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Abstract 
Terraces are a common Mediterranean feature influencing soils, slopes and subsurface 

hydrology; however, little is known about their impact on hydrological processes, especially in 

humid regions. This work studied hydrological and erosion processes in the “águas de lima” 

terrace system common in northwestern Iberia, characterized by wet season irrigation to keep 

soils saturated and avoid frost on winter pastures. Soil moisture, vegetation height, runoff and 

sediment yield were monitored for a terraced field in northern Portugal during 19 months. 

Relationships between rainfall, soil, vegetation, runoff and erosion were analyzed for 49 rainfall 

events, and within-storm patterns of soil moisture and runoff were further evaluated for the 12 

largest events. Monitoring included two wet seasons with 1264 and 951 mm rainfall. Runoff 

followed rainfall with 20.5 and 3.8 mm, and was mostly related with event and pre-event rainfall. 

Combined with hydrograph analysis, this indicated a dominance of saturation-excess runoff 

generation, probably related with the presence of a shallow water table caused by limited 

drainage and constant irrigation during winter. Rill erosion was only observed as a result of run-

on from the irrigation network. Sediment yield was low, 0.01 and 0.02 Mg ha-1 in the first and 

second year, and related with runoff; but vegetation cover was found to limit sediment 

concentration. This work indicates that “águas de lima” terraces promote saturation, runoff 

generation and a small amount of sediment yield which does not appear relevant for soil 

conservation. Further work is needed to better understand and conceptualize these processes. 

Keywords: hydrological processes; erosion; Mediterranean climate; terrace; águas de lima 

 

Introduction 
Terraces are a common feature of agricultural landscapes throughout the world, built to 

conserve soil and retain moisture in areas otherwise subject to erosion after millennia of 

agriculture and grazing (Hooke, 2006; Li et al., 2014). In the Mediterranean, terraces have been 

an integral part of the landscape since before Roman times (Blondel, 2006); however, land 

abandonment in recent decades (Alonso-Sarría et al., 2015; Cerdà, 1997) has led to poor terrace 

maintenance, promoting their collapse and increasing erosion rates (García-Ruiz and Lana-

Renault, 2011), which has led to a recent research focus on hydrological and erosion processes 

in terraced fields. 

Recent reviews for the Mediterranean (Maetens et al., 2012; Stanchi et al., 2012) have found a 

greater research focus on the impacts of terrace abandonment and on the dryer regions. 

However, terraces are also present in humid Mediterranean and sub-Mediterranean climates, 

used to support pasture in mountain regions (Stanchi et al., 2012), which have received little 

attention. One of the few studies in the sub-Mediterranean Pyrenees (Gallart et al., 1994; 

Llorens et al., 1997) has shown a more complex picture for soil conservation than in drier areas; 

while these terraces promoted soil saturation and additional overland flow generation, potential 

increases in erosion were counteracted by permanent vegetation cover and the terrace walls 

themselves. 

An important terraced landscape is found in the mountains of the humid Mediterranean and 

sub-Mediterranean region of the northwestern Iberian Peninsula, representative of other humid 
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climate terraces. This terracing system is part of a surplus irrigation system called “águas de 

lima” which was described by Ribeiro (1945), consisting of a network of irrigation channels 

linking terraced pasture fields; despite the humid climate, irrigation is needed to keep pasture 

fields saturated in winter and prevent frost damage. Recently this system has also been used to 

irrigate maize and other vegetables during the dryer summer season. Fields are often bounded 

both by terraces and permanent cultures, mostly fruit trees or vineyards. 

Pereira et al. (2007) proposed a runoff generation process for “águas de lima” similar to the one 

observed by Gallart et al. (1994) and Llorens et al. (1997), caused by terrace-promoted soil 

saturation and saturation-excess runoff generation; however, they did not consider impacts for 

soil erosion. This region has recently experienced large-scale afforestation which has been 

considered as a soil conservation measure on steep slopes; however, the recurrent fires 

associated with these forests lead to strong erosion in the aftermath (Shakesby, 2011), 

especially after post-fire replanting measures (Martins et al., 2013). It is difficult to assess the 

role of afforestation for soil protection without information about erosion in traditional terraced 

fields. 

This work addresses this issue for a terraced field in an “águas de lima” system, located in a 

humid Mediterranean catchment in north-central Portugal. Soil properties inside the field were 

described, and vegetation growth, meteorology, soil water, runoff, erosion and sediment yield 

were regularly monitored during 19 months. The results were used to assess the processes 

behind runoff generation and sediment yield. 

 

Materials and methods 

Study area 

This work was developed in an experimental field in the municipality of Macieira de Alcôba, 

located at an altitude of 470 m a.s.l. on the Caramulo mountain range in north-central Portugal. 

The local climate is humid Mediterranean. Average annual rainfall at the nearby Pousadas 

meteorological station for 2002-2012 was 1294 mm, varying between 818 and 1667 mm. 72% 

of rainfall is concentrated during a cold wet season lasting from October to March (average 

temperature 10.8 ºC), followed by a warm dry season (average temperature 17.6 ºC). The field 

and the agricultural surroundings overlay granitic bedrock. Ferreira (1997) provides a detailed 

overview of the area. 

The experimental field is shown in Figure 1 and Figure 2. It has a surface area of 1875 m2 and an 

average slope gradient of 8.6 %. The lower (western) part is flat and ends in a terrace wall made 

of mortared stone and reaching the bedrock, which also bounds the northern side. The terrace 

wall creates a topographic discontinuity of c. 1 m with the fields downslope. Olive trees are 

planted along these walls. The field is hydrologically connected with an “águas de lima” irrigation 

channel network, connecting the terraced fields surrounding the Macieira de Alcôba village; an 

example of these systems and their management is described by Salesse (2003). The network 

links the natural springs and irrigation tanks in the village upslope, with the main channel 

downslope, through open channels made of stone slabs near the terraces and of concrete near 

the village. Run-on from this network occurs at a single point shown in Figure 1. 
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Figure 1. Experimental terraced field with location of monitoring points (left) and respective aerial photograph 
(right). 

 

 

Figure 2. View of the experimental field, from the highest point facing downslope; it was taken from the 
southeastern corner facing northwest (see Figure 1). The upper picture was taken in October 2010, as pasture 
was just beginning to grow, while the lower picture was taken in March 2011. 

 

X
X

Runoff 
collection

o

Terrace wall

Figure 2
photo

Irrigation 
inflow

Runoff collection

Soil moisture 
sensors

Slope direction

Slope direction

Rill

Top: October 2010; bottom: March 2011



5 
 

Throughout the study period, the field presented an annual crop rotation between wet season 

pasture and dry season maize. In September/October, the field is plowed and pasture is sown; 

the field is constantly irrigated and kept saturated to avoid frost. Figure 2 shows the contrast 

between soil cover in the early and late stages of pasture growth. Pasture is harvested in May 

for silage, and the field is again plowed and maize is sown. Maize is periodically irrigated as well, 

and harvested in September/October. A similar rotation system is present in most terraces of 

the network. 

Most of the irrigation water comes from natural springs located on the granitic bedrock near the 

Macieira de Alcôba village, fed by rainwater percolating from uphill forests, which show a strong 

seasonal behavior. This source is supplemented by rainfall collection tanks in the wet season, 

and from water pumped from impoundments in the local streams in the dry season. The 

combination of abundant rainfall and a relatively impervious bedrock leads to an abundant 

irrigation water supply in most years. The irrigation network is jointly maintained and regulated 

by the farmers, with the help of the local government. Irrigation regulation broadly follows the 

system described by Salesse (2003), with no regulation during the wet season (pasture) when 

water supplies are abundant, and regulation of amounts and timings during the dry season 

(maize) when supplies are lower. 

 

Field characterization 

The field was characterized by a survey in 01/03/2011. Soil depth, shear strength and 

compaction was measured in nine points evenly distributed over the field (Figure 1), using 

respectively a soil probe (buried until bedrock was found), a torvane and a penetrometer, taking 

5 measurements per point for the latter 2. Soil probe samples along depth were used to classify 

the soil based on soil color and texture. Surface roughness was measured using a pin profiler 

and was used to calculate surface detention storage following Kamphorst et al. (2000). For a 

subset of the points, measurements were also made of topsoil bulk density (6 points, 3 samples 

per point), topsoil and subsoil texture (4 points, with samples taken between 0 and 20 cm, and 

between 20 cm and maximum soil depth), and surface (near-)saturated hydraulic conductivity 

(Ksat) using the mini-disk infiltrometer (5 points, 3 tests per point). A snapshot of soil moisture 

spatial patterns was taken by sampling a subset (6 points, 3 samples per point). Finally, a sample 

was taken for laboratorial determination of the soil water retention curve at pF 1.8, 2.0, 2.54 

and 4.2. All these parameters, except soil water retention, were also measured at seven points 

in other nearby terraces between 9 and 11/05/2011, to assess if soils in this field were 

representative of the system. 

 

Continuous monitoring 

The field was monitored between 8 November 2010 and 31 May 2012, during almost two 

hydrological years (starting with the wet season in October and lasting until the end of the 

following dry season in September). Rainfall was recorded at 15 min intervals with an automatic 

rain gauge, and data quality assessed using a rainfall totalizer measured every 1 to 2 weeks. 
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Runoff was collected downslope at the lowest point of the terrace wall, which was reinforced 

with metal plates to ensure the bounding of surface runoff (Figure 1 and Figure 2). Runoff during 

individual events was measured using two tipping-bucket devices; it was then collected in tanks, 

with volumes measured each 1 to 2 weeks to validate the tipping-buckets. 100 mL samples of 

collected runoff were used to determine sediment concentrations in the laboratory, by the 

gravimetric method using 0.45 µm filters oven-dried at 105ºC during 24 hr (APHA, 1998). 

Soil moisture content was recorded at 15 min intervals at four locations along the field’s 

southern side (Figure 1 and Figure 2), using four pairs of EC-5 sensors (Decagon Devices) installed 

at 2.5 and 7.5 cm depth; the average of these points was used in the analysis. The occurrence of 

run-on from the irrigation network from the southeast (Figure 1) was also evaluated at 1- to 2-

weekly intervals from hydrological evidence, especially the movement of debris in the channel; 

the amount of run-on was not measured as it was not possible to instrument the irrigation 

channel. Erosion within the field was characterized by identifying and measuring the volume of 

rills, using the closest bulk density measurement to estimate the mass of soil loss. Finally, 

pasture vegetation height was measured at 1 to 2 weekly intervals. 

Plowing operations interrupted measurements on several occasions. Runoff collection was 

interrupted between May and September 2011 during maize cultivation; however, no important 

rainfall events occurred in this period. Soil moisture sensors were also removed in May 2011, 

re-installed in June, removed again in September and re-installed in October. Unexpected mid-

winter plowing in January 2012 destroyed part of the sensors; the others were installed in a 

nearby permanent pasture plot. 

 

Event-based data analysis 

Relationships between rainfall, runoff and sediment yield were studied by analyzing 51 rainfall-

runoff events with more than 10 mm rainfall, separated by intervals greater than 3 hours. Since 

sediment export was only measured at the weekly scale, in weeks with more than one runoff 

event (9 out of 28), sediment concentration was assumed the same for all events; however, 8 of 

these weeks had a clearly dominant sediment-export event. The relationship between different 

variables was assessed using Pearson correlation coefficients and a significance level of 0.05. 

The assessed variables included: 

• event rainfall characteristics: total rainfall, maximum 30-min intensity, mean intensity 

and duration; 

• pre-event conditions: antecedent rainfall during 1, 3, 5, 7, 15 and 21 days before the 

event, initial soil moisture and vegetation height (for pasture); 

• runoff and sediment yield: total runoff and runoff/rainfall coefficient, sediment yield 

and concentration in runoff. 

12 events with rainfall above 40 mm and measured runoff were subjected to an in-depth 

hydrograph analysis, comparing continuous (15 min) measurements of soil moisture, rainfall, 

and runoff rates during the event. 
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Results and Discussion 

Field characteristics 

Table 1 shows the soil properties of the terraced field, classified as a humic Cambisol (IUSS 

Working Group WRB, 2014). Measured soil field capacity (pF 2) and wilting point (pF 4.2) were 

respectively 38.7 and 23.4% (v/v);the soil water retention curve derived from these parameters 

(van Genuchten, 1980) led to an estimation of saturated and residual water contents of 

respectively 59.2 and 21.7% (v/v). Organic matter content showed a notable decrease with 

depth, between topsoil and subsoil. Soil texture was between loam and sandy loam, with little 

variation with space or depth; the soil also showed an important presence of coarse fragments, 

again without spatial or depth patterns. These coarse soils are typical of those usually found in 

terraces (Stanchi et al., 2012). Soil depth was noticeably shallower in the west and northwestern 

points (40-50 cm) than elsewhere (75-110 cm). 

 

Table 1. Variables evaluated in the characterization of terraced fields in the study area. 

 

Shear strength and compaction were normal for agricultural fields and followed an increasing 

north-south gradient. Surface storage capacity increased from the bottom to the top of the 

slope, with values typical of an unplowed field (Kamphorst et al., 2000). Saturated hydraulic 

conductivity (Ksat) was relatively high and followed a strong decreasing northeast to southwest 

gradient; topsoil bulk density and soil moisture (which was close to saturation in the survey day, 

between 33.3 and 44.4%) showed a very similar behavior to Ksat. 

Table 1 also shows that the properties of soils in the selected field fell inside the range of those 

found elsewhere in the terraced system, although topsoil tended to be coarser than elsewhere. 

This indicates that the selected field was representative of other terraced fields in the Macieira 

de Alcôba system. 

 

 Study terraced field Other terraced fields 

 Minimum Maximum Average C.V. (%)a Minimum Maximum Average C.V. (%)a 

Physical properties 

Soil depth (cm) 40.0 110.0 72.8 31.9 35.0 120.0 84.3 37.9 

Shear strength (kg cm-2) 2.0 4.0 2.9 78.7 1.2 2.7 2.0 30.8 

Compaction (kg cm-2) 0.3 1.5 0.8 41.4 0.2 1.7 0.9 74.1 

Bulk density (kg cm-3) 0.9 1.3 1.1 9.0 0.9 1.1 1.0 8.9 

Surface storage capacity (mm) 2.4 5.0 3.6 23.0 2.8 4.9 4.1 22.6 

Saturated hydraulic conductivity 
(mm h-1) 

11.4 75.7 31.2 64.9 13.5 94.5 43.6 79.2 

Texture USDA - topsoil (0-20 cm) 

Coarse fragments (soil fraction) 0.16 0.31 0.24 26.6 0.12 0.24 0.16 32.7 

Organic matter (soil fraction) 0.10 0.15 0.13 16.1 0.07 0.13 0.10 24.5 

Sand (fines fraction) 0.47 0.60 0.55 11.0 0.37 0.69 0.46 34.5 

Silt (fines fraction) 0.27 0.35 0.30 11.4 0.20 0.46 0.39 32.5 

Clay (fines fraction) 0.12 0.18 0.15 18.3 0.11 0.18 0.16 20.1 

Texture USDA - subsoil (> 20 cm) 

Coarse fragments (soil fraction) 0.19 0.40 0.27 35.3 0.24 0.25 0.25 2.9 

Organic matter (soil fraction) 0.05 0.09 0.07 23.1 0.05 0.08 0.07 32.6 

Sand (fines fraction) 0.45 0.66 0.57 15.5 0.44 0.75 0.60 36.8 

Silt (fines fraction) 0.25 0.45 0.32 27.9 0.17 0.39 0.28 55.6 

Clay (fines fraction) 0.09 0.14 0.11 19.7 0.08 0.16 0.12 47.1 

 

a: C.V. is the coefficient of variation, i.e. the standard deviation divided by the average 
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Overall runoff and sediment yield 

Figure 3a shows daily rainfall, runoff and sediment yield for the study field. There was a strong 

contrast between hydrological year 2010/2011, with an average amount of rainfall (1264 vs. 

1294 mm average), and 2011/2012 which had a very dry winter (79 vs. 401 mm average) but a 

relatively wet spring (363 vs. 250 mm average). This contrast was also reflected in runoff 

amounts of 20.5 mm in the first year (concentrated in late autumn and winter) and 3.8 mm in 

the second (concentrated in autumn and spring). In contrast, soil moisture (Figure 3b) showed 

similar patterns in both years, exceeding field capacity during the wet season (40 to 60%), even 

in the second year. 

 

 

Figure 3. a) daily rainfall, runoff and sediment concentration from the field. b) soil moisture (SM1: measured 
inside the field, SM2: measured in a nearby pasture) and height of pasture vegetation (VH); the field was covered 
by maize between May and November 2011, but vegetation height was not recorded. 

 

Suspended sediment concentration followed the same seasonal pattern as runoff, but with an 

added tendency for low values in spring at the period of maximum vegetation growth. Sediment 

yields were respectively 0.02 and 0.01 Mg ha-1 in the first and second year, indicating negligible 

erosion rates. During the first year, rills developed which roughly linked the inflow of the 

irrigation channel with the lower part of the slope (Figure 2). The rills were fully developed by 

December 2010 and remained unchanged until being plowed over in April 2011. Rill erosion was 

Nov 10  Feb 11  May 11  Aug 11  Nov 11  Feb 12  May 12  

R
a

in
fa

ll 
(m

m
)

0

50

100

150

200

250

R
u

n
o

ff
 (

m
m

)

0

2

4

6

8

10

12

14

16

S
u
s
p
e

n
d

e
d

 S
e
d

im
e

n
t 
(g

.L
-1

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Rainfall

Runoff

Sediment Conc.

Nov 10  Feb 11  May 11  Aug 11  Nov 11  Feb 12  May 12  

S
o

il 
M

o
is

tu
re

 (
%

 v
/v

)

0

20

40

60

80

V
e

g
e

ta
ti
o

n
 H

e
ig

h
t 

(c
m

)

0

20

40

60

80

100

120

140

SM1 (v/v)

SM2 (v/v)

VH (cm)

a

b



9 
 

estimated at 0.66 Mg ha-1, i.e. one order of magnitude above exported sediment during the first 

year and pointing to important deposition near the edge of the terrace, a fact which was 

confirmed with field observation. 

 

Event analysis 

49 rainfall-runoff events occurred during the measurement period, mostly (73%) during the wet 

season. Table 2 characterizes the variables used in the event analysis, and Table 3 shows the 

correlation coefficients of surface runoff and sediment yield of the individual events with rainfall 

and field-related variables. 

 

Table 2: Summary of the variables evaluated for the rainfall-runoff events during the study period. 

 

Table 3: Pearson correlation coefficient matrix between the analyzed variables for plot runoff (n=49 for all 
variables except SM, where n=38). Correlation coefficient is significant at the 0.05 level for underlined numbers, 
and at the 0.01 level for bold and underlined numbers. 

 P IP30 IP Pd AP1 AP3 AP5 AP7 AP15 AP21 SM VH R RC SY SSC 

P -                
IP30 0.39 -               
IP -0.12 0.42 -              
Pd 0.77 -0.03 -0.56 -             
AP1 0.17 0.32 -0.20 0.25 -            
AP3 0.33 0.30 -0.16 0.29 0.69 -           
AP5 0.48 0.26 -0.18 0.37 0.53 0.86 -          
AP7 0.46 0.11 -0.20 0.35 0.42 0.75 0.90 -         
AP15 0.37 0.09 -0.01 0.18 0.14 0.35 0.51 0.64 -        
AP21 0.36 0.10 -0.04 0.17 0.09 0.30 0.48 0.60 0.94 -       
SM 0.19 0.06 0.06 0.13 0.24 0.38 0.43 0.50 0.61 0.59 -      
VH 0.06 0.16 -0.02 -0.03 0.01 0.11 0.08 0.06 0.07 0.12 -0.44 -     
R 0.56 0.47 0.18 0.39 0.35 0.43 0.49 0.43 0.22 0.27 0.16 -0.06 -    
RC 0.51 0.48 0.19 0.25 0.40 0.50 0.54 0.47 0.24 0.26 0.19 -0.10 0.98 -   
SY 0.43 0.48 -0.03 0.34 0.36 0.28 0.30 0.28 0.14 0.21 0.16 -0.12 0.90 0.86 -  
SSC -0.06 0.11 -0.09 -0.02 0.19 0.02 -0.07 -0.03 0.00 -0.04 0.12 -0.49 0.04 0.11 0.25 - 

  Minimum Maximum Average C.V. (%)a 

Rainfall 

P Total event rainfall (mm) 10.1 74.7 28.7 57.4 

IP30 Maximum 30-min rainfall intensity (mm h-1) 3.2 28.7 11.1 52.7 

IP Mean rainfall intensity (mm h-1) 0.7 6.2 2.3 55.2 

Pd Rainfall duration (h) 2.5 64.3 16.1 70.8 

Pre-event conditions 

AP1 Rainfall 1 day before the event (mm) 0.0 76.8 9.8 150.1 

AP3 Rainfall 3 days before the event (mm) 0.0 129.1 25.7 105.9 

AP5 Rainfall 5 days before the event (mm) 0.0 151.9 35.6 98.0 

AP7 Rainfall 7 days before the event (mm) 0.0 178.6 47.2 90.3 

AP15 Rainfall 15 days before the event (mm) 0.0 299.0 115.3 69.3 

AP21 Rainfall 21 days before the event (mm) 0.0 369.9 132.3   68.8 

SM Initial soil moisture at 0-10 cm depth (%)b 22.9 54.8 47.9 12.8 

VH Pasture vegetation height (cm)c 0 115.1 25.8 1.1 

Runoff and soil loss 

R Surface Runoff (mm) 0.0 7.5 0.5 2.6 

RC Runoff coefficient (%) 0.0 12.0 1.0 2.1 

SY Sediment yield (Mg ha-1) 0.0 0.017 0.001 3.1 

SSC Mean sediment concentration in runoff (g L-1) 0.0 0.6 0.1 1.4 

 

a: C.V. is the coefficient of variation, i.e. the standard deviation divided by the average 

b: average of all values recorded by the soil moisture sensors at the start of the event 

c: estimated from the two closest measurements by linear interpolation 
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Near-surface soil moisture (SM) was significantly correlated with all AP variables except AP1, 

and negatively related with vegetation height (VH), since that pasture growth extended into the 

dry season (Figure 3). Total runoff (R) and runoff coefficient (RC) were very strongly correlated 

between themselves, as well as with total rainfall (P), 30 min rainfall intensity (IP30) and 

antecedent precipitation between 1 and 7 days (AP1-7), especially AP5. R was also correlated 

with event duration (Pd). Runoff correlation with IP30 could suggest a contribution of 

infiltration-excess runoff (e.g. Boix-Fayos et al., 2005; Kirkby et al., 2005). However, average IP30 

was below average Ksat (11.1 vs. 31.2 mm.h-1); the lower Ksat at the western end of the plot could 

have led to the generation of infiltration-excess runoff there. 

Runoff correlation with AP1-7 could indicate a contribution of saturation-excess runoff. A closer 

look at the data (Figure 4) revealed a non-linear relationship of runoff with rainfall and AP5. 

Little to no runoff was observed for events with up to 40 mm rainfall, while beyond this threshold 

runoff increased with increasing P, especially for AP5>75 mm. Runoff was not significantly 

correlated with SM; however, this can be explained by the uniformly high SM values (usually 

above field capacity) throughout the rainy period (see Figure 2 and Table 2). Furthermore, the 

larger runoff volumes were mostly associated with the occurrence of run-on from the irrigation 

network (Figure 4); the accumulated antecedent rainfall could have increased discharge from 

springs and water held in tanks, leading to overflow during rainstorms. 

 

 

Figure 4: Relationship between event rainfall (P) and runoff (R), according to antecedent precipitation in the 
previous 5 days (AP5) and the presence or absence of runoff inflow to the plot from the irrigation network. 

 

Sediment yield (SY) was highly correlated with runoff (R and RC), and in consequence, with the 

same factors with which runoff was correlated. Suspended sediment concentration (SSC), 

however, only showed a significant relation with vegetation height (VH). Figure 3 suggests that 

VH imposed an upper limit to SSC; a more detailed analysis (Figure 5) confirmed this, and also 

revealed that the runoff - sediment yield relationship tended to decrease with increasing pasture 

height. In fact, events when pasture was under 30 cm corresponded to 89% of SY, but only 51% 
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of total events, 60% of P and 59% of R. The correlations between R and SY for each class of 

pasture height distinguished in Figure 5b were all significant (p < 0.01), with coefficients 

exceeding 0.80 and increasing with shorter VH. Rill formation also occurred during a period of 

relatively short pasture (~27 cm). 

 

 

Figure 5: a) Relationship between vegetation height (VH) and plot sediment concentration (SSC) according to 
sediment yield (SY); the scale is given as the exponent for scientific notation, where E(-7) = 1x10-7 Mg.ha-1, E(-4) = 
1x10-4 Mg.ha-1, and E(-3) = 1x10-3 Mg.ha-1; in this scale, maximum observed SYpl is E(-2). b) relationship between 
plot runoff (R) and plot sediment yield (SY) according to the growth stage of pasture; dotted lines illustrate the 
linear regression for each group of observations. 
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following dry season. Figure 6 and Figure 7 show respectively the instantaneous and 

accumulated rainfall and runoff for each event. 

Runoff generation started at a consistent soil moisture threshold (Figure 6): 52-53% for events 

in late 2010 and early 2011, 50-51% for events in late 2011, and 54-55% for events in spring 

2012. The difference in thresholds was probably due to the change in position of the soil 

moisture sensors described above. All thresholds suggested that part of the field reached 

saturation at the start of runoff generation (c. 59%). Saturation-excess runoff generation 

therefore appears to be the main mechanism during important rainfall events. 

 

 

Figure 6. Evolution of rainfall intensity, runoff intensity and soil moisture (each 15 minutes) for 12 major 
rainfall/runoff events; the dashed lines represent the soil moisture threshold for the start of sustained runoff. 
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Figure 7. Evolution of cumulative rainfall, cumulative runoff and soil moisture (each 15 minutes) for 12 major 
rainfall/runoff events; the dashed lines represent the accumulated rainfall threshold for the start of sustained 
runoff. 

 

The rainfall accumulation threshold for runoff initiation was notably more variable than that of 

soil moisture (Figure 7). Events occurring before the end of 2011, except 06/12/2010, presented 

a rainfall threshold between 10 and 20 mm, exceeding the field’s 5 mm surface storage capacity 

(Table 1) and therefore suggesting infiltration before runoff initiation. However, events in the 

dry season of 2012 had a much higher rainfall threshold of around 20 to 40 mm, this despite soil 

moisture starting as high as in other events. Runoff accumulation patterns tended to follow 

closely cumulative rainfall accumulation patterns (Figure 7) except again for the 06/12/2010 

event, again indicating saturation-excess runoff. Runoff coefficients after these thresholds were 

reached varied between events, indicating a significant role of other factors besides soil 

moisture and storm rainfall. 

Figure 6 also suggests the occasional occurrence of infiltration-excess runoff generation. In 

15/02/2011, 10/12/2011 and 03/05/2012, runoff started during 15-min rainfall peaks surpassing 

Ksat in at least the lowest part of the field (compare with Table 1) but stopped immediately 
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afterwards. This process may also have occurred during the other storms, but the late 

occurrence of maximum intensities made it difficult to separate it from saturation-excess runoff. 

The event of 06/12/2010 was exceptional in several aspects. First, initial soil moisture was close 

to the runoff initiation threshold; second, the event combined high total rainfall (64 mm), AP5 

(97 mm) and IP30 (28.7 mm h-1, approaching the field’s average Ksat); and third, runoff continued 

at a constant and relatively high rate for quite some time after rainfall stopped (Figure 6 and 

Figure 7). The low cumulative rainfall for runoff initiation (4 mm) possibly corresponded to the 

surface storage capacity (Table 1). The continued runoff generation after rainfall stopped could 

be explained by run-on from the irrigation network, amounting to c. 34% of total runoff. This 

would also explain why rill formation was limited to this event, especially since the rill connected 

the irrigation network with the plot’s outlet (Figure 2, top). 

 

Hydrological processes 

Soil moisture during the wet season was usually above field capacity, even during the dry winter 

of 2011/2012 (Figure 3), consistent with the winter irrigation employed in “águas de lima” 

systems. Evidence for run-on from the irrigation network was observed throughout the first wet 

season but not the second, as the severe drought constrained irrigation by the farmers. 

The main runoff generation process was saturation-excess; infiltration-excess only appeared to 

be important for isolated events, as maximum rainfall intensities were generally below saturated 

hydraulic conductivity. This is consistent with data for cultivated fields in northern Spain (e.g. 

Giménez et al., 2012). 

However, runoff generation depended more on antecedent rainfall (especially in the previous 5 

days) than on initial soil moisture. Pereira et al. (2007) reported a similar dependence for other 

terraces in northern Portugal, and proposed a conceptual model for terraces overlaying granite 

bedrock, where saturation-excess runoff generation is linked with groundwater, through: (i) 

presence of a shallow water table resulting from a delay in drainage caused by the terrace wall; 

and (ii) groundwater resurfacing in downhill terraces, caused by pressure from this water table 

in uphill terraced fields. 

A shallow water table could be present in the field at depths below those of the soil moisture 

measurements (i.e. below 10 cm). In fact, the terrace walls limiting the downslope part of the 

experimental field usually remained humid after rainstorms, possibly due to the water they 

retained. The strongest correlation with AP5 could then be related with the time required to 

drain the field after rainfall. A similar process has been observed by Gallart et al. (1994) and 

Latron and Gallart (2007) for humid sub-Mediterranean catchments, where the existing terrace 

network promoted saturation and saturation-excess runoff generation in upper and mid slopes. 

Terrace networks have been found to exert a strong impact on catchment hydrological 

connectivity elsewhere (Bracken et al., 2013). The shallow water table could have been created 

by winter irrigation, typical of this “águas de lima” system, in combination with antecedent 

rainfall. The winter drought of 2011/2012 limited available water for irrigation, possibly resulted 

in a lower shallow water table; this would explain why runoff generation in April and May 2012 

involved higher rainfall thresholds than previous events (Figure 7).  
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As for groundwater re-surfacing, little evidence for this process was observed in this study, 

except for the decreasing soil moisture gradient with slope found at a single occasion. It is 

however possible that this process could be more important for terraced fields downhill from 

the study site. 

The data also suggests an additional explanation for the importance of AP to add to those 

proposed by Pereira et al. (2007): run-on from the irrigation network. Since the “águas de lima” 

system requires an overflow of existing upslope reservoirs after rainfall accumulation (Salesse, 

2003), it would be easier to activate during periods with high antecedent rainfall. Most of the 

12 major storms revealed evidence for run-on from the irrigation network, except for the ones 

in April and May 2012 when the irrigation system was not used (Figure 7). Even so, only the 

storm of 06/12/2010 presented evidence for substantial run-on, suggesting that this process 

may only be important for infrequent events, and can therefore be thought of as a 

complementary process to the shallow water table. 

 

Soil erosion and sediment yield processes 

Rill erosion was only observed in the first year. The recorded rate of 0.66 Mg ha-1 was in the 

same order of magnitude as those reported for Mediterranean arable lands (0.5 to 5 Mg ha-1; 

Cerdan et al., 2010; Hooke, 2006), but below the 15 Mg ha-1 observed by Rodríguez-Blanco et al. 

(2013) for a similar field in Galicia. The short duration of the monitoring period hampers a robust 

estimate of the average erosion rate for the study field. However, the link between this rill and 

the inflow from the irrigation network during the event of 06/12/2010 would classify it as 

infrequent and high-magnitude. Such extreme events typically increase sediment connectivity 

and drive erosion rates (Bracken et al., 2015). This could indicate an important link between the 

irrigation network and erosion. The nature of the irrigation channels would mean that run-on 

should not bring important quantities of sediment onto the field, but no observations were 

made to corroborate this. 

Sediment export rates were, however, smaller than rill erosion by an order of magnitude. The 

export rate during the first year amounted to a sediment delivery ratio of 3% of the within-field 

erosion. This would indicate a high effectiveness of the terrace in trapping sediments eroded by 

the rill, c. 97%. Terraces usually trap 30 to 40% of within-terrace erosion but they become more 

effective for longer slopes such as the Macieira field, reaching levels similar to the ones observed 

(Maetens et al., 2012). In similar terraces within a sub-Mediterranean catchment in the 

Pyrenees, Llorens et al. (1997) observed a sediment yield of 1% of total erosion. Therefore, while 

the irrigation network could have been seen as promoting erosion in the first year, the terrace 

wall was able to contain most of it, with the trapping efficiency possibly increased by the 

presence of permanent vegetation near the field boundary. In the second year, sediment export 

would be due to interrill erosion; possibly, the lower parts of the slope (where ponding and 

surface runoff were observed) were the source areas of the exported sediments. 

The seasonal variability of pasture cover (Figure 2) appeared to play a key role in the occurrence 

and timing of sediment losses. This can be attributed to the impact of vegetation density on 

rainfall interception and resistance to surface runoff, decreasing both splash detachment and 

sediment transport capacity by runoff (Govers, 1990; Morgan, 2005). In the first year, this 
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prevented erosion after early stages of pasture development, i.e. after December (Figure 3). In 

the second year, however, the lack of irrigation for pasture severely limited vegetation growth, 

all but eliminating the vegetation cover effect until April. This explains why the strong decrease 

in runoff between the first and the second year (80%) led to a much smaller decrease in 

sediment yield (50%). 

 

Comparison with afforested areas 

Agricultural terraces in this region have been replaced by planted forests in recent decades, 

leading to terrace collapse due to lack of maintenance (Shakesby, 2011). While the results from 

this work indicate that this might have led to a decrease in saturation-excess overland flow, the 

soil water repellency typical of eucalypt and pine plantations (Santos et al., 2016) might have 

increased infiltration excess overland flow. In fact, terrace abandonment might help explain the 

observation made by Hawtree et al. (2015), who for the main river downstream from Macieira 

de Alcôba found that afforestation in the past century might have increased fast runoff 

generation; this possibility for large-scale impacts of terrace abandonment merits further 

research. As for erosion, mature forest stands typically have erosion rates of the same order of 

magnitude as those found in this study: c. 0.02 Mg ha-1 y-1 (Ferreira et al., 2008). However, to 

this should be added erosion rates after disturbances, such as forestry management operations 

such as rip-plowing, occurring once every 36 years for eucalypts and where erosion could reach 

as high as 50 Mg ha-1; and after fires, which can reach between 1 and 10 Mg ha-1 in the first year 

(Ferreira et al., 2008; Shakesby, 2011). Finally, a recent forestry and post-fire management 

technique has been the construction of unsupported terraces for re-afforestation, where 

erosion can be as high as 36 Mg ha-1 in the months after construction (Martins et al., 2013). After 

a previous fire in Macieira de Alcôba, Ferreira (1997) measured similar erosion rates for two 

years: 2.2 and 0.02 Mg ha-1 y-1 in a post-fire and a grown plantation, respectively. This indicates 

that erosion in new forests could be of the same order of magnitude as that in terraces during 

most years, increasing by 2 to 3 orders of magnitude during infrequent but recurring 

disturbances, leading to an overall higher value. 

 

Conclusions 
The results of this study indicate that the terrace network promotes saturation-excess runoff 

generation, due to a combination between (i) wet season irrigation practices characteristic of 

the “águas de lima” system that aim at saturating soils to prevent frost damage to pasture; and 

(ii) the terrace wall limiting water drainage, leading to the occurrence of a shallow water table. 

In dry years with limited irrigation, results suggest a strong decrease of the runoff generation 

ratio. Direct run-on from the irrigation network was also found to occur, especially during the 

largest storms. Results also indicate that the terrace network promoted sediment export in 

consequence of additional runoff generation, but this was counteracted by the pasture cover 

made possible by terracing. Therefore, drought spells during winter may also have an erosion-

promoting effect due to the lack of water to irrigate pasture and preventing its growth. The 

irrigation network was found to promote sediment mobilization within the field, but not 

necessarily sediment losses, due to the strong soil conservation effect of the terrace. Sediment 
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export was rather limited and unlikely to negatively affect soil quality inside the field, but could 

be relevant for downstream contamination with phosphorus or pesticides attached to soil 

particles. Published data indicates higher erosion in plantation forests, especially after recurrent 

disturbances such as management operations and wildfires. In any case, the dataset of this study 

is somewhat limited, especially in time, opening the door for further studies aiming at a better 

understanding of the “águas de lima” system and its role in hydrological and sediment 

connectivity in northwestern Iberian landscapes. In particular, there is a need for further 

information on soil moisture for the entire soil profile, on irrigation practices and on the 

hydrological and erosion response behavior of these systems during stronger storms with 

infrequent return periods. 
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