movement in the subsequent night.  

It remains uncertain whether this migratory strategy is also used by female Little Bustards, considering 

not only their distinct breeding phenology (females remain in breeding areas for longer periods, due 

to parental care duties), and smaller body size, as well as the potential higher flexibility in their 

migratory behaviour (e.g. Palacín et al. 2009). Indeed, in the sympatric Great Bustard, that shares a 

similar breeding phenology and habitat, females tend to remain sedentary in years when they are 

raising young (Palacín et al. 2009, 2011). 

4.2. HABITAT SELECTION DURING STOPOVERS 

Little Bustards, as other species from the Otitidae family, are extremely selective in relation to their 

habitat, particularly in the breeding and post-breeding seasons (e.g. Martínez 1994, Faria & Rabaça 

2004, Silva et al. 2004, 2007). In southern Portugal, breeding Little Bustards tend to prefer agricultural 

fallow lands or extensive pastures, while in the post-breeding season birds move to more productive 

areas, usually occupied by irrigated fields (Silva et al. 2007). In stopover sites, dry crops and irrigated 

crops were both used by Little Bustards. Irrigated croplands were not significantly preferred in 

stopovers (compared to dry crops), which may be an indication that most birds were on the move, 

instead of prospecting potentially good foraging grounds or evaluating post-breeding areas. During 

stopovers, birds did avoid ‘other land uses’ as well as rugged terrain. These results suggest that male 
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Little Bustards are being less selective during short stopovers than in other periods of the year 

(showing a mixed preference for dry and irrigated crops), but still occupy areas that warrant a 

minimum protection from predators (areas with good horizontal visibility allow the early detection of 

predators; Metcalfe 1984) and potential foraging habitat. 

Linear human infrastructures, such as roads and power lines, are known to negatively impact 

populations of many vertebrate species through habitat loss and degradation, barrier effects, 

increased human disturbance and mortality (Janss et al. 2000, Benítez-López et al. 2010, Silva et al. 

2010, Barrientos et al. 2012). During the breeding season, Little Bustards seem to avoid the proximity 

of roads and power lines (Suárez-Soane et al. 2002, Silva et al. 2010; but see Martínez 1994, Faria & 

Rabaça 2004 for divergent results), and in the winter, when food resources are abundant, bustards 

have been found to avoid the proximity of roads and inhabited houses (Silva et al. 2004). In contrast, 

during the post-breeding period, these birds tend to use areas of intensified agriculture, moving closer 

to roads, which are abundant in those areas (Silva et al. 2007). Considering such variability regarding 

the response to linear infrastructures and human presence, it is likely that the importance of such 

drivers may vary according to the ecological context and individual requirements. The negative 

response of Little Bustards to roads suggests that during stopovers they still avoid proximity to some 

human infrastructures, also favoring areas with greater availability of food and cover. Nevertheless, 

Little Bustards showed a lack of response to the presence of power lines and, as in other heavy flight 

birds (e.g. Sandhill Cranes Antigone canadensis, Murphy et al. 2016), may be less able to detect the 

presence of these linear infrastructures during nocturnal flights.  

4.3. INDIVIDUAL CONSISTENCY IN MIGRATORY BEHAVIOUR 

To our knowledge, this is the first study quantifying the fidelity of male Little Bustards to their post-

breeding areas, revealing a high level of fidelity to those areas (see also García de la Morena et al. 

2015). This pattern is similar to that found in other short-distance migrant steppe birds in Iberia (Great 

Bustard, Morales et al. 2000, Alonso et al. 2001) and supports a strong migratory connectivity between 

Little Bustard breeding and non-breeding areas. Despite the similar migratory routes and high fidelity 

to post-breeding areas, there was no repetition by individuals in the use of stopover sites in 

consecutive years. Stopover site fidelity has never been investigated in short-distance migrants, but is 

known to occur in long-distance migrants that are highly selective in relation to habitat, such as 

waterfowl and shorebirds (e.g. Fox et al. 2002). Little Bustards are highly selective in relation to their 

habitat, but have shown to be less selective during post-breeding stopovers (see above). The short 

time spent in these post-breeding migratory stopovers (less than 24 hours) and availability of potential 
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areas with adequate habitat may influence the non-repetition of the same stopover sites, but further 

studies are needed to support this hypothesis. 

4.4. IMPLICATIONS FOR CONSERVATION 

A good knowledge of the spatial distribution of migrant populations across the annual cycle is critical 

for their conservation (Shuter et al. 2011, Klaassen et al. 2014, Hewson et al. 2016). However, little is 

known about the migratory behaviour (including the selection of stopover sites) of many endangered 

short-distance migrants, or about the potential negative impact of human infrastructures during their 

migratory movements (e.g. Newton et al. 2017, Palacín et al. 2017). 

Little Bustards, as most bustard species, are very prone to collision with overhead wires, particularly 

with power lines (Barrientos et al. 2012, Silva et al. 2014) due to their narrow binocular field of view, 

low flight maneuverability, gregarious behaviour and high flight speed (Martin & Shaw 2010, 

Barrientos et al. 2012). Therefore, the migratory strategy used by male Little Bustards (based on 

nocturnal flights interspersed with frequent stops) may impose additional risks to them, particularly 

during the post-breeding period, when birds may be crossing unknown areas, likely at collision-risk 

altitudes (Silva et al. 2014) and under low light conditions. For the Great Bustard Otis tarda, another 

short-distance migrant in Iberia and a collision-prone species, mortality is 2.4 to 3.5 times higher in 

migrants than in sedentary individuals, mostly due to collision with power lines (Palacín et al. 2017).   

The rapid expansion of agricultural intensification in the south Portuguese plains, particularly of 

permanent crops, has been very significant over the last decade (e.g. Ribeiro et al. 2014). This 

widespread change in agricultural systems is affecting grassland bird populations all over Europe 

(Donald et al. 2006) and Little Bustards have declined by c. 50% in Portugal, possibly linked to habitat 

loss and degradation (Silva et al. 2018). The preservation of open habitat areas between their main 

breeding and post-breeding areas is a key conservation measure to ensure the availability of adequate 

stopover sites and guarantee connectivity, that should be considered in future management and 

conservation plans. 
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Wind turbines cause functional habitat loss for migratory soaring 

birds 

ABSTRACT 

1. Wind energy production has expanded to meet climate change mitigation goals, but negative 

impacts of wind turbines have been reported on wildlife. Soaring birds are among the most affected 

groups with alarming fatality rates by collision with wind turbines and an escalating occupation of 

their migratory corridors. These birds have been described as changing their flight trajectories to avoid 

wind turbines, but this behaviour may lead to functional habitat loss, as suitable soaring areas in the 

proximity of wind turbines will likely be underused.  

2. We modelled the displacement effect of wind turbines on black kites (Milvus migrans) tracked by 

GPS. We also evaluated the impact of this effect at the scale of the landscape by estimating how much 

suitable soaring area was lost to wind turbines. 

3. We used state-of-art tracking devices to monitor the movements of 130 black kites in an area 

populated by wind turbines, at the migratory bottleneck of the Strait of Gibraltar. Landscape use by 

birds was mapped from GPS data using dynamic Brownian bridge movement models and generalized 

additive mixed modelling was used to estimate the effect of wind turbine proximity on bird use while 

accounting for orographic and thermal uplift availability.  

4. We found that areas up to approximately 674 m away from the turbines were less used than 

expected given their uplift potential. Within that distance threshold, bird use decreased with the 

proximity to wind turbines. We estimated that the footprint of wind turbines affected 3-14% of the 

areas suitable for soaring in our study area.  

5. We present evidence that the impacts of wind energy industry on soaring birds are greater than 

previously acknowledged. In addition to the commonly reported fatalities, the avoidance of turbines 

by soaring birds causes habitat losses in their movement corridors. Authorities should recognize this 

further impact of wind energy production and establish new regulations that protect soaring habitat. 

We also showed that soaring habitat for birds can be modelled at a fine scale using publicly available 

data. Such an approach can be used to plan low-impact placement of turbines in new wind energy 

developments. 

Keywords: aerial habitat; avoidance behaviour; migration; orographic uplift; raptor; thermal uplift; 

wind farms 
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1. INTRODUCTION  

Wind energy generation has increased immensely over the last decades and this growth is expected 

to continue in the forthcoming years, with a predicted annual increase of 5% of the installed capacity 

until 2020 (GWEC, 2015; IPCC, 2011). Despite the immediate benefits for climate change mitigation, 

negative interactions between wind energy production and wildlife, mainly birds and bats, have been 

widely reported (Saidur et al., 2011). Soaring birds, including most raptors, storks and other large 

birds, are among the groups of highest concern, as their movement corridors have been populated by 

wind farms (Cabrera-Cruz, & Villegas-Patraca, 2016; Katzner et al., 2012; Martín et al., 2018) leading 

to high fatality rates through collisions with turbines (e.g. Barrios, & Rodriguez, 2004; Ferrer et al., 

2012; Smallwood, & Thelander, 2008). 

Soaring flight allows large birds to travel long distances with a reduced energetic cost (Duriez et al., 

2014; Pennycuick, 1975). However, soaring depends on updrafts, which are relatively scarce and 

scattered across the landscape (Horvitz et al., 2014; Katzner et al., 2015). Two types of updrafts are 

commonly used by terrestrial soaring birds: (1) orographic uplift that results from the deflection of 

horizontal winds by sloping terrain and (2) thermal uplift that is formed during the day due to the 

heating of the land surface by solar radiation (Kerlinger, 1989). Soaring birds use orographic uplift 

either to gain altitude and glide downwards in a desired direction, or to travel along uplift-rich areas 

such as mountain ranges (Bohrer et al., 2012; Katzner et al., 2015). Orographic uplift is particularly 

useful when generated from mountain ranges oriented in the migration direction (Dennhardt et al., 

2015; Kerlinger, 1989). In the case of thermal uplift, soaring birds typically climb in thermals using a 

circular trajectory from which they glide linearly towards the next thermal in the desired direction 

(Katzner et al., 2015; Kerlinger, 1989; Santos et al., 2017). Due to such specific requirements, soaring 

birds tend to move along areas with high uplift potential, often named corridors (sensu Dennhardt et 

al., 2015). Besides the physical requirements for soaring, the importance of different corridors may 

vary dramatically depending on their geographic position relative to migration routes of soaring birds. 

For example, areas in the vicinity of narrow sea crossings may experience higher traffic during 

migrations, as soaring birds avoid crossing large bodies of water (Newton, 2008). 

Soaring birds and wind energy developments may compete for the same areas both at the local and 

regional scales. At local scales, wind turbines are frequently installed along the top of mountain 

ranges, in order to maximize exposure to horizontal winds, and these areas also tend to have high 

orographic uplift potential for birds (Katzner et al., 2012). At a broader scale, migratory bottlenecks of 

soaring birds often correspond to narrow sea crossings or mountain passes where the topography 

favours high wind speeds, thus also well suited for wind-power production (Hilgerloh, Michalik, & 
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Raddatz, 2011; Martín et al., 2018; Villegas-Patraca, Cabrera-Cruz, & Herrera-Alsina, 2014). Therefore, 

understanding how wind turbines impact movement corridors of migratory soaring birds is of utmost 

importance to better reconcile the production of wind power with wildlife conservation.  

In general, birds tend to avoid wind turbines through evasive movements and changes in space use 

(May, 2015). Empirical evidence published on soaring birds has been showing they change their flight 

trajectories to avoid turbines (de Lucas, Janss, & Ferrer, 2004; Villegas-Patraca, Cabrera-Cruz, & 

Herrera-Alsina, 2014) and that their numbers decrease in the close proximity of the turbines (Barrios, 

& Rodriguez, 2004; Pearce-Higgins et al., 2009). Similarly, comparisons between the pre- and post-

construction phases showed that soaring birds reduce their use of the areas where turbines are 

installed and their trajectories become more scattered in nearby areas (Cabrera-Cruz, & Villegas-

Patraca, 2016; Farfan et al., 2017; Garvin et al., 2011; Johnston, Bradley, & Otter, 2014). While these 

avoidance behaviours suggest that soaring birds are to some extent able to cope with the presence of 

wind turbines (Marques et al., 2014), they may also cause functional habitat loss (i.e. loss of aerospace 

in movement corridors; Diehl, 2013), which is a potentially important, though largely neglected, 

impact of wind-power generation (Davy, Ford, & Fraser, 2017). 

In this study we investigated the footprint of wind turbines on movement corridors of migratory 

soaring birds using high-frequency GPS tracking (1-minute temporal resolution or higher). GPS tracking 

is a powerful tool to investigate direct interactions between birds and wind turbines at multiple 

spatiotemporal scales, but it was only recently introduced in this field of study (e.g. Garthe, Markones, 

& Corman, 2017; Thaxter et al., 2015; Thaxter et al., 2018). We tracked 130 black kites (Milvus 

migrans) during the post-breeding migration in an area highly populated by wind turbines in the region 

of Tarifa, Spain. Black kites and other soaring birds concentrate in this region to cross the Strait of 

Gibraltar during their migration to Africa (MIGRES, 2009). Birds were captured and tracked during 

periods of strong crosswinds at the Strait of Gibraltar, which forced them to roam around Tarifa while 

waiting for conditions favouring the sea crossing. Bird movements were used to map space use 

intensity using Brownian bridge movement models. The influence of the wind turbines on the birds’ 

use of the landscape was then modelled taking into account the main predictors of soaring flight, 

orographic and thermal uplift (Bohrer et al., 2012; Kerlinger, 1989). We hypothesised that (1) birds 

will use areas with greater uplift (orographic and thermal) more frequently, and (2) the area in the 

proximity of the wind turbines will be less frequented regardless of its uplift potential. 
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2. MATERIALS AND METHODS  

2.1. STUDY AREA  

This study was conducted in the region of Tarifa (36.0132ºN, 5.6027ºW), on the Spanish side of the 

Strait of Gibraltar. The Strait is a narrow sea crossing between Europe and Africa and is the main 

migration bottleneck for soaring birds travelling along the Western European–West African Flyway 

(Newton, 2008). The region of Cádiz (that includes Tarifa) is of high importance to the wind energy 

industry, with ca. 70 wind farms and over 1300MW of installed wind-power capacity (IECA, 2015). Our 

focal area had 160 operating wind turbines on seven wind farms, representing 132MW of power 

generation (Figure 1, Table S1). These turbines were mainly arranged in rows from North to South 

(Figure 1). 

2.2. BIRD CAPTURES AND TRACKING  

Our model species, the black kite, is an obligate soaring migrant, and one of the most common soaring 

species crossing the Strait of Gibraltar during the post-breeding migration (between 100 and 150,000 

individuals are counted on an annual basis; Martín et al., 2016). These features make this species 

susceptible to interactions with wind turbines, and fatalities due to collision with wind turbines have 

been recorded in earlier studies in this region (Ferrer et al., 2012).  

We captured and fitted 130 birds with GPS data loggers during the post-breeding migration (July to 

September) in 2012 and 2013 (Table S2). Birds were captured during periods of strong Levanter winds 

(5-15 m/s blowing from the east), which are frequent in the summer (Dorman, Beardsley, & 

Limeburner, 1995) and are known to prevent the passage of soaring birds to Africa, causing them to 

congregate around Tarifa for periods up to one week (Miller et al., 2016). Birds were captured in a 

walk-in trap (7 x 7 x 3.5 m) baited with carrion, located 3.5 km North of Tarifa (36.0426ºN, 5.6150ºW). 

We captured more birds than those eventually tracked, which enabled us to select similar numbers of 

adults and juveniles in each capture event. Overall, we tracked 72 adults and 58 juveniles. Sex ratio 

was also relatively balanced (69 females, 59 males and 2 unidentified, results from molecular sexing).  

Birds were equipped with GPS-GSM data loggers (42g, TM-202/R9C5 module, Movetech Telemetry, 

UK, https://www.uea.ac.uk/movetech) attached as backpacks using Teflon ribbon. A weak-link was 

built in to each harness to allow the loggers to automatically detach. The weak-link was made from 

rubber band for the birds tagged in 2012 and from biodegradable plastic thread in those tagged in 

2013. Previous tests showed that the rubber band breaks within two to four weeks when exposed to 

solar radiation and the biodegradable plastic thread within a year. Birds were released a few hours 
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after capture, immediately after the tagging was completed. Loggers were set to obtain a GPS position 

at least once a minute. GPS mean error calculated from ca. 1500 fixes collected by two data loggers 

left at a fixed known position was 1.4 m in horizontal and 1.5 m in vertical, with maximum errors of 

15 m and 31 m respectively. Data were uploaded to an online server via the GSM network every two 

hours. 

The procedures involved in bird trapping and the GPS tagging were approved by the Consejería de 

Medio Ambiente of the Junta de Andalucía through the license to Alejandro Onrubia. 

 

 

Figure 1. Use of the aerospace in the study area (Tarifa, Spain) by the black kites during the post-breeding 
migration of 2012 and 2013, and the locations of the wind turbines. Left panel: GPS locations of 130 tracked 

birds. Locations are only shown for birds flying (speed >1 m/s) during daylight in periods of Levanter wind 
(blowing from the east), and for the region where the concentration of bird movement was the highest. Right 

panel: cumulative Utilization Distribution modelled from dBBMMs. Map grid with 100m spatial resolution. 
Black dots in each map are the locations of wind turbines. 

2.3. ESTIMATION OF OROGRAPHIC AND THERMAL UPLIFT 

We used estimates of orographic and thermal uplift to test our first study hypothesis. The orographic 

and thermal uplift velocities were estimated using a modified version of the methodology employed 

by Bohrer et al. (2012) and Brandes and Ombalski (2004) for high resolution spatial data, described in 

Santos et al. (2017). The estimation of orographic uplift uses parameters from local topography 

(terrain aspect and slope) and wind (direction and speed). Local topography was obtained from a 

Digital Elevation Model of 30 m spatial resolution available at http://gdex.cr.usgs.gov/gdex/ (NASA 

JPL, 2009). Wind direction and speed was obtained at a weather station in Tarifa (36.0138ºN, 

5.5988ºW). Measurements of wind for the whole migration season of black kites (mid-July to mid-

September; MIGRES, 2009) during in 2012 and 2013 lead to the conclusion that there are two 
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predominant wind conditions: (1) strong Levanter winds (wind direction from 80 to 120º; speed from 

4 to 15 m/s) lasting for periods up to a week; and (2) western breeze (wind direction from 270 to 310º; 

speed from 1 to 6 m/s), typically occurring between Levanters (Figure S1). These wind conditions 

match with that generically described for the summer at the Strait of Gibraltar (Dorman, Beardsley, & 

Limeburner, 1995). In this context, we decided to build three different orographic uplift models, the 

first representing uplift for average conditions of wind during the collection of our tracking dataset 

(direction = 97.8º, speed = 8.8m/s), and the other two models representing the average conditions of 

Levanter wind (direction = 100º, speed = 7.7m/s) and western breeze (direction = 290º and speed = 

4.1m/s) observed during the whole migration season of black kites in 2012 and 2013. The uplift 

estimated from the first model was used as predictor in bird space-use models (described in the 

section below), while the estimates of the remaining two uplift models were used in the calculation 

of general scenarios of habitat loss during Levanter wind and western breeze (shown in Figure 5). 

The estimation of thermal uplift velocity according to Santos et al. (2017) uses land surface 

temperature derived from LANDSAT imagery. In general, satellite images obtained in the same season 

show high correlation in reflectance values if no major changes of land use are observed (Zhu, 2017). 

Consequently, high correlation is also expected for thermal uplift models built from those images. 

Santos et al. (2017) confirmed that uplift models built for the study area in different days during the 

summers of 2012 and 2013 are highly correlated (r > 0.77). Therefore, we decided to build a single 

thermal uplift model that used land surface temperature estimated from a LANDSAT 8 OLI/TIRS image 

acquired on July 17th 2013, available at http://earthexplorer.usgs.gov/ (NASA Landsat Program, 

2015). The model was representative of uplift at 225 m height, which is the mean flight height of birds 

in our tracking dataset, and its spatial resolution was 100 m, corresponding to that of the LANDSAT 8 

OLI/TIRS thermal band. 

2.4. BIRD MOVEMENT MODELLING 

Our modelling approach followed the concept of Resource Utilization Function (RUF) proposed by 

Marzluff et al. (2004). RUF uses a two-step analysis, the first that estimates the density or intensity of 

space use (i.e. Utilization Distribution; UD) over the geographic domain of interest and the second 

links the space use to a set of spatially explicit covariates in a regression model (Hooten et al., 2017).  

Our modelling dataset included GPS positions of flying birds (i.e. GPS speed >1 m/s, Figure S2) 

collected during daylight and in days of Levanter wind (direction: mean = 97.8º, SD = 0.22, range = 

83.2-116.3º; speed: mean = 8.8m/s, SD = 2.2, range = 4.2-12.7 m/s). Very few tracking data were 

collected with different wind conditions than Levanter because birds cross the Strait of Gibraltar as 
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soon as the Levanter ceases (Miller et al., 2016). These data were thus excluded from the analysis. We 

also concentrated the analysis in the area where the concentration of bird movement was the highest 

(represented in Figure 1).  

We used dynamic Brownian bridge movement models (dBBMM; Kranstauber et al., 2012) to estimate 

the UD of each bird in each day on a 100x100m grid. Contrasting to conventional methods of UD 

estimation, the Brownian bridge movement model quantifies the UD based on the movement path of 

animals rather than individual points (Horne et al., 2007; Kranstauber et al., 2012). A major advantage 

of this method is that it accounts for temporal autocorrelation in the data, which is a fundamental 

problem of tracking data, particularly for GPS data obtained at high frequency (Kranstauber et al., 

2012). The dBBMM were implemented in R (R Core Team, 2016) with the function 

brownian.bridge.dyn of the package move (Kranstauber, Smolla, & Scharf, 2017), using a window size 

of 15 locations and a margin of 5 locations following the recommendations of Kranstauber et al. 

(2012). The UD calculated for each bird in each day were summed in order to produce a general UD 

for our study area. This UD was used as a response variable in the models described below.  

In order to specifically test our study hypotheses, we fitted a generalized additive mixed model 

(GAMM) using distance to wind turbines and the orographic and thermal uplift velocities as predictors 

of bird UD. Orographic and thermal uplift are the most important drivers of soaring flight on land 

(Kerlinger, 1989), thus we expected bird UD to be fundamentally determined by those factors but 

potentially affected by the proximity of wind turbines. We selected GAMM as modelling technique 

because it simultaneously allowed the use of non-linear predictors and accounting for spatially 

correlated data (Beale et al., 2010; Zuur et al., 2009). The model was fitted with the function gamm of 

the R package mgcv (Wood, 2018). Bird UD and all predictors were represented by single values in the 

100x100m grid generated in the dBBMM interpolation. We must emphasise that orographic and 

thermal uplift estimates result from static uplift models, representing the generic conditions for the 

period of tracking data collection (see section above). We added a Gaussian spatial correlation 

structure to the model to account for spatial autocorrelation (Beale et al., 2010; Dormann et al., 2007; 

Wood, 2017). This was done with the function corGaus of the R package mgcv (Wood, 2018) following 

Zuur et al. (2009). Bird UD was log-transformed to normalize its distribution. No random factors were 

included in the model. In a first approach, the degree of smoothing of predictors (k) was left free to 

be optimized by cross-validation (the default method of the gamm function). However, we found that 

the effects of uplift predictors on bird UD were approximately linear in the regions well supported by 

data (Figure S3). Therefore, we set these two predictors as linear in our final model. The modelling 
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dataset was restricted to grid cells at distances up to 2 km from wind turbines (i.e. 9,136 grid cells), as 

the influence of wind turbines on bird UD is expected to dissipate with distance. 

A second model was built for grid cells positioned far away from the influence of the wind turbines (1 

to 2 km away from turbines) using only the orographic and the thermal uplift velocities as predictors. 

We used this model to estimate soaring suitability in the absence of wind turbines (used for the results 

presented in Figures 4 and 5). This model was a Generalized Least Squares (GLS) since it did not include 

non-linear predictors. The model was fitted with the function gls of the R package nlme (Pinheiro et 

al., 2018). As in the GAMM model, in this model we used function corGaus to account for spatial 

autocorrelation of the data, and the bird UD was log-transformed to normalize its distribution.  

Both models were validated through 10-fold cross-validation. The original dataset was randomly split 

into a training subset with 90% of the data that was used to fit the model, and a testing subset with 

10% of the data against which the model is tested. This procedure was repeated 10 times in a way 

that the training and testing subsets of each run were complementary and cover all the original 

dataset (Geisser, 1993). The precision and predictive performance of models were evaluated from 

their Normalized Root Mean Square Error (nRMSE), defined as the root mean square error divided by 

the range of the model response variable. The Root Mean Square Error (RMSE) is a commonly used 

metric for regression models accuracy and performance that quantifies model error in the units of the 

observed data (Kuhn, & Johnson, 2013). Normalizing the RMSE facilitates the comparison between 

models built at different spatial and temporal scales (e.g. Bocinsky, & Kohler, 2014; Feilhauer et al., 

2010). 

For both models, fitting assumptions were checked from diagnostic residual plots of R the packages 

mgcv and nlme (see Figure S4), and spatial autocorrelation correction was validated from plots of 

residual autocorrelation generated with the function correlog of the R package ncf (Figure S5, 

Bjornstad, 2018). 

3. RESULTS  

We tracked 130 individual black kites for an average of 3 days each, generating ca. 220,000 GPS 

locations (Figure 1 left panel). Movements were concentrated within a radius of ca. 40 km from Tarifa, 

with individual birds moving about 120 km on average before they crossed the strait of Gibraltar (see 

Figure S6 for examples of tracks). From the original dataset, 77,228 GPS locations were used for 

modelling purposes (Figure 1 left panel, Table S2; see methods for details on data selection).  



 

Chapter 5: Wind turbines cause functional habitat loss for migratory soaring birds 123 

 

The UD estimated from dBBMMs showed an uneven spatial pattern, with reasonably defined areas of 

concentration of movement (Figure 1 right panel). Higher intensity of movement was observed along 

two central areas aligned approximately North-South and along the coastline (Figure 1 right panel).  

The estimates of uplift showed highly heterogeneous distributions (Figure 2). The highest orographic 

uplift velocities during the period of data collection were estimated along the east-facing mountain 

slopes in the most western and eastern regions of the study area (Figure 2 left panel). In contrast, the 

highest estimates of thermal uplift were concentrated in a valley located in the centre of the study 

area (Figure 2 right panel). Orographic uplift was spatially more concentrated with more extreme 

velocities than thermal uplift, but the latter showed higher values on average (orographic uplift 

velocity: mean of grid cell values = 0.35m/s, SD = 0.72, range = 0-6.18m/s; thermal uplift velocity: 

mean of grid cell values = 1.69m/s, SD = 0.26, range = 0.10-2.19m/s).  

 

 

Figure 2. Estimated orographic (left) and thermal (right) uplift velocities in the study area. Orographic uplift 
represents deflected Levanter winds during the period of bird tracking (wind direction: mean = 97.8º, SD = 

0.22, range = 83.2-116.3º; wind speed: mean = 8.8m/s, SD = 2.2, range = 4.2-12.7 m/s). Thermal uplift velocity 
was modelled for 225m height (mean flight height of birds) using land surface temperature estimated from a 

Landsat 8 OLI/TIRS image acquired in July 17th 2013 (NASA Landsat Program, 2015) (available at the USGS 
archive, http://earthexplorer.usgs.gov/). Light hill shading was added to illustrate interaction between 

topography and uplift. Black dots represent wind turbines.  

 

GAMM results showed that bird UD was significantly affected by the distance to wind turbines and 

the two types of uplift (Table 1, Figure 3). A negative effect of wind turbine proximity on bird UD was 

observed up to a distance of approximately 674 m (i.e. the maximum of the curve of Figure 3 left 

panel), which dissipates beyond that. However, it should be noted that there was a slight drop of bird 
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UD after the 674 m. Both orographic and thermal uplift velocities had a positive effect on bird UD 

(Table 1, Figure 3). 

The GLS model, fitted with data obtained beyond the influence of the wind turbines (i.e. 1 to 2 km 

from wind turbines), showed effects of orographic and thermal uplift velocities on bird UD similar to 

those of the GAMM (Table 1, Figure S7). Predictions of the GLS model applied to areas up to 674 m 

from the wind turbines were significantly higher than the dBBMM estimates for the same areas (Figure 

4). This indicates that birds used areas close to turbines less than expected based on their soaring 

suitability. After extrapolating this model to the entire study area we found that between 3 and 14% 

of the area suitable for soaring was within the area of influence of wind turbines (i.e. within 674 m of 

wind turbines), these being similar during Levanter wind (4-14%) and western breeze (3-14%; Figure 

5). 

 

Table 1. Summary statistics for the two models explaining black kite UD. The first model tested the effect of 
wind turbines on bird UD while accounting for the effects of uplift. The model was a GAMM fitted with grid-

cell data at distances up to 2 km from wind turbines, and included the distance to the wind turbines, the 
orographic and the thermal uplift velocities as predictors. The second model was designed to evaluate soaring 

suitability grid cells independently of the effect of wind turbines. The model was a GLS fitted with data 
obtained far from the influence of wind turbines (between 1 and 2 km distance) and used only orographic and 

thermal uplift velocities as predictors. Both models were corrected for spatial autocorrelation (see methods 
for details). Fitting and cross validation Normalized Root Mean Square Error (nRMSEfit and nRMSEcv) are shown 
for the evaluation of precision and predictive performance of the models respectively. For nRMSEcv we show 

the range of the nRMSE calculated for the 10 models produced in the cross validation procedure (see methods 
for further details). SE – Standard error; t – T statistics; edf – Estimated degrees of freedom; F – F statistics. 

 Estimate SE t edf F P-value 
nRMSEfit 

(%) 
nRMSEcv 

(%) 

Model: Effect of wind turbines 13.7 13.6 – 16.5 

Intercept -10.59 0.26 -41.33      
s(distance to turbines)    5.22 12.95 <0.001   
orographic uplift 0.11 0.01 8.03   <0.001   
thermal uplift 2.70 0.15 18.17   <0.001   

Model: Soaring suitability 14.5 14.8 - 17.9 

Intercept -10.42 0.36 -28.74      
orographic uplift 0.12 0.02 5.96   <0.001   
thermal uplift 2.62 0.21 12.68   <0.001   
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Figure 3. GAMM partial effects of distance to turbines, orographic uplift and thermal uplift on black kite UD. Shaded areas represent 95% confidence intervals. Modelling 
dataset includes grid cells up to 2 km from wind turbines. 
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Figure 4. Comparison between soaring suitability and the use by black kites of the areas close to wind turbines 
(up to 674 m of distance) and far from wind turbines (located at 1 to 2 km distance from the closest turbine). 

Bird use corresponds to the UD obtained directly from the dBBMM, and the soaring suitability is the UD 
predicted from a GLS fitted with orographic and thermal uplift velocities as predictors and the dBBMM UD as 
response variable (see methods for further details). The GLS model was fitted with data of grid cells placed far 

away from the influence of wind turbines (between 1 and 2 km distance of the closest turbine). These data 
were randomly divided in two datasets, the first was used to fit the GLS model (with 90% of the data) and the 
second was used to represent bird use far from turbines in the plot (with 10% of the data). Error bars in the 

plot represent 95% confidence intervals. 

 

4. DISCUSSION  

We found that wind turbines affect a large area of potentially suitable soaring-habitat around them. 

GPS-tracked black kites showed a reduced use of the areas up to approximately 674 m away from the 

wind turbines (corresponding to an area of ca. 143 ha around each turbine), this effect being stronger 

at shorter distances (Figure 3), which proves our second study hypothesis. We also demonstrated that 

areas within 674 m of the wind turbines had suitable uplift conditions for soaring flight but they were 

used less than expected by the black kites (Figure 4). Interestingly, there was a slight peak of bird use 

at areas near the 674 m threshold (Figure 3) that might have been a consequence of birds changing 

direction to avoid entering the areas adjacent to the turbines (Cabrera-Cruz, & Villegas-Patraca, 2016; 

Villegas-Patraca, Cabrera-Cruz, & Herrera-Alsina, 2014). Additionally, we showed clear increasing 

relationships between orographic and thermal uplift and bird UD (Figure 3 and Figure S5), proving the 

first hypothesis of this study.  
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Figure 5. Soaring habitat affected by wind turbines for average conditions of Levanter wind (blowing from the 
east) and western breeze observed during the migration seasons of the black kites in 2012 and 2013. Wind 

turbine influence is represented by circles of 674 m radius around each turbine (this distance resulted from the 
GAMM model shown in Table 1 and Figure 3). Soaring suitability resulted from predictions of a GLS model 

(detailed in Table 1 and Figure S7) using thermal and orographic uplift estimates for the whole study area and 
for the two sorts of wind observed during the migration seasons of the black kites in 2012 and 2013. The UD 

predictions produced from the GLS model were simplified in soaring suitability categories: very high suitability 
– are the 10% highest UD values; high suitability – are the following highest 15% UD values; moderate 

suitability – are the following highest 25% UD values; and low suitability – are the lowest 50% UD values. The 
inset plot shows the percentage of area under the influence of wind turbines considering different scenarios of 

soaring suitability. Confidence intervals in the plot result from confidence intervals of fitted values of GLS 
model predictions. 

 

We must emphasise that our models include some level of error (see Table 1), likely because that were 

other environmental variables influencing the movement of the birds that were not included as 

predictors. However, that amount of error is comparable to that found in previous studies linking bird 

soaring behaviour to uplift proxies (Bohrer et al., 2012; Dodge et al., 2014; Hernandez-Pliego, 

Rodriguez, & Bustamante, 2015; Santos et al., 2017; Sapir et al., 2011). The fact that uplift predictors 

were estimated for a single generic circumstance in time may also have added inaccuracy to our 

models. Tracking data used in the models were collected in highly uniform conditions of wind 

direction, therefore we do not expect that the areas with orographic uplift potential to change 

spatially in time. However, the variation observed in wind speed may have affected overall uplift 

intensity of those areas. This could potentially have influenced the birds’ trade-off in using orographic 

uplift or thermal uplift in nearby areas. Regarding the thermal uplift, a considerable temporal variation 

is expected within a day and between days mostly due to the amount of solar radiation heating the 

earth surface (Stull, 1988). As in the case of orographic uplift, we do not expect such variation to 
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promote spatial changes in uplift but some intensity variation is expected that could represent a trade-

off in the use of alternative sources of uplift.  

The displacement effects of wind-power plants have been demonstrated in earlier studies for soaring 

birds (Barrios, & Rodriguez, 2004; Cabrera-Cruz, & Villegas-Patraca, 2016; de Lucas, Janss, & Ferrer, 

2004; Garvin et al., 2011; Johnston, Bradley, & Otter, 2014; Pearce-Higgins et al., 2009; Villegas-

Patraca, Cabrera-Cruz, & Herrera-Alsina, 2014). However, to the current date only a single study 

quantified the extent of the area affected by this phenomenon (Pearce-Higgins et al., 2009). That study 

reports lower densities of two species of raptors during their breeding season in areas up to 800 m 

from turbines, coarsely matching the estimates of our model. Our study is the first attempt to quantify 

the proportion of soaring habitat lost or negatively affected by the presence of wind farms. We 

estimated that 3-14% of the areas suitable for soaring in our study area were impacted by wind-energy 

production, this estimate being similar for Levanter winds and western breeze (Figure 5). These two 

sorts of wind comprise most wind conditions found in Tarifa during the migration season of black kites 

(Figure S1). The magnitude of this impact is likely similar in other critical areas for migratory soaring 

birds where new large wind-power projects are being constructed, such as the Gulf of Suez in Egypt 

(Hilgerloh, Michalik, & Raddatz, 2011) or the Isthmus of Tehuantepec in Mexico (Villegas-Patraca, 

Cabrera-Cruz, & Herrera-Alsina, 2014). It should be emphasized that soaring birds are restricted to fly 

in soaring corridors (e.g. Leshem, & Yom-Tov, 1998; Santos et al., 2017; Shamoun-Baranes et al., 2003), 

thus, small losses of suitable area may have large constraints for their vital activities. Losses in 

movement corridors may be particularly important during migrations, as soaring birds already 

experience considerable mortality while overcoming natural barriers, such as deserts and sea 

stretches (Bildstein et al., 2009; Klaassen et al., 2014; Strandberg et al., 2010). Suboptimal soaring 

conditions may force birds to delay or suspend migration or to use flapping flight, which is 

energetically unsustainable for most species (Newton, 2008).  

The reason why migratory soaring birds avoid wind turbines is still unclear. The fact that birds are 

displaced far beyond the areas occupied by the physical infrastructure of wind-power plants could be 

a consequence of neophobia, as turbines do not belong to their natural environment (Walters, 

Kosciuch, & Jones, 2014), but it could also be a consequence of earlier negative experiences, such as 

birds being caught in the airflow around turbines, or even witnessing fatalities of conspecifics. In 

addition, the functioning of wind turbines disturbs local airflow regimes (e.g. Magnusson, & Smedman, 

1999; Sorensen et al., 2015), which may compromise uplift generation. However, this is expected to 

affect only the areas downwind the turbine rotors (e.g. Magnusson, & Smedman, 1999; Sorensen et 

al., 2015). We should also recognize that the avoidance of turbines varies considerably among soaring 
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species, their life stage and their annual cycle (May, 2015), thus the range of influence of wind turbines 

found in this study is not necessary replicable in other contexts. 

Our findings indicate that the negative effects of wind-power developments on soaring birds may be 

far more extensive than the commonly reported mortality caused by collision (Marques et al., 2014). 

Avoidance behaviour may suggest that soaring birds, as well as other birds, are partly able to cope 

with the existence of wind turbines (Marques et al., 2014). However, our results make clear that this 

is a simplistic interpretation and may lead to the underestimation of the real impacts of wind-power 

generation. We recommend that the authorities responsible for wildlife protection and wind industry 

regulations recognize the loss of aerial habitat caused by wind turbines and the potential associated 

negative impacts on soaring birds. It becomes clear from our results that individual turbines greatly 

differ on their impact depending on their geographical position (Figure 5), thus it is possible to 

significantly reduce overall impact of wind-power production with adequate planning. The method we 

used to map updrafts uses only data that is publicly available (Santos et al., 2017) and can be used in 

environmental impact assessment studies to guide the selection of low-impact locations for new wind 

turbines. We are convinced that wind-energy production is necessary to face global warming, but the 

accelerating increase of wind-power developments needs to be accompanied by science-based 

solutions to minimize its impacts on wildlife. 
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SUPPORTING INFORMATION 

 

 

Figure S1. Wind conditions in Tarifa during the migration season of black kites (mid-July to mid-September; 
MIGRES, 2009) in 2012 and 2013. Wind speed is represented by the black line, while arrows refer to wind 

direction. Daily means are represented in both cases. Red arrows refer to strong Levanter winds (wind 
direction from 80 to 120º; speed from 4 to 15 m/s), blue arrows refer to western breeze (wind direction from 

270 to 310º; speed from 1 to 6 m/s), and green arrows to any other wind conditions. 
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Figure S2. Distribution of GPS speed values from tracking data of black kites recorded in Tarifa (Spain) between 
2012 and 2013. Birds were considered to be flying when speed was greater than 1 m/s. 

 

 

 

Figure S3. GAMM partial effects of smoothed uplift predictors. The degree of smoothing (k) was optimized by 
cross-validation. Shaded areas represent the 95% confidence intervals and overlaid dots represent the model 

residuals.  
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Figure S4. Diagnostic plots for the two models of this study (see Table 1 for further details on the models). In 
both cases, there is no pattern on the variance of the residuals along the fitted values that indicate problems 

of homoscedasticity. 
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Figure S5. Spatial autocorrelation of the residuals for the two models of this study before and after being 
formulated with Gaussian spatial correlation structures (see Table 1 for specifications on the models and the 
methods section for details on the spatial correlation correction). Correlation values were computed with the 

function correlog of the R package ncf (Bjornstad, 2018). Trend lines in red are LOESS curves.  
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Figure S6. Examples of black kite GPS tracks recorded in the study area (Tarifa, Spain) during the post-breeding 
migration of 2012 and 2013, and the locations of the wind turbines. Birds were tracked with GPS-GSM 

dataloggers.  

 

Figure S7. GLS model partial effects of uplift predictors on black kite UD (see model details in Table 1). Shaded 
areas represent 95% confidence intervals. Modelling dataset includes grid cells placed far away from the 
influence of wind turbines (between 1 and 2 km distance of the closest turbine, see methods for further 

details). Y-axis are represented on the scale of the response variable (i.e. log(UD)). 
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Table S1. Wind farms operating in the study area and their main features: total nominal power (MW), number 
of turbines, rated power (kW), hub height (m) and rotor diameter (m).  

 

Wind farm 
Total nominal 

power (MW) 
Nº turbines Rated power (kW) 

Hub height  

(m) 

Rotor diameter 

(m) 

WF1 10,68 17 660/600 43,5/45/55 46/44 

WF2 32 16 2000 57/64/75/85/98/114 71 

WF3 42 21 2000 57/64/75/85/98/114 71 

WF4 1,65 1 1650 60/78 66 

WF5 36,9 90 410 25/31 33 

WF6 2,42 3 1300/800/330 58,5/50/60/30 61/52/30 

WF7 6 12 500 35 37 

 

Table S2. Summary of tracking data from black kites fitted with GPS-GSM dataloggers in Tarifa (Spain) between 
2012 and 2013: total number of tracking days and corresponding number of GPS fixes per bird, and the same 

variables for the data used for modelling purposes.  

Bird ID 
Trackig 
period 
(days) 

Total 
GPS 
fixes 

Modelling 
period  
(days) 

Modelling 
GPS fixes 

2 1 249 1 216 

4 2 247 1 209 

5 1 1568 1 1351 

6 6 2346 1 230 

7 2 991 1 723 

8 4 4409 1 1138 

9 1 1647 1 1015 

11 6 2514 1 669 

12 7 2637 2 1679 

13 7 2217 1 549 

15 2 110 1 83 

16 4 1339 1 57 

17 2 1095 2 835 

18 2 496 2 186 

19 4 1095 3 439 

21 3 2583 2 1267 

22 4 3572 2 2035 

23 3 1209 1 813 

24 2 467 2 367 

25 3 1452 2 1230 

26 3 919 2 533 

27 3 667 2 163 

28 8 1618 1 14 

29 3 1762 2 1157 

Bird ID 
Trackig 
period 
(days) 

Total 
GPS 
fixes 

Modelling 
period  
(days) 

Modelling 
GPS fixes 

30 2 547 1 406 

32 1 62 1 62 

33 3 542 1 200 

35 2 722 2 598 

37 1 300 1 91 

38 2 535 2 388 

39 3 2041 2 1359 

40 3 1412 1 760 

41 2 116 1 47 

42 2 489 1 237 

43 3 975 2 257 

44 3 1118 2 532 

45 6 1749 3 552 

46 5 1164 3 493 

47 5 1226 2 455 

48 11 1401 2 82 

49 3 1336 1 523 

50 2 871 1 706 

51 4 1596 2 430 

53 2 1860 1 822 

54 2 578 1 379 

57 2 165 1 55 

58 1 458 1 425 

59 4 2850 1 1413 
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Bird ID 
Trackig 
period 
(days) 

Total 
GPS 
fixes 

Modelling 
period  
(days) 

Modelling 
GPS fixes 

60 2 866 1 409 

61 5 1598 2 421 

62 6 1876 2 350 

63 7 3608 1 1542 

65 3 4093 1 579 

66 3 3308 1 1433 

67 2 2143 1 1119 

34b 3 1025 2 437 

kite1 2 775 2 147 

kite10 2 838 2 482 

kite11 2 869 2 275 

kite12 2 326 1 95 

kite13 4 2502 2 60 

kite14 3 1769 2 926 

kite15 2 894 1 517 

kite16a 1 324 1 48 

kite16b 2 591 1 27 

kite17 3 2455 2 1816 

kite18 2 914 1 388 

kite19 2 1038 2 738 

kite2 1 454 1 270 

kite20 3 3059 2 1807 

kite21 2 953 2 614 

kite22 4 1660 1 26 

kite23 2 1175 2 750 

kite24 3 1874 1 209 

kite25 2 2981 1 76 

kite26 1 1240 1 527 

kite27 1 3449 1 1493 

kite28 1 461 1 234 

kite29 1 2319 1 386 

kite3 2 780 2 165 

kite30 1 1046 1 509 

kite31 3 8638 1 251 

kite32 2 2494 1 71 

kite33 2 4075 2 691 

kite34 2 3592 1 582 

kite35 1 1629 1 342 

kite36 2 3104 1 502 

kite37 2 2445 1 609 

kite38 1 2163 1 932 

kite39 2 1768 1 504 

Bird ID 
Trackig 
period 
(days) 

Total 
GPS 
fixes 

Modelling 
period  
(days) 

Modelling 
GPS fixes 

kite4 5 2633 2 1011 

kite40 1 1696 1 284 

kite41 2 2019 1 34 

kite42 2 2692 2 131 

kite43 2 2741 1 109 

kite44 3 2459 3 915 

kite45 5 1992 4 739 

kite46 1 212 1 41 

kite47 3 2515 1 1635 

kite48 4 2559 3 1528 

kite49 4 1505 1 31 

kite5 3 1753 1 833 

kite50 4 2067 3 923 

kite51 4 3547 2 955 

kite52 2 601 1 84 

kite6 1 1383 1 893 

kite7 2 4252 1 166 

kite9 2 772 1 34 

logger102 4 1472 1 34 

logger104 3 1327 3 756 

logger106 4 1478 4 940 

logger108 4 1833 4 784 

logger110 4 3071 3 2047 

logger113 3 834 3 458 

logger114 4 1625 3 865 

logger119 4 1582 2 872 

loggertest 4 2007 3 793 

p1 1 129 1 121 

p10 2 1163 2 767 

p11 13 2074 2 68 

p12 3 1564 2 797 

p13 4 1619 1 73 

p15 1 83 1 79 

p182012 4 3932 4 1300 

p182013 4 1688 1 449 

p19 2 492 1 398 

p26 7 3787 1 764 

p28 2 1570 1 568 

p3 3 3819 2 1342 

p5 3 1651 1 1018 

mean 3,0 1697,6 1,6 594,1 

SD 1,9 1212,5 0,8 483,1 
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Dispersal movements and habitat suitability of a globally threatened 

raptor revealed by high resolution tracking 

ABSTRACT 

Advances in movement ecology, mainly new tracking devices with high spatial and temporal 

resolution, are improving our ability to study highly mobile and erratic life-cycle periods or animals, 

and to propose more suitable conservation measures. In this work we used GPS-GSM tags to study 

the spatial and temporal movements patters, and the habitat suitability of immature Iberian imperial 

eagles. We followed 12 birds for on average for 243 days during the dispersal phase, and collected ca. 

38.000 bird locations. Brownian Bridge Movement Models were used to identify settlement areas, 

and Maxent models were applied to predict suitable areas for non-territorial birds in the Iberian 

Peninsula. Birds’ travelled mainly in the centre and southern part of Iberia, where there are higher 

levels of habitat suitability for the species, and one eagle even crossed the Strait of Gibraltar to the 

north of Africa. Young eagles settled for most of their immature life (ca. 90%), typically travelling 

between different settlement areas in rotation. Settlement areas located at a mean distance of 208 

km from their birth nest. Birds’ exhibited a sedentary behavior during the coldest months, performing 

fewer movements than during the rest of the year. Spatial distribution models show that birds prefer 

landscapes dominated by agroforestry systems and shrublands, with a smooth topography and lower 

levels of the aridity index. Our results suggest that the immatures eagles are travelling longer and 

settling in areas located further away from their origin than earlier known, maybe because the species 

population is increasing and competition is forcing birds’ to find alternative locations. This may also 

be responsible for the expansion of the range of the species, including the breeding range. Our 

predictive model showed a good fit, and can help to guide future management actions focusing on 

this species.     

Keywords: Aquila adalberti; Spanish imperial eagle; movement ecology; settlement areas; spatial 

ecology; floaters 

1. INTRODUCTION  

Movement ecology is a rapidly growing and novel science that is enabling significant advances in 

knowledge on how species move and use space across their range, ultimately improving our ability to 

preserve and manage wild populations (Allen and Singh, 2016). The distribution of a species can be 

dynamic in space and time, with individuals having regular and predictable movements, such as 
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migrations, or erratic and resource-driven nomadism (Runge et al., 2014). Changes in the way space 

is used can occur during the life-span of a single individual. Long-lived raptors, for example, are usually 

territorial during the breeding season and show fidelity to their breeding location, but can have a long 

dispersal and transient period before establishing a territory (Newton, 2010). Knowledge on how 

species use the landscape and how this changes through the environment or individual-context (e.g. 

age, reproductive state, etc.) can be of major relevance to outline sound conservation strategies. 

The Iberian imperial eagle Aquila adalberti is a large non-migratory raptor, endemic to the western 

Mediterranean region. Currently, it breeds exclusively in Iberia (Spain and Portugal), with less than 

500 breeding pairs (Birdlife International, 2017; Sánchez et al., 2008). Although its population is 

presently increasing, the species is one of the rarest raptors in the world and is classified as globally 

Vulnerable (Birdlife International, 2017; Sánchez et al., 2008).  

The historical range of the Iberian imperial eagle contracted ca. 90% by the mid-20th century (Deinet 

et al., 2017), when it was close to extinction, with only 30 breeding pairs remaining in the wild during 

the 1970s (Luis M. González et al., 1989; Sánchez et al., 2008). Human persecution and the massive 

decline of its’ main prey, the European rabbit Oryctolagus cuniculus (due to viral diseases), explains 

the decline of the species (Sánchez et al., 2008). The eagle population has been recovering since the 

end of the 20th century (Ortega et al., 2009), which can partially be attributed to successful 

conservation actions addressing key threats (González and Oria, 2004). 

The juveniles of this species, like in other long-lived raptors, have a long dispersal period before 

exhibiting a territorial and breeding behavior, which usually starts when birds are 4.5 years old 

(González et al., 2006). During dispersal, the immature eagles (or floaters) make long-distance trips 

away from the natal area and use several temporary settling zones, i.e. settlement areas, spending 

their non-adult life travelling between them (Ferrer, 1993; L.M. González et al., 1989). The range of 

these non-breeding animals tends to be similar to the breeding range of the species, although a few 

individuals have made forays into North Africa, which was part of the historical breeding range of the 

species but where it does not presently nests (González et al., 2008). Young eagles tend to settle in 

open landscapes, often dominated by Quercus sp. agroforestry systems and with reduced human 

disturbance (Ferrer and Harte, 1997). However, the environmental and climatic drivers underpinning 

the selection of these settlement areas are still mostly unknown. 

The dispersal stage is long and sub-adult birds suffer higher mortalities rates than adults (González et 

al., 2007). Therefore, temporary settlement areas should be considered key locations for the 

conservation of the Iberian imperial eagle (Ferrer and Harte, 1997; Penteriani et al., 2005). During this 
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period, young eagles are particularly vulnerable to electrocution with power lines poles (González et 

al., 2007), and mitigating such non-natural mortality is considered of high priority for the conservation 

of the species (González et al., 2007; López-López et al., 2011; Sánchez et al., 2008).  

Detailed knowledge about settlement areas can guide the management actions focusing the species, 

which is particularly relevant when the population is increasing and the range of the species is 

expanding. New tracking technologies can contribute to understand the use of the landscape by 

dispersing eagles with high spatial and temporal resolutions. Previous studies of immature Iberian 

imperial eagle were conducted mostly using VHF technology, which, although provide valuable 

information, has a limited spatial and temporal resolution (Ferrer, 1993; Ferrer and Harte, 1997; 

González et al., 1989; Muriel et al., 2016). Therefore, in this study we use state-of-the-art GPS tracking 

to (i) describe the movement patterns of the immature Iberian imperial eagles in the months after 

leaving the parents’ territories and (ii) reveal the patterns of spatial and temporal use of the 

settlement areas. We also use tracking data to (iii) identify areas that are suitable for the settlement 

of the species in the Iberia peninsula, which is the first attempt to model the species distribution 

during the dispersal period at such spatial scale.  

2. MATERIAL AND METHODS 

2.1. CAPTURING, TAGGING AND TRACKING 

We monitored a total of 12 birds from 2014 to 2018 (Table 1). Eleven were juveniles, born in five nests 

in Portugal (Idanha-a-Nova, Mourão and Mértola regions; Ramos et al. 2019) and one was an 

immature dispersing in the southern part of the country. The juveniles were tagged in the nest before 

the first flights attempts (49-55 days old) and the immature, aged 18-24 months, was captured in a 

baited clap trap. Birds were fitted with GPS/GSM solar tracking devices from Movetech Telemetry (87 

× 40 mm and 78g; http://movetech-telemetry.com), using a backpack-style breakaway harness of 

Teflon, weighing less than 3% of the birds’ mass. Transmitters were programed to record a GPS 

position every 20-60 minutes, and data were uploaded to an online server via the GSM network. 

Tagging procedures were undertaken by the Portuguese national authority for nature conservation, 

Instituto da Conservação da Natureza e das Florestas and Dirección General para la 

Biodiversidade/Ministerio de Medio Ambiente from Spain (permits: 148/2014/CAP, 391/2015/CAP, 

684/2016/MANUS and 170/2017/CAP). 

http://movetech-telemetry.com/


 

Chapter 6: Dispersal movements and habitat suitability of the Iberian imperial eagle  149 

 

Table 1. Description of movements, number and distance between settlement areas of immature Iberian 
imperial eagles, during the dispersal period.  

Bird 
Settlement 

tracking 
period (days) 

GPS 
fixes 

Minimum 
distance 

travelled per 
day (km) 

No. 
settlement 

areas 

Distance between 
settlement areas and 

nest (km)  
mean (range)1 

Distance between 
settlement areas 

(km) mean (range)1 

Male 1 32 551 70 2 125 (51-198) 159 

Female 4 47 752 60 2 195 (8-383) 391 

Male 6 53 969 91 5 406 (3-567) 312 (31-571) 

Male 5 128 1840 48 5 141(6-234) 145 (27-239) 

Male 4 178 2147 56 7 214 (2-426) 198 (50-426) 

Female 22 183 2322 35 3 - 252 (62-377) 

Male 7 196 3096 25 5 140 (54-216) 111 (20-179) 

Male 3 348 4595 43 6 239 (10-631) 326 (66-687) 

Female 1 389 5995 51 5 108 (9-180) 155 (70-256) 

Male 8 408 7345 33 3 128 (12-309) 311 (54-318) 

Female 3 410 5600 64 4 258 (10-433) 231 (67-430) 

Male 2 542 10336 52 12 330 (9-678) 341 (37-930) 

Total (x̄) 243 3796 52 5 208 (2-678) 244 (20-930) 

Males (x̄) 236 3860 52 6 215(2-678) 238(20-930) 

Females (x̄) 257 3667 53 4 187(8-433) 259(62-440) 

1distance was measured in relation to the centroid of the settlement area (kernel 90% UD) 
2immature bird that was tagged with 18-24 months 

 

2.2. BIRDS MOVEMENT DYNAMICS   

We filtered our tracking database keeping a single location per hour for each eagle, to get a uniform 

data collection frequency across bird. We also excluded locations during the dependence period, i.e. 

when juveniles returned to overnight in the territory of their parents (Ferrer, 1992), which in our 

tracked birds occurred until they were 93 to 153 days old (Ramos et al., 2019). One of the males 

exhibited territorial behavior earlier than usual, i.e. was highly faithful to an area and was repeatedly 

seen with a female. Data on this bird was only included until the last displacement movement (ca. 26 

km distance travelled).  

Brownian bridge movement models (BBMM; Horne et al. 2007; Kranstauber et al. 2012) were used to 

identify the settlement areas used during the dispersal period. BBMM uses information on the 

sequence of locations of tracking data, allowing for the identification of highly used areas and also the 
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movement corridors between them. The BBMM were implemented in R (R Core Team, 2016) with the 

package move (Kranstauber and Smolla, 2017), using a window size of 12 locations and a margin of 

three locations, following the recommendations of Kranstauber et al. (2012). 

We defined settlement areas has the areas more intensively used by birds during the dispersal period, 

and used utilization distribution (UD) of 90% to outline the boundaries of settlement areas (Figure S1). 

Additionally, we only considered an area as a settlement area if the eagle occupied it for a continuous 

period over 3 days.  

To characterize the movements across time we calculated the daily distance between each overnight 

location and the nest, for the eleven eagles tagged in the nest. To reduce the variation in the data and 

simplify the analysis, we present such variable based on the median of a 10-days window.  

2.3. HABITAT SUITABILITY MODELLING  

We selected a set of seven, not highly correlated (r < 0.70), environmental and climatic predictors to 

model the potential habitat suitability of the Iberian imperial eagles’ during the dispersal period (Table 

2). These predictors were chosen based on previous knowledge of the species ecology, mainly the fact 

that the species is associated to the Mediterranean climate, prefers agroforestry systems and avoids 

areas with high human disturbance and paved roads (Ferrer and Harte, 1997; González et al., 1992, 

1990).  

For modelling we used MaxEnt, a machine‐learning algorithm that models the relationship between 

species presence and associated environmental data to predict the probability of species occurrence 

across the landscape (Elith et al., 2011; Phillips et al., 2006). This analysis was performed for the whole 

Iberia peninsula, using a UTM 10 km cell grid. Cells coinciding with a settlement area (as identified by 

the BBMM models, above described) and that simultaneously had eagle GPS locations were included 

in the model as presences (n=358). As the eagles’ movements and the areas overflown by the birds 

conditioned the selection of settlement areas, as the sampled birds could not have selected areas that 

were not surveyed, we included a bias layers to guide the selection of the background points (n = 

5,000). This was achieved through the use of a density map of all the birds’ GPS fixes, based on the 

number of GPS fixes in a 250 km buffer. Such approach allowed us to account for our sample selection 

bias (Phillips et al., 2009), by selecting a higher number of background points in areas overflown by 

the birds. The model was fitted using only linear, quadratic, and product features, in order to produce 

more interpretable model responses (Merow et al., 2013). 
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The model was evaluated through the area under the receiver operating characteristic curve (AUC), 

mean and standard deviation values of 50 replicates, and the relative contribution of each predictor 

was estimated with the jackknife test. The MaxEnt model was built in R (R Core Team, 2016), using 

the dismo package (Hijmans et al., 2016).  

Table 2. Description of the predictor variables used to model the habitat suitability of the Iberian imperial 
eagle at settlement areas, during the dispersal period.  

Variable  Description  Source   

Aridity  Global Aridity Index quantify the precipitation availability 
over atmospheric water demand (30 arc second spatial 
resolution). The index is lower in more arid conditions. 

Global Aridity and PET database 
(Trabucco and Zomer, 2009; 
Zomer et al., 2008) 

Roughness Measurement of terrain heterogeneity generated in R using 
the raster package (Hijmans and Van Etten, 2014), calculated 
using a 30m spatial resolution digital elevation model 

ASTER Global Digital Elevation 
Model (NASA JPL, 2009) 

Roads Total length of paved roads (km)  OpenStreetMap 
(Haklay and Weber, 2008) 

AgroForest Proportion of agro-forestry areas (CLC code: 244)  
(100m spatial resolution) 

Corine Land Cover (CLC) 2012  

Forest Proportion of forestry areas (CLC codes: 311, 312, 313)  
(100m spatial resolution) 

Open Proportion of open areas: dry or irrigated temporary crops, 
natural grasslands and pastures (CLC codes: 211, 212, 213, 
231, 321)  
(100m spatial resolution) 

Shrubs Proportion of areas with shrubs (CLC code: 244)  
(100m spatial resolution) 

3. RESULTS 

3.1. SPATIAL MOVEMENT PATTERNS 

We obtained a total of 2.914 tracking days of the Iberian imperial eagles during the dispersal period, 

corresponding to a mean value of 243 days (SD = 163, range = 32-542) per bird (Table 1). Birds travelled 

ca. 53 km per day throughout both Portugal and Spain, mainly in the center and southern part of Iberia 

(Figure 1). One of the eagles (male 2) crossed the Strait of Gibraltar to the north of Africa in October, 

traveling ca. 3.700 km from Spain to Morocco, Algeria, Mauritania and Western Sahara (the distance 

was measured from the overnight location of the last day in Spain before the bird crossed to Africa, 

until we arrived in the settlement area in Morocco), and after settling down in Morocco, moved back 

to Iberia (Figure 1, Table 1). 
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Figure 1. Settlement areas (circles represent the centroid of settlement areas) and total number of days spent 
in each one (circle size), for the five Iberian imperial eagles tracked for more than 300 days during the dispersal 
period. The thickness of the black lines is proportional to the number of movements between settlement areas 

(proportional to line width) and the grey area represents the movement corridors used by the birds (kernel 
99% utilization distribution (UD)). 

Most immature Iberian imperial eagles used different temporary settlement areas in rotation, which 

were located at a mean distance of 208 km from their birth nest (range 2 - 678 km) and 244 km from 

each other (range = 20-930; Table 1). Settlement areas were usually located on or adjacent to known 

breeding areas within its range in Iberia. However, two birds used particularly distant locations in the 

extremes of the birds’ range, one in the Rabat region of Morocco and the other nearby Zaragoza, Spain 
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(Figure 1 and Figure 2). Some settlement areas were used by several individuals. In Portugal the region 

of Baixo Alentejo (mainly Castro Verde and Mértola) was used by all twelve birds monitored in this 

study. In Spain, Zafra (Badajoz province) was used by five individuals, Campo de Montiel and Sierra 

Morena (both in Ciudad Real province) were used by four individuals and finally an area south of 

Toledo was used by three individuals.  

The eagles that were tracked for over 300 days spent ca. 88% of their dispersal period inside the 

settlement areas, although the use of such locations varied considerably between individuals (Figure 

1, Table 1). Some birds used a lower number (<4) of settlement areas and settled there for longer 

periods, e.g. female 1 and male 8 spent over 60% of their tracking period in a single area. Other birds 

used from 5 to 12 settlement areas, traveling more frequently, but spent the majority of the tracking 

period in three different areas (53%, 65% and 73% for male 2, female 3 and male 3, respectively). 

3.2. TEMPORAL MOVEMENT PATTERNS  

Birds used, on average, 2.2 (SD = 1.3; range = 1-7) settlement areas per month (Figure 3). In the 

beginning of the dispersion period they seemed to be exploring the range and in the first month of 

independence they used 2.8 (SD = 1.3; range = 1-7) settlement areas. In later months they mostly 

revisit previously known settlement areas, and only 0.2 (SD = 0.6; range = 0-3) new areas were visited 

each month. In the beginning of the dispersal period male and female eagles tend to use areas at 

similar distances from their natal location, but nine months after emancipation and onwards, i.e. 

during the second year, females tend to use areas further away (Figure 4).  

Figure 5 shows that during most of the year birds moved quite frequently between settlement areas. 

However, in the coldest months, from late November to the end of February, they all had a very 

sedentary behavior, performing far fewer movements than during the rest of the year (Levene's Test 

for Homogeneity of Variance: F-value = 632.55, Pr(F) < 0.000).  

Some individuals return to their parents’ territories months after their independence (Figure 5). Male 

2, for example, returned five, seven and eight months after emancipation, while female 3 visited her 

natal location nine months after dispersing.   

Two of the male birds died during the tracking period, one from illegal poisoning in Andalusia and a 

second by electrocution in a distribution power line in Extremadura. A male (male 8) started to exhibit 

territorial behavior unusually early, during its second year, and we were able to confirm in the field 

that he was actively defending a territory and a nest in the company of an adult female, ca. 3,5 km 

from its birth nest.  
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Figure 2. Settlement areas (kernel 90% utilization distribution (UD)) of the 5 Iberian imperial eagles tracked for 
more than 300 days during the dispersal period; species breeding range in Spain (Martí and Del Moral, 2003) 

and Portugal (C. Carrapato, pers. Data; C. Pacheco com. pess.) and non-breeding dispersion previously 
described (González et al., 2008).  

  
Figure 3. Cumulative number of settlement areas used by young Iberian imperial eagles. 
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Figure 4. Temporal variation of the distance between the settlement areas and the birth nest (km) for male 
and female birds. Only towards the end of the first years after emancipation females start settling further than 

males. 

 

Figure 5. Median distance from nest (km) measured in a 10-days window per bird tracked and mean monthly 
minimum temperature (measured in Spain during 2016; AEMET 2019). Day 1 represents 1st September. Grey 

areas represent period between December and February, the coldest months.  

3.3. HABITAT SUITABILITY MODELLING  

The MaxEnt model showed a good adjustment to our data (AUC = 0.842 ± 0.048). The probability of 

Iberian imperial eagles’ presence during the dispersion period increases with lower levels of the aridity 

index (i.e. lower levels of water availability, see Table 2), decreases with terrain roughness, and 
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increases with cover by agroforestry systems and shrubs (Figure 6). The most suitable areas for the 

dispersing eagles are located in central and southwest of the Iberian Peninsula, while its north and 

northwest are unsuitable (Figure 7).  

 

Figure 6. Response curves for the predictors used to model the habitat suitability for the settlement areas of 
Iberian imperial eagle in Iberia. 

 

 

Figure 7. MaxEnt Spatial predictions (UTM 10 km grid) for the habitat suitability for settlement areas of Iberian 
imperial eagle in Iberia and cell grids used as settlement areas by the 12 tracked birds’ (presences). 
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4. DISCUSSION  

4.1. SPATIAL MOVEMENT PATTERNS 

Immature Iberian imperial eagles dispersed throughout most of central and southern Iberia and North 

Africa, settling in specific areas for variable periods. All the birds used several settling areas, but while 

some spent most of their time in a single area others moved more frequently and divided their time 

more evenly across multiple settlement areas. Such variable strategies may be related to the 

availability of food resources at each location, as raptor distribution during pre-adult life is highly 

related with such factor (Caro et al., 2011; Mañosa et al., 1998). 

In general, settlement areas were located within the breeding range of the species (Figure 2). This 

result suggests that the broad scale habitat requirements for dispersing birds are similar to those of 

nesting animals, or that social information and conspecific cueing plays an important role in the 

selection of settling areas by young eagles (Muriel et al., 2016). However, it is worth noting that this 

pattern was observed at a relatively coarse spatial scale and may not occur at finer scales, because it 

is unlikely that immature birds settle within adult territories (Ferrer, 1993; Ferrer and Harte, 1997). 

The birds tracked in this study (2014 to 2018), made longer movements and settled further from the 

natal locations (x ̄= 208 km) than the birds from Doñana (x ̄= 84 km) studied from 1986 to 2009 (Muriel 

et al., 2016), or birds from southwest Spain (x ̄= 162 km) studied from 1984 to 1986 (L.M. González et 

al., 1989). One possible explanation for this difference is that the recovery of the eagle population 

may be increasing intraspecific competition, forcing young birds to settle further from their nest. In 

fact, interference competition is known to be a major driving force limiting space use and distribution 

in top predators (Linnell and Strand, 2000; Martínez et al., 2008; Rebollo et al., 2017). Such 

interactions may be promoting the expansion of the species range and could explain the use of 

settlement areas in regions that are presently not used by breeding adults (e.g. Zaragoza, Figure 2). 

This hypothesis is supported by the establishment of the breeding nucleus of Mértola - Castro Verde 

(southern Portugal), an area that does not result from the expansion of a preexistent nucleus; it was 

first used by juveniles and immatures eagles, before the firsts breeding attempts (Catry et al., 2010). 

However, the largest distances for the settlement areas found in our study can also be related to the 

use of GPS tracking devices, which offer more reliable tracking and unlimited spatial range for data 

collection, when compared with the radio-transmitters used in the previous studies.  
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4.2. TEMPORAL MOVEMENT PATTERNS 

The first days and weeks after emancipation are likely key for the young eagles, because during them 

the birds gather invaluable information about potential settlement areas to be used in the 

forthcoming months (Figure 3). In fact, some of this information may have been acquired before 

emancipation,  during the pre‑emancipation exploratory flights, when Iberian Imperial eagles juveniles 

can fly up to 441 km away from the nest (Ramos et al., 2019).   

While we did not observe gender differences in range during the eagle’s first year, in their second year 

of life females moved to areas further away from the natal region (Figure 4). Muriel et al. (2016) 

described a similar pattern in birds from southern Spain, but González et al. (2006) found no 

differences between males and females. Such variable findings seem to support the hypothesis that 

the Iberian imperial eagle is a philopatric facultative species, which tend to recruit within or close to 

the natal population, while some individuals emigrate to other breeding nuclei according to the 

metapopulation structure (Muriel et al., 2016). Such hypothesis is supported by the fact that both 

male and female immature birds regularly visit their natal territory, as observed in this study and by 

Muriel et al. (2016), possibly in search of vacant territories (Ferrer, 1993). What is not yet totally clear, 

because of the relatively small sample size of the existing studies, is if the species is a female-biased 

disperser (i.e. males are more philopatric than females), like most known birds species (Greenwood, 

1980).  

We were able to confirm a philopatric behaviour for one of the tracked male eagles. As described 

above, male 8 (Table 1) showed a territorial and breeding behaviour during its second year, 

establishing a territory ca. 3,5 km from its origin natal area, after having used distant settlement areas 

(62 and 309 km), and having returned twice to its natal territory. 

The consistent sedentary behaviour found in all tracked individuals during the coldest months (late 

November to February) is a novel and unexpected finding. It suggests that the Iberian imperial eagle 

strongly depends on thermal uplifts to make long distance flights, which are less frequent and weaker 

during this time of the year. Terrestrial soaring birds rely on orographic and thermal uplift to travel 

long distances with a low energetic cost (Pennycuick, 1975). Uplift formation depends on the 

interaction of local weather conditions with the underlying landscape. During the winter, thermal 

uplift is expected to be low, as it is formed when the solar radiation heats the land surface, but 

orographic uplift should be higher as it is moulded by horizontal winds in slopes (Kerlinger, 1989). It is 

known that climacteric conditions may force soaring birds to interrupt their migratory journey for 

some hours or even days (Allen et al., 1996; Miller et al., 2016), but the absence of exploratory 

movements of the immature eagles for weeks or even months is a major behavioural change. This 
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temporary sedentary behaviour may have important consequences, as birds may be restricted to an 

area with limited food resources during a season with shorter days and, therefore, reduced time to 

forage. 

4.3. HABITAT SUITABILITY MODELLING 

This study was the first attempt to model the Iberian imperial eagle distribution during the dispersal 

period at the scale of Iberia. Suitable habitats for dispersing eagles are associated to the 

Mediterranean region of Iberia, in the center and south of the Peninsula, where agroforestry systems 

dominated by Quercus sp. and shrublands are present in areas with a smooth topography. Beyond the 

known range for the species (Figure 2), the model also predicts high suitability in the Aragón region 

(Northeast Spain), where male 3 settled for ca. three months, in western part of Castilla y León 

province of Spain and in southern Portugal. Our results are in accordance with the known general 

habitats requirements of the species (Cabral et al., 2005; González et al., 2008; González and Oria, 

2004) and with the results of studies of the immature eagles (Ferrer and Harte, 1997). However, we 

did not find a negative effect of paved roads as previously described by Ferrer & Harte (1997), probably 

due to the distinct spatial scale used across studies. Higher suitability levels were also scored in areas 

that traditionally have higher densities of European rabbit (Virgós et al., 2007), the main prey of the 

Iberian imperial eagle (Ferrer and Negro, 2004; R. Sánchez et al., 2008), however, there is presently 

no data on European rabbit abundance to add this variable to the models at this scale.  

Our model showed a good fit, hence the generated potential suitability map can help to spatialize 

priority areas for management actions focusing on the immature birds of this species.  

4.4. CONSERVATION IMPLICATIONS  

The conservation of the Iberian imperial eagle depends on factors that include the preservation and 

improvement of their habitat, mainly the increase of the availability of the European rabbit and the 

reduction of the relatively high anthropogenic mortality rate (Ferrer and Negro, 2004; González et al., 

2007; González and Oria, 2004).  

Temporary settlement areas are of great importance, as young eagles spend ca. 90% of their time 

there and, in some cases, seem to be forced to stay in a single area during the coldest months. 

Therefore, settlement areas should be considered a priority for the conservation of the species, as 

previously pointed out by Ferrer & Harte (1997), and predictive cartography, like the one produced in 

this study, may help the identification of such priority locations. Additionally, there is a strong relation 

between the habitat and spatial areas used by adult and immature eagles, at least at broader scales, 
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so the knowledge of settlement areas can inform on potential new breeding locations for the species. 

The results of our study suggest that the region of Aragón may be a future breeding area for the 

species, as it has high levels of habitat suitability for immatures and one of the tracked birds settled 

there.  

The Iberian imperial eagle is highly dependent on the availability of its main prey, the European rabbit 

(Ferrer and Negro, 2004; R. Sánchez et al., 2008), and management actions aiming to increase rabbit 

populations in areas with high suitability for the species can be a strategy to promote the expansion 

of this raptor, fixing breeding pairs in new locations.   

We were able to confirm that two out of the twelve studied eagles died at the end of the first winter, 

both by anthropogenic causes: one by electrocution with power lines and the other by illegal 

poisoning. Such observations highlight the importance of addressing anthropogenic mortality of the 

species during the dispersal period. 

Nowadays, there are several technical options to prevent the electrocution of big raptors in power 

lines poles (Chevallier et al., 2015; Tintó et al., 2010), and it has been proven that such mitigation is 

effective to reduce the mortality of the Iberian imperial eagle (López-López et al., 2011). Even though 

this is the main cause of anthropogenic mortality of non-adult eagles (González et al., 2007), power 

lines retrofitting has been focusing primarily on the breeding territories (SPEA and QUERCUS, 2012), 

as the consequences of the loss of an adult bird on population dynamics are greater than those of the 

loss of non-breeding individuals (López-López et al., 2011). However, with the increase of the 

population numbers and range, and the establishment of new breeding areas previously used by 

transient immatures, the management of the settlement areas gain an even greater importance in the 

conservation of the species.  
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General discussion  

Anthropogenic infrastructures affect wildlife in multiple and complex manners. Habitat and 

behavioural effects, as well as mortality, are particularly noticeable when considering birds’ species. 

Overall, this thesis aimed to study how anthropogenic infrastructures influence the distribution and 

movements of several bird species with the purpose of identifying management actions and support 

conservation strategies. Here, I highlight the key findings of this thesis and relate them to the 

literature. Additionally, I outline some of the major conservation implications and discuss some 

methodological challenges for studies on the interactions between birds and infrastructures. 

1. EFFECTS OF INFRASTRUCTURES ON RAPTORS AND BUSTARDS 

1.1. HABITAT AND BEHAVIOURAL EFFECTS  

Habitat loss, habitat fragmentation and behavioural effects caused by anthropogenic infrastructures 

are widely described in the literature (Andrews, 1990; Fahrig and Rytwinski, 2009; Laurance et al., 

2009; Pearce-Higgins et al., 2009; Rytwinski and Fahrig, 2015; Sánchez-Zapata et al., 2016; Trombulak 

and Frissell, 2000; Walters et al., 2014), and some of them have been identified in this thesis (chapters 

2, 4 and 5).  

In chapter 2 we studied the drivers behind the steep decline of the little bustard (Tetrax tetrax) 

population in Iberia since the beginning of the 21st century, including the effect of habitat availability, 

grazing management, linear infrastructures density and implementation of agri-environmental 

measures. Our results suggest that linear infrastructures, particularly power lines, cause a decrease in 

habitat quality for the little bustard, adding up to other major habitat concerns, such as high livestock 

density and grassland management. In fact, when the species occurred in high densities we did not 

observe an effect of linear infrastructures, whilst when the population dropped, areas with higher 

density of power lines had lower bird densities. Moreover, higher losses in little bustard numbers were 

registered in areas with higher density of power lines, probably because birds start avoiding linear 

infrastructures selecting optimal habitat locations, but also because of bird mortality at breeding 

locations, as there are high collision rates in the beginning of the breeding season (see chapter 3).  

In chapter 4 we studied the stopover ecology of little bustard during the short-term migration and the 

habitat characteristics selected at stopover sites. Our results showed that birds were preferentially 

nocturnal migrants, making frequent and short-term (<24h) stopovers. They selected stopover 

locations avoiding the proximity of paved roads but did not avoid power lines. Previous work found 
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that little bustards avoid the proximity of power lines during the breeding season (Silva et al., 2010) 

and during Summer (Lourie, 2016), so we were expecting an effect of such structures in the selection 

of stopover sites. We hypothesise that these birds are not able to see power lines in poor lighting 

conditions, as they arrive mostly late at night to the stopover locations. This may also help explain why 

the species has a high collision rate during the migration period, as we show in chapter 3.  

The displacement effect of wind turbines in soaring birds has been previously identified by several 

authors (Barrios and Rodríguez, 2004; Cabrera-Cruz and Villegas-Patraca, 2016; de Lucas et al., 2004; 

Garvin et al., 2011; Johnston et al., 2014; Pearce-Higgins et al., 2009; Villegas-Patraca et al., 2014) but 

only Pearce-Higgins et al. (2009) quantified the extent of such effect (up to 800 m) just for two species 

during the breeding season. In chapter 5 we were able to isolate and quantify the displacement caused 

by wind farms for a migratory soaring bird, the black kite (Milvus migrans), at a migratory bottleneck 

region. We found that wind turbines cause underuse of good soaring areas up to a distance of 700 m, 

and estimated that 3-14% of the areas suitable for soaring in the study site have already been occupied 

by wind energy production. Additionally, we showed that this species used areas with high availability 

of orographic and thermal uplift, resources that occur in a patchy way throughout the landscape.  

1.2. MORTALITY 

Bird mortality due to the presence of anthropogenic infrastructures is common, due to collisions with 

travelling vehicles, collision with the structure itself or electrocution (Bevanger, 1998, 1994, Drewitt 

and Langston, 2008, 2006; Forman et al., 2003; Janss, 2000; Loss et al., 2015). 

In chapter 3 we studied the mortality patterns in transmission power lines for two collision prone 

species, the little bustard and the great bustard (Otis tarda). From our analysis it was clear that 

collisions do not occur randomly. We found spatial and temporal patterns of mortality highly related 

with species’ ecology, particularly distribution, movements and flight behaviour. Overall, bustards 

tend to collide in areas with greater habitat availability, during periods of high mobility (moving 

towards areas with greater food availability at the end of the breeding season) and mainly in tall 

structures. Such incidents seem to occur during daily movements and at stopover locations (see the 

previous section), but not when birds are engaged in migratory flights, where birds fly at higher 

altitudes (Silva et al., 2014), probably not interacting with transmission power lines. Although we did 

not study the population effects of mortality due to collisions with power lines, the results from 

chapters 2 and 3 suggest that this source of mortality is contributing to the decline of the little bustard. 

In fact, power lines are responsible for the high levels of non-natural mortality observed in this species 

(Marcelino et al., 2017) and there is a peak of collision events during the breeding season, mainly at 
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its beginning (chapter 3), that partially explains why areas with higher densities of power lines are the 

ones where the species declined the most (chapter 2).  

In chapter 6, even with a small sample size (12 birds), we registered an Iberian imperial eagle (Aquila 

adalberti) electrocution in a power line pole just a few days after leaving their parent’s territory. This 

illustrates the high vulnerability of this raptor species to power lines, as birds disperse through a large 

range increasing the likelihood of interacting with power line poles. This threat had been previously 

identified by other authors (González et al., 2007). 

2. IMPLICATIONS FOR SPECIES CONSERVATION AND MANAGEMENT 

Throughout this thesis, I was able to demonstrate that infrastructures can play an important role in 

species distribution (chapters 2, 4 and 5) and may even contribute to accentuate population trends 

(chapter 2). The case of little bustards is of high concern, as the species is sharply declining and linear 

infrastructures seem to be contributing to such decline, due to high mortality rates by collision with 

power lines (Marcelino et al., 2017) and to habitat degradation resulting from the increase of power 

line and road densities.  

This work also generated results relevant for the management of infrastructures and for outlining 

conservation measures. Such outputs can be included in the two first steps of the mitigation hierarchy, 

avoidance and minimization of impacts (see chapter 1). Avoidance aims to place infrastructures away 

from key ecological locations for sensitive species, and is the primary strategy to reduce overall 

impacts on biodiversity (Bernardino et al., 2018; Laurance et al., 2014; Marques et al., 2014; Phalan et 

al., 2018; Sánchez-Zapata et al., 2016; Weller, 2015). The relevance of such a strategy is of high 

importance for bustard species, as areas with higher densities of infrastructures are the ones with 

greater losses of little bustard density (Chapter2) and because the amount of suitable habitat was the 

main driver of collision risk in transmission power lines for both little bustard and great bustard 

(chapter 3). Due to the high vulnerability of these species and their high conservation status, the 

planning of a new linear infrastructure (mainly roads, railways and power lines) in Iberia should always 

include a conditioning layer identifying key areas for both species, comprising the main reproduction 

locations, wintering grounds, and movement corridors (including stopovers).  

In chapter 5 we stress the need for new regulations for wind-power production that take into 

consideration not only the risk of collision of soaring birds but also the loss of aerial habitat caused by 

wind turbines. This is particularly important in keys areas for migration, such as migratory bottlenecks, 

as these locations frequently have good wind resources and are thus targeted by the wind industry. 
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We demonstrated that in areas of high relevance for soaring birds, the sitting of new wind farms or 

the repowering of existing ones, should take into account the uplift potential of the landscape. Uplift 

maps can help to identify high risk areas and can be generated for most part of the world using public 

information: orographic uplift potential can be predicted with a digital elevation model and wind data 

(speed and direction), and thermal uplift can be estimated from land surface temperature derived 

from Landsat imagery (Bohrer et al., 2012; Brandes and Ombalski, 2004; Santos et al., 2017).   

Minimization aims to reduce impacts by choosing technical options that are less deleterious for 

wildlife. In chapter 3 we had two major outputs regarding these mitigation steps: power lines crossing 

bustard habitats should have smaller configurations (lower poles and a reduced number of vertical 

wires) and wire marking devices, which can help to reduce, but not eliminate, bustards’ collisions. In 

fact, we found that transmission power lines with a large configuration and four levels of wires, 

forming a bigger collision risk area (higher distance between top and bottom wires), have higher 

collision risk than smaller configurations, at least for the little bustard. This effect has been suggested 

in the literature but this is the first study to demonstrate it. Moreover, we found that wire marking 

devices have a significant but small effect in the reduction of collisions in the little bustard, confirming 

previous studies that showed that cable marking solutions have less effect on bustard species than on 

other birds (Barrientos et al., 2012; Janss and Ferrer, 1998).  

In chapter 6 we followed a different approach to contribute to the minimization of the impacts of 

anthropogenic infrastructures on a critically endangered raptor, the Iberian imperial eagle, by 

generating predictive cartography of habitat suitability to identify priority locations to intervene. 

Iberian imperial eagles, and mainly immature birds, are highly vulnerable to electrocution in 

distribution power lines poles (González et al., 2007); most old structures have designs with high 

electrocution risk for large raptors. Although nowadays the industry uses safer pole designs and new 

technical solutions that prevent bird electrocutions, there are still problematic operating structures 

throughout the landscape. Fortunately, this source of mortality can be successfully suppressed 

(Chevallier et al., 2015; López-López et al., 2011; Tintó et al., 2010), with the right amount of resources 

and planning. That is why predicting suitable areas for the Iberian imperial eagle during the non-adult 

period can be important for the conservation of the species. The data collected in chapter 6 also 

confirmed that the Mértola and Castro Verde regions (Baixo Alentejo, Southern Portugal) are of high 

relevance for dispersing Iberian imperial eagles, as all the tracked birds settled there for variable 

periods. Additionally, we found that the species has a sedentary behaviour during the coldest months 

(late November to February), what was a novel finding. This behaviour highlights the importance of 
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conserving settlement areas, as bird movements seem to be constrained when climatic conditions are 

not favourable for flights powered by thermal uplift conditions.   

In addition to the outputs related to the anthropogenic infrastructures, this thesis highlights the need 

to adjust livestock production in Iberian grasslands to make it compatible with the conservation of 

grassland birds (chapter 2). Our analysis pointed out that the current stocking levels and livestock type 

are causing a degradation of habitat quality in breeding areas, contributing to the steep decline of the 

little bustard during the 21st century, and making the species more susceptible to other sources of 

impact, such as linear infrastructures. The improvement of habitat for grassland birds is directly linked 

to the production of cattle, and will only be possible with changes in the European Common 

Agricultural Policy and national policies, and with the reinforcement of the attractiveness of the agri-

environmental schemes, as indicated by other authors (Traba and Morales, 2019). 

3. METHODOLOGICAL CHALLENGES FOR STUDIES ON INTERACTIONS BETWEEN 

BIRDS AND INFRASTRUCTURES 

3.1. TRACKING TECHNOLOGY 

Precision tracking technology is now widely used to study the interactions between wildlife and 

anthropogenic infrastructures and was a valuable method applied in this thesis. In chapter 4 it allowed 

the identification of the stopover locations and respective habitat use, showing that birds select 

stopovers avoiding paved roads but not power lines. By collecting a relatively high-frequency data 

across a large special range, GPS tracking data allowed us to demonstrate that wind turbines are 

responsible for functional habitat loss for migrating black kites (chapter 5). And in chapter 6, we were 

able to describe in detail the life cycle of the Iberian imperial eagle during the non-adult phase, which 

is difficult to study due to the animal’s high mobility. In general, such results would not be possible 

without the use of GPS tracking devices, not only because of the referred high mobility of the species 

but also due to its wide range and poorly known movements.  

Tracking technology also has potential to improve our knowledge of the interactions between wildlife 

and anthropogenic infrastructures and to test the effects of the available mitigation measures. Studies 

based on tracking data traditionally infer from occurrence data (presence data), comparing the 

localizations used by individuals against the available ones (pseudo absences) (Hooten et al., 2017), as 

we did in chapters 4 and 6. However, such an approach does not take into account the biological 

function underlying the use of the sampled locations, i.e. it provides detailed spatial data on when and 

where species occur, but does not inform about why a species is using a certain habitat. Nowadays, it 
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is possible to link locations with animal behaviour, through to the combined use of GPS-trackers and 

accelerometer sensors. Accelerometers record tri-axial body posture movements, which can then be 

attributed to observable behaviours by supervised machine-learning algorithms (Brown et al., 2013; 

Nathan et al., 2012). Studies regarding the effects of infrastructures on wildlife are just starting to 

include combined location and behavioural data, which can help us to understand the behavioural 

contexts in which landscape features are selected or avoided. For example, Abrahms et al. (2016) 

showed that African wild dog (Lycaon pictus) response to roads varied markedly with both the animal 

behaviour and the landscape: they selected roads when travelling and avoided them when resting, a 

difference that was not evident when all movement data were considered together. These results 

suggest that unpaved roads enhance landscape permeability for the species and highlights that the 

conservations strategies targeting this species should be different when considering resting sites and 

movement corridors. 

Major advances in data collection are still expected for future years, as tracking technology evolves. 

Main expected improvements include the collection of even higher frequency data (with a temporal 

resolution of seconds), the joint use of different bio-sensors (e.g. temperature-loggers, 

magnetometers, accelerometers) and the reduction in tag size. Together, they will provide data of 

higher temporal and spatial resolutions for the study of an increasing number of smaller species 

(Cagnacci et al., 2010; de Weerd et al., 2015; Guo et al., 2009; Tomkiewicz et al., 2010).  

However, the use of tracking technology still poses some major obstacles (Cagnacci et al., 2010; 

Hebblewhite and Haydon, 2010). GPS tracking devices do not last the full life span of medium/ long-

lived species. Also, the high cost of GPS devices limits the sample sizes used in ecological studies, which 

in turn limits the statistical power of models. The trade-off between the number and cost of each unit 

(Hebblewhite and Haydon, 2010), and ethical and animal welfare standards may also hamper the 

tagging of a high number of individuals. Both financial and ethical criteria can contribute to small 

sample sizes that may hinder robust population-level inferences (Hebblewhite and Haydon, 2010).   

3.2. ISOLATING EFFECTS 

To fully understand how an individual is affected by an anthropogenic infrastructure it is key to isolate 

its effect from that of other factors that cause noise in the analysis, such as environmental variables 

or even the presence of other infrastructures. This is particularly important if the impacts of new 

developments have to be identified for designing compensatory programs. However, there are several 

challenges when studying the effects of anthropogenic infrastructures, and adequate study designs 

are key to obtain satisfactory results.  
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There is a general consensus that BACI (Before-After Control-Impact) studies are the best option to 

isolate the exact consequence of infrastructures from other determinants of animal spatial use 

(Colman et al., 2017; Langston and Pullan, 2003). Such study design assumes that the parameter to 

monitor is collected before (i.e. before the implementation of the infrastructure) and during the 

occurrence of an impact (i.e. after the construction), both in areas with impact (i.e. at or near the 

infrastructure) and control areas (i.e. areas far away from the focal infrastructure that share the 

ecological conditions of the areas potentially impacted). Nevertheless, BACI designs are not always 

achievable, because some studies are only performed after the infrastructure is already implemented 

or because there are no control areas available. Moreover, when studies focus on effects at large 

spatial scales, it is frequently not possible to obtain a reference dataset without human disturbance. 

We faced that challenge in chapter 4, when studying little bustard habitat selection at stopover sites 

and in chapter 5, when identifying the avoidance behaviour of black kites to wind turbines. In both 

cases we used an IG (Impact Gradient) design that measured the monitored parameter at different 

distances from the disturbance source (i.e. the infrastructure), and we also controlled for other 

variables that are known to affect the species habitat selection or movements.  

Additionally, anthropogenic infrastructures tend to occur in a clustered pattern, due to planning 

strategies. Power lines, for example, are preferably installed parallel to pre-existing linear elements, 

like roads or other aerial cables, to reduce habitat fragmentation and mitigate bird collisions 

(Bernardino et al., 2018). This arrangement makes it difficult to disentangle the effect of a single 

infrastructure type, because the cumulative effects of multiple infrastructures (i.e. interaction of 

elements) can be purely additive (i.e. if the total effect that is equal to the sum of the individual 

contributions), or synergic (i.e. if the total effect that is greater than the sum of the individual 

contributions). That is why a land use change caused by a single infrastructure may result in a 

negligible impact, but the synergy of multiple individual changes over time (from several infrastructure 

types) may constitute a major impact within a landscape or region (Theobald et al., 1997). In chapter 

2 we only found effects of power line density on little bustard numbers, but we do not discard that 

roads are also having some effect that we were not able to identify. In fact, we hypothesized that the 

effect of roads might be masked by the one from power lines, as both linear structures were 

moderately and positively correlated in our dataset.  

3.3. DATA COMPATIBILITY AND ACCESSIBILITY  

In chapter 3 we faced a major challenge when trying to integrate data from multiple monitoring 

studies. We collected 156 collision events from great bustard and little bustards in transmission power 



 

Chapter 7: General discussion   175 

 

lines, from 9 different studies, but only a fraction of the data collected in most of the studies were 

discoverable and accessible to us. Major gaps included the lack of detailed spatial and temporal 

details; a study reported collision events at 2 km sections rather than power line spans or coordinates, 

and some studies did not include the date or even the season of the collision events. Additionally, 

each study had different methodological protocols that conditioned the overall sampling effort (e.g. 

variable sampling frequency or overall study duration). To deal with the lack of detailed information 

and to assure compatibility across data, we had to simplify our database and therefore our analysis. 

Even though we were able to reach interesting results, we don’t know to what extent this may have 

limited our conclusions.  

Data accessibility and sharing is a widespread problem in ecology and is being overcome with 

increasingly Open Data protocols and databases (Reichman et al., 2011). Even though this can be an 

option for archiving data from scientific studies focusing on wildlife and human interactions, there is 

an enormous amount of data collected for non-scientific purposes with a high scientific potential that 

is generated by the industry. In chapter 3, we were able to collect studies undertaken by governmental 

organizations, non-governmental agencies and private consultancies, that were produced with 

different aims (national assessment of transmission power lines impacts, monitoring programs from 

Environmental Impact Assessment processes and studies of wire-marking effectiveness). Most studies 

we collected were small-scale, short-term and focused on single projects, i.e. single power lines, so 

their overall results were relatively local. However, all the studies targeted infrastructures managed 

by a single entity, as the transmission power line network in Portugal is managed by a single company. 

Even if this is quite a unique situation, most developers have multiple projects and hence are 

potentially generating multiple valuable data. Such information should be stored and made accessible 

by industry, for example through collaborative platforms that already exist in the industry (e.g. CIGRE, 

WindEurope, National Wind Coordinating Collaborative). 

Making data compatible and accessible is particularly important because cumulative anthropogenic 

effects on wildlife populations are critical but hard to study, and the collection of good sampling sizes 

is frequently a challenge (see the previous section). Large-scale and multidisciplinary projects that 

integrate diverse data sets have an enormous potential to enhance our knowledge and help answering 

the remaining questions about this topic, like cumulative effects of several infrastructure types or 

population-level impacts.  
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