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Sumário   

Os hidratos de carbono e as proteínas são dois grandes grupos de macromoléculas de grande 

importância para os processos biológicos associados à saúde e à doença. Enquanto as proteínas 

são codificadas pelo genoma, as estruturas celulares glicídicas não seguem necessariamente um 

molde e têm de ser estudadas de forma indireta. O desenvolvimento de metabolic 

oligosaccharide engineering (“engenharia de oligossacáridos metabólicos”; MOE) deu origem 

a novos métodos para estudar estruturas glicídicas, no contexto de várias doenças e diferentes 

organismos. Embora em vários casos os derivados de manose sejam usados para estudar 

estruturas de ácido siálico em células cancerígenas, este trabalho apresenta resultados na 

incorporação metabólica de derivados de galactose em glicanos presentes em membranas de 

células hepáticas humanas. Foram sintetizados três derivados de galactose artificiais contendo 

grupos alceno terminais nas posições C2 ou C6, e as constantes de velocidade em reações Diels-

Alder inversas electro-deficientes (iEDDA) foram avaliadas através de um método de triagem 

de alto rendimento em placas de 96 poços. Mostrou-se que nenhum dos derivados de galactose 

sintetizados tem efeitos citotóxicos nas linhas celulares HepG2 e Huh7. Inclusivamente, todos 

os monossacáridos foram incorporados com sucesso em glicanos presentes na membrana celular 

de ambas as linhas celulares, tendo o seu posicionamento celular sido confirmado pela 

observação de co-localização com um marcador de membrana celular. Depois do 

desenvolvimento de uma estratégia de incorporação e marcação de derivados de galactose 

artificiais na membrana de células hepáticas humanas, estudaram-se as alterações de 

incorporação de galactose durante a infeção por Plasmodium berghei. Com recurso a diferentes 

técnicas, tais como microscopia confocal, citometria de fluxo e citometria de fluxo 

imagiológica, foi apenas possível demonstrar um modesto aumento na marcação do derivativo 

de galactose artificial em células infetadas. Para explicar este resultado, determinou-se o 

percurso celular deste glicano artificial. A utilização de inibidores específicos e não-específicos 

do transportador de glucose GLUT1 demonstrou que este está envolvido no transporte de 

derivativos de galactose para o meio intracelular. O facto de a translocação de GLUT1 para a 

membrana celular estar aumentada em células hepáticas infetadas explica a tendência observada 

para o aumento da incorporação da galactose artificial nestas células. Como complemento dos 

estudos celulares, neste trabalho MOE foi aplicada pela primeira vez para elucidar uma possível 
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transferência de monossacáridos de galactose do mosquito para o parasita. As cascatas 

metabólicas de biosíntese de construção de glícidos no parasita são pouco conhecidas. A 

existência de evidências da implicação do mosquito em algumas destas cascatas metabólicas 

levou-nos a aplicar MOE neste contexto. Foi possível demonstrar que há absorção dos derivados 

de galactose sintetizados pelo mosquito, embora apenas se tenha observado uma reduzida 

transferência. 

Para além do desenvolvimento de derivados monofuncionais de galactose, foi sintetizado um 

derivado bifuncional contendo dois grupos sinalizadores ortogonais. No entanto, até ao 

momento não foi possível obter incorporação metabólica ou marcação deste derivado em 

glicanos da membrana celular. 

Depois do desenvolvimento de ferramentas para o estudo de estruturas glicídicas na célula, foi 

ainda desenvolvido um método para modificação seletiva de proteínas que pode ser usado na 

produção de potenciais vacinas conjugadas. Através da introdução seletiva de dois resíduos de 

dehidroalanina no local da ligação dissulfureto C186-C201 da proteína imunogénica CRM197, 

foi possível obter um novo grupo químico para a conjugação de antigénios glicídicos. Mostrou-

se que estes grupos químicos podem ser usados para a introdução selectiva de polissacáridos 

antigénicos de Streptococcus do grupo B (GBS) ou Streptococcus pneumoniae. Ambos os tipos 

de glicoconjugados foram sintetizados, e os ensaios preliminares para optimização do método 

de purificação foram iniciados. Este conceito será ainda desenvolvido para a produção futura de 

possíveis candidatos a vacinas conjugadas. 

Finalmente, foi ainda desenvolvido um método sintético que poderá facilitar a síntese de 

estruturas de oligossacáridos antigénicos. O método exposto neste trabalho recorre a um 

promotor tiofílico O-mesitilenosulfonilhidroxilamina (MSH) para a ativação de dadores de 

tioglicósidos. Demonstrou-se que diferentes dadores de tioglicósidos têm diferentes cinéticas de 

ativação, dependendo dos grupos protetores apresentados, ou do grupo anomérico de saída. Para 

além de se ter aplicado o método de ativação desenvolvido à síntese de vários produtos de 

glicosilação, demonstrou-se ainda a ativação sequencial de grupos S-alquilo antes de grupos 

anoméricos S-fenil na síntese de um trissacárido modelo. 
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Globalmente, neste trabalho desenvolveram-se e aplicaram-se métodos bio-ortogonais à 

investigação de estruturas glicídicas no contexto de malária, e à modificação de proteínas de 

forma seletiva para produção de candidatos de vacinas conjugadas. 

 

Palavras-chave: engenharia de oligossacáridos metabólicos / Metabolic Oligosaccharide 

Engineering, marcação bio-ortogonal, candidatos de vacinas conjugadas, modificação seletiva 

de proteínas  
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Abstract 

Carbohydrates and proteins represent two large groups of biomolecules which are tremendously 

important for biological processes in health and disease state. Although protein-structures are 

encoded in the genome, cellular glycan structures are template independent and can only be 

addressed in an indirect manner. The development of metabolic oligosaccharide engineering 

(MOE) gave rise to new methods to study carbohydrate structures in the context of different 

disease settings and in different organisms. While in many cases mannose derivatives are used 

to study the sialic acid structures in cancer cells, this work presents the results on the metabolic 

incorporation of galactose derivatives into cell membrane glycans of human hepatic cells. Three 

unnatural galactose derivatives containing terminal alkene groups in C2 or C6 position were 

synthesized and their reaction rates in inverse electron demand Diels Alder reactions (iEDDA) 

were evaluated, by using a high-throughput screening method in 96-well plates. It was shown 

that none of the developed galactose derivatives exhibit any cell toxic effect in HepG2 or Huh7 

cell lines. Furthermore, all monosaccharides could be successfully incorporated in cell 

membrane glycan structures of both cell lines and the localization on the cell membrane was 

confirmed by co-localization with a plasma membrane dye. After developing this incorporation 

and labeling strategy of unnatural galactose derivatives in the cell membrane of human hepatic 

cells, the change in incorporation during an infection of these cells with Plasmodium berghei 

sporozoites was investigated. By using different techniques, such as confocal microscopy, flow 

cytometry and imaging flow cytometry, only a small trend for an increased uptake of the 

unnatural galactose derivative in P. berghei infected cells was observed. To explain this result, 

the pathway for the diffusion of the unnatural galactose derivative was determined. The 

application of specific and non-specific inhibitors for the glucose transporter GLUT1 revealed 

that this transporter is involved in the delivery of galactose derivatives into cultured cells. The 

enhanced translocation of this transporter to the surface of infected hepatic cells explains the 

observed tendency for an increased incorporation of the unnatural galactose derivative in these 

cells. Apart from cell studies, MOE was applied for the first time to study a possible transfer of 

galactose monosaccharides from the mosquito host to the parasite. Biosynthetic pathways for 

glycan assembly in the parasite are poorly understood. Suggestions on the participation of the 

mosquito host in some of these pathways, led to the idea to apply MOE in this situation. It was 
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possible to show an uptake of the presented galactose derivatives by the mosquito but only 

reduced transfer to the parasite seems to occur.  

In addition to the development of monofunctional galactose derivatives, also a bifunctional 

derivative containing two orthogonal reporter groups was synthesized. However, so far it was 

not possible to achieve a metabolic incorporation or labeling of this derivative on cell membrane 

glycans. 

After developing cellular tools to study carbohydrate structures, a site-selective method for 

protein modification was generated, to be used for the development of new glycoconjugate 

vaccine candidates. By introducing selectively two dehydroalanine residues in place of the 

disulfide bond C186-C201 of the immunogenic protein CRM197, a new chemical moiety for the 

conjugation of carbohydrate antigens was obtained. It was shown that these moieties can be 

used for the selective introduction of polysaccharide antigens from group B Streptococcus 

(GBS) or Streptococcus pneumoniae. Both types of glycoconjugates could be synthesized and 

first trials on the purification methods were undertaken. This concept will be developed further 

for future vaccine candidates. 

Finally, a synthetic method was developed which could facilitate the synthesis of defined 

antigenic oligosaccharide structures. This method uses the thiophilic promoter 

O-mesitylenesulfonylhydroxylamine (MSH) for the activation of thioglycoside donors. It was 

demonstrated that different thioglycoside donors are activated with different kinetics, depending 

on the presented protecting groups or the anomeric leaving group. Apart from applying the 

developed activation method for the synthesis of several glycosylation products, the sequential 

activation of S-alkyl before S-phenyl anomeric groups was shown during the synthesis of a 

model trisaccharide. 

Overall, bio-orthogonal methods were developed and applied for the investigation of 

carbohydrate structures in the context of malaria disease, and for the site-selective modification 

of protein carriers during the development of glycoconjugate vaccine candidates. 
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1. Chapter 1 – General introduction 

1.1. Carbohydrates – a general perspective 

 

Next to nucleic acids, lipids and proteins, carbohydrates belong to the main organic molecules 

in living systems.1 The field of carbohydrate chemistry and glycobiology continues to evolve, 

due to the rising awareness of the importance of this class of biomolecules. Carbohydrates are 

involved in energy supply for cellular processes, structural characteristics of organisms and they 

are important during cell recognition, adhesion and signaling in health and disease state, just to 

mention some of their functions.1,2 The enormous complexity is remarkable, knowing that the 

synthesis of carbohydrate structures, in contrast to, for example, proteins or nucleic acids, is not 

template driven.3 Only the expression of enzymes like glycosyltransferases or glycosidases is 

encoded in the genome and their interplay in different cellular compartments gives rise to the 

large variety of glycan structures. Looking at the structure of glycans, a great number of 

possibilities can be found, depending on the different types of monosaccharides, the position 

and type of linkage, as well as the formation of linear or branched structures.1 While all DNA 

or RNA structures are build out of four building blocks and the diversity of proteins is created 

by a certain set of alpha-amino acids, carbohydrate structures display a much larger number of 

varieties. This feature is a result of multiple possible configurations of the stereocenters in a 

single monosaccharide and the diversity of chemical modifications of the present hydroxyl 

groups.4 

 

1.1.1. N- and O-Glycosylation 

 

Cellular oligosaccharides can be connected to proteins with different types of linkages: most of 

them through the so-called N- or O-linked anomeric bond (Figure 1). For a N-linked 

oligosaccharide, the first sugar is linked to an Asparagine (Asn) residue in an amino acid 

sequence Asn-X-Ser(Thr). The assembly of this type of glycan starts with the synthesis of the 

glycan part on dolichol phosphate, from which then the entire oligosaccharide is transferred to 
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the Asn- residue of the final protein. All N-linked oligosaccharides share a common core 

sequence of mannose (Man) sugars. The oligosaccharide Manα1-6(Manα1-

3)Manβ1-4GlcNAcβ1-4GlcNAcβ1-Asn, starts with N-acetylglucosamine (GlcNAc) (1), from 

which further structures can be distinguished.5,6 N-glycosylation is an important factor for 

protein folding in the ER, from where the proteins are then translocated to the Golgi apparatus. 

Here, further maturation of the N-glycan structures can occur, resulting in so called complex or 

hybrid oligosaccharides.6  

The second type of linkage in oligosaccharide structures is represented by the O-linked 

glycosylation. Different from the N-linked structures, this type of glycosylation occurs by the 

sequential addition of single monosaccharides, starting with the covalent linkage of 

N-acetylgalactosamine (2) to the hydroxyl group of serine or threonine.7 These types of O-linked 

glycan structures are also referred to as mucins.7 An elongation of the initial monosaccharide 

can then occur with galactose, fucose, sialic acid or N-acetylglucosamine, which results in a 

complex mixture of possible oligosaccharides.1 Also an O-linked glycosylation starting with 

β-N-acetylglucosamine (3) is known and was shown to be an important factor for protein 

phosphorylation, protein-protein interactions, protein localization and degradation and 

transcription regulation.8 Additional examples for O-linked glycosylation are modifications 

with α-L-fucose (4) on serine or threonine in fibrinolytic proteins, or β-galactose (5) on 

hydroxylysine in collagen.9,10 
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Figure 1: Schematic illustration of N- and O-linked glycosylation, displaying the initial sugar moiety connected to the 

corresponding amino acid. 

 

1.1.2. Carbohydrates in disease state 

 

All the important functions of glycosylation become even more clear when looking at disease 

states.11 A range of alterations in the glycosylation profile of proteins during different diseases 

is known and only some examples will be addressed here. In the late 20th century, it was 

described that oligosaccharide binding lectins bind in a different way to malignant tissue than 

healthy tissue.12 Today it is known that in cancer cells, a differential expression of 

glycosyltransferases leads to an over- or under expression of normal glycan structures.13 One of 

the most studied cases is the expression of the so called Tn- 6, or sialyl Tn-antigen 7 on the 

surface of cancer cells (Figure 2). These truncated O-linked glycans result from a dysregulation 

of the corresponding glycosyltransferase and these glycan antigens represent important 

biomarkers in several types of cancers.13 
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Figure 2: Tn-antigen and sialyl Tn antigen, connected via O-glycosylation to serine or threonine. 

 

The altered glycosylation pattern of cancer cells is not only responsible for the presentation of 

important disease related biomarkers, but also for the modulation of cell-cell adhesion during 

malignancy and for the regulation of certain immunologic pathways. The glycoprotein E-

cadherin represents a transmembrane protein that is strongly involved in the epithelial to 

mesenchymal transition process being also responsible for cell-cell adhesion in epithelial 

tissues.14 It has been shown that during cancer, alterations in the N-glycosylation pattern of this 

protein are related with malignant and invasive phenotypes.15,16 Another example for the impact 

of changes in cell surface glycosylation during cancer, can be found when looking at receptor 

tyrosine kinases (RTK). These transmembrane cell surface receptors are strongly glycosylated 

and are involved in the regulation of cellular signaling processes, like cell division, 

differentiation or migration.17 Among several possible hyper-activation mechanisms of these 

receptors in cancer cells, it was also reported that RTKs, which promote cell proliferation, 

display a higher amount of N-glycosylation sites, than receptors which are involved in growth-

arrest.18 Furthermore, aberrant activation of sialyltransferases or fucosyltransferases can lead to 

increased formation of sialylated and fucosylated glycoprotein substrates, which can promote 

the dimerization and activation of RTKs.19 

Moving from cancer to infection diseases, also here the important role of glycans is notable. The 

surface of bacteria and viruses is coated with specific polysaccharide structures, which are 
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crucial for their survival as well as for their pathogenicity.20,21 Bacteria display various types of 

glycan structures on their surface, like lipopolysaccharides, teichoic acid and glycoproteins, 

which contain specific bacterial monosaccharide building blocks.20 An example might be the 

incorporation of N-acetylmuramic acid, which is uniquely expressed by bacteria.22 

Carbohydrates are important for the pathogenicity of the infectious organism and they are a key 

factor during the infection process.23 It was shown that most bacteria interact with cell surface 

glycoproteins of the host cell, by adhering either to terminal or internal sugar motives.23 Also 

viral pathogens were shown to invade using this strategy.21 Another important role of bacterial 

and viral glycan structures is the protection of the pathogenic organism from the host’s immune 

system. One example is given by group A streptococcus, which is expressing a type of 

hyaluronan that is identical with a glycosaminoglycan structure in the skin. By mimicking 

glycan structures from the host, no immune response is activated and the pathogen can invade 

the organism.24 

The importance of carbohydrate structures during bacterial and viral infection makes them a 

valuable target for medicine. The probably most classical treatment method, is an interference 

with the cellular machinery which is producing the pathogenic glycan structures in the bacteria 

or virus. Antibiotics like penicillin or vancomycin interfere with the biosynthesis of bacterial 

peptidoglycans and new inhibitors are getting developed to target more specifically the 

biosynthetic pathways of rare bacterial monosaccharides.25,26 Also in viral infections, the 

inhibition of viral derived enzymes for glycoprotein maturation is an important key during 

treatment, as for example, shown by the mode of action of Oseltamivir (Tamiflu) against 

influenza virus.27 

However, the use of broad-spectrum antibiotics gave also rise to increasing resistances against 

common treatments. Another strategy to use carbohydrates for the development of medical 

treatments, is the usage of antigenic glycan structure for the development of vaccines. There are 

already a number of vaccines available, in which specific carbohydrate antigens are used as 

immunogenic moiety, and the development of new candidates is ongoing.28,29 Not only for the 

fight against bacterial or viral infections, also the development of anti-cancer vaccines is 

ongoing.30,31 The usage of bacterial polysaccharide structures in vaccines was developed already 

in the 1940s, however it was observed that pure carbohydrate vaccines do not elicit a protective 
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immune response in young children. This gave rise for the development of so called 

glycoconjugate vaccines, in which the carbohydrate antigen is connected to an immunogenic 

protein carrier.28 

 

1.1.3. Metabolic oligosaccharide engineering – state of the art 

 

The important role of carbohydrates for any organism in health or disease state became very 

clear during the last decades.11,32 As post-translational modification, the final structure of a 

glycan is not predefined by any template, like it is the case for proteins, which are based on their 

RNA-sequence. This feature can complicate investigations on the composition, structure and 

purpose of certain glycan structures within an organism.33 A breakthrough was reached in 1997 

when Carolyn Bertozzi and co-workers presented their work on an artificial mannosamine 

derivative, bearing a ketone group for condensation reactions on the cell surface after metabolic 

incorporation.34 In the following years, several chemical reporter groups were developed and 

proven to be incorporated into cellular glycan structures, where they are available for selective 

targeting (Table 1).  

 

 

 

 

 

 

 

 

 



Chapter 1 

19 

 

Table 1: Examples of chemical reporter groups for metabolic incorporation and the corresponding bio-orthogonal labelling 

reactions20,35 

Chemical reporter group 
Bio-orthogonal labelling 

reaction 
Product 

 

Condensation reaction 

with hydrazine derivatives 

  

 

Strain promoted click-

reaction 
 

Cu(I)-catalyzed 

cycloaddition  

 

Inverse electron-demand 

Diels Alder reaction 

 

 

Photo-activatable 1,3-

cycloaddition 
 

 

Only some examples are represented by ketone groups, azides, terminal alkynes, cyclopropenes, 

terminal alkenes or norbornenes, which were synthetically introduced in monosaccharides, such 

as mannosamine (8) or sialic acid (9), glucosamine (10) and galactosamine (11) (Figure 3).36  
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Figure 3: Schematic overview of examples for applied unnatural monosaccharide building blocks (outer ring) and the natural 

substrates (inner ring 8-11). 

 

During the process of MOE, an artificial, usually acetylated monosaccharide with a chemical 

reporter group, is administered to a certain organism. The compound will enter the cell via 

diffusion or transporters and will be deacetylated by unspecific esterase enzymes, before being 

used in biosynthetic pathways and incorporated into cellular glycan structures (Figure 4).35 

It was shown that several biological systems are able to incorporate these artificial 

monosaccharide structures in their system and to expose the chemical reporter groups for further 

reactions.36,37 The technology of MOE is now able to provide the tools for much deeper 
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investigations on the biological pathways, which are responsible for glycan assembly and their 

structure. The obtained knowledge can be used for the development of new therapeutics based 

on carbohydrate entities. 

Despite showing the ability of different biological systems to incorporate artificial sugar 

structures, increasing effort is being made to develop MOE strategies that are able to label 

selectively certain types of cells or proteins.  

 

 

Figure 4: Overview illustrating the cellular mechanisms which enable MOE. Per-acetylated monosaccharides enter the 

cytosol via passive diffusion or transporters, followed by the deacetylation by unspecific esterase enzymes. The generation of 
sugar nucleotides (NTP) allows glycan assembly by glycosyltransferases, resulting in intracellular or cell membrane protein 

glycosylation. 

 

H. Wang et al. had great success in selectively labeling cancer cells over healthy cells by using 

a special derivative of tetraacetyl-N-azidoacetylmannosamine 12. The anomeric center in this 

derivative 12 was blocked through the substrate ((4-(2,6-

diacetamidohexanamido)phenyl)(phenyl)methoxy (DCL), which could be removed by two 
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cancer-overexpressed enzymes (Scheme 1). By using this technology, their developed 

mannosamine derivative 12 was not metabolically processed until the anomeric position was 

hydrolyzed in the cancer-tissue, which then enabled its metabolic incorporation into glycan 

structures on the cancer cell. By using the introduced azido-group of 14, they were able to 

accumulate dibenzocyclooctyne-doxorubicin selectively in cancer cells.38 

 

 

Scheme 1: Reaction scheme for the metabolic release and activation of mannosamine derivative 12 into a first precursor 13 

and finally 14. Enzymatic removal of substrate DCL by HDAC (histone deacetylase) and CTSL (cathepsin L). 

 

A different strategy in the challenge to develop more selective monosaccharide analogues was 

presented by Pratt and co-workers. By altering the position of the introduced azido reporter 

group to the C6 position of the monosaccharide 15, they could show selective incorporation in 

cytoplasmic O-GlcNAcylated proteins over cell surface N-linked or mucin O-linked glycan 

structures (Figure 5). Also, they highlight the high metabolic flexibility of biological systems 

which has to be taken into account while designing artificial carbohydrate structures.39 
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Figure 5: Azide derivative 15 of glucosamine for selective incorporation into O-GlcNAc-protein modifications.39 

 

The introduction of artificial monosaccharides into cellular glycan structures can be also used 

for the identification of specific glycoprotein patterns, for example in a certain disease state. 

Bertozzi and co-workers demonstrated the incorporation of artificial acetylated 

N-azidoacetylmannosamine in human tissue cultures from prostate cancer.40 After an 

enrichment based on biotinylation, mass spectrometry could identify specific glycoproteins, 

which were up-regulated in prostate cancer tissue.40 This work is one of the numerous examples 

in which mannosamine derivatives are used to label and study sialylated glycan structures by 

taking advantage of the biosynthetic conversion of mannosamine monosaccharides into sialic 

acid. Due to the importance of sialic acid in several biological processes as well as in disease 

state, a high percentage of studies in metabolic oligosaccharide engineering is focusing on this 

monosaccharide.37,41,42  

However, also examples for rare sugars can be found. Dube and co-workers could show the 

metabolic incorporation of azido derivatives from rare monosaccharides like bacillosamine 17 

or 2,4-diacetamido-2,4,6-trideoxyhexose 18 by the Helicobacter pylori (Figure 6).43 These 

results are particularly important with regard to the significance of these glycans during an 

infection with these bacteria.20 An incorporation of artificial sugars and by using methods like 

described above, can lead to the identification of antigenic structures and finally to the 

development of efficient treatments. 
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Figure 6: Azide containing derivatives of rare bacterial monosaccharides bacillosamine 17 and 

2,4-diacetamido-2,4,6-trideoxyhexose 18. 

 

The presented examples give a brief insight in which areas MOE was already successfully 

applied and how artificial monosaccharides, containing a single chemical modification, were 

used. 

 

1.1.4. Multifunctional labeling of glycan structures 

 

MOE started with the introduction of single chemical reporter groups into cellular glycan 

structures and it was shown in different ways that cellular systems are able to incorporate single 

chemical reporter groups in their structures.36,44 Going further, instead of applying only one 

monosaccharide for the metabolic incorporation, also the cellular uptake of more artificial 

sugars simultaneously was studied. If these artificial monosaccharides contain two orthogonal 

chemical reporter groups, bio-orthogonal labeling reactions can be applied, which then can be 

used to address the co-localization of these sugars or their different metabolic routes.45 

An exemplary study, which uses a norbornene modified mannosamine derivative for a labeling 

via iEDDA reaction and an azide modified glucosamine derivative for click-chemistry, was 

presented by Wittmann and co-workers.42 In their experiments, they could successfully show 

the incorporation of both artificial sugars in cell membrane glycans during the same experiment. 

They went even further in a more recent publication, by combining three different labeling 

reactions with three different mannosamine derivatives 19 – 21 for click-chemistry, iEDDA and 

photoclick reaction (Figure 7).46 
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Figure 7: Chemical structures of mannosamine derivatives for click-chemistry 19, iEDDA 20 and photoclick reaction 21. 

 

However, so far only one example was found in which one monosaccharide was modified with 

more than one chemical reporter group. Chen and co-workers demonstrated successfully the 

synthesis and metabolic incorporation of two sialic acid derivatives which were equipped with 

two orthogonal reporter groups. By introducing an azide group in C9 position and a second 

alkyne or diazirine group in the N-acyl position of the sialic acid molecule, two orthogonal 

reporter groups are available within one molecule (Figure 8). They could successfully show that 

both of derivatives 22 and 23 were incorporated into cell surface glycans of several cell lines.47 

 

 

Figure 8: Chemical structures of bifunctional sialic acid derivatives 22 and 23, containing an azide group in C9 position and 

an alkyne or diazirine group in N-acyl position. 

 

This example demonstrates the enormous flexibility of cellular systems to use highly modified 

structures as substrates during biosynthetic pathways.  

The diversity of MOE is not only generated by the usage of different monosaccharides, but also 

by the availability of a range of different chemical reporter groups. As mentioned at the 

beginning of this section, several bio-orthogonal labeling reactions can be applied, depending 

on the introduced chemical reporter group on the monosaccharide. 
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1.1.5. Inverse electron demand Diels Alder reaction for MOE 

 

For this work, the choice was made to use inverse electron demand Diels Alder reactions 

(iEDDA), to target the incorporated sugar. The iEDDA reaction occurs between an electron-

poor diene 24 and an electron-rich dienophile 25, without the necessity of any additional metal 

promoters or specific pH requirements. In the applied bio-orthogonal labeling reaction, the 

tetrazine core represents the diene moiety, while an alkene group will react as dienophile. Both 

reactants of this reaction can be tuned to achieve different reaction rates, typically ranging from 

1-106 M-1s-1.48 While the tetrazine reactivity can be optimized by attaching electron withdrawing 

groups to lower the LUMO energy, the dienophile’s HOMO energy can be increased by electron 

donating groups (Figure 9 A). Both types of modifications will lead to a decrease in the energy 

gap between the LUMOdiene and the HOMOdienophile, which finally will result in a faster reaction 

rate.49 

 

 

Figure 9: Schematic illustration of the orbital interaction in iEDDA. Decreasing LUMO energy of diene 24 through electron 
withdrawing groups, increase of HOMO energy of the dienophile by electron-donating groups. 
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In this context, it should be highlighted that the tuning of reactivity of the dienophile using 

heteroatoms, led to the discovery of a decaging reaction. During this specific reaction, a vinyl 

ether system was used as dienophile in an iEDDA reaction with tetrazine, which results in the 

release of an alcohol group and a pyridazine derivative.50 A similar reaction was developed with 

this concept, using a system with TCO and vinyl protecting groups for the decaging and 

activation of anti-inflammatory drugs.51 

Despite the interaction between the participating orbitals, several factors can influence the 

reaction rates of iEDDA reactions, namely the strain effect.48 While strained dienophiles like 

trans-cyclooctene (TCO) or cyclopropenes show very fast reaction rates, they seem to be 

incorporated in lower levels into cellular structures. Unstrained reporter groups like terminal 

alkenes on the other side, show slower reaction kinetics but better incorporation rates.46 The 

very fast reaction rates of strained dienophiles were explained by the pre-distorted conformation 

of these molecules towards the structure of the transition states, which consequently makes less 

energy necessary for the dienophile to enter the reaction.52,53 

Other factors that can strongly influence the reaction kinetics include stereochemistry and steric 

effects, as well as the solvent and the pH value during the reaction. Differences in the rate 

constants were for example found when comparing an axial isomer of functionalized TCO with 

its equatorial counterpart.54 Also exo-norbornenes were shown to react up to three times faster 

than the endo isomere.55 Looking at the influence of the solvent and the pH during the reaction, 

it has been described that protic solvents, such as water, accelerate the kinetics due to stabilizing 

interactions of these solvents and the activated reaction complex.56 For the application of 

iEDDA in biological systems, especially the pH can be crucial, however only minor influences 

on the reaction rate were found here.57 

 In the field of MOE, the iEDDA reaction was used to label incorporated mannosamine, 

glucosamine, galactosamine or sialic acid derivatives. It was shown that chemical reporter 

groups such as cyclopropenes, terminal alkenes or norbornenes can be incorporated in 

monosaccharide structures and can be addressed in cell glycan structures.42,58,59  

In this work, the iEDDA reaction will be used to address newly developed galactose derivatives, 

equipped with terminal alkene reporter groups. In the majority of reports using MOE to study 
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carbohydrate incorporation or glycosylation patterns, the focus is on mannosamine or sialic acid 

derivatives. As described in the previous section, the area of application for MOE is growing 

and the usage of different monosaccharides is getting investigated. The focus of this work will 

be on the development and utilization of galactose derivatives for MOE, with a special focus on 

a disease related application. 

 

1.1.6. Malaria and the glycobiology of Plasmodium  

 

The specific interest on galactose was initiated by several reports on the importance of galactose 

containing glycans during an immune response against the Plasmodium pathogen, the 

responsible parasite for malaria.60,61 Human malaria can be caused by six different Plasmodium 

parasites, namely Plasmodium falciparum, P. vivax, P. ovale curtisi, P. ovale wallikeri, P. 

malariae and P. knowlesi, whereby P. falciparum and P. vivax are considered to be the major 

causes for illness and death.62 
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Figure 10: Schematic illustration of the life cycle of the Plasmodium parasite. 

 

The life cycle of the Plasmodium parasite, which is causing the disease, alters between the 

mosquito and the mammalian host (Figure 10). During the mosquito bite, sporozoites are 

injected into the dermis of the mammalian host, which then infiltrate blood vessels to reach the 

liver. Here, the parasite invades very few hepatocytes, which makes this symptom less stage the 

bottle neck phase of the infection. The development inside the hepatocytes results in an 

enormous amplification of the parasite, which then are getting released from the bursting 

merozoites into the blood. In this stage, the typical symptoms of the disease are getting 

developed and the parasite develops in an asexual cycle. However, a part of the parasites will 

change into a sexual development which results in male and female gametocytes. In this stage, 

they can be taken up by mosquitoes during a blood meal and the developmental cycle will 

continue in the mosquito host. Here, the parasite evolves from gametes to zygotes and ookinetes, 

which finally progress into sporozoites in the salivary glands of the mosquito.62 

Even in the 21st century, malaria causes about 219 million cases and more than 435000 deaths 

in the year 2017, with 61% of the deaths worldwide represented by the group of children under 
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5 years.63 It is very important to notice that between 2015 and 2017, no significant improvement 

in the reduction of cases was achieved.63 With problems like resistances to common treatments 

or insecticides, the development of an efficient anti-malaria vaccine is one of the key goals in 

this area of research. Overall, some vaccine candidates were able to show protection in phase II 

clinical trials, however with moderate success.64 A candidate for the pre-erythrocytic stage of 

the infection is represented by RTS,S which contains epitopes from the C-terminus and the 

central repeat of the circumsporozoite protein (CSP), a major surface structure of the 

Plasmodium sporozoites.65 Despite high protection rates at the beginning, the decline in efficacy 

is a limitation of this vaccine candidate and has to be improved.66,67 A different strategy is used 

in the PfSPZ vaccine, in which irradiation-attenuated sporozoites are applied.68,69 After an 

invasion of the hepatocytes, these sporozoites fail in the development of a blood stage infection 

and it was possible to show good protection in malaria-naïve adults against homologous 

strains.70 Nevertheless, this vaccine candidate did not result in efficient protection against 

heterologous strains.64 There are several other examples for anti-malaria vaccine candidates, 

working in different stages of the infection, however the improvement of efficacy is a major 

challenge for present and future studies.64  

In this context, glycosylation of relevant antigenic proteins might be a possible area for further 

research. The glycobiology of the Plasmodium parasite is subject of highly controversial 

research during the last decades, showing both absence and presence of certain glycoconjugate 

structures.71-74 The expression of glycosylphosphatidylinositol (GPI) anchors showed the 

presence of mannose, which on the contrary site could not be found in N-glycan structures.75,76 

GPI anchors were found to be essential for parasite development and its pathogenicity, and 

several important antigens like Pfs25, CSP or MSP-1 and MSP2 are GPI-anchored proteins.77 

Apart from this structure, mannose was found in a C-mannosylation of a thrombospondin type 

I repeat (TSR) domain which exact function has to be evaluated.78 Another monosaccharide, 

N-acetyl-glucosamine was found in short N-glycan structures of the parasite and in its 

de-N-acetylated form as component of the GPI anchor.76,79 For glucose, it is still unknown how 

an activation from glucose-1-phospate for UDP-glucose is achieved, because no enzymes were 

found. However, this sugar nucleotide was found in the blood stage of the parasite.80 It is 

expected that UDP-glucose is used for the synthesis of glycolipids or for O-glycosylation 
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motives. A similar situation is given for the monosaccharide fucose, which nucleotide GDP-

fucose was identified in the blood stage, but no glycoconjugate structures with this sugar were 

described yet.73,80 The sugar of interest for this work, galactose, was as well identified as 

UDP-galactose in the blood stage.80 However, none of the necessary enzymes with the ability 

to epimerize glucose or with transferase activity were identified in the parasite genome.81 

Especially with regard to a special galactose containing trisaccharide, the α-Gal epitope (26), it 

is clear that more investigation is necessary on this subject (Figure 11).  

 

 

Figure 11: Structure of the α-Gal epitope Galα1-3Galβ1-4GlcNAc 26. 

 

The α-Gal epitope 26 represents the structure Galα1-3Galβ1-4GlcNAc, which is absent in 

humans, apes and old-world monkeys due to a loss-of-function mutation during evolution. The 

general exposure to this antigen, leads to the expression of 1-5% IgM and IgG antibodies against 

this epitope.82 Interestingly, it was shown that in malaria endemic areas the level of anti-α-Gal 

IgMs was significantly higher than in non-endemic areas and higher levels of this antibody 

seemed to provide some protection against an infection.60 Yilmaz and co-workers were able to 

show a protective effect of anti-α-Gal IgMs against malaria transmission when using mice which 

were gut-colonized with a α-Gal expressing E.coli strain. Furthermore, they were able to show 

the expression of α-Gal on the surface of Plasmodium falciparum sporozoites.60 More recently, 

the protective effect of anti-α-Gal IgMs was confirmed by Aguilar and co-workers, however 

several external factors like the location, the level of exposure to the Plasmodium parasite, the 

children’s age or maternally-transferred antibodies, were shown to affect the anti-α-Gal IgM 

and IgG response.61 
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1.1.7. The story of the α-Gal epitope 

 

The described α-Gal is ubiquitously expressed by basically all non-primate mammals, excluding 

apes, humans and old-world monkeys, as well as by many pathogenic parasites. Resulting from 

the constant environmental presence of this carbohydrate epitope, a natural reservoir of 1-2% 

anti-α-Gal IgG and 3-8% of anti-α-Gal IgM can be found as part of natural human antibodies.82 

These antibodies are also involved in tissue rejection after xeno-transplantations.83 The strong 

response of the human immune system towards this carbohydrate antigen led to its utilization 

as adjuvant in immunotherapy, during which it is increasing the uptake of presented antigens 

through antigen presenting cells.84 A very recent study also describes the ability of α-Gal-

antibody conjugates to recruit anti-α-Gal antibodies towards the target cell and to induce an 

acute immune response.84 With regard to infection diseases like malaria, chagas disease or 

sleeping sickness, it is very interesting that all the responsible pathogens express the α-Gal 

epitope on their surface.85 As mentioned in the previous section, anti- α-Gal IgMs were 

correlated with a protection against malaria transmission and similar results were reported for 

protection against an infection with Trypanosoma cruzi and leishmaniasis.86,87 The possibility 

of having one single antigenic carbohydrate structure, triggering protective effects against 

several different infection diseases, gave rise to the idea of a single vaccine against these threats, 

using the α-Gal epitope.85  

The α-Gal epitope is a good example for the importance of antigenic carbohydrate structures of 

potential pathogens, during the course of the development of effective vaccine candidates. 
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1.2. Glycoconjugate vaccines 

1.2.1. Carbohydrates as vaccine antigens 

 

The development of glycoconjugate vaccines started in the late 20th century after it was realized 

that vaccines containing only capsular polysaccharides from, for example, group C Neisseria 

meningitides, did not elicit protective antibodies in young children.29 Looking at carbohydrate 

antigens, two main groups can be distinguished: zwitterionic (ZWI) and non-zwitterionic (Non-

ZWI) polysaccharides. Zwitterionic polysaccharides are taken up by antigen-presenting cells 

(APC) and processed in endosomes. Due to their zwitterionic character, the fragments can bind 

to major histocompatibility complex class II (MHCII) structures and are presented on the cell 

surface (Figure 12 A).88 The presented structures can then be recognized by immature CD4+ 

T-cells.88 However, the majority of carbohydrate antigens from pathogenic bacteria belong to 

the group of non-zwitterionic polysaccharides. These glycan antigens are recognized by B-cells 

through their immunoglobulin surface receptors without prior processing. Through the 

antigen-recognition, these B-cells start to differentiate into plasma cells, which will produce 

low-affinity antibodies without the formation of memory-B cells (Figure 12 B).89 Looking at 

glycoconjugate vaccines, these structures are getting processed within endosomes of B-cells by 

reactive oxygen species, resulting in different sized repeating units of the polysaccharide 

coupled to peptide fragments of the carrier protein.90 The peptide residues of these structures 

can bind to MHCII which leads to a presentation of the polysaccharide fragments on the cell 

surface where they are recognized by CD4+ T-cells (Figure 12 C). A binding of the αβ-T-cell 

receptor to the hydrophilic glycan triggers the release of several cytokines, which stimulate the 

B cells development to memory B-cells and towards the production of glycan specific IgGs.90,91 
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Figure 12: A. Mechanism of T-cell dependent recognition of Zwitterionic polysaccharides (ZWI-PS) via MHCII. B. 
Mechanism of T-cell independent recognition of Non-Zwitterionic polysaccharides (Non-ZWI-PS) by B-cells. C. Mechanism 

of recognition of glycoconjugates by B-cells with co-stimulation of CD4+ T-cells.90 

 

Interestingly, although a carrier protein is necessary to initiate a T cell dependent response for 

the presented carbohydrate antigen, it is reported that the carrier protein can be replaced by 

another carrier between first immunization and the booster immunization, without affecting the 

vaccination outcome.92 

Until this point, the common strategies to conjugate a carbohydrate antigen to a protein carrier 

are based on reductive amination, active esters, carbodiimide-mediated condensation or 

thioalkylataion.93 These methods result in a mixture of randomly conjugated carbohydrate 
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antigens on the carrier protein, from which each single glycoconjugate construct may have a 

different behavior, regarding its pharmacokinetic or immunological properties.94 For this reason, 

the goal of producing defined glycoconjugate constructs with exact knowledge about the size 

and quantity of the conjugated antigen, as well as its selective conjugation to the carrier, is very 

important for a next generation of glycoconjugate vaccine candidates. 

The chemical modification of the carrier protein for a site selective conjugation of the antigen 

moiety, represents one way of achieving this objective. It was already reported that also the 

chemical method with which a carbohydrate antigen is covalently bound to the carrier, can 

influence the immune response against this structure, as well as its position within the 

protein.90,95 All these findings suggest strongly that more selective methods for the modification 

of the carrier protein are needed, in order to enable selective conjugation of relevant 

carbohydrate antigens. 

 

1.2.2. Site-selective protein modification 

 

The possibility to achieve a site-selective modification of the carrier protein can be 

accomplished in several different ways and during the last years a large tool box for selective 

protein modifications has been developed.96,97 Various possibilities to modify natural occurring 

amino acids are available and the introduction of unnatural amino acids can provide additional 

motives for conjugation reactions.97-99  

For the biosynthesis of proteins, twenty proteinogenic amino acids are available and their 

different chemical properties enable the formation of various proteins with different structures 

and functionalities in a living organism.100 A main categorization can be performed based on 

the chemical properties of the side chains, which can be positively or negatively charged or have 

a polar or nonpolar character (Table 2). 
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Table 2: Overview of the natural amino acids and the chemical properties of the corresponding side chain.100 

Amino acid Side Chain 

Arginine 

Positively charged Lysine 

Histidine 

Aspartic acid 
Negatively charged 

Glutamic acid 

Asparagine 

Uncharged polar 

Glutamine 

Serine 

Threonine 

Tyrosine 

Alanine 

Nonpolar 

Glycine 

Valine 

Leucine 

Isoleucine 

Proline 

Phenylalanine 

Methionine 

Tryptophan 

Cysteine 

 

The modification of a natural amino acid within a native protein involves certain difficulties, 

which have to be overcome. The performed reaction has to be compatible with the general 

protein stability and should be suitable for biological systems.98 Moreover, despite having only 

a limited number of different residues available, the applied modification reaction should be 

very selective towards a single kind of amino acid or even only one specific amino acid in the 

peptide chain. During the last years, especially nucleophilic amino acids like lysine or cysteine 

were addressed, but also methods for tryptophan or tyrosine are available.97 
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Classical modification methods for lysine include amide or thiourea formation or reductive 

amination, while cysteine can be addressed through disulfide exchange reactions, alkylation or 

an addition of maleimide moieties (Figure 13).98 

 

 

Figure 13: Classical modification methods for lysine and cysteine in native proteins. Lysine modifications I: amide formation, 

II: thiourea formation, III reductive amination. Cysteine modification IV: disulfide exchange, V: alkylation, VI: Maleimide 

addition. 

 

More recently, a method using sulfonyl acrylate reagents, was developed for the selective 

modification of a single lysine residue within a native protein structure. This method takes 

advantage of a certain microenvironment of a specific lysine residue and enables the selective 

modification under mild conditions.101 As an alternative to maleimide chemistry on cysteine, an 

innovative approach was described by the utilization of carbonylacrylic reagents for the 

modification of this amino acid. The very efficient and selective character of this reaction results 

in cysteine-modified proteins which showed a high stability and retained biological function in 

plasma, making them ideal for in vivo applications.102 

Besides the various possibilities to modify proteins based on their natural amino acid sequence, 

also the introduction of unnatural amino acids is commonly used to excess side selectively 

modified products. 

The incorporation of unnatural amino acids into a protein of choice can be achieved with 

different methods. One possibility is to take advantage of new developments in synthetic 

biology and to engineer bacteria for an incorporation of unnatural amino acids into proteins. A 
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good example for this is the use of auxotrophic bacteria strains, which cannot produce certain 

amino acids and therefore are dependent on the uptake of those through nutrition. By replacing 

the relevant amino acid by analogues, these compounds are taken up by the bacteria and 

incorporated into protein structures where they are available later for selective targeting.96 

Another strategy, which uses the cellular machinery for the introduction of unnatural amino 

acids is the expansion of the genetic code. An orthogonal aminoacyl-tRNA synthetase is used 

to aminoacylate specifically related tRNAs with the applied unnatural amino acids, providing 

new aminoacylated tRNA molecules for the peptide synthesis in the ribosome.103 By using this 

strategy, Lang and co-workers were able to incorporate an unnatural amino acid containing a 

norbornene group for further chemical labeling, specifically in an epidermal growth factor 

receptor on the cell membrane of HEK293 cells.104 

However, the introduction of unnatural amino acids into a protein by using the biological 

machinery, is often complicated and time consuming. A different approach is represented by 

using chemical methods to convert endogenous amino acids into unnatural derivatives. A 

commonly used amino acid for chemical modifications, as mentioned earlier, is cysteine. 

Cysteines are less abundant then other amino acids and often buried within the protein or 

involved in disulfide bonds.105 As described above, several methods were developed for the 

selective modification of this amino acids by using simple chemical reactions.98,102,106 One type 

of modification is the conversion of cysteine into the unnatural amino acid dehydroalanine 

(DHA). This strategy was applied on several proteins and can be achieved using different 

reagents with different reaction mechanisms.107-109 By using O-mesitylensulfonyl 

hydroxylamine (27) (MSH), an oxidative elimination takes place on cysteine and results in the 

formation of DHA (Scheme 2, I). Although the selective formation of DHA in certain model 

proteins was achieved, this reagent also provokes side reactions on other amino acids like 

aspartic and glutamic acid, lysine, histidine or methionine. A careful assessment of the reaction 

conditions and the properties of each individual protein, has to be performed when using this 

method.108 Another way for the conversion of cysteine into DHA, is the direct elimination of 

cysteine under basic conditions (Scheme 2, II). The Mukaiyama reagent was shown to react in 

an efficient manner with cysteine and displays an elimination to DHA in the presence of DBU.107 

However, this reaction method requires high pH values, which might be not compatible with 
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many types of proteins. An additional possibility to generate DHA from a cysteine residue, is 

the utilization of bis-alkylation reagents, followed by an elimination reaction (Scheme 2, III). 

The mechanism of this reaction can lead to the formation of intermediate or stapled byproducts 

when using too reactive alkylation reagents, however methyl 2,5-bisbromopentanoate (28) was 

shown to generate the desired DHA modified protein product.109 

 

 

Scheme 2: Examples for the conversion of cysteine residues into dehydroalanine. I: Selective amination and oxidative 

elimination using MSH 27, II: Selective sulfenylation and base-mediated elimination, III: Bis-alkylation with methyl-2,5-

dibromopentanoate (28) and elimination.108 

 

The various possibilities for the site selective modification of proteins, either through 

modification of natural amino acids or the introduction of unnatural building blocks and 

subsequent modification on these functionalities, can be used to generate a large selection of 

modified proteins. The introduced modifications provide the tool for the attachment of 

fluorophores or affinity tags, which can be used to follow and study a protein of interest in 

biological settings, or which can help in the purification of these proteins.98 Furthermore, the 

installation of selective chemical handles allow the conjugation of the protein with drugs or 
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antigenic moieties. This concept is widely used for the synthesis of antibody drug conjugates or 

glycoconjugate vaccine candidates, just to mention two examples.94,98,110 
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1.3. Chemical synthesis of carbohydrate antigens 

 

Having discussed the possibilities of protein modifications through several chemical and 

biological methods, attention should be given as well to possible antigenic moieties that can be 

conjugated to a carrier protein. In the context of this work, the importance of carbohydrate 

structures during disease state has been already discussed and also their utilization in 

glycoconjugate vaccines has been described. Promoted by the high impact of carbohydrates for 

biological and biomedical questions, also investigations on the synthesis of these biomolecules 

evolved during the last decades.111 

 

1.3.1. The glycosylation reaction 

 

The synthesis of defined oligosaccharides is crucial for any further application of these 

molecules for biological or medical approaches, such as vaccine development or other 

carbohydrate-based therapeutics.112 However, looking at the monosaccharide building blocks, 

the presence of multiple reactive groups within a single molecule, makes synthetic chemistry on 

this structures challenging. Isolation of natural occurring carbohydrates from their sources is 

often difficult and less profitable, which reinforces the need for more research on the synthesis 

of carbohydrate structures. A successful synthesis of oligosaccharide structures depends many 

times on the selectivity and efficiency of the glycosylation reaction between the building blocks. 

A glycosylation reaction takes place between a so called glycosyl donor and a glycosyl acceptor, 

a nucleophilic agent, which will react with the anomeric position of the donor and will form the 

glycosidic bond.  

This relatively simple reaction concept, however can be influenced by many factors like the 

solvent, counter ions or present protecting groups of the building blocks.113 A major problem 

during many glycosylation reactions is the lack of knowledge about the exact reaction 

mechanism. Depending on the type of glycosyl donor and environmental conditions, a 

glycosylation can occur in a SN1-type mechanism, forming a cationic intermediate, or in a SN2-

type reaction which is characterized by ion pair structures or formed intermediates.114,115 The 
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knowledge about the exact reaction mechanism is crucial during the development and 

improvement of new glycosylation methods, and efforts have been made to understand the 

influence of each player on the outcome of the glycosylation reaction.116,117  

A main effect during glycosylation reactions is the anomeric effect on the anomeric C1 carbon 

of the sugar pyranose ring. The interaction of molecular orbitals of the ring oxygen with orbitals 

of the anomeric C1 carbon is thought to stabilize an axial conformation of an anomeric bond 

(Figure 14 A). This effect is supported by the dipole moment theory, which describes the 

repulsion of the dipole moments of the ring oxygen and the heteroatom in an equatorial anomeric 

position (Figure 14 B).118 

 

 

Figure 14: Illustration of the anomeric effect, A. Molecular orbital theory B. Dipole moment theory.118 

 

Apart from the anomeric effect, the participation of neighboring chemical groups is probably 

the other main factor during glycosylation reactions. While benzyl protecting groups, for 

example, do not show any participating character and therefore have no influence on the 

anomeric stereochemistry of the glycosylation product, acetyl protecting groups can form 

intermediate like acyloxonium ion structures. The formation of these structures will block one 

side of the anomeric center, which promotes the formation of 1,2-trans glycoside products.118 

This concept was further developed by using different structures with participating character, 

which can be used for the synthesis of several 1,2-trans glycosidic structures.118 The assessment 

of each glycosylation reaction regarding its underlying mechanism is crucial to improve the 

efficiency and selectivity of these reactions. The classification of glycosylation reactions in SN1 
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or SN2 like reactions, can give a first estimation of the possible products, however the formation 

of unexpected intermediate structures can change the result. A useful tool for the investigation 

of intermediate formation, stability and influence on the reaction outcome is nuclear magnetic 

resonance spectroscopy (NMR). Several studies during the last decades showed the formation 

of different intermediate structures and were able to explain unpredicted reaction outcomes.119 

The enormous variety of possible glycosylation reactions to mimic and resynthesize natural 

carbohydrate structures, makes it still challenging to develop a method, which is able to fit all 

necessary requirements. During the last decades of carbohydrate research, a large selection of 

glycosylation strategies or possible building blocks were developed and, for example, a range 

of different glycosyl donors is available, just mentioning glycosyl halides, 

tricholoroacetimidates or phosphates as examples.120 Historically, glycosyl halides, like 

glycosyl bromides or chlorides, represent one of the oldest examples, which are, until today, 

heavily used in carbohydrate chemistry. The glycosylation reaction with halide donors and 

alcohol acceptors is performed in the presence of silver salts like AgCO3 and was developed by 

Koenigs and Knorr in 1901.121 Disadvantages of this method are given by the utilization of harsh 

conditions and the instability of the glycosyl halide donors. Nevertheless this system can provide 

efficient and selective glycosylation products.118 Another extensively used group of 

glycosylation donors are glycosyl imidates, like trichloro- or trifluoroacetimidate. Developed 

by Schmidt and coworkers in the 1980s, this group of molecules has been actively improved 

over the years and a very large number of different reaction strategies is available.118,122 

 

1.3.2. Thioglycosides as glycosyl donors 

 

Next to glycosyl halides and imidates, thioglycosides are the third big group of strongly used 

glycosyl donors. Thioglycosides are stable under multiple reaction conditions, which allows the 

modification and alteration of other present protecting groups.113 The activation of 

thioglycosides is usually performed with thiophilic promoters like heavy metal salts, halonium 

or organosulfur reagents or with single electron transfer methods (Scheme 3).113,118  
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Scheme 3: Schematic illustration of examples for the activation of thioglycoside donors. 

 

The broad stability of thioglycosides during several conditions makes them good candidates as 

glycosyl donors and acceptors during multistep or one-pot glycosylation reactions.123 The 

development of one-pot glycosylation reactions evolved strongly over the last years, because 

complicated purification steps could be reduced during the assembly of large oligosaccharide 

structures and the overall efficiency might be improved.124,125 To achieve one-pot glycosylation 

reactions, a sequential activation of present glycosyl donors has to be possible. The reactivity of 

glycosyl donors can be directed by using different protecting groups or certain groups in C2 

position of the sugar molecule.126 Furthermore, also the anomeric leaving group itself can 

display different reactivities which can be useful for one-pot reaction systems.127 Different 

systems of thioglycosides have been used for sequential or one-pot glycosylation strategies, 

taking advantage of different activation methods and/or different leaving groups.127,128 Despite 

all the developed methods, the enormous complexity of natural occurring glycan structures 

makes oligosaccharides synthesis still challenging and difficult, which promotes the 

development of even more new activation methods and investigations on the underlying reaction 

mechanism. 
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1.4. The aims of this work 

 

The importance of carbohydrate structures during different diseases was intensively studied 

during the last decades and many treatments or analytic methods are based on this class of 

biomolecules. However, due to the enormous diversity of these structures, many questions 

concerning the identity and function of certain disease specific carbohydrate antigens, are not 

answered yet. 

The aim of this thesis was to address different points in the identification of disease related 

carbohydrate antigens, the utilization of these structures in glycoconjugate vaccine candidates 

and possible synthetic methods, to access the necessary carbohydrate oligosaccharides. 

 

1.4.1. Metabolic oligosaccharide engineering as a tool for malaria 

 

During the first section of this work, the special role of galactose containing carbohydrate 

epitopes in Malaria disease was investigated. Following up on recent reports about the 

importance of α-galactose connected carbohydrate structures during the immune response 

against this infection disease, metabolic oligosaccharide engineering was meant to be used to 

address certain questions. First, if and to what extent an increase in galactose containing glycan 

structures can be observed on the surface of hepatic cells, after an infection with Plasmodium 

parasites. An increase of specific galactose containing carbohydrate structures on the surface of 

these infected cells, could lead to the identification of new carbohydrate antigens, which are 

specific for the liver stage infection and which could be used for the development of new 

glycoconjugate vaccine candidates. Furthermore, the question if metabolic oligosaccharide 

engineering can be used as a general tool for investigations on carbohydrate structures related 

to malaria, should be addressed as a proof of concept. 
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1.4.2. Bifunctional galactose derivatives for metabolic labeling 

 

Besides the development of monofunctional galactose derivatives for metabolic incorporation, 

it was aimed to synthesize a bifunctional galactose monosaccharide with two bio-orthogonal 

chemical reporter groups. This compound was then meant to be tested for metabolic 

incorporation in hepatic cells. The introduction of a bifunctional monosaccharide structure into 

cellular glycan structures, could provide the opportunity for dual labeling, labeling and 

purification or labeling and drug delivery at the same time. 

 

1.4.3. The development of a site-selective glycoconjugate vaccine candidate 

 

Although the first two sections of this work were focused on new methods for the identification 

of potential carbohydrate antigens, this section should describe the development of a new site 

selective glycoconjugate vaccine candidate. For this purpose, the carrier protein CRM197 was 

meant to be modified in a site selective manner, followed by the conjugation of a polysaccharide 

antigen moiety. The final vaccine candidate should be tested then, in comparison with the 

commonly used randomly conjugate vaccine, for its ability to raise a specific carbohydrate 

dependent immune response. 

 

1.4.4. Activation of thioglycoside donors using MSH 

 

Moving from the identification of new carbohydrate antigens, to the utilization of carbohydrates 

for glycoconjugate vaccines, the last section of this work should address the chemical synthesis 

of oligosaccharides. The development of a new activation method for thioglycoside donors can 

provide a useful tool for the synthesis of natural carbohydrate antigens. The thiophilic reagent 

O-mesitylensulfonyl hydroxylamine was meant to be used for the activation of thioglycosides 

and its mechanism of action should be studied. 
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Summarizing, this thesis will address different questions regarding antigenic carbohydrate 

structures related to malaria, the utilization of known carbohydrate antigens for the development 

of site selective glycoconjugate vaccine candidates, and a new method for the synthesis of 

oligosaccharide structures. 
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2. Chapter 2 – Design and optimization of new galactopyranose-derivatives 

for metabolic labeling in the context of malaria 

2.1. Introduction 

 

Carbohydrates are one of the biggest groups of biomolecules and they are involved in many 

crucial biological processes, both in healthy organisms as well as during disease state.20,129 In 

contrast to proteins, carbohydrate structures cannot be addressed through a genetic template, 

which can complicate investigations.11 The introduction of metabolic oligosaccharide 

engineering (MOE) by Bertozzi and coworkers about 20 years ago, helped to change this 

situation.36 The introduction of chemical reporter groups into cellular glycan structures allows 

selective bio-orthogonal labeling reactions on these molecules, which are further used for the 

identification, purification and characterization of important carbohydrate structures. As 

described in the first chapter of this work, different applications for MOE are described in the 

literature, using derivatives of mannosamine, glucosamine, sialic acid and galactosamine.35,130 

For the envisioned project in the context of malaria, the following work presents the utilization 

of new galactose derivatives for MOE. 

Even in the 21st century, malaria is still causing about 219 million cases of infection and 435000 

deaths per year.63 Recent studies report a stagnation in the reduction of infection numbers which 

shows the urgent need for the development of effective treatments and vaccinations.63  

The glycobiology of the malaria causing parasite Plasmodium is highly discussed and subject 

of several studies to identify new drug targets or vaccine antigens.73,131 When looking at 

acquired immunity against this parasite, anti-α-Gal antibodies seem to play an important role, 

however it is still unclear which external factors are involved and how this carbohydrate 

structure is formed on the parasite.60,61,132 An infection with malaria starts when Plasmodium 

parasites are injected in the host dermis during a mosquito bite, followed by the traversal of the 

sporozoites through the blood to the liver.62 Here, the parasite will invade few hepatic cells, 

which represents the first, so-called liver stage of the infection. This asymptomatic phase of the 

disease represents a bottle-neck phase, because up to 40000 merozoites are released from each 
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infected hepatocyte, initiating the blood stage of the infection.62 This important feature makes 

the liver stage a major target for the investigations on target structures for therapies and vaccines. 

It is known that infected hepatic cells display certain sporozoites proteins like the 

circumsporozoite protein (CSP) on their surface and it was already described that these antigens 

contribute to the activation of CD8 T cells against the infected cells.133 

With these data in mind and the apparent importance of α-galactose containing glycan 

structures, the goal of this work was to use MOE in different situations related to the infection 

with the Plasmodium parasite, in order to possibly identify new carbohydrate antigens and to 

understand more about the general glycobiology of this protozoan parasite. 

 

2.2. Results and discussion 

2.2.1. Chemical synthesis of artificial galactose derivatives 

 

To answer our question of whether there will be more galactose containing glycan structures on 

the cell membrane surface of hepatic cells after an infection with sporozoites from Plasmodium 

berghei, different galactose derivatives were synthesized containing a terminal alkene group for 

inverse electron demand Diels Alder reactions (iEDDA) with tetrazine compounds. It was 

decided to compare the properties of a shorter allyl side chain with the ones of a longer pentenyl 

reporter group, following studies on mannosamine derivatives by Wittmann and co-workers.134 

Despite from the different chain lengths, also the position of the chemical reporter group within 

the monosaccharide was altered. Although the C2 position is one of the most often altered 

positions in MOE for different monosaccharides, the C6 position in galactose is easily available 

for synthetic modifications and ELISA studies with anti-α-Gal antibodies against deoxy-

derivatives of the α-Gal epitope revealed good recognition of epitopes containing modifications 

in this position.82 The derivatives 2-O-allyl-tetra-O-acetyl-galactose (31) and 

2-O-pentenyl-tetra-O-acetyl-galactose (33) were synthesized from commercial available 

starting material 1,6-anhydro-3,4-isopropyl-galactopyranose (29), starting with a classical 

Williamson-ether synthesis to attach the terminal alkene group and followed by an opening 
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reaction of the isopropyl- and anhydro-structure and subsequent acetylation using trifluoroacetic 

acid and acetic anhydride (Scheme 4). 

 

 

Scheme 4: Synthesis of the galactose derivatives 31 and 33, from commercial starting material 29. 

 

Both compounds 31 and 33 were obtained with very good yields and were fully characterized 

using NMR (1H, 13C, COESY, HSQC, HMBC) and mass spectrometry. 

The third galactose derivative 36 with the terminal alkene in C6 position, was synthesized from 

the commercial available starting material 1,2,3,4-diisopropyl-galactose (34). Similar to the 

other two compounds, the terminal alkene group was introduced via a Williamson ether 

synthesis and the acetyl protecting groups were obtained with acetic anhydride after opening the 

isopropyl structures with trifluoroacetic acid (Scheme 5). 

 

 

Scheme 5: Synthesis of the galactose derivative 36, from commercial starting material 34. 
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During the metabolic incorporation of the synthesized galactose derivatives, the fully acetylated 

monosaccharide will be taken up by the cells and cytosolic no-specific esterases will hydrolyze 

the acetyl protecting groups. Following this, the deprotected galactose derivatives will be 

processed in the glycan salvage pathway, transformed into activated nucleotide sugars for 

glycosyltransferases, which will incorporated these unnatural monosaccharides into various 

glycan structures.135 For this reason, the synthesized acetylated galactose derivatives 31, 33 and 

36 were deprotected using a classical Zemplén deacetlyation procedure, to determine the kinetic 

properties of these monosaccharides (Scheme 6). In this way, the conditions during the kinetic 

studies resemble the conditions on the cell surface. 

 

 

Scheme 6: Zemplén deprotection for the derivatives 31, 33 and 36, resulting in the deprotected derivatives 37, 38 and 39. 

 

2.2.2. Evaluation of the kinetic properties 

 

After having successfully synthesized all three galactose derivatives and the corresponding 

deprotected counterparts, the kinetic properties in iEDDA were determined. For this purpose, a 

high-through put method was developed, by using 96-well plates and a microplate reader to 
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perform the reactions and to follow the decline in tetrazine-specific absorbance at 530 nm. The 

reactions were performed under pseudo-first order reaction conditions, providing a 4- to 26-fold 

excess of the terminal alkene group over the tetrazine reaction partner. The tetrazine compound 

6-methyl—tetrazine-amine (40) was used for the kinetic evaluations, representing the tetrazine 

core of future fluorophore-tetrazine or biotin-tetrazine constructs. The optimal concentration of 

6-methyl-tetrazine-amine (40) per well was determined by a concentration screen at 530 nm and 

0.6 mM were chosen for all further measurements. From a stock solution of 20 mM, further 

dilutions of 16, 12, 8 and 4 mM were prepared for every de-acetylated galactose derivative 37-39 

and were mixed with 6-methyl-tetrazine-amine (40) in 96-well plates. The decline in absorption 

at 530 nm was followed for 16 h in the microplate reader at 37 °C. With this method, the 

pseudo-first order rate constant kobs was calculated for every concentration as the slope of the 

exponential decay in the absorption of 530 nm. To determine the final second order rate constant 

k2, the obtained values for kobs were plotted against the corresponding concentration and the 

resulting linear relation gave the value for k2 as the slope of the function (Figure 15). 
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Figure 15: Results of the iEDDA reaction between tetrazine 40 and galactose derivatives 37-39. The represented data 
represent linear fits of at least two independent experiments. 

 

As expected from literature reviews concerning mannosamine derivatives in iEDDA reactions, 

the galactose derivatives 38 and 39, bearing the longer pentenyl reporter group, gave a higher 

rate constant k2 than the derivative 37, which contains the shorter allyl side chain.134 According 

to the measurements, the installation of the pentenyl reporter group in C6 position of derivative 

39 increases the rate constant k2 slightly in comparison with k2 from the derivative 38, which is 

modified in C2 position. 
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Table 3: second order rate constants k2 for the iEDDA reaction between tetrazine 33 and galactose derivatives 37-39. 

k2 of iEDDA of tetrazine 40 k2 [M-1 s1] 

5-Norbornene-2-methanol 180.3 x 10-4 

6-O-Pentenyl-Galactose 39 2.44 x 10-4 

2-O-Pentenyl-Galacatose 38 2.10 x 10-4 

2-O-Allyl-Galactose 37 0.17 x 10-4 

 

A possible explanation in this case might be the higher flexibility of the side chain in C6 

position, facilitating the iEDDA reaction and increasing the rate constant k2. 

It was successfully shown that all synthesized galactose derivatives undergo iEDDA reaction 

with 6-methyl-tetrazine-amine 33, so the next step in this project was initiated, testing the 

possibility of using these compounds for metabolic incorporation in cellular glycan structures. 

 

2.2.3. Metabolic incorporation into cell membrane glycans 

 

In the first step, it was confirmed in different cell lines that all three galactose derivatives 31, 33 

and 36 do not cause any cell toxic effect (Figure 16). Until concentrations of 200 µM sugar for 

a time period of 3 days, no toxic effect was observed when using a CellTiter-Blue® Cell viability 

assay. The presented data result from three independent experiments. For the following 

experiments, the liver derived cell lines Huh7 and HepG2 were used. 
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Figure 16: Determination of the cell toxicity of acetylated galactose derivatives 31, 33 and 36. A. Huh7 cells B. HepG2 cells. 

The cell viability was measured at the time points 48h and 72h. The data represent three independent experiments. 

 

Knowing that the developed galactose derivatives are not causing cell toxic effects, prior to the 

planed infection studies, the metabolic incorporation and the staining procedure in vitro was 

optimized. For this, starting with Huh7 cells, these cells were grown for 72 h in the presence of 

100 µM of the galactose derivatives or the control sugar pentaacetyl-galactose (42), followed 

by a staining with the tetrazine-fluorophore construct 6-methyl-tetrazine-sulfo-cy3 (43). 
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Figure 17: Structure of 6-methyl-tetrazine-sufo-Cy3 43. 

 

Although some more signal was observed with the unnatural galactose derivatives 31, 33 or 36, 

a lot of unspecific signal was observed as well in the cells treated with the control sugar 42. 

Also, the signal seemed to be dislocated over the whole cell body, although only cell membrane 

labeling was aimed for. Several experiments were conducted, including permeabilization steps 

to wash out any unbound dye, however no improvement was observed (Table 4).  
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Table 4: Cell growth conditions and staining procedures during the optimization of metabolic incorporation of galactose 

derivatives 31, 33 and 36. 

Entry Cell growth conditions Staining conditions 

1 24h, 100 µM galactose derivative 1. 15 µM 6-Methyl-tetrazine-Cy3 for 3h @ 

37°C 

2. Hoechst 1:1000, 8 min, RT 

3. Fixation with 4% PFA 

2 72h, 100 µM galactose derivative 1. 20 µM 6-Methyl-tetrazine-Cy3 for 6h @ 

37°C 

2. Hoechst 1:1000, 8 min, RT 

3. Fixation with 4% PFA 

3 72h, 100 µM galactose derivative 1. 20 µM 6-Methyl-tetrazine-Cy3 for 45 

min @ 37°C 

2. Hoechst 1:1000, 8 min, RT 

3. Fixation with 4% PFA 

4 72h, 200 µM galactose derivatives 1. 20 µM 6-Methyl-tetrzaine-Cy3 for 6h @ 

37°C 

2. Fixation with 4% PFA 

3. Permeabilization and washing 

4. Hoechst 1:1000, 8 min RT 

 

The best results during these experiments was obtained with the conditions from Table 4, entry 

2 and representative pictures are presented below. 
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Figure 18: Metabolic incorporation of galactose derivatives 31, 33 and 36, followed by staining with 6-methyl-tetrazine-

sulfo-Cy3 (43). Monosaccharide 42 was used as negative control. 

 

The observed problematic when using a tetrazine-fluorophore construct for direct staining of 

the incorporated galactose derivatives, led on to rethink the planed staining procedure. 

Going back to literature, instead of the envisioned one-step staining procedure, usually a 

two-step approach with a tetrazine-biotin probe and a streptavidin-fluorophore compound is 

used.134 Repeating the metabolic incorporation of the galactose derivatives in Huh7 cells for 

72 h, now the introduced terminal alkene group was targeted with 6-methyl-

tetrazine-peg4-biotin (44) to undergo the iEDDA reaction (Figure 19).  
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Figure 19: Schematic illustration of the workflow for the metabolic incorporation of galactose derivatives 31, 33, 36, their 

intracellular deprotection and the labeling strategy with 6-methyl-tetrazine-peg4-biotin (44). 

 

In a second step, the free biotin-tag was labeled with alexa-fluor-568-streptavidin (Alexa-fluor-

568-strep) for further analysis. Here it was possible to detect specific labeling on the cell 

membrane. An improvement was further achieved with blocking the endogenous biotin of the 

cells with 25 µg/mL streptavidin for 40 min prior to the staining procedure (Figure 20 A). With 

this strategy, it could be shown that all three galactose derivatives were successfully 

incorporated into cell membrane glycan structures. To proof the incorporation of the unnatural 

galactose derivative in cell membrane glycan structures, a co-staining with CellMask® Deep 
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Red Plasma Membrane dye was performed and could successfully show the expected co-

localization of the two stainings (Figure 20 B).  
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Figure 20: A. Metabolic incorporation of galactose derivatives 31, 33 and 36 into cell membrane glycans of Huh7 cells and 

labeling using 6-methyl-tetrazine-peg4-biotin (44) and Alexa-Fluor-568-strep. Pentaacetyl galactose (42) was used as 

negative control. B. Metabolic incorporation of galactose derivative 33 into cell membrane glycans of HepG2 cells and co-

staining with CellMask Deep red Plasma membrane dye. Pentaacetyl galactose (42) was used as negative control. 

 

To compare the efficiency of labeling in vitro, the pixel intensity of single cells was measured 

using ImageJ software package (Figure 21). Having the data from the kinetic studies in hand, it 

was expected that with the same time for the iEDDA reaction on the cell surface, a higher 

fluorescence signal should be obtained from samples incubated with the longer pentenyl chain 

substituted galactose derivatives 33 and 36. Consistent with this, the quantification gave higher 

values for the fluorescence intensity in cell samples grown with these derivatives than cells, 

which incorporated the sugar 31 with the shorter allyl side chain. For the statistics analysis, 

d’Agostino and Pearson omnibus normality test was performed and a two-tailed Mann-Whitney 

test was chosen. Three independent experiments were conducted with at least 25-30 data 

samples. 

 

 

Figure 21: A. Median fluorescence intensity after incorporation of galactose derivatives 31, 33 or 36 in Huh7 cells, 
determined by confocal point-scanning microscopy. Pentaacetylated galactose (42) was used as negative control. Two-tailed 

Mann-Whitney, n = 25-30, representative example from three independent experiments. B. Ratio of the median fluorescence 

intensity against background signal from measurements with control sugar 42. 
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The slight increase going from the derivative 33 with the pentenyl substituted in C2 position, to 

the C6 modified counterpart 36 can be explained with regard to how these two sugars can be 

incorporated. The unnatural derivative 33 bearing the pentenyl group in C2 position cannot be 

modified into galactosamine structures while the modification in C6 position of derivative 36, 

still allows this transformation. In this way, the compound with C6 reporter group can be 

introduced in more glycan structures than its counterpart 33. For the further experiments, the 

galactose derivative 33 with the pentenyl reporter group in C2 position was used, because 

specifically the incorporation of galactose and not derivatives like galactosamine, were the 

center of interest. Apart from Huh7 cells, also the incorporation of this sugar into HepG2 cells 

was tested, giving a similar result for the incorporation efficiency (Figure 22). At least three 

independent experiments were conducted. For the statistics analysis, d’Agostino and Pearson 

omnibus normality test was performed and a two-tailed Mann-Whitney test was chosen to 

analyze the data. 

 

 

Figure 22: Median fluorescence intensity after incorporation of galactose derivatives 31, 33 or 36 in HepG2 cells, determined 

by confocal point-scanning microscopy. Pentaacetylated galactose (42) was used as negative control. Two-tailed Mann-

Whitney, n = 25, representative example of three experiments. B. Ratio of the median fluorescence intensity against 
background signal from measurements with control sugar 42. 

 

With regard to the planed infection studies later in this work, also an analysis by flow cytometry 

was developed. In this setting, cells were grown in the same manner with 100 µM of the 

unnatural galactose derivative for 72 h before a reaction with 6-methyl-tetrazine-peg4-biotin 
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(44) and detachment with EDTA solution. It is important to emphasize in this part that the 

detachment of the cells should be done with EDTA solution, rather than using trypsin based 

reagents. The application of trypsin can lead to a loss of cell membrane glycoproteins due to the 

digestive mechanism and like this disturb the detection of incorporated galactose derivatives in 

cell membrane glycoproteins. The staining was performed in the same way than for the 

microscopy analysis with an alexa-fluor-568-streptavidin construct. 

 

 

Figure 23: A. Superposition of contour plots of forward-scatter detection versus PE-CF594-A fluorescence intensity, after 
metabolic incorporation of galactose derivative 33 (blue) in HepG2 cells. Pentaacetyl galactose (42) was used as negative 

control (red). B. Superposition of histograms of PE-CF594-fluorescence intensity, resulting from contour plots in A.. 

 

Also with this method, it could be shown that the unnatural galactose derivative 33 is 

incorporated by the cells and a shift in the fluorescence intensity can be observed (Figure 23). 

Unfortunately, despite several optimizations, the observed shift of the positive samples over the 

negative control could not be improved for a better separation. This fact might be due to the 

lower abundance of galactose in contrast with other sugars like galactosamine or mannose in 

glycan structures. A work from Hsu et al. showed a similar observation comparing fucose and 

mannosamine derivatives (Figure 24).136 The obtained shift of labeled cells after an 
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incorporation of a fucose derivative, was considerably smaller than the shift which was observed 

in cells treated with the corresponding N-acetyl-mannosamine derivative. The observed small 

shift in the presented experiments with galactose derivative 33 can be explained with this 

observations. However, the presented strategy can distinguish the different set of treated cells. 

 

 

Figure 24: Labeling of surface glycans after metabolic incorporation of alkynyl sugar analogs of A. fucose and B. N-acetyl-

mannosamine. Filled histograms represent treatment with control sugars, open histograms cells treated with alkynyl sugar 
analogs. Figure from Hsu et al.136 

 

Following typically applied procedures in MOE, so far only the metabolic incorporation of fully 

acetylated galactose derivatives 31, 33 and 36 was shown. Usually, peracetylated 

monosaccharides are used during incorporation studies, because they are considered to be less 

hydrophilic and to show a better membrane permeability. Inside the cell, the acetyl protecting 

groups are expected to be removed by unspecific esterase enzymes.137 However, Chen and 

co-workers showed recently that acetylated versions of unnatural monosaccharides can lead to 

artificial S-glycosylation of cellular proteins.138 This observed modification would not describe 

the envisioned metabolic processing of the applied unnatural monosaccharides, but an 

unspecific side reaction. In order to verify a selective labeling of the synthesized galactose 

derivatives, a further experiment was conducted with the de-acetylated derivative 38. Using the 

same procedures then previously presented for the incorporation of acetylated galactose 

derivatives, HepG2 cells were grown for 72h with the de-acetylated galactose derivative 38 

before the staining procedure by iEDDA reaction was applied. Commercial galactose (45) was 

used as negative control. Also with the deprotected derivative 38, a successful labeling was 

achieved (Figure 25). 
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Figure 25: Metabolic incorporation of de-acetylated galactose derivative 38 into cell membrane glycans of HepG2 cells. 

Galactose (45) was used as negative control. iEDDA reaction was performed using 6-methyl-tetrazine-peg4-biotin (44), 
followed by staining with Alexa-Fluor-568-streptavidine. Nuclei were stained with Hoechst 33342. I and III, as well as II and 

IV represent two independent experiments. 

 

Next to the analysis by confocal point-scanning microscopy, the incorporation of the 

de-acetylated galactose derivative 38 in cell membrane glycans of HepG2 cells, was also 

confirmed by flow cytometry (Figure 26). 
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Figure 26: A. Superposition of contour plots of forward-scatter detection versus PE-CF594-A fluorescence intensity, after 

metabolic incorporation of de-acetylated galactose derivative 38 (blue) in HepG2 cells. Galactose (45) was used as negative 

control (red). B. Superposition of histograms of PE-CF594-fluorescence intensity, resulting from contour plots in A. 

 

The labeling of cell membrane glycan structures was achieved with both, acetylated and 

de-acetylated galactose derivatives. To be consistent with experiments from the literature and 

to exclude issues related to the more polar character of the de-acetylated galactose derivative 

38, the following experiments were conducted with the acetylated version 33. 

Until this point, it was successfully shown that unnatural galactose derivatives can be 

metabolized by human hepatic cells and are incorporated into cell membrane glycan structures. 

The final goal of this work was to investigate a possible increase of galactose containing 

structures in hepatic cells after an infection with sporozoites from Plasmodium berghei. An 

identification of certain expressed glycan structures in this stage of the disease could lead to the 

development of anti-malaria vaccine candidates based on these antigenic structures. 
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2.2.4. Metabolic incorporation during infection with Plasmodium berghei 

 

To study the impact of an infection on the uptake and incorporation of galactose in the glycan 

structures of infected cells, a new protocol was developed and different techniques were used 

for analysis. 

All experiments of the infection studies were done in HepG2 cells, by using the unnatural 

galactose derivative 2-O-pentenyl-1,3,4,6-tetraacetyl-galactose (33) and pentaacetyl galactose 

(42) as negative control. GFP-expressing sporozoites from Plasmodium berghei were dissected 

from salivary glands of infected female A. stephensi mosquitoes and used for the infection of 

HepG2 cells. The cells were grown in the presence of 100 µM of the galactose derivative 33 or 

the negative control 42 until 48 hpi to reach the maximum stage of parasite development. In the 

following, the cells were stained with the same method, which was developed and described in 

the previous part, using 6-methyl-tetrazine-peg4-biotin (44) and alexa-fluor-568-streptavidin 

(Figure 27). Staining results were improved by changing the cell media 2 hpi to remove possible 

debris from the mosquito host which resulted in strong background signal. For the analysis, 

confocal point scanning microscopy, flow cytometry and imaging flow cytometry were used 

and negative controls were used for non-infected cells, as well as for the cells infected with 

sporozoites. It was decided to analyze these experiments with different techniques to overcome 

certain limitations and to compare the different outcomes. 
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Figure 27: A. Schematic illustration of the workflow for the metabolic incorporation of galactose derivative 33 into HepG2 

cells after infection with sporozoites from Plasmodium berghei. B. Confocal images of HepG2 cells after incorporation of 

galactose derivative 33 and infection with sporozoites form Plasmodium berghei. Pentaacetylated galactose (42) was used as 
negative control. GFP-signal derived from the GFP-expressing parasite. 

 

Confocal point-scanning microscopy provides the possibility to compare infected cells and 

direct neighboring cells in terms of their fluorescence intensity, however large-scale 
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quantification is time consuming and has to be carefully planned to provide an unbiased set of 

data. Flow cytometry allows fast acquisition of many cells and the quantification of their 

fluorescence intensity resulting from the incorporated galactose derivative. In this setting the 

gating was done based on the intensity of the GFP signal to distinguish between non-infected 

and infected cells, however debris from the mosquito host could interfere in some cases due to 

its auto-fluorescence (Figure 28). Three independent experiments were conducted with an 

infection rate between 3-5 % and at least 3000 live, single cells were gated for analysis. 

 

 

Figure 28: Gating strategy for the acquisition and quantification of the metabolic incorporation of galactose derivative 33, in 

HepG2 cells, after infection with sporozoites from Plasmodium berghei. 

The third technique used for this work was an imaging flow cytometer Amnis ImageStreamX 

MarkII. This instrument provides the possibility to acquire single cell pictures of selected cell 

populations, which can be gated based on various factors. The big advantage over conventional 

flow cytometry in this special context was given by the fact that gated populations could be 

examined with the help of the acquired pictures, which made it easier to exclude particles 

coming from mosquito cell debris. At the same time, the fluorescence intensity from the labeling 

reaction of derivative 33 could be determined of the selected populations. The gating strategy 

relies on the selection of focused single cells, which were then divided in infected and 

non-infected cells, based on the intensity of the GFP signal (Figure 29 A). Four independent 

experiments were conducted, with an acquisition of each 5000 single cell picture. The infection 

rate was calculated to be around 3% during each experiment. The identity of the selected 

populations was verified by the acquired single cell pictures in the brightfield channel (Ch01), 
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in the GFP channel (Ch02) and in the channel, which corresponds to the incorporated galactose 

derivative (Ch04) (Figure 29 B). 

 

Figure 29: A. Gating strategy for the acquisition and quantification of the metabolic incorporation of galactose derivative 33 

in HepG2 cells, after infection with sporozoites from Plasmodium berghei B. Representative pictures from the selected 
populations after incorporation of galactose derivative 33, Ch01: Brightfield picture, Ch02: GFP-channel, Ch04: Alexa-

Fluor-568. 

 

A combination of all these three methods could ensure the acquisition and analysis of the data 

sets in an unbiased manner. The quantification of pictures acquired through confocal 
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point-scanning microscopy was performed using ImageJ software package. From three 

independent experiments, about 6-10 pictures were acquired for each condition and about 6-10 

cells per picture were analyzed. The mean fluorescence intensity of the staining with Alexa-

Fluor-568-streptavidine (Figure 27 B), which corresponds to the incorporated galactose 

derivative 33, was measured based on the pixel intensity. Each condition was calculated as ratio 

to the corresponding control with pentaacetyl galactose (42). Two-tailed Mann-Whitney t-test 

was performed for nonparametric, unpaired data (Figure 30 A). The analysis of the results form 

confocal microscopy showed a tendency for an increased fluorescence intensity in infected cells. 

Very similar results were obtained when analyzing the incorporation of derivative 33 by flow 

cytometry (Figure 30 B). Again, three independent experiments were conducted, during which 

2000-3000 live, single cells were gated. The rate of infected cells was between 3-5% and for 

each condition, the ratio of median fluorescence intensity against the corresponding control was 

calculated. A two-tailed Mann-Whitney t-test was performed for nonparametric, unpaired data. 

Consistent with the results from confocal microscopy and flow cytometry, also the analysis by 

imaging flow cytometry gave a tendency for a higher fluorescence intensity in infected cells 

(Figure 30 C). Four independent experiments were conducted, during which 5000 single cell 

pictures were acquired and the ratio of median fluorescence intensity was calculated against the 

corresponding control. The infection rate was similar to the conventional flow cytometry around 

3%. 
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Figure 30: Analysis of the mean fluorescence intensity after incorporation of 33 in HepG2 cells, with and without infection 

through Plasmodium berghei sporozoites, ratios against control 42 A. Quantification by confocal microscopy, representative 

data from one out of three experiments, n = 6 pictures, each data point represents mean fluorescence intensity of 10 cells. 

Two-tailed Mann-Whitney. B. Quantification by flow cytometry, combined results of 3 independent experiments, gating of 
~2000-3000 single cells (infection rate ~3%), Two-tailed Mann-Whitney. C. Quantification by imaging flow cytometry, 

combined results of 4 independent experiments, each data point corresponds to ~2000 single cell pictures (noninfected and 

naïve) or ~70 single infected cells (infection rate ~3%), Two-tailed Mann-Whitney. 

 

With all three methods, it was possible to show that the ratio of fluorescence intensity against 

the corresponding control tends to increase from naïve cells to non-infected cells and infected 

cell containing the parasite. The observed pattern in the increase in fluorescence intensity, 
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coming from the unnatural galactose derivative 33, was very small and attempts to improve the 

uptake by starving the cells before incubation did not result in any further increase. However, 

because the observed trend was consistent in all settings, a reasonable explanation for this 

finding was meant to be found. 

 

2.2.5. Transport of artificial galactose derivatives through GLUT1 

 

An increase in the taken-up galactose derivatives, based on a metabolic signal of the developing 

parasite was expected to result in a higher increase compared to the non-infected samples. 

Having this in mind, literature research was undertaken, with regard to known metabolic events 

during this stage of the infection. An important point, which came out very quickly, was the 

energy supply for the developing parasite in this stage. It was known earlier that during the 

blood stage, the Plasmodium parasite is depending on glycolysis to produce the necessary 

adenosine tri-phosphate (ATP). In this stage, glucose is imported from the blood plasma via a 

facilitative hexose transporter (PfHT).139,140 Recently, Prudêncio and co-workers could show 

that during the liver stage, the GLUT1 transporter provides the necessary glucose for the parasite 

development. Furthermore it was shown in this work that especially in infected cells, an increase 

in GLUT1 transporter translocation to the cell membrane during later stages of the infection 

occurs.141 A closer look at the transporter GLUT1 revealed that besides glucose, also galactose 

and ascorbic acid can be transported by this structure.142,143 The common procedure during MOE 

uses fully acetylated monosaccharides in order to increase their hydrophobic properties and to 

enable passive diffusion through the cell membrane.44 However, with regard to the literature 

concerning facilitative transporters and the involvement of GLUT1 in the energy supply during 

the liver stage of an infection with Plasmodium, a simple experiment was designed to test a 

possible transport of the unnatural galactose compounds through GLUT1. Different inhibitors 

were chosen in order to block GLUT1 during the culturing time with the unnatural galactose 

compound to test if a block of this transporter will lead to a reduced uptake of the 

monosaccharides. The inhibitors WZB117 46, STF 31 46 and cytochalasine B 48 were used at 

a concentration of 10 µM during the whole culturing time of 72 h (Figure 31 A).144,145 An 

analysis by confocal point-scanning microscopy revealed a significant decrease of the 
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fluorescence intensity derived from the incorporated monosaccharide, in samples grown in the 

presence of one of the inhibitors (Figure 31 B). For each condition 5-8 pictures from different 

positions in the well were analyzed and the mean fluorescence intensity of 5-7 single cells per 

picture was measured, using ImageJ software package. Two-tailed Mann-Whitney was 

performed for unpaired, non-parametric data sets. 

Encouraged by these results, a further experiment was conducted, applying increasing 

concentrations of the inhibitor WZB117 46 during the 72 h of culturing time. It was very 

pleasant to see a concentration dependent decrease in fluorescence intensity when analyzing 

samples from two independent experiments by flow cytometry (Figure 31 C).  

 



Chapter 2 

76 

 

 

Figure 31: A. Structures of the GLUT 1 inhibitors WZB117 46, STF31 47 and cytochalasine B 48. B. Quantification of mean 

fluorescence intensity after the incorporation of galactose derivative 33 in the presence or absence of 10 µM inhibitors 46-48. 
Data represented from one exemplary experiment out of two. Two-tailed Mann-Whitney. C. Quantification of median 

fluorescence intensity after incorporation of galactose derivative 33 in the presence of increasing amount of inhibitor 46. 

Data represented the pool of two independent experiments. 

 

The described experiments of inhibiting the facilitative transporter GLUT1 lead to a review of 

the previously obtained results during the infection studies. Knowing about the importance of 
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GLUT1 for the developing parasite during the liver stage of the infection, a possible explanation 

for the observed small increase in fluorescence labeling, is an increased transport of the artificial 

galactose derivative 33 through the present GLUT1 transporters in this stage. By inhibiting this 

transporter, the resulting decrease in galactose derivative derived fluorescence intensity, proves 

that this unnatural sugar is also transported via this facilitative hexose transporter. The in the 

literature described enhanced translocation of GLUT1 to the cell membrane of infected cells, 

will enable an increased uptake of the present galactose derivative and consequently provide 

more of this sugar for metabolic incorporation.141 The observed and described increase in 

metabolic labeling due to incorporated galactose derivative is not due to the presentation of 

certain glycan antigens on the surface of infected hepatocytes, but a side effect of the elevated 

energy demand of infected cells due to the developing parasite. 

 

2.2.6. Transfer of artificial galactose derivatives from the mosquito host to the 

parasite 

 

Until this point, the application of a modified galactose monosaccharide for metabolic labeling 

in cells was established. However, during these experiments, the consideration came up if the 

strategy of MOE could be used as well to study a possible connection between the mosquito 

host and the Plasmodium berghei parasite. Regarding galactose containing structures, it is still 

poorly understood how the parasite is able to synthesize these glycans, because neither enzymes 

for the epimerization of glucose, nor enzymes for the activation of galactose were identified in 

the parasite genome so far.146 However, the presence of UDP-galactose was identified in the 

blood stage form of Plasmodium falciparum and the trisaccharide α-Gal was confirmed by 

anti-α-Gal antibody binding on sporozoites from Plasmodium falciparum.60,80,147 A possible 

hypothesis might be a transfer of components from the mosquito vector to the parasite.147 To 

test this idea, female A. stephensi mosquitoes were fed with a sugar solution containing 10 mM 

of the unnatural galactose derivative 33 or the control sugar 42 for the 21 days after the 

infectious blood meal. During this time, the parasite develops from the ingested gametocytes 

into sporozoites, which then traverse into the salivary gland of the mosquito.148 The expectations 

were that if a transfer of galactose monosaccharides or of its activated forms galactose-1-
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phosphate or UDP-galactose occurs, the unnatural galactose derivative should be transferred to 

the parasite and the introduced terminal alkene reporter group should be available on the 

sporozoites for detection via iEDDA reaction. After 24 days, the mosquitoes were dissected and 

the sporozoites were obtained from the salivary glands (Figure 32 A). For the analysis, staining 

with 6-methyl-tetrazine-sulfo-cy3 (43) and Hoechst was performed and the parasites were 

analyzed using the imaging flow cytometer Amnis ImageStream MarkII. With this instrument 

it was possible to acquire single pictures of a number of parasites and to separate them from 

mosquito host cells. In the first step, the brightfield pictures were analyzed using their areas and 

aspect ratio. This allowed to determine a certain ratio of these values which defined an area in 

the plot in which the single parasite could be found. The remaining area represented host cell 

debris from the mosquito. For the analysis of the parasite, an additional refinement step was 

undertaken, to isolate pictures from clean parasites. In the last step, the fluorescence intensity 

of these parasites in channel Ch04, which represents the fluorescence intensity resulting from 

incorporated galactose derivative 33, was analyzed. Also the selection representing the host cell 

debris was analyzed for the fluorescence intensity in channel Ch04 (Figure 32 B). In total, 20000 

pictures were acquired, from which around 500 were gated as clean parasites and around 15000 

as mosquito host cell debris. 

By comparing the two different groups, it was interesting to see that for the parasite populations, 

only a non-significant difference was observed. However, the analysis of the structures coming 

from the mosquito host, showed a highly significant difference between the mosquitoes fed with 

unnatural galactose derivative 33 and the ones which received the normal food with the natural 

galactose sugar. With this result, it can be shown that the unnatural galactose derivative 33 is 

successfully taken up by the mosquito, however the transfer to the sporozoites still has to be 

evaluated further. An explanation of the only minor increase of galactose derived fluorescence 

intensity on the sporozoites, might be for example a very low expression of galactose containing 

structures on the parasite surface or only a limited transfer of metabolites from the mosquito to 

the parasite. 
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Figure 32: A. Schematic illustration of the workflow for an administration of galactose derivative 33 to infected mosquitoes. 

B. gating strategy for acquisition and analysis of the dissected parasites and the remaining host cell debris in Amnis 

ImageStream Mark II. Data are represented from one feeding experiment, Two-tailed Mann-Whitney. 

 

In this experiment, the fully acetylated galactose derivative 33 was used during the feeding 

process, in order to maintain a similar protocol as for the cell studies. However, increased 

mortality was observed in the mosquitoes fed with this sugar after the first two weeks which 

also lead to the question if the surviving individual mosquitos represent the ones which absorbed 

less of the unnatural sugar solution. It is not clear whether the mosquitos possess similar 

unspecific esterase enzymes to remove the acetyl protecting groups, it might be a possibility to 

use the deprotected galactose derivative 38 during the feeding process. Also, it might be an 

option to start the feeding process after the infections blood meal with the usual glucose solution 

and only provide the substituted food after 5 to 7 days. During this first period, the parasites 

development in de mosquito host is still at the beginning of the sporogonic cycle and less 

contribution to the incorporation of 33 in sporozoite glycans could be expected during this time. 

However, the survival of the mosquito host could be increased by feeding the normal food for a 

certain time after the infectious blood meal. 

 

2.3. Future perspective – Application of MOE in malaria 

 

In this work, the synthesis of three unnatural galactose monosaccharides with terminal alkene 

groups for iEDDA reaction was shown. All compounds were characterized for their kinetic 

properties in iEDDA reactions with 6-methyl-tetrazine derivatives and the metabolic 

incorporation in cell glycan structures of different cell lines was successfully achieved. The 

alteration of the chemical reporter group from C2 to C6 position seemed not to interfere with 

the incorporation process, which could be useful for further metabolic labeling approaches. 

Furthermore, for the first time, an unnatural galactose structure was used for investigations on 

the liver stage of a malaria infection. Here, it was possible to show that this monosaccharide did 

not had any influence on the parasite development or on cell growth. In combination with a 

short study on the sugar transporter GLUT1, this work could show the tendency of infected 
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hepatic cells to have a slightly higher uptake of the unnatural galactose compound due to its 

facilitated diffusion via GLUT1. In addition, the uptake of the artificial galcatose by the 

mosquito host during the feeding process was shown, representing an example how these sugars 

could be used to explore the glycobiology of the Plasmodium parasite. 

In possible future improvement for the application of galactose derivatives for MOE could be a 

change to different chemical reporter groups. During trial experiments to study the cellular 

location of the presented galactose derivatives 31, 33 and 36 on the endoplasmic reticulum or 

Golgi apparatus, it was observed that the applied tetrazine derivatives for iEDDA reaction, 

seems to bind in unspecific manner to previously fixed cell samples. Since successful membrane 

staining of the incorporated galactose derivatives was achieved, for the goal of this work, the 

labeling reaction by iEDDA reaction using tetrazine was acceptable. However, in order to look 

have a deeper look on the biosynthetic pathways these unnatural sugars may be involved in, a 

different strategy should be developed.  

The introduction of different chemical reporter groups like norbornenes might be considered, to 

enable a faster reaction kinetic. Also the choice of tetrazine derivative can be optimized. A 

possibility for better detection results could be the utilization of so-called turn on probes. These 

tetrazine probes were developed to provide a fluorescence turn-on of up to 10000 fold after 

iEDDA reaction, which resulted from through-bond energy transfer.149 A highly efficient 

iEDDA reaction using a very fast chemical reporter group like norbornene, combined with a 

highly fluorogenic tetrazine probe, could provide a better setting for the detection of 

incorporated galactose derivatives. 

The initial intention of this project was to investigate the possible presentation or modulation of 

galactose containing glycan antigens on the surface of with Plasmodium berghei sporozoites 

infected hepatocytes, however the results presented in this work do not suggest a significant 

increase in such structures. A possibility to use the observed changes for medical purposes might 

be to evaluate a strategy to use unnatural galactose structures as delivering agent for liver stage 

specific drugs. Since it was shown in this work that an unnatural galactose compound is tolerated 

and metabolized by hepatic cells without impeding the parasites’ development, these 

compounds could be used in conjugation with a drug like Primaquine, to deliver these agents 

more selective to infected hepatic cells then healthy ones. 
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Furthermore, the method of metabolic oligosaccharide engineering could be developed further 

in the context of an infection with Plasmodium. The glycobiology of Plasmodium is still not 

completely understood, however the importance of certain carbohydrate structures and sugars 

becomes more and more clear. The introduction of modified monosaccharides might provide 

the necessary tool to explore the function of glycans for example in the context of antigenic 

structures during the liver stage infection.  

An antigen of great interest is the so called circumsporozoite protein (CSP), a surface protein 

on the sporozoites with high importance for their motility, on the invasion of the salivary gland 

and on hepatocyte infection.150 During the liver stage, the CSP is presented on the surface of 

infected hepatocytes, which are also known to trigger a CD8+-dependent immune response.133 

In a recombinant protein, the CSP is part of the anti-malaria vaccine candidate RTS,S/AS01, 

which was shown to cause protection against clinical malaria during a Phase III clinical trial.64 

The recent review of E.D. Goddard-Borger and J.A. Boddey is discussing the possible influence 

of glycosylation on an improvement of vaccine efficacy, as well as the still unknown function 

of N- and O-glycosylation in the parasites lifecyle.151 The CSP would provide multiple options 

in which metabolic oligosaccharide engineering could be applied. During the sporozoites stage, 

this protein is anchored to the plasma membrane by GPI anchors, which are composed of 

mannose units that start from a glucosamine unit.148 It might be an option, to test if unnatural 

mannose monosaccharides could be incorporated by the parasite and how an artificial structure 

might influence the function of the GPI anchors. 

Looking at other monosaccharides, CSP was shown to be fucosylated in its TSR 

(thrombospondin type I repeat) domain, when expressed in HEK293T cells and it was also 

shown to expose posttranslational modifications on the surface of sporozoites.152,153 It would be 

very interesting to test, if modified fucose derivatives can be introduced in this glycan structure 

during for example recombinant expression. In this way, this special glycan structure could be 

purified and characterized with regard to its function during an immune response during the 

liver stage. A possibility would be to test the recognition of this artificial glycan structure by 

anti-CSP antibodies and if a modified glycan in this position increases or weakens the 

interaction. By using MOE in these experiments can provide the opportunity to localize, track 
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and purify relevant glycan structures which can result in more knowledge about the importance 

of these molecules for vaccine development. 

An additional possibility to work with unnatural galactose derivatives in the context of malaria, 

would be to address the blood stage of the infection. The sugar nucleotide UDP-Gal was 

identified in the blood stage parasite using liquid chromatography-tandem mass spectrometry, 

however enzymes for the biosynthetic pathway of this molecule have not been identified yet.154 

So far, it has not been possible to identify terminal galactosylation in proteins or glycolipids in 

the blood stage, which also raised the question for what purpose UDP-Gal might be used by the 

parasite. The application of MOE with unnatural galactose derivatives might provide an 

opportunity to develop selective enrichment methods of galactose containing glycan structures 

in this stage of the parasite, which could lead to the identification and characterization of 

important galactosylated structures in this stage of the infection. 
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3. Chapter 3 – Synthesis of a bifunctional galactose derivative for metabolic 

labeling 

3.1. Introduction 

 

The great success of MOE for investigations on cellular carbohydrate structures and the 

necessary biosynthetic pathways, proves the wide range of possible applications of this strategy. 

As described in the first chapter, several different chemical reporter groups were shown to be 

suitable for the metabolic incorporation into cellular glycan structures and several different 

organisms were already tested.  

Despite using only one unnatural sugar derivative, some examples show the simultaneous 

incorporation of up to three different monosaccharides and Chen and coworkers described the 

successful incorporation of bifunctional sialic acid derivatives.46,47 This study demonstrates the 

enormous flexibility of cellular systems and the combination of several bio-orthogonal labeling 

reactions within the same molecule.  

The previous chapter reported the synthesis and metabolic incorporation of monofunctional 

galactose derivatives in hepatic cells. Following up on this idea, a bifunctional galactose 

compound was meant to be developed, to test the possibility of its metabolic incorporation. An 

incorporation of an unnatural sugar with two bio-orthogonal chemical reporter groups can 

provide additional tools for investigations on carbohydrate structures. Apart from labeling, it 

could be possible to enrich the carbohydrate structure of interest via the second reporter group, 

or the second reporter groups could be used for the attachment of drugs. 

Overall, I aimed to develop a bifunctional galactose derivative which is easy to synthesize and, 

if necessary, easy to modify with regard to the introduced chemical reporter groups. 
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3.2. Results and Discussion 

3.2.1. Chemical synthesis of a bifunctional galactose derivative 

 

With the goal to obtain a bifunctional galactose derivative, a synthetic route was designed with 

a special focus on an easy variability of the final compound. The final route consisted of eight 

steps, including a flexible intermediate which could allow further modifications of the galactose 

derivative (Scheme 7). 

 

 

Scheme 7: Overview over the synthetic route for the synthesis of a bifunctional galactose derivative 50. 

 

Starting from commercial 1,2,3,4,6-penta-O-acetyl-galactose (42), the anomeric position was 

activated in the first step using hydrobromic acid, giving α-tetra-O-acetyl-galactosyl bromide 

(50) with a high yield of 95%. The galactosyl bromide 50 was used for the following 

Koenigs-Knorr glycosylation reaction with 2-(Trimethyl-silyl)ethyl. Due to the participating 

protecting group in C2 position, the pure β-product 53 was obtained with a yield of 68%. In 

preparation for the intermediate with only two unprotected hydroxyl groups, the acetyl 

protecting groups were removed using the classical Zémplen method and an isopropyl protecting 

group was introduced, blocking C3 and C4 position simultaneously. Intermediate 49 was 

obtained with an overall yield of 44% after four steps (Scheme 8). 
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Scheme 8: Synthetic scheme for the first four steps, starting from pentaacetyl galactose (42), resulting in the intermediate 49. 

 

The advantage of this intermediate compound 49, is given by the fact that the two free hydroxyl 

groups in C2 and C6 position show different reactivities and it was assumed that the C6 position 

can be modified selectively when the correct reagents were chosen. As chemical reporter groups 

for the final galactose derivative, the decision was made to introduce an azide group in C6 

position and a terminal alkene in C2 position. In this way, two orthogonal reactions, click-

chemistry and iEDDA, can be applied to the cells after the incorporation of the bifunctional 

derivative. 

Since the primary hydroxyl group in C6 position should show a higher reactivity then the 

secondary one in C2 position, it was decided to pursue this part of the synthesis first. The alcohol 

group was activated using tosyl group and it was nice to see a selective introduction of the 

aromatic entity in C6 position. For the following substitution of the tosyl group with the azide 

functionality, sodium azide was chosen. It was possible to obtain the substitution product 56 

with a yield of 55%, however high temperatures were required (Scheme 9).  

 

 

Scheme 9: Reaction scheme for the functionalization of the primary hydroxyl group in C6 position of intermediate 56. 
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In this stage of the synthesis, also different routes were explored, in order to facilitate the 

conditions of the substitution reaction. On one hand, the replacement of the tosyl group by a 

smaller mesyl group was explored, however under these conditions both hydroxyl groups in C2 

and C6 were observed to react, which was not desired. Also, 

N-phenyl-bitrifluormethansulfoneamide was used for this reaction, however, no activation of 

the hydroxyl group was observed. Despite the harsh reaction conditions to obtain the azide 

modified galactose derivative, enough material could be synthesized to continue further. After 

having modified the C6 part of the molecule, the C2 hydroxyl group was substituted with the 

same method than the monofunctional derivatives described in the previous chapter, using a 

Williamson ether synthesis procedure. This reaction gave the protected, bifunctional galactose 

derivative 57 with a yield of 90% (Scheme 10). 

 

 

Scheme 10: Functionalization of the secondary hydroxyl group in C2 position with 5-Bromo-1-pentene. 

 

In the final step of this synthesis, the isopropyl protecting group and the anomeric (trimethyl-

silyl) ethyl group were removed using trifluoroacetic acid (TFA) and acetyl groups were 

introduced using acetic anhydride and pyridine. As a byproduct, (trimethyl-silyl)ethyl-2-

-O-pentenyl-3,4-isopropyl-6-azdio galactose was obtained, however the desired product 

2-O-pentenyl-1,3,4-tri-O-acetyl-6-azido-galacatose (51) was obtained with 52% yield (Scheme 

11). 
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Scheme 11: Deprotection of galactose derivative 56 and introduction of O-acetyl protecting groups, resulting in bifunctional 

galactose derivative 51. 

 

Having this bifunctional galactose derivative 51 in hand, experiments were conducted to test an 

incorporation of this sugar into cell membrane structures of HepG2 cells. 

 

3.2.2. Studies on the metabolic incorporation 

 

In several trial experiments, HepG2 cells were grown for 72h with either the bifunctional 

galactose derivative 51 or the control sugar pentaacetyl galactose (42). To address the two 

chemical reporter groups, simple click-chemistry between the azide group of the sugar and 

Alexa-Fluor-488 DIBO alkyne was performed and the terminal alkene handle was reacted, like 

in the previous section described, with 6-methyl-tetrazine-peg4-biotin (44) and 

Alexa-Fluor-568-streptavidin. Different times and sequences for the application of the two 

fluorophores were tested, including a simultaneous staining with Alexy-Fluor-568-streptavidin 

and Alexa-Fluor-488-DIBO alkyne for 15 min (Figure 33) and a sequential strategy in which 

the two dyes were applied separately from each other (Figure 34). 

Despite all these attempts it was not possible to achieve a selective labeling in cell samples 

treated with the bifunctional sugar when comparing it to the negative control. 
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Figure 33: Trial for metabolic incorporation of bifunctional galactose derivative 51 in HepG2 cell membrane glycans. 

Simultaneous staining with Alexa-Flour-568-streptavidine and DIBO-alexa-fluor-488. Pentaacetyl galactose (42) was used as 
negative control. 
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Figure 34: Trial for metabolic incorporation of bifunctional galactose derivative 51 in HepG2 cell membrane glycans. 

Sequential staining with Alexa-Fluor-568-streptavidine and Alexa-Fluor-488-DIBO. Pentaacetyl galactose (42) was used as 

negative control. 

 

3.3. Future perspective 

 

A new synthetic rout for a bifunctional galactose derivative was successfully developed and the 

unnatural monosaccharide was obtained. Unfortunately, it was not possible to observe any 

selective labeling in HepG2 cells, despite several different approaches. Due to the present acetyl 

protecting groups, passive diffusion of the sugars into the cytoplasm can be assumed however 

the presented results do not show any further metabolic incorporation. 

During the staining procedure, different sequences for the staining were tested without resulting 

in a labeling of the bifunctional galactose derivative 51 within cell membrane glycans. 

Following recent reports from Pratt and co-workers, in which they demonstrated the 

incorporation of 6-azido-6-deoxy-glucose into intracellular protein modifications, there might 

be the possibility also for the presented galactose derivative to be incorporated in such 

structures.155 However, trials for intracellular staining did not show specific staining but high 

unspecific labeling in samples treated with the negative control sugar 42. 
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For development of a project like this, it could be a solution to modify the present protecting 

groups and test the double labeling strategy in a test tube as well as on cells. The synthetic route 

for this bifunctional galactose derivative includes the intermediate 49, which can be easily 

modified to obtain additional functionalized monosaccharides. The most obvious change could 

be an alteration of the position of the azide and alkene group, resulting in a bifuncitonal 

derivative 59 with an azide modification in C2 and a terminal alkene in C6 position (Scheme 

12). 

A different strategy might also be, to include new chemical reporter groups, like alkynes, 

cyclopropenes or norbornenes. Also more flexible groups including linker moieties like PEG 

could be tested for metabolic incorporation (Scheme 12). Alternatively, also different linkages 

of the already used terminal alkene groups could be explored, like it was shown from Wittmann 

and co-workers for mannosamine derivatives.41 All these changes could lead to a successful 

incorporation of the new galactose derivative. 
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Scheme 12: Example scheme for further derivatization of intermediate 49 to obtain additional bifunctional galactose 

derivatives 59-62 for metabolic incorporation. 

 

Having two chemical reporter groups present in the same monosaccharide could also lead to 

steric hindrance when performing the staining procedures. It could be a possibility to develop 

an experiment to test the successful conjugation of two different fluorophore molecules to the 

monosaccharide in a test tube, before conducting in vitro experiments. An option might be the 

utilization of a HPLC based method to see an overlap of the absorption spectra when both 

fluorophores are bound to the sugar. 

As already mentioned in the introduction to this chapter, it was shown with two sialic acid 

derivatives that cells can be able to incorporate monosaccharides with two functionalities. A 

successful transfer of this technology to other monosaccharides could open several 

opportunities. In case of an effective incorporation of a bifunctional galactose derivative, it 



Chapter 3 

93 

 

could be applied for example for the delivery and labeling of liver specific drugs in the context 

of an infection with Plasmodium. In the previous chapter, the slight increase in galactose uptake 

by Plasmodium infected cells was shown. By using a bifunctional galactose derivative, it could 

be a chance to deliver a liver stage specific drug towards infected cells and study the uptake or 

intra-cellular processing by labeling the galactose compound. 

During the last years, the strategy of MOE was developed in a great way, opening many 

possibilities for the research on carbohydrate biology and their structures. It was shown by many 

groups how the flexibility of cellular systems can be used to manipulate natural structures and 

to use these strategies for biomedical research. However, the recent developments also show the 

limitations of the existing strategies, making more research necessary to develop more selective 

incorporation of monosaccharide building blocks in different cell types or organisms. 
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4. Chapter 4 – Development of a site selective glycoconjugate vaccine 

candidate with CRM197  

4.1. Introduction 

 

The previous chapters describe in different ways the great importance of carbohydrate structures 

in disease state and as targets during biomedical research. However, as described in the 

introduction on carbohydrate vaccines, there are also limitations in the utilization of these 

structures. Pure carbohydrate vaccines were shown to be not effective in small children, which 

led to the development of glycoconjugate constructs as vaccine candidates.29 By coupling the 

carbohydrate antigen to an immunogenic protein carrier, the conjugate is getting processed in a 

different way and peptide-carbohydrate moieties are presented through MHCII, which finally 

results in the activation of B-cells and memory B-cell production.89 For the conjugation of 

carbohydrate antigens to protein carriers, amino acid side chains of the protein are addressed 

through chemical reactions. So far, reactions like reductive amination, active ester formation or 

carbodiimide-mediated condensation are used for the conjugation reaction. Successful examples 

for these glycoconjugate vaccines are PRP-TT against Haemophilus influenzae type b, MenC-

CRM197 against Neisseria meningitidis serotype C or a 13-valent-CRM197 against 

Streptococcus pneumoniae.93 In all these glycoconjugate vaccines, the carbohydrate antigen was 

conjugated in a random manner to the protein carrier. This means that it was not possible until 

this point, to selectively modify only specific amino acids of the protein carrier. Since it was 

already shown that the site in which the carbohydrate moiety is getting conjugated, can have an 

influence on the immunogenic properties of the final vaccine candidate, it is crucial for the 

future development to find ways for site-selective conjugation.95 

As it was explained in the introduction, selective modification of proteins can be achieved in 

different ways and a toolbox of reactions is available. 

In this project, a new site-selective modification of the protein carrier CRM197 was developed 

and used for the generation of glycoconjugate vaccine candidates against Streptococcus 

pneumoniae and group B Streptococcus. These new types of conjugates can be compared with 
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the approved randomly conjugated vaccine and can help to understand the impact of a certain 

type of protein modification on antigen presentation and its immunogenic properties. 

 

4.2. Results and Discussion 

4.2.1. Site-selective modification of CRM197 

 

The objective of the presented work was to develop a new strategy for the development of 

chemically defined glycoconjugate vaccine candidates. Starting with the carrier protein, a 

selective chemical modification was meant to be introduced, which should then allow site 

selective conjugation of glycan antigens. 

The carrier protein CRM197 comprises two disulfide bonds C186-C201 and C461-C471, from 

which the one between C186 and C201 can be targeted in a selective way (Figure 35).95 

 

 

Figure 35: Model of CRM197 illustrating the location of the present disulfide bonds C186-C201 and C461-C471. 

 

For the introduction of the modification dehydroalanine (DHA), this disulfide bond was reduced 

by using tris-(2-carboxyethyl)-phosphine (TCEP) at RT for 3h. Following the opening of this 

bond, methyl-2,5-dibromopentanoate (28) was used to initiate a bisalkylation reaction and 

subsequent elimination at pH = 11, resulting in the formation of two dehydroalanine (DHA) 

residues (Scheme 13). Experiments using lower pH values, did not result in any elimination 
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reaction or did only show the addition of the reagent. Also higher temperatures did not promote 

the necessary elimination reaction (Table 5). 

 

 

Scheme 13: Reaction mechanism for the bisalkylation reaction of cysteine with methyl-2,5-dibromopentanoate (28) and 
subsequent elimination, resulting in the formation of dehydroalanine. 

 

The best results for a complete conversion of the starting material were achieved after a reaction 

time of 5 h at pH = 11 (Table 5, entry 3). The modified protein CRM-DHA was purified in 

100 mM NaPi pH = 6.3, either using a G25 column (130 mL) or Zeba spin desalting columns 

(7 kDa MWCO).  
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Table 5: Exemplary reaction conditions for the conversion of Cysteines C186-C201 into dehydroalanine. All reactions were 

performed in 50 mM NaPi pH = 11. 

Entry 
c 

[mg/mL] 

equiv. 

TCEP 
h

red
 T 

[°C] 

equiv. Methyl-2,5-

dibromopentanoate 
h

reac.
 T 

[°C] 
Result 

1 20 12 3 21 500 3 21 

Precipitation, 

only traces of 

Dha 

2 2 12 3 21 500 3 21 

Main peak 

for Dha, 

smaller for 

side product 

3 5 12 3 21 500 5 21 DHA 

4 10 12 3 21 500 5 21 Precipitation 

5 2 12 3 21 500 5 21 - 

6 2 12 3 21 500 18 21 - 

7 2 12 3 21 500 3 37 - 

8 2 12 3 21 500 5 37 - 

 

It should be noticed in this section that CRM-DHA shows a high tendency for aggregation when 

prepared in too high concentrations (>2 mg/mL). However, since a high protein concentration 

was observed to be necessary to reach an efficient yield during later glycoconjugation reactions, 

CRM-DHA should be prepared fresh prior to its usage. The introduction of two DHA groups in 

the carrier protein was confirmed by high resolution mass spectrometry (Figure 36 A.1, Table 

6). 

For the further conjugation, an additional linker bis-(11-azidoundecyl) disulfide (63) was 

introduced. In this reaction, the reduced thiol moiety was planned to undergo a Thiol-Michael 

addition on the double bond of DHA, giving the desired selective modification. About 

100 equiv. of the linker were reduced with TCEP for 2 h at room temperature, before the protein 

CRM-DHA in 100 mM NaPi pH = 6.3 was added. After additional 4 h reaction time, the excess 
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of linker and TCEP were removed using Zeba Spin desalting columns (7 kDa MWCO) and the 

buffer was exchanged to 12 mM NaPi pH = 7.2 (Scheme 14).  

 

 

Scheme 14: Site-selective introduction of DHA in CRM197, followed by the introduction of an azide containing linker. 

 

Using high resolution mass spectrometry, it was shown that two linker molecules were 

successfully introduced in the main fraction of the protein, while only a minor part was shown 

to contain only one linker molecule (Figure 36 B.1, Table 6). Comparing one exemplary charge 

state distribution, the different species could be identified. The formation of CRM-DHA can be 

assumed as a complete conversion, since the initial peak of CRM197 (Figure 36 C.2, 5) did 

disappear. For CRM-DHA-N3 the main species (Figure 36 B.2, 2) represents the protein with 

two linker molecules attached, the mentioned side product is visible in a smaller peak (Figure 
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36 B.2, 3). An impurity could be detected in CRM-DHA (Figure 36 A.2, 4) as well as in 

CRM-DHA-N3 (Figure 36 B.2, 4), however mass deconvolution did not show another dominant 

protein species. 

 

 

Figure 36: Charge state distribution: A.1 CRM-DHA, B.1, CRM-DHA-N3, C.1 CRM197. Comparison of the single charge 

state 48+ A.2 CRM-DHA, B.2 CRM-DHA-N3, C.2.CRM197. 

 

Table 6: Mass results after deconvolution of the charge state distribution after 200 scans. 

Sample Mass 

found 

Abundance 

[%] 

Mass calculated Calculated 

difference 

Error 

[%] 

CRM197 58374.1311 100 58376.4102 2.2791 0.004 

CRM-

DHA 

58306.7085 100 58308.1713 1.4628 0.003 

CRM-

DHA-N3 

58807.0504 100 58764.4781 

For [M+ CH3CN] = 

58805.5046 

1.5458 0.003 

CRM-

DHA-N3 

58557.9713 41.25 58536.3247 

For [M + Na+] = 

58559.3139 

1.3426 0.002 
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4.2.2. Modification of the polysaccharide antigen 

 

Having the carrier protein CRM-DHA-N3 readily synthesized, the carbohydrate antigen had to 

be prepared. In this context, polysaccharide antigens from group B streptococcus serotype Ia, 

66 (GBS-Ia) and pneumococcal type 14 capsular polysaccharide 64 (PN14) were derivatized 

with a Dibenzocyclooctyne-N-hydroxysuccinimidyl ester (DBCO-NHS) in the position of their 

N-acetyl-glucosamine (GlcNAc) units. In the case of PN14, the best results for this 

derivatization were achieved by de-N-acetylation of the polysaccharide for 1.5 h at 70 °C in 

0.5 M NaOH, followed by a substitution reaction of the free amine on the DBCO-NHS 

compound (Scheme 15 A). For GBS-Ia, slightly stronger conditions with 1 M NaOH at 70 °C 

and for 4.5 h were necessary (Scheme 15 B). The attachment of the DBCO-linker was performed 

with the same method than for PN14 polysaccharide. 
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Scheme 15: Reaction scheme for the introduction of the linker DBCO-NHS into the polysaccharide structures. A. PN 14 64, 

B. GBS-Ia 66. 
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4.2.3. Synthesis and Purification of the glycoconjugate vaccine candidate 

 

During the final conjugation reaction between the carrier protein CRM-DHA-N3 and the 

corresponding polysaccharide 65 or 67 (Scheme 16), different ratios protein/polysaccharide 

were tested in order to maximize the conjugation yield. The best results were obtained with a 

ratio of 1:4 protein /polysaccharide for conjugations using PN14-DBCO 65 (Figure 37 A), 

however for conjugations with GSB-Ia-DBCO 67 a ratio of 1:2 protein/polysaccharide was 

sufficient since no further improvement of the conjugation yield was observed with higher 

amounts of polysaccharide (Figure 37 B). 
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Scheme 16: Conjugation reaction of derivatized polysaccharides 65 and 67 to CRM-DHA-N3. 
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Figure 37: A. 3-8% Tris-acetate gel of CRM197 and conjugation reactions of PN14-DBCO 65 with CRM-DHA-N3. B. 3-8% 

Tris-acetate gel of the conjugation reaction of GBS-Ia-DBCO 67 with CRM-DHA-N3. 

 

To purify the obtained glycoconjugates from unconjugated polysaccharides and remaining free 

carrier protein, the first strategy of choice was to use a ceramic hydroxyapatite type I resin 

(CHT) which should enable, based on the applied buffer systems, to separate all three 

components due to their different interactions with resin. However, despite several attempts with 

different conditions, it was not possible to observe a separation of the three components. It was 

expected that a equilibration and loading of the columns with a buffer containing 2 mM NaPi 

and 500 mM NaCl at pH = 7.2, would result in binding of the glycoconjugate and the free 

protein, but not in the polysaccharide (Figure 38, blocks I). In the next step, the buffer was 

changed to 35 mM NaPi, pH = 7.2, which was anticipated to elute the glycoconjugate (Figure 

38, blocks II) before the free protein would have been obtained with the third buffer of 400 mM 

NaPi, pH = 7.2 (Figure 38, blocks III).  
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Figure 38: A. Akta traces for the injection of the conjugation reaction CRM-DHA-N3 with GBS-Ia-DBCO 67 on a CHT type 1 

resin. B. Akta traces for the injection of the conjugation reaction CRM-DHA-N3 with PN14-DBCO 65 on a CHT type 1 resin. 
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Unfortunately, for both types of conjugates, with polysaccharide from PN14 64 or GBS-Ia 66, 

no separation could be observed. A trial precipitation with ammonium sulfate showed both, 

glycoconjugate and free carrier protein in the very first fraction of the elution which suggested 

that none of the reaction components bound to the CHT resin. Since size-exclusion 

chromatography cannot be applied directly to the crude reaction mixture, due to the similar sizes 

of unbound polysaccharide and glycoconjugate, it was decided to change the purification 

procedure to an initial ammonium sulfate precipitation. 

Focusing on a glycoconjugate with GBS-Ia-DBCO 67, the ammonium sulfate precipitation was 

directly applied to the crude reaction mixture and it was possible to recover a mixture of 

glycoconjugate and free protein carrier with a yield of 40% after six rounds of precipitation. In 

general 500 mg/mL ammonium sulfate were used and the reaction solution was incubated on 

ice for 15 min before the precipitate was obtained after centrifugation (4500 g, 10 min). The 

obtained precipitate was dissolved in 10 mM NaPi, pH = 7 and a gel-analysis showed a similar 

ratio of glycoconjugate and free protein then in the initial crude reaction mixture (Figure 39). 

 

 

Figure 39: 3-8% Tris-acetate gel after conjugation reaction of GBS-Ia-DBCO 67 with CRM-DHA-N3 and after ammonium 

sulfate precipitation of the crude reaction mixture. 
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4.3. Future perspective 

 

Until this point, it was possible to show the development of a new site-selective chemical 

modification on the carrier protein CRM197, which could be used for the synthesis of defined 

glycoconjugate vaccine candidates. In an exemplary approach, polysaccharides from PN14 64 

and GBS-Ia 66 were modified with a linker moiety containing a DBCO group for further click 

reaction to the azide modified protein CRM-DHA-N3. It was possible to show the formation of 

both types of glycoconjugates in reproducible manner. However, so far it was not possible to 

purify these conjugates due to their unexpected interaction behavior with the CHT type I resin. 

It can be speculated if this behavior is a result of the present polysaccharide, which could inhibit 

an interaction of the protein with the column. In case of the glycoconjugate, there are also several 

options in the stoichiometry of attached polysaccharide to one protein carrier, which could be 

an additional factor for the problematic interaction with the resin. Despite having a defined 

number of azide containing linkers attached to the introduced DHA residues on the carrier 

protein CRM, it remains unknown if only one polysaccharide molecule is attached through two 

repeating units (Figure 40, A), or if two different polysaccharide molecules are attached though 

each one repeating unit (Figure 40, B).  
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Figure 40: Possible connectivities of polysaccharide molecules to CRM-DHA-N3, A. conjugation of two polysaccharide 

molecules to the carrier protein. B. Conjugation of one polysaccharide molecule to the carrier protein. 

 

In these cases, the final structure of the glycoconjugate might be different, resulting in different 

ways of interaction with the applied resin. For this reason, a purification protocol starting with 

an ammonium sulfate precipitation, seems to be a more promising choice. With the ammonium 
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sulfate precipitation, the free polysaccharide can be separated from the glycoconjugates and the 

free protein, which can then be purified by size-exclusion chromatography.  

To validate the final glycoconjugate, made based on the new modification strategy of the carrier 

protein, another type of conjugate was produced previously, in which the carrier protein CRM197 

has been stapled with di-chloroacetone in the disulfide bond C186-C201.95 Also with this 

method, a defined chemical attachment of the carbohydrate antigen is achieved, however, in 

contrast with the presented DHA modification, the disulfide bond C186-C201 was not opened 

permanently, but had been reconnected by the stapling reagent.  
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Figure 41: Schematic illustration of the comparison of two different types of glycoconjugates with CRM197. 

 

The final goal of this work will be to evaluate the properties of both types of glycoconjugates in 

in vivo settings, to determine and compare the elicited immune response of these vaccine 

candidates (Figure 41). Both presented site-selective constructs should be compared with a 

glycoconjugate vaccine candidate in which the carbohydrate moiety is conjugated in a random 

manner to the carrier protein. 
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5. Chapter 5 – Sequential activation of thioglycoside donors using an 

electropositive nitrogen promoter 

5.1. Introduction 

 

In the previous chapters of this work, two main aspects of glycobiological research were 

addressed. On one hand, the strategy of MOE was used for research on the identification of new 

carbohydrate antigens during Malaria disease and on the other hand, the development of a 

glycoconjugate vaccine candidate was pursued, which represents an example for the further 

utilization of carbohydrate epitopes in the development of effective treatments. 

However, even with the knowledge about structure and function of a carbohydrate epitope, it 

has to be available in large quantities and in a pure state for further application. In many cases, 

it is difficult and less efficient to purify the carbohydrate structure of interest from its natural 

source. For this reason, chemical synthesis of oligosaccharide structures also developed strongly 

during the last decades. 

Although very large numbers of different reactions have been developed, the enormous variety 

of natural carbohydrate structures, still shows the need for different selective reactions.118 

As discussed in the introduction, the glycosylation reaction between a glycosyl donor and a 

glycosyl acceptor molecule can be influenced by many different factors and has to be optimized 

for different reaction situations. 

Thioglycoside donors are commonly used during oligosaccharide synthesis, due to their stability 

in many different reaction conditions. Over the years, many strategies have been developed for 

the activation of these glycosyl donors, however the possibility to sequentially activate different 

thioglycoside donors within one reaction was still missing.123 A sequential activation can be a 

useful tool for one-pot synthesis reactions or during the utilization of automated systems. 

The following chapter will explain and present the development of a new activation strategy for 

thioglycosides, using the reagent O-mesitylensulfonyl hydroxylamine (MSH). 
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5.2. Results and discussion 

5.2.1. Activation of thioglycosides using O-mesitylenesulfonyl hydroxylamine – 

Kinetic evaluations 

 

Reports in the literature show the reaction of thiols with MSH 27 via a nucleophilic attack of 

the thiol on the electron positive nitrogen of MSH, forming sulfilimine or sulfoximines species. 

On proteins, MSH was shown to promote the conversion of cysteine into dehydroalanine via an 

oxidative elimination mechanism and S-alkyl thioglycosides were shown to be activated by this 

thiophilic reagent.107,156  

During the first part of this study, a set of four different thioglycoside donors was studied with 

regard to their reactive behavior towards MSH (Scheme 17). With regard to the influence of 

different protecting groups on the reactivity of glycosyl donors, the benzylated and acetylated 

versions of each S-ethyl and S-phenyl thioglucose were investigated.  

 

 

Scheme 17: Reaction scheme for the activation of thioglycosides 68-71 with MSH 60, resulting in the final formation of 
hemiacetals 70a and 71a. 

. 

To monitor the reactivity of each of the selected monosaccharides during a reaction with MSH, 

the reactions were performed in deuterated chloroform (CDCl3) and the behavior of the 

anomeric proton signal H1 was studied. The signal of the anomeric proton H1 for thioglycosides 

68-71 can be found around 4.5 ppm with a coupling constant of typically J1,2 ~ 10 Hz, when 
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starting from β-thioglycosides. During the reaction with MSH, it was possible to observe a 

disappearance of this anomeric peak and the formation of a downfield shifted signal around 

~5.9 ppm (J1,2 ~ 4 Hz). This shift resembles the formation of a α-1-O-sulfonylmesitylene 

intermediate which was observed to be hydrolyzed from residual water, giving the 

corresponding hemiacetals 69a and 70a of the starting material. The formation of similar 

intermediates during glycosylation reactions was described by Bennett et al and Taylor.157,158 

Interestingly, the expected syn-elimination of the thioglycosides to their glycal structures was 

not observed during the reaction with MSH. The reaction kinetics were visualized by following 

the ratio of the anomeric protons 1H (intermediate)/(1H 68 – 71) (Figure 42) 

 

 

Figure 42: 1H NMR Analysis of the activation of thioglycoside donors 68-71 with MSH 28, following the ratio of H1 

(intermediate)/H1 (68-71) 

 

The four applied monosaccharides Bn4GlcSEt 71, Ac4GlcSEt 70, Bn4GlcSPh 69 and Ac4GlcSPh 

68 could be arranged according to their reactivity by following the armed-disarmed effect of the 

protecting groups and the properties of their anomeric groups to react as a leaving group.159 
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5.2.2. Activation of 2-deoxy-2-fluoro-thioglycosides with MSH 

 

For a better understanding of the formed intermediate species during the reaction of the 

thioglycoside donors with MSH, an additional series of 2-deoxy-2-fluoro thioglycosides 72a, 

72b, 73a and 73b was used to perform the same reaction.160 The strong impact of different 

chemical entities in C2 position of a monosaccharide on the outcome of a glycosylation reaction 

is known in the literature, which is why the following fluoro-substituted monosaccharides were 

chosen.119 It was very interesting to observe that an activation of these glycosyl donors with 

MSH, under the same conditions then used before, resulted in the formation of stable 

1-O-sufonylmesitylen intermediates 74, 75a or 75b, which were purified and fully characterized 

(Scheme 18). While pure α-substituted products were obtained from mannose configured 

starting material, a mixture of α- and β-products was obtained starting from glucose configured 

sugars.  

 

 

Scheme 18: Reaction scheme for the activation of 2-deoxy-2-fluoro-thioglycoside donors 72a, 72b, 73a and 73b with MSH 27. 

 

To show that these purified intermediates can be used during glycosylation reactions, the 

purified 1-O-sulfomesitylen intermediates 74a and 74b from the glucose series, were activated 

using Cu(OTf)2 in the presence of MeOH as glycosyl acceptor. As expected, a complete 
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conversion of the starting material into a mixture (1:1) of the β-methyl glycoside and a 6-OH 

byproduct was observed. Since it was possible to purify and characterize the 1-O-sufomesitylen 

molecules in the 2-deoxy-2-fluoro series from glucose and mannose, it strongly suggested the 

formation of similar structures when using the non-fluoro substituted thioglycosides 68 - 71. 

From the described 1H-NMR studies with these compounds, it was assumed that a decreased 

stability of these intermediates leads to immediate hydrolysis. To confirm this theory, transition 

state calculations were performed. These calculations should reveal the reactivity of the 

described intermediates from fluoro-substituted and non-fluoro-substituted thioglycosides 

towards hydrolysis. It was pleasant to see that these calculations revealed a difference of 

~4 kcal mol-1 between the transition states of the non-fluorinated compounds and their 

fluorinated counterparts. This energy difference corresponds to a ~850 times faster hydrolysis 

reaction for the 1-O-sulfomesitylen intermediates which do not display a fluorine atom in C2 

position. 

 

5.2.3. Glycosylation reactions promoted by MSH 

 

After these investigation on the activation mechanism when reacting thioglycoside donors with 

MSH, this method was extended for glycosylation reactions. Under the described conditions, no 

glycosylation could be observed which is probably due to a lack in reactivity of the described 

intermediates when attacked by less nucleophilic acceptors. To achieve a successful 

glycosylation reaction, several strategies were tested. A strong activation of the acceptor 

molecules using NaH only resulted in a very low yield of the glycosylation product. With regard 

to the presence of the 1-O-sulfomesitylen intermediates, typical additives such as AgOTf or 

Cu(OTf)2 and stereo directing solvents like CH2Cl2, Et2O or CH3CN were explored.161 The best 

results were obtained when using stoichiometric amounts of Cu(OTf)2 at room temperature and 

gave the glycosylation product with a good yield and α/β-selectivity (Table 7). The developed 

glycosylation reaction was observed to be complete after a short period of 15 min and a control 

experiment showed the absolute necessity of MSH for the activation of the thioglycoside donor 

in presence of Cu(OTf)2. Looking at the stereoselectivity of the product, it was interesting to see 

that the addition of LiClO4 in stoichiometric amounts resulted in the exact conversion of the 



Chapter 5 

116 

 

anomeric selectivity, promoting the formation of the α-product (Table 7, entry 2). A strong 

coordination of the ClO4
- anion in β-position during an exchange of the 1-O-sulfomesitylen 

group, would promote the formation of a α-connected glycosylation product. As examples for 

this new glycosylation method, different acceptor molecules were screened, including amino 

acids, natural products and monosaccharides (Scheme 19). 

 

 

Scheme 19: Examples for the glycosylation reaction using thioglycoside donor 71 and an activation with MSH 27. 

 

Table 7: Reaction scope for glycosylation reactions using MSH 28 as thiophilic promotor. a Ratio was determined by integration 

of the anomeric proton signals 1H in the proton NMR of the products. b LiClO4 (1 equiv.) was used as additive. 

Entry Donor Product Solvent yield α/β ratioa 

1 71 76 CH2Cl2 26 1.3:1 

2b 71 76 Et2O 54 5:1 

3 71 76 CH3CN 71 1:5 

4 71 77 CH3CN 35 1:3.7 

5 71 78 CH3CN 50 1:2.2 
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5.2.4. Selective activation of a S-alkyl thioglycoside donor 

 

Having the different reactivities of the studied thioglycosyl donors in mind, an experiment was 

designed to show the possibility of a sequential activation of S-alkyl over S-aryl donors. The 

more reactive S-ethyl thioglycosyl donor 71 was activated in the presence of the S-phenyl 

acceptor molecule 79 and the disaccharide 80 with intact anomeric S-phenyl group could be 

purified. In the following step, the thiogroup of disaccharide 80 was activated with classical 

conditions using NBS/Cu(OTf)2 for the synthesis of a Glc(1→6)Glc(1→6)Gal model 

trisaccharide 81 (Scheme 20). 

 

 

Scheme 20: Reaction scheme for the selective activation of 71 over 79 forming the disaccharide 80. Classical activation of 80 

with NBS, resulting trisaccharide 81. 

 



Chapter 5 

118 

 

With this experiment, it was possible to successfully address the different reactivities of the 

single thioglycoside donors and to use these specific properties during oligosaccharide 

synthesis. 

 

5.3. Future perspective 

 

In summary, it was possible to show the utilization of a N+-thiophilic reagent like MSH as a 

promotor for the activation of thioglycosides. This study is a great example for how important 

intermediate structures can be and how they can influence the outcome of the planed reactions. 

As mentioned in the introduction for this chapter, the access to defined oligosaccharides is 

essential for further developments in biomedicine or vaccine development. To achieve this goal, 

exact knowledge about the mechanisms during a glycosylation reaction is crucial, in order to 

maximize the potential of each reaction. The comparative study of fluoro-substituted 

thioglycosides 72a, 72b, 73a, 73b and their non-fluorinated counterparts 68 - 71, also shows 

once more the high impact of neighboring chemical moieties on the properties of the anomeric 

center. Stabilizing or destabilizing effects can be used to direct glycosylation reactions towards 

specific results, by for example favoring one stereoisomer over the other or making the 

formation of unwanted side-products impossible.162 

For a further work on the activation of thioglycosides with N+-thiophilic reagents, it might be 

an option to investigate different derivatives of the here presented MSH reagent. The activation 

of the anomeric thio-group should still occur through a nucleophilic attack of the sulfur on the 

amino group but the formation of intermediate structures could probably be controlled in a better 

way. By using derivatives of MSH, it could be investigated if the formation of intermediate 

structures can be avoided or stabilized.163  
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Figure 43: Examples for possible derivatives of MSH for the application in glycosylation reactions.163 

 

By avoiding the manifestation of an intermediate, the introduction of a glycosyl acceptor could 

be facilitated and the reaction conditions could be optimized with just focusing on one direct 

reaction pathway. On the other hand, the formation of a fully stable intermediate might also give 

rise to new methods. Like in the described reactions with 2-deoxy-2-fluoro thioglycosides, an 

intermediate which can be purified and characterized, can be also used for clean glycosylation 

reactions because it represents a new kind of glycosyl donor.  

There are multiple possibilities for an optimization of this strategy, however the fact that MSH 

can be used to distinguish between different types of thioglycoside donors, opens new 

possibilities for this field of glycosylation chemistry. 

These new strategies can be used for the synthesis of defined oligosaccharide structures which 

can be then further investigated and used, for example for the development of glycoconjugate 

vaccine candidates or carbohydrate-based drugs. 
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6. Chapter 6 – Conclusions: from synthetic chemistry to biological 

applications 

 

In the presented work, several different topics were addressed and discussed. In the first chapter, 

synthetic modifications of natural occurring molecules, in this scenario galactose 

monosaccharides, were used to study the metabolic incorporation of such molecules into cellular 

glycan structures. In addition, the synthesized unnatural galactose molecules were used to study 

a possible transfer of these sugar structures from the mosquito host to the Plasmodium berghei 

parasite. The ability of biological systems to tolerate modified substrates was extended further, 

by testing the possibility of an incorporation of a bifunctional galactose derivative in the 

following chapter. Although it was not possible to successfully incorporated this specific 

bifunctional galactose molecule in cell glycan structures, this project can be pursued further. An 

incorporation of two orthogonal chemical reporter groups within the same monosaccharide 

could provide new possibilities for the identification and targeting of important glycan 

structures. By moving from carbohydrate to protein structures, a chemical method was 

developed to achieve a site-selective modification of the immunogenic carrier protein CRM197. 

By using defined chemical reactions, the site-selective introduction of an immunogenic 

carbohydrate moiety on a carrier protein can be achieved. As mentioned earlier, the possibility 

of synthesizing defined glycoconjugate constructs is crucial for the development of future 

glycoconjugate vaccine candidates. Finally, the last chapter presents a new approach for 

sequential activation of different thioglycoside donors. This new method can be applied during 

the chemical assembly of necessary oligosaccharide structures and could provide an additional 

tool for a facile and efficient one-pot synthesis. 

Due to new emerging technologies, the access to large platforms and the easy interaction 

between different fields of research, a rapid development in biomedical research can be 

expected. It is crucial for future developments to strongly crosslink the different areas of 

research to take advantage of the different expertise and to optimize possible results. 

This work gave a brief overview of the interconnections between different areas of carbohydrate 

research, including synthetic chemistry, cell studies and vaccine development. The developed 
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strategies, which were presented in this work, can be used for further projects and could enable 

new insights in the important role of carbohydrates in infection disease and as part of 

glycoconjugate vaccines. 
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7. Chapter 7 – Experimental section 

7.1. General remarks 

 

All reagents were purchased from Alfa Aesar, Carbosynth Limited, Fisher Scientific and Sigma 

Aldrich and were used without further purification. Dry solvents were obtained after distillation 

with common procedures. The purification of the synthesized compounds was performed by 

chromatography by using Silica Gel 60 (mesh 230-240) from Material Harvest. Silica gel coated 

glass or aluminium plates (60 F254, Merck) were used for thin layer chromatography (TLC) and 

a 5% sulfuric acid solution in ethanol was used for visualization. NMR-spectra (1H for proton 

and 13C for carbon) were measured with a Bruker 500 MHz DCM Cryoprobe or a 400 MHz 

DPX-400 Dual spectrometer. Fluorine (19F) NMR spectra were recorded with a Bruker 

400 MHz Avance III HD Smart Probe spectrometer. All compounds were fully assigned by 

using COESY, HSQC, HMBC, 1H and 13C spectra. The chemical shifts were quoted relative to 

the solvent peak (CDCl3: 
1H = 7.26 ppm, 13C = 77.16 ppm) as internal standard. During the 

analysis, the coupling constants J were reported in Hz and the following splitting abbreviations 

were used: s = singlet, d = duplet, t = triplet, dd = duplet from duplet, m = multiplet. A Thermo 

Finnigan Orbitrap Classic or a Waters’ Xevo G2-S bench top QTOF were used for high 

resolution mass spectrometry for essential compounds. When anhydrous conditions were 

reported, the reactions were performed in flame dried flasks under argon atmosphere and using 

molecular sieve of 3 or 4 Å. 
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7.2. Materials and Methods for Chapter 2 

7.2.1. Chemical synthesis 

7.2.1.1. Synthesis of 2-O-allyl-1,3,4,6-tetra-O-acetyl-galactose (31) 

 

 

 

 

1,6-Anhydro-3,4-isopropylgalactopranose (300 mg, 1.48 mmol) was dissolved in 6 mL 

anhydrous DMF and cooled to 0 °C. NaH (60% suspension in mineral oil, 149 mg, 4.45 mmol) 

was added and the reaction was stirred for 30 min. Allylbromid (0.387 mL, 4.45 mmol) was 

added slowly and the reaction was stirred over night from 0 °C – RT. Water was added carefully. 

The reaction mixture was extracted with CH2Cl2, the organic layer was washed three times with 

5 mL of saturated solution of NaCl, dried with MgSO4, filtrated through a cotton patch and 

concentrated. The product 1,6-anhydro-2-allyl-3,4-isopropylgalactose was obtained after 

column chromatography (petrol/EtOAc 3:1) with a yield of 95% (339.8 mg, 1.4 mmol). 

1H-NMR (300 MHz, CDCl3): δ = 5.88 (ddt, J = 17.2 Hz, J =10.4 Hz, J = 5.6 Hz, 1H, CH=CH2), 

5.38 (s, 1H, H1), 5.28 (dq, J = 17.2, J = 1.5 Hz, 1H, CH=CH2), 5.19 (ddd, J = 10.4 Hz, J = 

2.7 Hz, J = 1.2 Hz, 1H, CH=CH2), 4.46 (t, J = 5.6 Hz, 1H, H3), 4.40 (t, J = 6.4 Hz, 1H, H5), 

4.14 (dd, J = 5.9, J = 4.9 Hz, 1H, H4), 4.12 – 4.06 (m, 2H, H6), 4.06 – 4.00 (m, 1H, CH2-CH), 

3.53 (dt, J = 10.2, J = 4.2 Hz, 1H, CH2-CH), 3.48 (s, 1H, H2), 1.49 (s, 3H, CH3), 1.32 (s, 3H, 

CH3) ppm. 

13C-NMR (75 MHz, CDCl3): δ = 133.81 (CH=CH2), 117.79 (CH=CH2), 108.36 (C(CH3)2), 

99.60 (C1), 76.56 (C2), 74.05 (C4), 71.92 (C3), 71.06 (C6), 69.21 (C5), 62.89 (OCH2-

CH=CH2), 25.66 (CH3), 24.17 (CH3) ppm. 

HRMS-ESI+ (m/z): calculated [M + H+] = 243.1227, found [M + H+] =  243.1240 
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The obtained material (339.8 mg, 1.4 mmol) was dissolved in Ac2O (7.5 mL/ mmol) and cooled 

to 0 °C. Trifluoracetic acid (TFA, 1.26 mL/mmol) was added dropwise and the reaction was 

stirred overnight from 0 °C – RT. The reaction was diluted with EtOAc (10 mL) and washed 

with saturated solution of Na2CO3 (3 x 10 mL) and saturated solution of NaCl (2 x 10 mL). The 

organic layer was dried with MgSO4, filtrated through a cotton patch and concentrated. The 

crude mixture was purified by column chromatography (petrol/ EtOAc 3:1 -> 1:1) and the 

product 2-allyl-1,3,4,6-O-acetyl-galactopyranose was obtained with a yield of 81% (444.3 mg, 

1.14 mmol). 

1H-NMR (400 MHz, CDCl3): δ = 6.39 (d, J = 3.6 Hz, 1H, H1α), 5.82 (ddd, J = 22.8 Hz, 

J = 10.8 Hz, J = 5.6 Hz, 1H, CH=CH2), 5.61 (d, J = 8.2 Hz, 1H, H1β), 5.46 (d, J = 2.2 Hz, 1H, 

H4α), 5.39 (d, J = 2.7 Hz, 1H, H4β), 5.26 (dd, J = 13.5 Hz, J = 2.4 Hz, 1H, CH=CH2), 5.22 (dd, 

J = 6.6 Hz, J = 3.3 Hz, 1H, H3α), 5.19 (dd, J = 10.5 Hz, J = 1.2 Hz, 1H, CH=CH2), 4.99 (dd, 

J = 10.1 Hz, J = 3.4 Hz, 1H, H3β), 4.28 (t, J = 6.7 Hz, 1H, H5), 4.10 – 4.04 (m, 4H, H6a/b, 

OCH2), 3.87 (dd, J = 10.6 Hz, J = 3.6 Hz, 1H, H2α), 3.68 (dd, J = 10.1 Hz, J = 8.2 Hz, 1H, 

H2β), 2.15, 2.14, 2.03, 2.02 (4 × s, 4 × 3H, CH3CO) ppm. 

13C-NMR (100 MHz, CDCl3): δ = 170.6, 170.3, 170.2, 169.4 (4 × CH3CO), 134.2 (CH=CH2), 

117.9 (CH=CH2), 90.2 (C1), 72.3 (C2), 72.2 (OCH2), 69.5 (C3), 68.7 (C5), 67.9 (C4), 61.5 (C6), 

21.1, 20.9, 20.8, 20.7 (4 × CH3CO) ppm. 

HRMS-ESI+ (m/z): calculated [M + H+] = 389.1442, found [M+ H+] = 389.1440 
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7.2.1.2. Synthesis of 2-O-allyl-galactose (37) 

 

 

 

The fully acetylated sugar 2-allyl-1,3,4,6-tetra-O-acetyl-galactopyranose (100 mg, 0.257 mmol) 

was dissolved in 2 mL MeOH and 30% NaOMe solution (0.142 mL) was added. The reaction 

was stirred at RT until TLC showed complete consumption of the starting material. The mixture 

was neutralized with Dowex 50W (H+ from), filtrated and concentrated. The final, unprotected 

monosaccharide was purified by chromatography (EtOAc/MeOH 3:1) and obtained in 

quantitative yield as mix of both anomers. 

1H-NMR (400 MHz, D2O): δ = 6.06 – 5.92 (m, 2H, CH=CH2, CH’=CH2), 5.44 (d, J = 3.7 Hz, 

1H, H1α), 5.41 – 5.25 (m, 4H, CH=CH2, CH=CH’2) , 4.64 (d, J = 7.9 Hz, 1H, H1β), 4.34 (ddd, 

J = 39.2 Hz, J = 12.1 Hz, J = 6.2 Hz, 2H, H6’), 4.23 – 4.15 (m, 2H, OCH2), 4.07 (dd, J = 11.8 Hz, 

J = 5.5 Hz, 1H, H3’), 4.00 (d, J = 2.9 Hz, 1H, H3’), 3.97 – 3.88 (m, 1H, H4), 3.79 – 3.71 (m, 

2H, H6), 3.71 – 3.64 (m, 2H, H3, H2’), 3.39 (dd, J = 9.9 Hz, J = 8.4 Hz, 1H, H2) ppm. 

13C NMR (101 MHz, D2O): δ = 134.1 (CH=CH2), 118.5 (CH=CH2), 96.4 (C1), 90.3 (C1’), 79.9 

(C2), 75.6 (C2’), 73.9 (C6’), 72.4 (C3), 71.5 (OCH2), 70.2 (C3’), 69.3 (C5), 68.8 (C4), 61.1(C6, 

C6’), 60.9 (C6, C6’) ppm. 

Signals assigned with ‘ represent the alpha-conformer. 

 

7.2.1.3. Synthesis of 2-O-pentenyl-1,3,4,6-tetra-O-acetyl-galactose (33) 
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1,6-Anhydro-3,4-isopropylgalactopranose (300 mg, 1.48 mmol) was dissolved in 6 mL 

anhydrous DMF and cooled to 0 °C. NaH (60% suspension in mineral oil, 149 mg, 4.45 mmol) 

was added and the reaction was stirred for 30 min. 5-Bromo-1-pentene (0.387 mL, 4.45 mmol) 

was added slowly and the reaction was stirred over night from 0 °C – RT. Water was added 

carefully. The reaction mixture was extracted with CH2Cl2, the organic layer was washed three 

times with 5 mL of saturated solution of NaCl, dried with MgSO4, filtrated through a cotton 

patch and concentrated. The product 1,6-anhydro-2-pentenyl-3,4-isopropylgalactose was 

obtained after column chromatography (petrol/EtOAc 3:1) with a yield of 86% (343.8 mg, 

1.27 mmol). 

1H-NMR (500 MHz, CDCl3): δ = 5.80 (ddt, JCH/CH2=CH = 16.9 Hz, JCH/CH2=CH = 10.2 Hz, 

JCH/CH2 = 6.7 Hz, 1H, CH=CH2), 5.41 (d, JH1/H2 = 1.3 Hz, 1H, H1), 5.03 (dq, JCH2=CH/CH = 

17.1 Hz, JCH2=CH/CH2=CH = 1.7 Hz, 1H, CH=CH2), 4.97 (m,1H, CH=CH2), 4.50 (t, JH6/H6,5 = 

5.7 Hz, 1H, H6), 4.46 – 4.41 (m, 1H, H4), 4.16 (dt, JH3/H4 = 7.2 Hz, JH3/H1 = 1.1 Hz, 1H, H3), 

4.08 (d, JH6/H5 = 7.5 Hz, 1H, H6), 3.64 – 3.60 (m, 1H, H5), 3.60 – 3.55 (m, 2H, O-CH2), 3.43 

(d, JHH2/H1 = 0.9 Hz, 1H, H2), 2.13 (m, 2H, CH2-CH=CH2), 1.70 (m, 2H, CH2-CH2-O), 1.53 (s, 

3H, CH3), 1.36 (s, 3H, CH3) ppm. 

13C NMR (120 MHz, CDCl3): δ = 138.1 (CH=CH2), 115.2 (CH=CH2), 99.9 (C1), 78.3 (C2), 

74.3 (C3), 72.2 (C6), 69.5 (C6), 63.2 (CH2O), 31.1, 30.3 (CH2-CH=CH2), 28.9 (CH2-CH2O), 

25.9 (CH3), 24.5 (CH3) ppm. 

HRMS-ESI+ (m/z): calculated [M + H+] = 271.1540, found [M + H+] = 271.1546 

 

 

 

The obtained material (343.8 mg, 1.27 mmol) was dissolved in Ac2O (7.5 mL/ mmol) and cooled 

to 0 °C. Trifluoracetic acid (TFA, 1.26 mL/mmol) was added dropwise and the reaction was 

stirred overnight from 0 °C – RT. The reaction was diluted with EtOAc (10 mL) and washed 
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with saturated solution of Na2CO3 (3 x 10 mL) and saturated solution of NaCl (2 x 10 mL). The 

organic layer was dried with MgSO4, filtrated through a cotton patch and concentrated. The 

crude mixture was purified by column chromatography (petrol/ EtOAc 3:1 -> 1:1) and the 

product 2-pentenyl-1,3,4,6-O-acetyl-galactopyranose was obtained with a yield of 86% 

(455.6 mg, 1.09 mmol). 

1H-NMR (400 MHz, CDCl3): δ = 6.41 (d, J = 3.6 Hz, 1H, H1α), 5.77 (ddt, J = 16.9 Hz, 

J = 10.1 Hz, J = 6.7 Hz, 1H, CH=CH2), 5.59 (d, J = 8.1 Hz, 1H, H1β), 5.46 (d, J = 2.4 Hz, 1H, 

H4α), 5.38 (d, J = 3.1 Hz, 1H, H4β), 5.20 (dd, J = 10.5 Hz, J = 3.2 Hz, 1H, H3α), 5.04 – 4.92 

(m, 3H, H3β, CH=CH2), 4.28 (t, J = 6.6 Hz, 1H, H5α), 4.07 (dd, J = 6.7 Hz, J = 2.0 Hz, 2H, 

H6a/b), 3.78 (dd, J = 10.5 Hz, J = 3.6 Hz, 1H, H2α), 3.63 (ddd, J = 15.2 Hz, J = 11.1 Hz, 

J = 4.6 Hz, 2H, H2β, OCH2), 3.48 (dt, J = 9.1 Hz, J = 6.5 Hz, 1H, OCH2), 2.15 (2 × s, 6H, CH3), 

2.06 (d, J = 5.3 Hz, 2H, OCH2CH2CH2), 2.03, 2.02 (2 × s, 6H, CH3), 1.63 – 1.55 (m, 2H, 

OCH2CH2) ppm. 

13C-NMR (100 MHz, CDCl3): δ = 170.7, 170.4, 170.3, 169.4 (4 × CH3CO), 138.1 (CH=CH2), 

115.1 (CH=CH2), 94.1 (C1β), 90.1 (C1) 73.2 (C2), 70.9 (OCH2), 69.4 (C3), 68.7 (C5), 67.9 

(C3), 61.5 (C6), 29.9 (OCH2CH2CH2), 29.1 (OCH2CH2), 21.1, 20.9, 20.8, 20.7 (4 × CH3CO) 

ppm. 

HRMS-ESI+ (m/z): calculated [M + Na+] =  439.1575, found [M + Na+] = 439.1571 

 

7.2.1.4. Synthesis of 2-O-pentenyl-galactopyranose (38) 

 

 

 

2-O-pentenyl-1,3,4,6-O-acetyl-galactopyranose (100 mg, 0.24 mmol) was dissovled in 2 mL 

MeOH and 30% NaOMe solution (0.136 mL) was added. The reaction was stirred at RT until 

TLC showed complete consumption of the starting material. The mixture was neutralized with 
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Dowex 50W (H+ form), filtrated and concentrated. The final, unprotected monosaccharide was 

purified by chromatography (EtOAc/MeOH 3:1) and was obtained in quantitative yield. 

1H NMR (400 MHz, D2O) δ = 6.00 – 5.85 (m, 2H, CH=CH2, CH’=CH2), 5.44 (d, J = 3.5 Hz, 

1H, H1α), 5.10 (d, J = 17.3 Hz, 2H, CH=CH2, CH=CH’2), 5.03 (d, J = 10.2 Hz, 2H, CH=CH2, 

CH=CH’2), 4.62 (d, J = 7.9 Hz, 1H, H1β), 4.08 (dd, J = 11.5 Hz, J = 5.3 Hz, 1H, H5’), 3.96 

(dd, J = 25.6 Hz, J = 2.7 Hz, 2H, H4, H5), 3.92 – 3.84 (m, 2H, H3α, OCH2), 3.82 – 3.63 (m, 

10H, OCH2, OCH’2, H3’, H4’, H6a,b, H6’a,b), 3.60 (dd, J = 10.3 Hz, J = 3.9 Hz, 1H, H2’), 

3.35 – 3.27 (m, 1H, H2), 2.15 (q, J = 7.0 Hz, 4H, CH2CH=CH2, CH’2CH=CH2), 1.76 – 1.67 

(m, 4H, OCH2CH2, OCH2CH’2) ppm. 

13C NMR (101 MHz, D2O) δ = 139.0, 138.9 (CH=CH2, C’H=CH2), 114.7 (CH=CH2), 96.3 

(C1β), 90.2 (C1α), 80.3 (C2), 76.3 (C2’), 75.0 (C3), 72.6 (OCH2), 72.4 (C3/C4’), 70.2 (C5’), 

70.0 (OCH2), 69.3 (C5), 68.8 (C4), 68.4 (C3’), 61.14, 60.89 (C6, C6’) 29.4 (CH2CH=CH2), 28.2 

(OCH2CH2) ppm. 

 

7.2.1.5. Synthesis of 6-O-pentenyl-1,2,3,4-tetra-O-acetyl-galactopyranose 

(36) 

 

 

 

The monosaccharide 1,2,3,4-diisopropyl-galactopyranose (300 mg, 1.15 mmol) was dissovled 

in 5 mL anhydrous DMF and cooled to 0 °C. NaH (60% suspension in mineral oil, 116 mg, 

3.46 mmol) was added and the mixture was stirred for 30 min. 5-Bromo-1-pentente (0.409 mL, 

3.46 mmol) was added slowly to the reaction and the mixture was stirred overnight from 0 °C 

to RT. 2 mL of water were added carefully to the reaction and the mixture was extracted with 

CH2Cl2 (3 x 5 mL). The organic layer was washed with saturated solution of NaCl (3 x 5 mL), 
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dried with MgSO4, filtrated through a cotton patch and concentrated. The crude mixture was 

purified by chromatography (petrol/EtOAc 3:1 -> 1:1) and the product 6-O-pentenyl-1,2,3,4—

diisopropyl-galactopyranose was obtained with a yield of 93% (350 mg, 1.07 mmol) 

1H-NMR (400 MHz, CDCl3): δ = 5.87 – 5.74 (m, 1H, CH=CH2), 5.53 (d, J = 5.0 Hz, 1H, H1), 

5.05-4.97 (m, 1H, CH=CH2), 4.97-4.91 (m, 1H, CH=CH2), 4.59 (dd, J = 7.9 Hz, J = 2.3 Hz, 

1H, H3), 4.29 (dd, J = 5.0 Hz, J = 2.4 Hz, 1H, H2), 4.25 (dd, J = 7.9 Hz, J = 1.8 Hz, 1H, H4), 

3.95 (td, J = 6.3 Hz, J = 1.8 Hz, 1H, H5), 3.66 – 3.53 (m, 2H, H6), 3.53 – 3.44 (m, 2H, 

OCH2CH2), 2.15-2.06 (m, 2H, CH2CH=CH2), 1.67 (dt, J = 13.7 Hz, J = 6.7 Hz, 2H, OCH2CH2), 

1.53, 1.44,1.33, 1.32 (4 × s, 4 × 3H CH3) ppm. 

13C-NMR (100 MHz, CDCl3): δ = 138.5 (CH=CH2), 114.8 (CH=CH2), 109.3, 108.6 

(2 × C(CH3)2), 96.5 (C1), 71.3 (C4), 70.9, 70.8 (C2, C3, OCH2CH2), 69.4 (C6), 66.8 (C5), 30.4 

(CH2CH=CH2), 28.9 (OCH2CH2), 26.2, 26.1, 25.1, 24.6 (4 × CH3) ppm. 

 

 

 

The sugar 6-O-pentenyl-1,2,3,4-diisopropyl-galactopyranose (350 mg, 1.07 mmol) was 

dissolved in Ac2O (8.33 mL, 7.5 mL/mmol) and cooled to 0 °C. TFA (1.39 mL, 1.26 mL/mmol) 

was added dropwise and the reaction was stirred from 0 °C-RT overnight. The reaction was 

diluted with EtOAc and the organic layer was washed with saturated solution of Na2CO3 

(3 x 5 mL), saturated solution of NaCl (2 x 5 mL), dried with MgSO4, filtrated and concentrated. 

The crude mixture was purified by chromatography (petrol/EtOAc 4:1 -> 2:1) and the product 

was obtained with a yield of 74% (0.79 mmol, 329 mg). 

1H-NMR (500 MHz, CDCl3): δ = 6.35 (d, J = 2.7 Hz, 1H, H1), 6.08 (d, J = 1.5 Hz, 1H, H1’), 

5.82-5.70 (m, 1H, CH=CH2), 5.53 (s, 1H, H3), 5.32 (t, J = 2.8 Hz, 1H, H2), 4.99 (dd, 

J = 17.1 Hz, J = 1.4 Hz, 1H, CH=CH2), 4.93 (d, J = 10.2 Hz, 1H, CH=CH2), 4.24 (dd, 
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J = 13.3 Hz, J = 6.8 Hz, 1H, H4), 3.49 – 3.29 (m, 5H, H5, H6a/b, OCH2CH2), 2.13 (s, 6H, 

2 × CH3CO), 2.07 (dd, J = 5.2 Hz, J = 2.6 Hz, 2H, CH2CH=CH2), 2.00, 1.98 (2 × s, 6H, 

2 × CH3CO), 1.63 – 1.56 (m, 2H CH2CH2CH2) ppm. 

13C-NMR (126 MHz, CDCl3): δ = 170.3, 170.2, 170.1, 169.2 (4 × CH3CO), 138.2 (CH=CH2), 

114.9 (CH=CH2), 89.9 (C1), 71.2 (OCH2CH2), 70.1 (C4), 68.4 (C6), 68.1 (C3), 67.7, 66.8 (C2), 

30.1 (CH2CH=CH2), 28.7 (CH2CH2CH2), 20.8, 20.7, 20.6, 20.5 (4 × CH3CO) ppm. 

HRMS-ESI+ (m/z): calculated [M + Na+] =  439.1575, found [M + Na+] = 439.1571 

 

7.2.1.6. Synthesis of 6-O-pentenyl-galactose (39) 

 

 

6-O-pentenyl-1,2,3,4-tetra-O-acetyl-galactopyranose (100 mg, 0.24 mmol) was dissovled in 

2 mL MeOH and 30% NaOMe solution (0.136 mL) was added. The reaction was stirred at RT 

until TLC showed complete consumption of the starting material. The mixture was neutralized 

with Dowex 50W (H+ form), filtrated and concentrated. The final, deprotected monosaccharide 

6-O-pentenyl-galactopyranose was obtained after chromatography (EtOAc/MeOH 3:1) in 

quantitative yield. 

1H-NMR (400 MHz, D2O): δ = 5.92 (ddt, J = 16.9 Hz, J = 10.4 Hz, J = 6.6 Hz, 2H, CH=CH2, 

CH’=CH2), 5.26 (d, J = 3.5 Hz, 1H, H1α), 5.09 (t, J = 12.3 Hz, 2H, CH=CH2, CH=CH’2), 5.03 

(d, J = 10.2 Hz, 2H, CH=CH2, CH=CH’2), 4.58 (d, J = 7.8 Hz, 1H, H1β), 4.24 – 4.18 (m, 1H, 

H5’), 3.97 (s, 1H, H5), 3.92 (d, J = 3.1 Hz, 1H, H4), 3.86 (dd, J = 10.6 Hz, J = 3.1 Hz, 1H, 

H3’), 3.81 (dd, J = 9.5 Hz, J = 4.3 Hz, 1H, H2’), 3.69 (t, J = 5.5 Hz, 2H, H6a,b), 3.67 – 3.62 

(m, 1H, H3), 3.62 – 3.54 (m, 2H, OCH2), 3.53 – 3.46 (m, 1H, H2), 2.13 (dd, J = 13.9 Hz, 

J = 6.9 Hz, 4H, CH2CH=CH2, CH’2CH=CH2), 1.76 – 1.65 (m, 4H, OCH2CH2, OCH2CH’2) 

ppm. 
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13C-NMR (101 MHz, D2O): δ = 138.8 (CH=CH2), 114.7 (CH=CH2), 96.4 (C1β), 92.3 (C1α), 

73.3 (C2’), 72.7 (C3), 71.8 (C2), 70.8 (OCH2), 69.7 (C6), 69.6 (C5), 69.1 (C3’), 69.0 (C4), 68.6 

(C5), 29.5 (CH2CH=CH2), 27.7 (OCH2CH2) ppm. 

 

7.2.2. Kinetic studies 

 

To determine the second order rate constant k2 of the synthesized galactose derivatives in 

iEDDA reactions with 6-methyl-tetrazine-amine, a high-throughput method that used a 

microplate reader was developed. The reactions were performed in PBS buffer at pH = 7.4 at a 

temperature of 37 °C in a flat bottom 96-well plate. To follow the reaction, the decrease in 

tetrazine absorption at 530 nm was recorded. A concentration of 0.6 mM 

6-methyl-tetrazine-amine was found as optimal concentration per well. The deacetylated 

galactose derivatives were prepared in 20 mM stock solutions, from which further dilutions of 

16, 12, 8 and 4 mM were prepared. A final volume of 100 µM per well was obtained by mixing 

the solutions containing tetrazine and galactose derivative. Each set of reactions was recorded 

for 16 h at 37 °C. Using GraphPad Prism 6.01 and an exponential decay function, the 

pseudo-first order rate constant kobs was calculated for every concentration (Figure 44, A1, B1, 

C1). By plotting the obtained values for kobs against the corresponding concentration, the second 

order rate constant k2 was obtained as slope of the linear function (Figure 44, A2, B2, C2). 
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Figure 44: A.1, B.1, C.1. Decrease in absorbance of tetrazine 40 at 530 nm during iEDDA reaction with galactose 

derivatives 37, 38 and 39. A.2, B.2, C.2 concentration dependent determination of pseudo-first order rate constant kobs for 

iEDDA between galactose derivatives 37, 38 and 39 and tetrazine 40. The second order rate constant k2 was calculated as the 
slope of the linear equation. 

 

7.2.3. Cell studies 

 

The cell lines Huh7 and HepG2 were maintained at 37 °C in a humidified incubator under 5% 

CO2 in DMEM medium (high glucose) which was supplemented with 10% heat-inactivated 
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FBS, 2mM GlutaMAXTM, 10 mM HEPES, 1% Non-essential amino acids, 100 units/mL 

penicillin and 100 µg/mL streptomycine. The fully supplemented media will be further referred 

as complete medium (cDMEM). The cells were grown until 80% confluence before being split 

using TrypLETM Express. All reagents were bought from Gibco, Life Technologies (USA). 

 

7.2.3.1. Determination of cell toxicity 

 

To determine the toxicity of the synthesized galactose derivatives, a CellTiter-BlueR Cell 

Viability Assay (Promega, USA) was used. Cells were seeded in flat bottom 96-well plates at a 

concentration of 10000 cells/well for a 48 h time point and with 5000 cells/well for 72 h. The 

cells were allowed to adhere to the plates for 24 h before the medium was exchanged to cDMEM 

containing either 100 µM or 200 µM of the corresponding galactose derivative 31, 33 or 36. 

Negative controls were performed using plain cDMEM or an equal amount of DMSO as 

represented in the different concentrations. Technical triplicates were performed for each 

concentration. To determine the cell viability in the defined time points, the cell culture medium 

was exchanged to a 1:20 dilution of CellTiter-Blue reagent in cDMEM and the plates were 

incubated for another 1.5 h at 37 °C in the cell incubator. Finally, the fluorescence intensity 

(λex = 530 nm, λem = 590 nm) was analyzed in an Infinite M200 (Tecan, USA) plate reader 

(Figure 45 A, Figure 46 A). Normalization of the relative fluorescence units to the corresponding 

vehicle controls allowed the presentation of the cell viability as percentage of the control (Figure 

45 B, Figure 46 B). 
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Figure 45: Determination of cell toxicity of galactose derivatives 31, 33 and 36 in concentrations 100 µM and 200 µM. The 

cell viability was measured using CellTiter-Blue reagent at timepoints A. 48h and B. 72h  in Huh7 cells. Data are represented 
as % of maximum. Data from three experiments. 
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Figure 46: Determination of cell toxicity of galactose derivative 33 in concentrations 100 µM and 200 µM. A. The cell 

viability was measured using CellTiter-Blue reagent at timepoints 48h and 72h in HepG2 cells. B. Data are represented as % 

of maximum,  Data from three experiments. 

 

7.2.3.2. Metabolic labeling in Huh7 and HepG2 cells 

 

For the analysis of the metabolic incorporation of the galactose derivatives by confocal 

point-scanning microscopy, cells were seed with a density of 15000 cells/well on glass cover 

slips in 24-well plates. After 24 h, the cell culture medium was exchanged to cDMEM 

containing 100 µM of galactose derivatives 31, 33 or 36 and the cells were grown for 72 h. For 
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the staining process, endogenous biotin was blocked using cDMEM supplemented with 

25 µg/mL streptavidin (from 1 mg/mL stock solution in water) for 40 min. After this, a 200 µM 

solution of 6-methyl-tetrazine-peg4-biotin in cDMEM was added for 5 h, to allow the iEDDA 

reaction to take place on the cell surface. The cells were rinsed with PBS (3 x 200 µL/well), 

before stained with 6.6 µg/mL Alexa-Fluor-568-streptavidine (in PBS + 5% FBS, 20 min, RT) 

and Hoechst 33342 (1:1000 in PBS + 5% FBS, 5 min, RT). During experiments including a 

co-staining of the cell membrane, in this point CellMaskTM Deep Red Plasma membrane stain 

(1:1000, 2 min, 37 °C, PBS + 5%FBS) was applied. The cells were fixed with a 4% PFA solution 

(8 min, RT) and the coverslips were mounted on glass objective slides with Fluoromount GTM. 

A LSM880 confocal point-scanning microscope (Zeiss, Germany) with a Diode 405-30 nm, a 

DPSS 561-20 nm and a HeNe594-2 nm laser unit was used for the analysis, in which the pictures 

were acquired with a 63x Plan-Apochromat Oil objective. The pictures were processed using 

ImageJ 1.49 software to remove background noise and representative pictures were chosen from 

5 different experiments. The quantification of the fluorescence intensity in channel 561 nm, 

resulting from the iEDDA reaction after sugar incorporation, was done using ImageJ 1.49 

software by selecting the individual cells per picture as region of interest and comparing their 

intensities. The intensities were represented as ratio to the intensities measured in the 

corresponding controls. 

The here described procedure was performed in the same way for acetylated and de-acetylated 

monosaccharides. 

 

7.2.3.3. Metabolic labeling and inhibition of GLUT1 in HepG2 cells 

 

For an analysis by confocal point-scanning microscopy, HepG2 cells were seeded with a density 

of 15000 cells/well on glass coverslips in 24-well plates, for an analysis by flow cytometry 

50000 cells/well were seeded in 24-well plates one day prior to the experiment. The cell culture 

medium was exchanged to cDMEM supplemented with 100 µM of the sugar derivative and 

different concentrations of the inhibitor (10 µM of STF31 47 and cytochalasine B 48, 10-30 µM 

WZB117 46). The inhibitors were prepared with a concentration of 2 mM (cytochalasine B) or 
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20 mM (STF31, WZB117) in DMSO. The cells were grown for 72 h under these conditions, 

before being analyzed. 

For the analysis by confocal point-scanning microscopy, the protocol was exactly the same as 

in the section described above (Figure 47).  
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Figure 47: Incorporation of galactose derivative 33 in HepG2 cell membrane glycans and incorporation in the presence of 
the GLUT1 inhibitors WZB117 46, STF31 47 and cytochalasine B 48. 
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For analysis by flow cytometry, endogenous biotin was blocked with 25 µg/mL streptavidine in 

cDMEM for 40 min, before a 200 µM solution of 6-methyl-tetrazine-peg4-biotin in cDMEM 

was added for 5 h at 37 °C. The culture medium was removed and the cells were detached with 

20 mM EDTA solution (5 min, 37 °C) and collected by centrifugation (2000 g, 5 min). After 

washing the cells (PBS + 5% fbs), 6.6 µg/mL Alexa-Fluor-568-streptavidin (20 min, RT, PBS 

+ 5% FBS) were added for the staining. The cells were repeatedly washed (PBS + 5% FBS) and 

fixed with 4% PFA solution (8 min, RT). For the analysis in a BD LSRFortessa X-20 cell 

analyzer, the cells were resuspended in 300 µL PBS + 5% FBS and acquired using a 561 nm 

laser. The results were analyzed using FACSDiva, FLOWJOW and GraphPad Prism software 

(Figure 48). 

 

 

Figure 48: A. Half-offset histograms of fluorescence intensity in channel PE-CF594-A, normalized mode, after metabolic 

incorporation of galactose derivative 33 without inhibitor (blue),with 10 µM WZB117 46 (orange), with 20 µM WZB117 46 

(green), with 30 µM WZB117 46 (dark green). B. Half-offset histograms of fluorescence intensity in channel PE-CF-594-A, 

normalized mode, after metabolic incorporation of galactose derivative 33 without inhibitor (blue) or with 10 µM STF31 47 
(orange). Pentaacetyl galactose 42 (red) was used as negative control. 
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7.2.4. Infection studies 

 

For all experiments, GFP-expressing sporozoites from Plasmodium berghei were dissected in 

DMEM from the salivary glands of infected female A. stephensi mosquitoes and HepG2 cells 

were seeded one day prior to infection. 

 

7.2.4.1. Experiments analyzed by confocal point scanning microscopy 

 

One day prior to infection, HepG2 cells were seeded with a density of 15000 cells/well on glass 

coverslips in 24-well plates. For the infection, the cell medium was changed to cDMEM 

containing 100 µM of the galactose derivative 33 or the control sugar 42 and Fungizone (1:200). 

The freshly dissected GFP-expressing sporozoites were added with a concentration of 60000 

sporozoites/well and the cell culture plate was centrifuged (4 min, 200 g) to allow a simultaneous 

settling of all parasites. After 2 h, assuming a complete invasion took place, the medium was 

removed and the cells were rinsed with PBS (3x200 µL) to remove mosquito host debris. With 

fresh cDMEM including 100 µM galactose derivative or control sugar as well as fungizone, the 

cells were incubated for 48 h in the cell culture incubator. At 48 hpi, the same staining procedure 

as described above (section 3) was applied and the experiment as analyzed using a LSM880 

confocal point-scanning microscope (Zeis, Germany). The pictures were acquired with a 63x 

Plan-Apochromat Oil objective and processed with ImageJ 1.49 software to remove background 

noise and to perform the quantification of the galactose derived fluorescence intensity. 

Representative images were chosen from 5 different experiments. The fluorescence intensities 

were presented as ratios to the corresponding negative control. 
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7.2.4.2. Experiments analyzed by flow cytometry and imaging flow 

cytometry 

 

The cells were seeded with a concentration of 50000 cells/well in 24-well plates one day prior 

to the experiment. The cell culture medium was removed and replaced with cDMEM containing 

100 µM of the galactose derivative 33 or the control sugar 42, as well as fungizone (1:200). The 

freshly dissected GFP-expressing sporozoites were added directly to the cells (60000 

sporozoites/well) and the cell culture plate was centrifuged (4 min, 200 g) to allow simultaneous 

settling of the parasites. The medium was changed 2 hpi, including rinsing the cells with PBS, 

to remove mosquito host debris, and the cells were grown until 48 hpi. For the analysis, 

endogenous biotin was blocked as previously described and the iEDDA reaction was performed 

with a solution of 200 µM 6-methyl-tetrazine-peg4-biotin in cDMEM for 5 h. The cells were 

detached with 20 mM EDTA solution (5 min, 37 °C) and collected by centrifugation (2000 g, 

5 min). After washing them with PBS + 5%FBS, staining was achieved with 6.6 µg/ml 

Alexa-Fluor-568-streptavidin (100 µl per well, 20 min, RT) in PBS + 5% FBS. After washing 

the cells with PBS + 5% FBS, they were fixed with 4% PFA solution (8 min, RT) and the cells 

were resuspended in 300 µl PBS + 5% FBS for analysis in a BD LSRFortessa X-20 or in 100 µl 

PBS + 5% FBS for analysis in the imaging flow cytometer Amnis ImageStreamX Mark II. With 

both machines, the fluorescence intensity resulting from incorporated galactose derivative was 

presented as ratio to the corresponding control and naïve cells were compared with non-infected 

and infected cells. 

Gating in Amnis ImageStream MarkII started from the bright field images to select single cells 

and in a next step single cells in focus of the camera. Infected and non-infected cells were 

differentiated on the basis of their fluorescence intensities in channel Ch02, representing the 

GFP-signal (Figure 49). Channel Ch04 was used for to detect the fluorescence intensity resulting 

from incorporated galactose derivative 33. Unstained controls were used to adjust laser powers. 
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Figure 49: Gating strategy of the analysis of the metabolic incorporation of galactose derivative 33 in HepG2 cell membrane 

glycans using Amnis ImageStream MarkII., non-infected samples  
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Figure 50 Gating strategy for analysis of the metabolic incorporation of galactose derivative 33 in HepG2 cell membrane 

glycans using Amnis ImageStream MarkII, infected with sporozoites from Plasmodium berghei. 

 

Representative pictures acquired with Amnis ImageStream Mark II are represented below 

(Figure 51). 
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Figure 51: Representative pictures acquired with Amnis ImageStream Mark II for A. HepG2 cells grown with the control 

sugar 42 non-infected or infected with sporozoites from Plasmodium berghei, and B. HepG2 cells grown with galactose 
derivative 33, non-infected or infected with sporozoites from Plasmodium berghei. Ch01: bright field, Ch02: 488 nm/GFP, 

Ch04: 561 nm 

 

The gating during an analysis by flow cytometry is represented below, as example from one of 

three experiments. Infected and non-infected cells were distinguished on the basis of their 

fluorescence intensity in the GFP channel Alexa-Fluor-488 (Figure 52). 
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Figure 52: Gating strategy for analysis of metabolic incorporation of galactose derivative 33 in HepG2 cell membrane 

glycans, A. without infection, B. after infection with sporozoites from Plasmodium berghei. 
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7.3. Materials and Methods for Chapter 3 

7.3.1. Chemical synthesis 

 

The assigned literature citations in this section represent guidelines for the adapted procedures 

which were used during the synthesis 

 

7.3.1.1. Synthesis of 2,3,4,6-tetra-O-acetylgalactosylbromide164 (52) 

 

 

 

Acetic anhydride (2.5 mL) and HBr (33% in acetic acid, 10 mL) were cooled to 0°C. 

Pentaacetylgalactopyranose (5 g, 12.8 mmol) was added in small portions and the mixture was 

stirred 1h at 0°C and 1h at RT. 

The reaction mixture was diluted with CH2Cl2 (30 mL) and washed with ice cold water (2x). 

The organic layer was washed with NaHCO3 solution (3x) and NaCl solution (2x). All aqueous 

layers were extracted with CH2Cl2 and the combined organic layers were dried with MgSO4, 

filtrated and concentrated. The desired product (5.01 g, 12.2 mmol) was obtained with a yield 

of 95%. 

1H-NMR (400 MHz, CDCl3): δ = 6.69 (d, J = 3.9 Hz, 1H, H1), 5.51 (dd, J = 3.2 Hz, J = 1.0 Hz, 

1H, H4), 5.39 (dd, J = 10.6 Hz, J = 3.3 Hz, 1H, H3), 5.04 (dd, J = 10.6 Hz, J = 4.0 Hz, 1H, H2), 

4.48 (t, J = 6.6 Hz, 1H, H5), 4.22 – 4.06 (m, 2H, H6a/b), 2.14, 2.10, 2.05, 2.00 (4 × s, 12H, 

CH3CO) ppm. 

13C-NMR (100 MHz, CDCl3): δ = 170.4, 170.2, 170.0, 169.8 (4 × CH3CO), 88.3 (C1), 71.2 

(C5), 68.1 (C3), 67.9 (C2), 67.1 (C4), 60.9 (C6), 20.9, 20.8, 20.7, 20.6 (4 × CH3CO) ppm. 
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7.3.1.2. Synthesis of 2-(trimethylsilyl)ethyl-2,3,4,6-tetra-O-acetyl-

galactopyranose165 (53) 

 

 

 

Tetraacetyl-galactosyl bromide 52 (1g, 2.43 mmol) and 2-(Trimethyl)silylethanol (523 µL, 3.65 

mmol) were dissolved in dry CH2Cl2 (10 mL) and stirred over molecular sieve 4Å for 2h at 

room temperature and Ar-atmosphere. Ag2CO3 (1.01 g, 3.65 mmol) and AgClO4 (120 mg, 0.58 

mmol) were added (start 16:00 h) and the reaction was stirred under the same conditions and at 

darkness overnight. After a reaction time of 18h, the mixture was filtrated through Celite and 

the solvent was removed. The glycosylation product (747 mg, 1.66 mmol) was obtained by 

chromatography (petrol/EtOAc 4:1 -> 3:1 -> EtOAc) with a yield of 68%. 

1H-NMR (500 MHz, CDCl3): δ = 5.38 (dd, J = 3.4 Hz, J = 1.0 Hz, 1H, H4), 5.18 (dt, J = 16.8 Hz, 

J = 8.4 Hz, 1H, H2), 5.01 (dd, J = 10.4 Hz, J = 3.4 Hz, 1H, H3), 4.48 (d, J = 8.0 Hz, 1H, H1), 

4.23 – 4.09 (m, 3H, H6a/b), 3.98 (ddd, J = 10.8 Hz, J = 9.6 Hz, J = 5.3 Hz, 1H, OCH2), 

3.92 – 3.87 (m, 1H, H5), 3.59 – 3.52 (m, 1H, OCH2), 2.14, 2.04, 2.04, 1.98 (4 × s, 12H, 

4 × CH3CO), 1.03 – 0.85 (m, 2H, CH2CH2Si), 0.00 (s, 9H, 3 × CH3Si) ppm. 

13C-NMR (126 MHz, CDCl3): δ = 170.6, 170.5, 170.4, 169.5 (4 × CH3CO), 100.9 (C1), 71.3 

(C3), 70.7 (C5), 69.1 (C2), 67.8 (OCH2), 67.2 (C4), 61.4 (C6), 20.9, 20.8, 20.7 (4 × CH3CO), -

1.3 (Si(CH3)3) ppm. 

HRMS-ESI+ (m/z): calculated [M + Na+] = 471.1657, found 471.1642 
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7.3.1.3. Synthesis of 2-(trimethylsilyl)ethyl-galactopyranose (54) 

 

 

 

2-(Trimethylsilyl)ethanyl-2,3,4,6-tetraacetylgalactopyranose (200 mg, 0.446 mmol) was 

dissolved in 2 mL MeOH. NaOMe (30% solution, 0.284 mL) was added and the reaction was 

stirred at RT for 1h. The solution was neutralized with Dowex 50W (H+ form), filtrated and 

concentrated. The crude product was verified by mass analysis and used without further 

purification for the next reaction. 

HRMS-ESI+ (m/z): calculated [M + Na+] = 303.1234, found [M + Na+] = 303.1226 

 

7.3.1.4. Synthesis of 2-(trimethylsilyl)ethyl-3,4-isopropylgalactopyranose166 

(49) 

 

 

 

 

Trimethylsilylethanyl-galactopyranose 54 (125 mg, 0.446 mmol) was dissolved in 2 mL 

acetone. 2,2-Dimethoxypropane (66.9 µL, 0.544 mmol) and p-toluensulfonic acid monohydrate 

(1.7 mg, 0.02 mmol) were added and the reaction was stirred at RT. After a reaction time of 

12 h, Et3N (0.085 mL) was added and the solvent was removed. The product (61.4 mg, 
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0.192 mmol) was purified by chromatography (petrol/EtOAc 3:1 -> EtOAc) with a yield of 

43%. 

1H-NMR (400 MHz, CDCl3): δ = 4.18 (t, J = 8.3 Hz, 1H, H1), 4.14 (dd, J = 5.6 Hz, J = 1.9 Hz, 

1H, H4), 4.11 – 4.04 (m, 1H, H3), 4.04 – 3.92 (m, 2H, H6a, OCH2), 3.84 (dt, J = 12.3 Hz, 

J = 5.1 Hz, 1H), H5, 3.61 – 3.47 (m, 2H, H6b, OCH2), 1.49, 1.32 (2 × s, 2 × 3H, CH3), 1.06 – 

0.88 (m, 2H, CH2Si), 0.02 – -0.12 (m, 9H, Si(CH3)3) ppm. 

13C-NMR (100 MHz, CDCl3): δ = 110.5 (C(CH3)2), 101.9 (C1), 78.9 (C3), 74.0 (C4), 73.7 (C2), 

73.5 (C5), 67.6 (OCH2), 62.5 (C6), 28.2, 26.5 (C(CH3)2), 18.38 (CH2Si), -1.33 (Si(CH3)3) ppm. 

HRMS-ESI+ (m/z): calculated [M + Na+] = 323.1547, found 343.1544. 

 

7.3.1.5. Synthesis of 2-(trimethylsilyl)ethyl-3,4-isopropyl-6-tosyl-galactose167 

(55) 

 

 

 

2-(Trimethylsilyl)ethyl-3,4-isopropyl-galactose (60 mg, 0.187 mmol) was dissolved in 1 mL 

CH2Cl2 and tosylchloride (107 mg, 0.562 mmol) and pyridine (90.7 µL, 1.122 mmol) were 

added. The reaction was stirred at RT overnight before being concentrated. After 

chromatography (petrol/EtAOc 2:1 → 1:1→ EtOAc) the tosylated product was obtained with a 

yield of 57% (51 mg, 0.107 mmol). 

1H-NMR (400 MHz, CDCl3): δ = 7.79 (d, J = 8.3 Hz, 2H, H-Aryl), 7.34 (d, J = 8.0 Hz, 2H, H-

Aryl), 4.26 (qd, J = 10.5 Hz, J = 6.1 Hz, 2H, H6a/b), 4.13 (d, J = 8.3 Hz, 1H, H1), 4.11 – 4.08 

(m, 1H, H4/5), 4.05 (d, J = 6.4 Hz, 1H, H3), 4.03 (d, J = 5.1 Hz, 1H, H4/5), 4.00 – 3.91 (m, 1H, 

OCH2), 3.54 (ddd, J = 11.0 Hz, J = 9.7 Hz, J = 6.3 Hz, 1H, OCH2), 3.46 (dd, J = 8.1 Hz, 
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J = 7.4 Hz, 1H, H2), 2.44 (s, 3H, CH3-Aryl), 1.43, 1.27 (2 × s, 6H, 2 × CH3), 1.05 – 0.88 (m, 

2H, CH2SiMe3), 0.02 (s, 9H, Si(CH3)3) ppm. 

13C-NMR (101 MHz, CDCl3): δ = 145.1, 132.8 (C4°-Aryl), 130.0, 128.1 (CH-Aryl), 110.6 

(C(CH3)2), 101.7 (C1), 78.7 (C3), 73.6 (C2), 73.1 (C4/5), 71.1 (C4/5), 68.7 (C6), 67.6 (OCH2), 

28.1, 26.4 (C(CH3)2), 21.8 (CH3-Aryl), 18.3 (CH2SiMe3), -1.3 (Si(CH3)3) ppm. 

HRMS-ESI+ (m/z): calculated [M + H+] = 474.1744, found [M + H+] = 474.1700 

 

7.3.1.6. Synthesis of 2-(trimethylsilyl)ethyl-3,4-isopropyl-6-azido-galactose 

(56) 

 

 

 

The monosaccharide 2-(trimethylsilyl)ethyl-3,4-isopropyl-6-tosyl-galactose (51 mg, 

0.107 mmol) was dissolved in 4 mL anhydrous DMF and NaN3 (42 mg, 0.645 mmol) was added. 

The reaction was stirred at 115-120 °C for 12 h, before being diluted with EtOAc. The organic 

layer was washed with saturated solution of NaCl (3x5 mL), dried with MgSO4, filtrated and 

concentrated. The desired product was obtained after chromatography (hexane/EtOAc 2:1 → 

1:1) with a yield of 64% (24 mg, 0.069 mmol). 

1H-NMR (400 MHz, CDCl3): δ = 4.21 (d, J = 8.3 Hz, 1H, H1), 4.09 (dd, J = 5.0 Hz, J = 3.2 Hz, 

2H, H3, H4), 4.05 (ddd, J = 10.9 Hz, J = 9.6 Hz, J = 6.1 Hz, 1H, OCH2), 3.93 (ddd, J = 8.2 Hz, 

J = 4.2 Hz, J = 1.7 Hz, 1H, H5), 3.73 (dd, J = 13.1 Hz, J = 8.3 Hz, 1H, H6a), 3.62 – 3.52 (m, 

2H, H2, OCH2), 3.32 (dd, J = 13.1 Hz, J = 4.3 Hz, 1H, H6b), 1.53, 1.35 (2 × s, 2 ×3H, C(CH3)2), 

1.01 (tdd, J = 13.7 Hz, J = 9.4 Hz, J = 5.5 Hz, 2H, CH2Si(CH3)3), 0.02 (s, 9H, Si(CH3)3) ppm. 

13C-NMR (100 MHz, CDCl3): δ = 110.7 C(CH3)2, 101.7 (H1), 78.7 (C3), 73.9 (C4), 73.8 (C2), 

73.2 (C5), 67.6 (OCH2), 51.2 (C6), 28.2, 26.5 (C(CH3)2), 18.3 (CH2Si(CH3)3), -1.3 (Si(CH3)3) 

ppm. 
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HRMS-ESI+ (m/z): calculated [M + Na+] = 368.1612, found [M + Na+] = 368.1640 

 

7.3.1.7. Synthesis of 2-(trimethylsilyl)ethyl-

2-O-pentenyl-3,4-isopropyl-6-azido-galactose168 (57) 

 

 

 

The sugar 2-(trimethylsilyl)ethyl-3,4-isopropyl-6-azido-galactose (24 mg, 0.069 mmol) was 

dissolved in 1 mL anhydrous DMF and cooled to 0 °C. Sodium hydride (60% in mineral oil, 

13.9mg, 0.417 mmol) was added and after 15 min, 5-Bromo-1-pentene (32.6 µL, 0.276 mmol) 

was added. The reaction was stirred from 0 °C to RT for 8 h. The reaction was quenched with 

water (1 mL) and diluted with EtOAc. The organic layer was washed with saturated solution of 

NaCl (3x2 mL), dried with MgSO4, filtrated and concentrated. The crude mixture was purified 

by chromatography (hexane/EtOAc 2:1) and the product was obtained with a yield of 97% 

(27.8 mg, 0.067 mmol). 

1H-NMR (300 MHz, CDCl3): δ = 5.82 (ddt, J = 16.9 Hz, J = 10.2 Hz, J = 6.6 Hz, 1H, CH=CH2), 

5.02 (ddd, J = 17.1 Hz, J = 3.6 Hz, J = 1.6 Hz, 1H, CH=CH2), 4.95 (ddt, J = 10.2 Hz, J = 2.2 Hz, 

J = 1.2 Hz, 1H, CH=CH2), 4.26 (d, J = 7.9 Hz, 1H, H1), 4.12 – 4.04 (m, 2H, H3, H4), 4.05 – 

3.94 (m, 1H, OCH2), 3.89 – 3.81 (m, 1H, H5), 3.80 – 3.71 (m, 1H), 3.71 – 3.63 (m, 1H), 3.61 – 

3.51 (m, 1H), 3.30 (d, J = 4.2 Hz, 1H, H6), 3.28 – 3.22 (m, 1H), 2.19 – 2.08 (m, 2H, 

OCH2CH2CH2), 1.74 – 1.61 (m, 2H, OCH2CH2), 1.52 (s, 3H, CH3), 1.33 (s, 3H, CH3), 1.00 

(ddt, J = 12.3 Hz, J = 8.3 Hz, J = 4.2 Hz, 2H, CH2Si(CH3)3), 0.85 (dd, J = 11.4 Hz, J = 4.5 Hz, 

2H), 0.01 (s, 9H, Si(CH3)3). 

13C-NMR (75 MHz, CDCl3): δ = 138.6 (CH=CH2), 114.7 (CH=CH2), 110.3 (C(CH3)2), 102.4 

(C1), 80.7 (C3), 79.2 (C2), 74.0 (C4), 72.8 (C5), 71.7 (OCH2), 67.4 (OCH2), 51.3 (C6), 30.3 

(OCH2CH2), 29.3 (OCH2CH2CH2), 27.8 (CH3), 18.8 (CH2Si(CH3)3), -1.32 (Si(CH3)3) ppm. 
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HRMS-ESI+ (m/z): calculated [M + Na+] = 436.2238, found [M + Na+] = 436.2200 

 

7.3.1.8. Synthesis of 2-O-pentenyl-

-1,3,4-tri-O-acetyl-6-azido-galactopyranose (51) 

 

 

 

The monosaccharide 2-(trimethylsilyl)ethyl-2-O-pentenyl-3,4-isopropyl-6-azido-galactose 

(27 mg, 0.065 mmol) was dissolved in 1 mL CH2Cl2 and cooled to 0 °C. Trifluoracetic acid 

(29.9 µL, 0.392 mmol) was added and the reaction was stirred overnight from 0 °C to RT. The 

solvent was evaporated and co-evaporated with CH2Cl2 (3x5 mL). The crude residue was 

dissolved in 1 mL CH2Cl2 and pyridine (500 µL) as well as acetic anhydride (82 µL, 

0.876 mmol) were added. The reaction was stirred for 12h at RT before being further diluted 

with CH2Cl2. The organic layer was washed with 1M HCl (2x3 mL) and saturated solution of 

NaCl (1x3 mL), dried with MgSO4, filtrated and concentrated. The final product was obtained 

after chromatography (hexane/EtOAc 4:1 →2:1 → EtOAc) with a yield of 52% (13.7 mg, 

0.034 mmol). 

1H-NMR (300 MHz, CDCl3): δ = 6.43 (d, J = 3.7 Hz, 1H, H1), 6.27 (d, J = 4.4 Hz, 1H, H1’), 

5.87-5.69 (m, 2H, CH=CH2), 5.47 – 5.33 (m, 3H, H4), 5.20 (dd, J = 10.6 Hz, J = 3.4 Hz, 1H, 

H3), 5.05 – 4.93 (m, 5H, CH=CH2), 4.34 (t, J = 4.1 Hz, 1H, H5’), 4.18 (t, J = 6.9 Hz, 1H), 4.14 

– 4.06 (m, 1H), 3.95 – 3.85 (m, 2H, H5), 3.79 (dd, J = 10.5, J = 3.7 Hz, 1H, H2), 3.71 – 3.35 

(m, 12H, OCH2, H6), 2.16 (s, 3H, CH3), 2.12 (s, 2H, CH3), 2.02 (s, 2H, CH3), 1.73 – 1.53 (m, 

5H, OCH2CH2) ppm. 

13C-NMR (75 MHz, CDCl3): δ = 170.3, 170.2, 170.1 (COCH3), 138.1 (CH=CH2), 138.08 

(C’H=CH2), 115.28 (CH=CH2), 115.09 (CH=C’H2), 100.2 (C1’)c, 94.11, 90.0 (C1), 87.3 (C5) 

83.3, 77.36, 75.69, 73.19, 73.1 (C2), 72.69, 72.58, 70.8 (C3), 70.0 (C6)c, 69.42, 68.7 (C4), 
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68.14, 50.6 (OCH2), 50.3 (OC’H2),29.3 , (CH2CH=CH2), 29.1 (C’H2CH=CH2), 21.4, 21.1, 21.0, 

20.9, 20.8, 20.7 (CH3 and C’H3) ppm. 

HRMS-ESI+ (m/z): calculated [M + Na+] = 422.1534, found [M + Na+] = 422.1600 

 

7.3.2. Cell studies 

 

The incorporation of the bifunctional galactose derivative was tested in HepG2 cells by confocal 

point-scanning microscopy. For this experiment, the cells were seeded on glass coverslips with 

a density of 15000 cells/well in 24-well plates (300 µL volume). The cells were allowed to 

attach to the coverslips for 24 h before the cell media was removed and replaced by cDMEM 

containing 100 µM or 200 µM of the bifunctional galactose derivative 51. Pentaacetylated 

galactose (42) was used as negative control. The cells were grown in the present of the unnatural 

sugar for 72 h, after which different staining procedures were applied. 

The initial part of each staining procedure was the same during all conditions and represents the 

iEDDA of the terminal alkene of the sugar with 6-methyl-tetrazine-peg4-biotin. The cell culture 

medium was aspirated and endogenous biotin was blocked with 25 µg/mL streptavidin (from 

1 mg/mL stock in water) in cDMEM for 40 min at 37 °C. The solution was removed and the 

cells were rinsed with PBS (2 x 200 µL). 200 µL of a 200 µM solution of 

6-methyl-tetrazine-peg4-biotin in cDMEM was applied for 5 h at 37 °C. After this step, the cells 

were again rinsed with PBS (2x200 µL).  

Different staining conditions were applied (Table 8): 
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Table 8: Different staining conditions after the metabolic incorporation of the bifunctional galactose derivative 51. 

Entry 1st staining step 2nd staining step 

Condition 1: 1h, RT 10 µM DIBO-Alexa-Fluor-488 6.6 µg/mL Alexa-

Fluor-568-

streptavidin, 20 min, 

RT 

Condition 2: 20 min 6.6 µg/mL 

Alexa-Flour-568-streptavidin, 20 min, RT 

1h, RT 10 µM DIBO-

Alexa-Fluor-488 

Condition 3:  1h, RT 20 µM DIBO-Alexa-Fluor-488 6.6 µg/mL Alexa-

Fluor-568-

streptavidin, 20 min, 

RT 

Condition 4: 6.6 µg/mL Alexa-Fluor-568-streptavidin, 

15 min, RT 

15 min, RT 20 µM 

DIBO-Alexa-Fluor-

488 

Condition 5:  6.6 µg/mL Alexa-Fluor-568-streptavidin + 

10 µM DIBO-Alexa-Fluor-488, 30 min, 

RT 

 

 

After the staining for the sugar moiety, the cell nuclei were stained with Hoechst33342 (1:1000) 

for 5 min in PBS + 5% FBS at RT. The cell samples were fixed with 4% PFA solution for 8 min 

at RT before being mounted on glass objectives, using Fluoromount GTM.  

The samples were analyzed in a LSM880 confocal point-scanning microscope (Zeiss, Germany) 

with a Diode 405-30 nm, a Argon 488, a DPSS 561-20 nm and a HeNe594-2 nm laser unit. The 

pictures were acquired with a 63x Plan-Apochromat Oil objective and processed with ImageJ 

software package to remove background signal. 
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7.4. Materials and Methods for Chapter 4 

7.4.1. Site selective modification of CRM197 

7.4.1.1. Synthesis of CRM-DHA 

 

 

 

5 mg of CRM197 (105.5 µl of stock with c=47.4 mg/mL) were diluted to a final concentration of 

5 mg/mL with 50 mM NaPi pH=11. A solution of TCEP (12 equiv. from 0.05M stock in 50 mM 

NaPi, pH=11) was added and the reaction mixture was kept in the dark gently moving at room 

temperature for 3 hours. Methyl-2,5-dibromopentanoate (28) (500 equiv., from 2 M stock in 

DMSO) was added, the mixture was vortex for 10 seconds and the reaction was completed after 

3 hours at room temperature. CRM-DHA was purified in a Zeba Spin desalting column (7 kDa, 

MWCO) previously equilibrated with 100 mM NaPi, pH = 6.3. The concentration was 

determined by BCA assay and the protein aliquots were either stored at 4 °C or directly used. 
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Table 9: All reaction conditions for the conversion of cysteins C186 and C201 into dehydroalanine. 

Entry TCEP 

(equiv.) 

Time 

[h] 

T 

[°C] 

pH 28 

(equiv.) 

Time 

[h] 

T 

[°C] 

Result 

1 6 1.5 37 8-9.5 50 2 21 - 

2 6 1 37 9 50 4 21 - 

3 6 1 37 9 50 7 21 - 

4 6 1 37 9 50 8 21 - 

5 6 1 37 9 50 15 21 - 

6 12 2.5 37 9 50 24 21 - 

7 6 2.5 37 9 50 24 21 - 

8 12 3 21 9 50 48 21 - 

9 12 3 21 9 100 48 21 adduct 

10 12 3 21 9-10 100 24 21 - 

11 12 3 21 9-10 100 3 21 - 

12 12 3 21 10 100 3 21 Partial 

elimination 

13 12 3 21 9-10 100 24 21 - 

14 12 3 21 10 100 24 21 Partial 

elimination 

15 

20 12 3 21 500 3 21 

Precipitation, 

only traces of 

Dha 

16 

2 12 3 21 500 3 21 

Main peak 

for Dha, 

smaller for 

side product 

17 5 12 3 21 500 5 21 Dha 

18 10 12 3 21 500 5 21 Precipitation 

19 2 12 3 21 500 5 21 - 

20 2 12 3 21 500 18 21 - 
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21 2 12 3 21 500 3 37 - 

22 2 12 3 21 500 5 37 - 

 

7.4.1.2. Synthesis of CRM-DHA-N3  

 

 

 

A sample of bis(11-azidoundecyl)disulfide 63 (100 equiv., from stock 43.8 mM in DMSO) was 

mixed with a freshly prepared solution of TCEP (100 equiv. from stock 0.05 M in H2O) and 

kept gently moving in the dart at room temperature for 2h. An aliquot of CRM-DHA (in 100 

mM NaPi pH=6.3, c~2 mg/mL) was added directly and the reaction was kept gently moving at 

room temperature for 4 h. The modified protein was purified using Zeba Spin desalting columns 

(7 kDa MWCO) which were previously equilibrated with 12 mM NaPi, pH = 7.2. The purified 

protein CRM-DHA-N3 was used directly for the following conjugation step. 

 



Chapter 7 

158 

 

7.4.1.3. Preparation of the protein samples for High Resolution Mass 

Spectrometry 

 

Around 150 µg of each protein sample were prepared for analysis by high resolution mass 

spectrometry. The samples were loaded on an amicon centrifugal filter (10 kDa MWCO), which 

were previously washed with water (2 x 500 µL), and desalted with 400 µl water (13000 g, 

10 min. To ensure a buffer exchange to ammonium acetate, the protein solution was washed 3x 

with a 5 mM solution of ammonium acetate (3 x 400 µL, 13000 g, 10 min). The final 

concentration was obtained by a centrifugation with 400 µL 5 mM ammonium acetate at 13000 g 

for 15 min. The protein samples were recovered from the centrifugal filters using the spin 

protocol at 1000 g for 2 min. For the analysis, 10 µl of each sample were diluted with 90 µL 

water and 100 µL acetonitrile and were acidified by adding 0.5 µL formic acid. The samples 

were analyzed in a Bruker SolariX FT-ICR-MS machine, equipped with a 7 Tesla magnet. 
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7.4.2. Derivatization of Polysaccharide antigens 

7.4.2.1. Derivatization of polysaccharide from group B streptococcus 

serotype Ia 67 

 

 

 

The polysaccharide GBS1a 66 was diluted to a final concentration of 2 mg/mL in 1.25 M NaOH 

and heated to 70 °C for 4.5 h. After neutralization with acetic acid, the polysaccharide was 

purified in PD10 G25 columns, equilibrated with water. The evaporated residue was resolved 

in 80 µl DMSO and 80 µl water, followed by the addition of 10 µl DBCO-NHS solution (1 mg 

DBCO-NHS in 50 µl DMSO) and 2 µl triethylamine solution (2 µl triethylamine in 18 µl water). 

The reaction was purified on PD 10 G25 columns after 4 h at room temperature and the solvent 

was evaporated. The polysaccharide was used in a concentration of 10 mg/mL in deuterated 

water. 
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7.4.2.2. Derivatization of pneumococcal type 14 capsular polysaccharide 65 

 

 

 

A sample of 10 mg of pneumococcal type 14 polysaccharide 64 was dissolved in Milli Q water 

to reach a final concentration of 20 mg/mL. The solution was diluted with 0.55 M NaOH to a 

concentration of 2 mg/mL polysaccharide and 0.5 M final concentration of NaOH. The reaction 

was incubated at 70 °C for 1 h, before being neutralized with concentrated acetic acid. The 

mixture was purified in PD 10 G25 columns, previously equilibrated with water. After 

evaporation of the solvent, the residue was resolved in 25 µL water and 175 µL DMSO. 50 µL 

of the linker DBCO-NHS (1 mg per 50 µL) were added, together with 2 µL of TEA solution 

(2 µL triethylamine in 18 µL water). The reaction was performed at room temperature for 3 h, 

before being purified on a PD 10 G25 column, equilibrated with water. The solvent was 

evaporated. The polysaccharide was used in a concentration of 10 mg/mL in deuterated water. 
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7.4.3. Glycoconjugation with CRM-DHA-N3  

 

The conjugation reactions between CRM-DHA-N3 and the polysaccharides GBS-Ia-dbco 67 or 

PN14-dbco 65 were performed in the same manner, however for GBS-Ia-dbco 67 a ratio of 1:2 

protein/polysaccharide was used, in contrast to conjugations with PN1-dbco 65 in which a ratio 

of 1:4 was applied. 

For the conjugation reaction, the protein CRM-DHA-N3 in 12 mM NaPi, pH = 7, was mixed 

with the aqueous solution of the corresponding polysaccharide. A suspension of 

dehydroascorbic acid (36 mg/mL) in water was added with a concentration of 2.5 µg per µg 

protein. The reaction was performed at room temperature for at least 5 h, however in this stage, 

the reaction can be also performed overnight. The crude mixture was used directly for the 

purification method of choice. 
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7.5. Materials and Methods for Chapter 5 

7.5.1. Chemical synthesis 

7.5.1.1. Synthesis of O-mesitylensulfonylhydroxylamine (27) (MSH)107 

 

 

 

The starting material ethyl N-hydroxyacetamidate (1.18 mg, 11.4 mmol) was dissolved in 6 mL 

DMF and triethylamine (1.5 mL) was added. The solution was cooled to 0 °C and 

2-mesitylensulfonylchlorid (2.5 g, 11.4 mmol) was added in small portions while the mixture 

was stirred vigorously. After 30 min, the reaction was diluted with Et2O (100 mL) and washed 

repeatedly with H2O (4x50 mL). The aqueous layers were extracted with Et2O and the combined 

organic layers were dried with MgSO4 and concentrated. The intermediate compound 

ethyl-O-(mesitylensulfonyl)acetohydroxamate (2.39 mg, 8.39 mmol, 74%) was obtained as 

white solid and was directly used for the next step. 

The obtained residue (2.39 g, 8.39 mmol) was dissolved in 3 mL dioxane and cooled to 0 °C. 

Perchloric acid (70%, 1 mL) was added dropwise and the reaction was stirred for 10 min. When 

the mixture solidified, it was transferred into 100 mL of ice cold H2O and the flask was rinsed 

with H2O and Et2O. After extraction of the aqueous layer with Et2O (3x30 mL), the combined 

organic layers were washed with saturated solution of NaCl (2x50 mL) and dried/neutralized 

with K2CO3. The solution was filtrated and carefully concentrated to a volume less than 50 mL 

before poured into 50 mL of ice cold petrol. The desired product MSH was obtained after 

crystallization with a yield of 49% (885 mg, 4.11 mmol). 

1H-NMR (400 MHz, CDCl3): δ = 7.00 (s, 2H, H3, H5), 2.59 (s, 6H, 2 × o/p-CH3), 2.34 (s, 3H, 

m-CH3) ppm. 

13C-NMR (100 MHz, CDCl3): δ = 141.0, 131.7 (C-Ar), 22.7 (2 × CH3), 21.1 (CH3) ppm. 
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7.5.1.2. Synthesis of the thioglycoside donors 68-71 

 

 

 

The four thioglycoside donors phenyl-2,3,4,6-tetra-O-acetyl-1-thio-β-glucopyranose (68), 

phenyl-2,3,4,6-tetra-O-benzyl-1-thio-β-glucopyranose (69), ethyl-2,3,4,6-tetra-O-acetyl-1-

thio-β-glucopyranose (70) and ethyl-2,3,4,6-tetra-O-benzyl-1-thio-β-glucopyranose (71) were 

synthesized based on reported procedures in the literature.169 The fully characterized spectra 

were conform with the ones published earlier.  

 

7.5.1.3. Synthesis of the 2-deoxy-2-fluoro-thioglycoside donors 72a, b, 73a, b 

 

 

 

The 2-deoxy-2-fluoro substituted thioglycoside donors phenyl-3,4,6-tri-O-acetyl-2-deoxy-2-

fluoro-1-thio-α-d-mannopyranose (72b), phenyl 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-1-thio-β-

d-mannopyranose (72a), phenyl 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-1-thio-α-d-glucopyranose 

(73b) and phenyl-3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-1-thio-β-d-glucopyranose (73a) were 

synthesized according to literature procedure by Míriam Salvadó (Department de Química 

Analítica I Química Orgànica, Universitat Rovira I Virgili, C/Marcellí Domingo 1, 43007 

Tarragona, Spain).160,170,171 
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7.5.1.4. Synthesis of the 1-O-suflomesitylen intermediates from 

2-deoxy-2-fluoro-glycosides 74, 75a,b 

 

 

 

The same procedure was applied for all 2-deoxy-2-fluoro-thioglycosides. 

A sample of the corresponding 2-deoxy-2-fluoro-thioglycoside 72a, 72b, 73a or 73b was 

dissolved in dry CH2Cl2, followed by the addition of MSH (5 equiv.) and K2CO3 (2 equiv.). The 

reaction was stirred at room temperature for 16 h, before being diluted with DCM and washed 

with saturated Na2CO3 and saturated NaCl solution. The 1-O-sulfomesitylen products were 

obtained after chromatography. 

1H- and 13C-NMR of 2-fluoro-3,4,6-triacetyl-sulfonylmesitylmannopyranose (74) 

1H-NMR (500 MHz, CDCl3): δ = 7.01 (s, 2H, H-Mes), 5.91 (dd, J = 6.3 Hz, J = 1.9 Hz, 1H, 

H1), 5.35 (t, J = 10.1 Hz, 1H, H4), 5.27 – 5.13 (m, 1H, H3), 4.88 – 4.72 (m, 1H, H2), 4.07 (dd, 

J = 12.6 Hz, J = 3.9 Hz, 1H, H6), 3.79 – 3.69 (m, 1H, H5), 3.64 (dd, J = 12.6 Hz, J = 2.3 Hz, 

1H, H6), 2.65 (s, 6H, CH3-Mes), 2.33 (s, 3H, CH3-Mes), 2.10, 2.06 – 2.03, 2.03 (3 × s, 9H 

CH3CO) ppm. 

13C-NMR (126 MHz, CDCl3): δ = 170.6, 169.9, 169.4 (3 × CH3CO), 144.4, 140.1 (2 × C4°-

Mes), 132.1, 131.3 (CH-Mes), 95.9 (C1), 86.92, 85.39 (C2, C2’), 71.3 (C5), 69.4, 69.2 (C3, 

C3’), 64.8 (C4), 60.8 (C6), 22.8, 21.3 (CH3-Mes), 20.77, 20.71 (CH3CO) ppm. 

19F NMR (376 MHz, CDCl3) δ -202.59 (s) ppm. 

 

1H- and 13C-NMR of 2-fluoro-3,4,6-triacetyl-sulfonylmesitylglucopyranose (75a, b) 
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1H-NMR (400 MHz, CDCl3): δ = 6.98 (d, J = 12.5 Hz, 2H, H-Aryl), 5.99 (d, J = 3.9 Hz, 1H, 

H1), 5.54 – 5.41 (m, 1H, H3), 5.04 (dd, J = 19.9 Hz, J = 9.9 Hz, 1H, H4), 4.67 – 4.47 (m, 2H, 

H2, H2’), 4.18 (dt, J = 12.3 Hz, J = 6.2 Hz, 1H, H6), 4.04 (ddd, J = 10.4 Hz, J = 3.8 Hz, 

J = 2.1 Hz, 1H, H5), 3.79 (ddd, J = 8.7 Hz, J = 7.3 Hz, J = 2.3 Hz, 1H, H6), 2.65 (s, 6H, 2 × CH3-

Mes), 2.31 (s, 3H, CH3-Mes), 2.05 (s, 6H, 2 × CH3O), 2.03 (s, 3H, CH3O) ppm. 

13C-NMR (100 MHz, CDCl3): δ = 170.6, 169.9, 169.6 (3 × CH3CO), 144.2 (p-C-Mes), 140.3 

(C1-Mes), 132.0, 131.1 (C4°-CH3Mes), 94.9, 94.7 (C1, C1’), 87.0, 85.0 (C2, C2’), 70.3 (C3), 

69.9 (C5), 67.1 (C4) 60.7 (C6), 22.8 (2 × CH3-Mes), 21.2 (CH3-Mes), 20.7, 20.6 (3 × CH3O) 

ppm. 

19F NMR (376 MHz, CDCl3) δ -199.38 (ddd, J = 50.3, 14.7, 3.2 Hz), -201.26 (dd, J = 48.3, 11.8 

Hz). 

 

7.5.1.5. Synthesis of phenyl-2,3,4-tri-O-benzyl-1-thio-β-d-glucose (79)172 

 

 

 

Phenyl-tetra-O-acetyl-1-thio-β-D-glucopyranosid (170 mg, 0.389 mmol) was dissolved in 

MeOH and 0.23 mL of 30% NaOMe solution in MeOH was added. The reaction was stirred at 

RT until reaction control by TLC (Petrol/EtOAc 2:1) showed complete consumption of the 

starting material. The mixture was neutralized with Dowex 50W (H+ form), filtrated and 

concentrated. Phenyl-thioglucopyranose was obtained with 100%. Phenyl-thioglucopyranosid 

(106 mg, 0.389 mmol) and trityl chloride (109 mg, 0.389 mmol) were dissolved in pyridine 

(1 mL) and stirred at RT. The reaction was controlled by TLC (EtOAc). After 16h another 70 mg 

trityl chloride were added. After 22 h, the reaction mixture was poured into H2O and extracted 

with DCM, the organic layers were washed with H2O, dried over MgSO4, filtrated and 
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concentrated. The crude phenyl-6-O-trityl-thioglucopyranose was dissolved in 2 mL anhydrous 

DMF and cooled to 0°C. NaH (60% in mineral oil, 62.6 mg, 1.87 mmol) was added and the 

mixture was stirred for 30 min. Benzyl bromide (0.22 mL, 1.87 mmol) was added and the 

reaction was stirred overnight at 0° - RT. The reaction mixture was cooled again and 2 mL H2O 

were added carefully. The reaction was extracted with CH2Cl2 (3 x 10 mL), the combined 

organic layers were washed with NaCl (saturated solution 3 x 10 mL) and dried over MgSO4. 

After filtration and concentration, the crude product was directly used for the next reaction. 

Phenyl-tribenzyl-6-O-trityl-1-thio-β-D-glucopyranose was dissolved in MeOH/DCM (4:1) and 

p-TsOH (37.1 mg, 0.195 mmol) was added. After a reaction time of 24 h, TLC showed complete 

consumption of the starting material. The mixture was neutralized with Et3N and the solvent 

was removed. The final compound was purified by chromatography (from petrol/ EtOAc 6:1 to 

EtOAc), resulting in 79 (51%, 63.1 mg, 0.2 mmol) as a white solid. 

HRMS-ESI+ (m/z) C33H34O5S: calculated [M + Na+] = 565.2019, found [M + Na+] = 565.2019. 

1H-NMR (400 MHz, CDCl3): δ = 7.51 (dt, J = 4.4 Hz, J = 2.4 Hz, 2H, Bn/SPh), 7.42 – 7.27 (m, 

18H, Bn/SPh), 4.96 – 4.81 (m, 4H, 2 × CH2Ph), 4.77 (d, J = 10.3 Hz, 1H, CH2Ph), 4.72 (d, J = 

9.8 Hz, 1H, H1), 4.65 (d, J = 11.0 Hz, 1H, CH2P), 3.88 (dd, J = 12.0 Hz, J = 2.6 Hz, 1H, H6), 

3.78 – 3.64 (m, 2H, H6, H3), 3.58 (t, J = 9.4 Hz, 1H, H4), 3.53 – 3.45 (m, 1H, H2), 3.39 (ddd, 

J = 9.6 Hz, J = 4.9 Hz, J = 2.7 Hz, 1H, H5) ppm. 

13C-NMR (100 MHz, CDCl3) δ =139.2, 138.4, 138.0, 137.9 (4 × C4° in Ph), 132.0, 129.2, 128.7, 

128.6, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9 (CH in Ph), 87.4 (C1),86.7 (C3) 81.2 (C2), 79.4 

(C5), 77.8 (C4), 75.9, 75.7, 75.2 (4 × PhCH2), 62.5 (C6). 

 

7.5.2. General procedure of the glycosylation reaction using MSH as activating 

reagent 

 

The indicated glycosyl acceptor (1.3 equiv.) was dissolved in the indicated dry solvent and 

stirred over molecular sieve 3 Å for 30 min. Cu(OTf)2 (1.5 equiv.) was added for 10 min, 

followed by the addition of the assigned thio-glycosyl donor (1 equiv.) MSH (5 equiv.) was 
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added and the reaction was stirred at room temperature until monitoring by TLC indicated the 

completion of the reaction. The reaction mixture was filtered through Celite and the organic 

layer was washed with saturated solutions of Na2CO3 and NaCl. The final products were 

obtained after purification by chromatography. The yields and stereoselectivity were indicated 

in the corresponding table. All compounds were fully characterized and correspond to spectra 

published in the literature. 

 

7.5.3. Procedure for the selective activation of S-ethyl over S-phenyl thioglycosides 

 

The glycosyl acceptor 6-O-tripbenzylthiophenyl-glucopyranose 78 (23.8 mg, 0.044 mmol) was 

dissolved in 2 mL dry CH3CN and stirred over molecular sieve 3 Å for 30 min. Cu(OTf)2 

(18.4 mg 0.051 mmol) was added for 10 min, followed by the addition of the donor 

ethyl-2,3,4,6-tetrabenzylthioglucose 71 (20 mg, 0.034 mmol). MSH (36.6 mg, 0.17 mmol) was 

added and the reaction was stirred at RT for 15 min. The mixture was filtered through Celite 

and the organic layer was washed with saturated solutions of Na2CO3 and NaCl. The 

disaccharide was obtained after chromatography (petrol/EtOAc 3:1) with a yield of 50% 

(18.1 mg, 0.017 mmol) 

1H-NMR (500 MHz, CDCl3): δ = 7.54 (d, J = 7.5 Hz, 2H), 7.42-7.15 (m, 38H, H-Phenyl,), 5.02 

(s, 1H, H1), 5.01 – 4.42 (m, 19H), 4.40 (d, J = 7.7 Hz, 1H, H1’), 4.17 (d, J = 11.1 Hz, 1H), 3.76 

– 3.55 (m, 8H), 3.52 – 3.39 (m, 4H) ppm. 

13C-NMR (126 MHz, CDCl3): δ = 139.1, 138.9, 138.8, 138.7, 138.6, 138.6, 138.4, 138.3, 138.2, 

135.4, 134.2, 132.3, 131.6, 129.1, 128.7, 128.6, 128.5, 128.4, 128.4, 128.3, 128.2, 128.1, 128.0, 

127.9, 127.8, 127.8, 127.6, 127.6, 127.5, 127.4, 104.1 (C1’), 97.6 (C1), 88.3, 87.5, 86.9, 84.9, 

82.5, 81.9, 81.3, 81.0, 80.3, 79.1, 78.2, 75.9, 75.6, 75.2, 75.1, 74.9, 73.7, 69.1, 68.8 ppm. 

LRMS-ESI+ (m/z) C67H68O10S: calculated [M + Na+] = 1087.4425, found 

[M + Na+] = 1087.4386. 
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7.5.4. Synthesis of the trisaccharide 2,3,4,6-tetrabenzylglucopyranosyl-(1,6)-2,3,4-

tribenzylglucopyranosyl-(1,6)-1,2,3,4-diisopropylidengalactopyranosid (81) 

 

 

 

Diisopropylgalactose (4.7 mg, 0.014 mmol) and the dissacharide phenyl-6-O-(2,3,4,6-tetra-O-

benzylglucopyranose)-2,3,4-tri-O-benzyl-β-thioglucopyranose (6.4 mg, 0.006 mmol) were 

dissolved in dry CH3CN (2 mL) and stirred over molecular sieve 3 Å for 10 min. NBS (3.2 mg, 

0.018 mmol) was added, followed by the addition of Cu(OTf)2 (1.63 mg, 0.0045 mmol) after 

5 min. The reaction was stirred at RT for 16 h, before being filtered through Celite. The 

concentrated mixture was purified by chromatography (petrol/EtOAc 3:1 → EtOAc). The 

trisaccharide was obtained with a yield of 50% (4 mg, 0.003 mmol, α/β 1:1). 

1H-NMR (500 MHz, CDCl3): δ = 7.36 – 7.17, 5.54 (d, J = 4.8 Hz, 1H, H1c), 5.52 (d, J = 5.0 Hz, 

1H, H1c’), 5.12, 5.05, 4.94 , 4.82 – 4.68, 4.63 – 4.48, 4.42 (d, J = 7.8 Hz, 1H, H1b), 4.40 (d, 

J = 7.8 Hz, 1H, H1a), 4.35 – 4.34, 4.33 – 4.32, 4.32 – 4.26, 4.24, 4.00 – 3.95, 3.94 – 3.90, 3.79 

– 3.58, 3.45 – 3.39, 1.53, 1.37 ppm. 

13C-NMR (126 MHz, CDCl3): δ = 138.8, 138.5, 138.3, 138.2, 128.7, 128.5, 128.2, 128.1, 127.9, 

127.8, 127.7, 127.6, 127.4, 109.6, 109.3, 108.9, 108.5, 104.4 (C1b), 103.9 (C1a), 96.4 (C1c), 96.3 

(C1c’), 84.8, 84.5, 81.8, 81.5, 75.7, 75.6, 71.3, 70.8, 70.7, 70.6, 70.5, 70.4, 70.3, 68.1, 67.4, 67.3, 

66.9, 26.0, 25.9, 24.9, 24.3 ppm. 

The spectroscopic data were the same than reported in the literature.173 

LRMS-ESI+ (m/z) C73H82O16: calculated [M + Na+] = 1237.5495, found [M + Na+] = 1237.5455. 
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7.5.5. Computational details 

 

The experimental part on the computational calculations was performed by Gonzalo 

Jiménez-Osés (Departamento de Química, Centro de Investigación en Síntesis Química, 

Universidad de La Rioja, 26006 Logrono, Spain). 

 

7.5.6. NMR studies 

 

The described activation reaction of thioglycosides 68-71 with MSH 27 were performed directly 

in the NMR tube. Before the addition of the activating agent MSH 27 and K2CO3, the NMR of 

the starting material was measured. The reactions were conducted at room temperature while 

the NMR tubes were gently moved. For the kinetic calculations, the peak of the anomeric proton 

H1 of the starting material was used as internal reference with the value 1. The reaction progress 

was measured, calculating the ratio of the anomeric proton H1’ of the intermediate. 
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