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Abstract 
Soil water repellency can impact soil hydrology, overland flow generation and associated soil 

losses. However, current hydrological models do not take it into account, which creates a 

challenge in repellency-prone regions. This work focused on the adaptation for soil water 

repellency of a daily water balance model. Repellency is estimated from soil moisture content 

using site-specific empirical relations, and used to limit maximum soil moisture. This model was 

developed and tested using c. 2 years of data from one long-unburned and two recently burned 

eucalypt plantations in northern Portugal, all of which showed strong seasonal soil water 

repellency cycles. Results indicated important improvements for the burned plantations, with 

the Nash-Sutcliffe efficiency increasing from -0.55 and -0.49 to 0.55 and 0.65. For the unburned 

site, model performance was already good without the modification and efficiency only 

improved slightly from 0.71 to 0.74, mostly due to the better simulation of delayed soil wetting 

after dry periods. Results suggested that even a simple approach to simulate soil water 

repellency can markedly improve the performance of hydrological models in eucalypt forests, 

especially after fire. 

Introduction 
Soil Water Repellency (SWR) is an intrinsic and fundamental physical property which refers to 

the ability of a soil to repel water (Doerr et al., 2000; King, 1981). Repellent soils can resist 

wetting for time scales ranging from seconds to weeks (Doerr et al., 2000). Land use and the 

prevailing vegetation may dictate the presence and type of hydrophobic organic compounds 

that cause SWR (Doerr et al., 2000); the importance of land-use and land management for SWR 

has been highlighted by recent research (e.g. Cerdà and Doerr, 2007; González-Peñaloza et al., 
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2012). Fire can also be a major factor for the occurrence of SWR (e.g. Bodí et al., 2013; Ferreira 

et al., 2004; Keizer et al., 2008; Pereira et al., 2013) but fire effects can be highly variable, 

depending mainly on the soil heating regime, the type of organic matter consumed and the 

amount of oxygen available during burning (Doerr et al., 2009), with ashes playing an important 

role (Bodí et al., 2014); in some cases fires could decrease SWR (e.g. Cerdà and Doerr, 2005). 

Research has suggested that SWR plays an important role in determining the impacts of fire on 

soil chemistry and biology (e.g. Hedo et al., 2015; Pereira et al., 2014), as well as soil hydrology 

and erosion (e.g. Keesstra et al., 2014; Malvar et al., 2013, 2011). Brevik et al. (2015) have noted 

that the study of SWR is an important but complex subject which requires an inter-disciplinary 

approach, especially as it involves links between soils and climate. 

Eucalypt forest plantations have been associated with elevated levels of SWR in long unburned 

conditions (Keizer et al., 2005a, 2005b; Rodríguez-Alleres et al., 2007; Santos et al., 2013; Scott, 

2000) as well as post-fire conditions (Ferreira et al., 2008; Keizer et al., 2008; Malvar et al., 2013; 

Prats et al., 2013, 2012). Portugal and the northwestern Iberian Peninsula experienced major 

afforestation with eucalypt (especially Eucalyptus globulus Labill.) during the second half of the 

20th century (Moreira et al., 2001). As a result, about 35% of the Portuguese territory is presently 

covered by forest, of which of 26% is eucalypt (ICNF, 2013). Such a large-scale afforestation with 

exotic tree species may have important consequences for ecosystem services, biodiversity 

conservation, water balance, and soil properties, including soil hydrology. It is therefore 

important to understand how SWR might affect hydrological processes in eucalypt forests, 

especially when considering that they are also common (and also have high background SWR) 

in other regions of the globe such as South Africa (Scott, 2000) and Australia (Doerr et al., 2006). 

SWR decreases the wetting of the soil matrix and, thereby, promotes spatial variability in 

infiltration or percolation, with the development of fingered or preferential flow paths  

(Diamantopoulos et al., 2013; Doerr et al., 2003, 2000; Granged et al., 2011), which in turn can 

decrease the availability of water storage in the root zone after rainfall (Blanco-Canqui and Lal, 

2009). SWR can therefore also increase overland flow (DeBano, 2000; Doerr et al., 2000; 

Gabarrón-Galeote et al., 2013). These impacts have been demonstrated in both long-unburned 

(Keizer et al., 2005a) and recently burned eucalypt stands (Leighton-Boyce et al., 2007). In 

particular, the enhancement of SWR might be one of the most important ways in which fires in 

eucalypt stands cause hydrological impacts (Shakesby and Doerr, 2006), and fires might increase 

the persistence of SWR in eucalypt soils (Stoof et al., 2011). 

SWR is a transient property that varies non-linearly with Soil Moisture Content (SMC), with a 

transition zone between wettable and repellent conditions rather than a distinct threshold 

(Dekker et al., 2001; Hewelke et al., 2014; Regalado and Ritter, 2005; Rueda et al., 2015). This 

has also been observed for eucalypt plantations (Keizer et al., 2008; Leighton-Boyce et al., 2005; 

Santos et al., 2013). In this transition zone, the soil can act as either repellent or wettable. Thus, 

SWR can be highly variable both in time and space (Doerr et al., 2003). Changes from wettable 

to extremely repellent conditions can occur over short time intervals, as short as 1 to 2 weeks 

(Keizer et al., 2008, 2005b; Leighton-Boyce et al., 2005). On the other hand, the centimeter-scale 

spatial variations in repellency have been shown to cause the formation of preferential flow 

pathways, which can cause the soil matrix itself to remain dry after a storm (Doerr et al., 2003). 
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SWR can be described in terms of the intensity of its effects, i.e. the strength with which soil 

repels water, but also of its persistence, i.e. how long the soil remains repellent in the presence 

of water (see e.g. Chau et al., 2014 or Doerr et al., 2000 for a more detailed description). Both 

parameters vary with SMC, but they are not necessarily related, i.e. strong repellency in a soil 

may show low persistence and vice-versa (Chau et al., 2014). 

Including SWR may be a main factor for successful water balance modeling of both burned and 

unburned eucalypt forests, (Doerr et al., 2003; Esteves et al., 2012). However, the highly 

dynamic spatio-temporal patterns in SWR and SMC under field conditions make the 

development of appropriate equations a particularly challenging task. Recent research has 

developed several approaches to simulate the impact of SWR on soil wetting; they are typically 

based on the parameterization of retention curves (see e.g. Bachmann et al., 2007; Beatty and 

Smith, 2013; Ganz et al., 2014; Karunarathna et al., 2010; Kramers et al., 2005; Moody and Ebel, 

2014; Moody et al., 2009; Nyman et al., 2014; Ritsema et al., 2005). However, these approaches 

have not commonly been integrated into hydrological models. Furthermore, there is a lack of 

simpler approaches that can be used to adapt for repellent soils less complex, but widely used 

conceptual soil water balance models (explicit soil moisture accounting models; Beven, 2012). 

Vieira et al. (2014) have shown that even a simple adaptation for repellency can improve the 

performance of hydrological models in burned eucalypt and pine forests. However, their 

approach involves a seasonal time scale and is difficult to introduce in models with a higher 

temporal resolutions. Instead, several empirical relationships have been established between 

SWR and SMC (Regalado and Ritter, 2009a, 2009b) which can be adapted for daily predictions. 

This work has as main goal to demonstrate how a relatively simple approach can be used to 

adapt water balance calculations for the occurrence of SWR. The main part of the work consisted 

in modifying a simple, daily water balance model (Thornthwaite and Mather, 1957) to take SWR 

into account. The model was formulated and evaluated using SWR and SMC data collected for 

three eucalypt plantations in central Portugal, and previously analyzed by Santos et al. (2013: 

unburned) and Keizer et al. (2008: burned). Satellite imagery was used to parameterize the 

impacts of vegetation cover on interception and potential evapotranspiration, especially to 

account for the pronounced cover changes during the first two years after fire. 

Methods 
This work was carried out at one eucalypt plantation in a long-unburned study site and two 

eucalypt plantations in a recently burned study site, both of which located in the humid coastal 

region of northwestern Portugal, a mountainous area that is mostly covered by planted forest 

(eucalypt and maritime pine). It was developed in three steps: 

1. the Thornthwaite-Mather Water Balance Calculation Method (T-M method) was 

modified to include a limitation in soil wetting due to SWR, taking into account the 

empirical relations between SWR and SMC observed in the three plantations; 

2. the original and modified T-M methods were applied to the three plantations using in-

situ measurements of meteorology and soil properties, and using satellite products to 

parameterize vegetation cover; 
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3. time-series of SWR and SMC data from the three plantations were used to evaluate the 

performance of the T-M method, both with and without the SWR modification. 

Study sites 

The two study sites were located on the western slopes of the Caramulo mountain range, 20-30 

km inland from the city of Aveiro. This region has a humid Mediterranean climate, characterized 

by high annual rainfall rates (750-2000 mm) but a distinct dry summer season. The soils at the 

study sites are representative of the larger regional scale; they are Leptosols or Cambisols (IUSS 

Working Group WRB, 2014) overlying schists, with a coarse texture, stony and shallow (20-60 

cm; Malvar et al., 2011; Santos et al., 2013).  SWR is commonly observed during the dry season 

in burned and unburned eucalypt and pine forests (Doerr et al., 1996; Keizer et al., 2008; 

Leighton-Boyce et al., 2005; Santos et al., 2013). 

The Serra de Cima study site is a long-unburned (28 years) eucalypt forest plantation. It has been 

studied since the late 1980s, including by an intensive SWR and SMC monitoring campaign 

between mid-2011 and mid-2012, accompanied by continuous SMC recordings and collection of 

ancillary data (Santos et al., 2013). The Albergaria study site comprises two eucalypt plantations 

that were burned during the summer of 2005. The two plantations on adjacent hillslopes (sub-

sites A1 and A2) were monitored during the first two years  after the fire, including by SWR and 

SMC measurements (Keizer et al., 2008) and repeated rainfall simulation experiments (Malvar 

et al., 2011). 

Water balance calculations 

The T-M method (Thornthwaite and Mather, 1957) was selected for this study since it is a 

relatively simple and widely tested conceptual model that contains the main processes 

represented in many of the commonly-used daily-scale water balance models. The T-M method 

computes daily soil water balance using Equation 1; the shaded area in Figure 1 schematizes the 

original method. The parameters of the original T-M method are soil Available Water Capacity 

(AWC), fraction of rainfall transformed in direct outflow, and outflow decay rate (Table 1); the 

latter two parameters, however, were not used in this work as they are mainly important at the 

watershed scale. 

Equation 1. ΔSMC = PP – ET – Qo; 

where: SMC = Soil Moisture Content (mm); PP = daily rainfall (mm); ET = daily 

evapotranspiration (mm); Qo = daily outflow (mm). 
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Figure 1. Conceptual water balance model used in this work; the shaded area represents the original T-M 
method. 

 

Table 1. Parameters of the T-M water balance method used in this study. 

Parameter Name Units Notes 

AWC Soil Available Water Capacity mm Original T-M method 

fQo Fraction of rainfall transformed in direct outflow - Original T-M method; not used 

dQo Outflow decay rate - Original T-M method; not used 

Kc Crop coefficient - Included in this work; time-variable 

Sc Canopy storage capacity for interception  Included in this work; time-variable 

AWCmin Soil AWC adjusted for repellent conditions mm Included in this work 

SMC_WRmin SMC threshold below which soil is always repellent mm Included in this work 

SMC_WRmax SMC threshold above which soil is always wettable mm Included in this work 

SMC_lAWCmin SMC threshold below which AWC = AWCmin mm Included in this work 

SMC_lAWCmax SMC threshold above which AWC has no limitations mm Included in this work 

 

The forcing functions are rainfall and Potential Evapotranspiration (PET). In this work, the 

method was applied using useful rainfall (i.e. gross rainfall minus interception; Figure 1). 

Interception was calculated using the revised Gash model (Gash et al., 1995), parameterized for 

Rainfall

Soil Water 
Repellency

Modified 
AWC

Interception

Useful 
rainfall

Evapotranspiration

Potential 
Evapotranspiration

Soil Moisture Content

Crop 
coefficient

Canopy 
storage 
capacity

Soil AWC

Outflow

Forcing function

Model internal result

Model output

Model parameter

Legend:
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Portuguese eucalypt plantations (de Coninck, 2003; Ferreira, 1996; Valente et al., 1997). This led 

to an additional parameter Sc for interception (Table 1); given the changes in vegetation cover 

for the Albergaria site, it was made to vary in time at the daily time scale, using a similar 

formulation to that of van Dijk and Bruijnzeel (2001), to reflect post-fire vegetation recovery 

(see below). 

PET was calculated from daily maximum and minimum temperature, solar radiation, relative 

humidity and wind speed using the Penman-Monteith equation (Allen et al., 1998). In this work, 

the method was applied using crop-adjusted PET (Figure 1), calculated from reference PET using 

the crop coefficient approach (Allen et al., 1998), which led to an additional parameter Kc for the 

crop coefficient (Table 1). This parameter was also made to vary in time to reflect vegetation 

recovery (also following Allen et al., 1998).  

The outputs include Soil Moisture Content (SMC), Effective Evapotranspiration (EET) and 

outflow, which in this work combines surface and subsurface runoff with percolation. In the T-

M method, EET is computed as a function of PET and SMC; when soil water is insufficient to fulfill 

PET demands, EET is decreased according to the accumulated evapotranspiration deficit 

(Thornthwaite and Mather, 1957). Moreover, since the calculations of interception include 

canopy evaporation, EET corresponds mostly to transpiration, with perhaps a small component 

related with soil evaporation. 

Finally, the T-M method was adapted to accommodate the impacts of SWR on soil wetting (the 

lower part of Figure 1) in terms of both intensity and persistence. Five new parameters were 

added for this adaptation and are listed in Table 1. The processes were simulated as follows: 

• Intensity was simulated as a range between a low SMC threshold SMC_WRmin, under 

which soils are repellent, and a high SMC threshold SMC_WRmax, above which soils are 

wettable. For SMC values between both parameters, SWR varied linearly. 

• Persistence was simulated as limit to soil wetting under repellent conditions, varying 

linearly between a lowest value AWCmin for SMC corresponding to repellency, and a 

highest value (the full soil AWC) for wettable soils. Higher values facilitated soil wetting 

and were therefore related with lower SWR persistence. 

• The SMC thresholds for persistence were different from those for intensity, to take into 

account differences between both processes. The low SMC threshold for persistence 

was SMC_lAWCmin and the high SMC threshold was SMC_lAWCmax, 

This approach presupposes that SWR limits infiltration into the soil matrix, as described earlier, 

but not necessarily percolation and lateral flow. It also assumes that a single SWR value can 

represent conditions on a site, whereas SWR is highly variable in space as described earlier; this 

can be considered an “effective” model parameter (sensu Beven, 2012). SWR and maximum soil 

wetting are calculated at the start of each day; if rainfall occurs, infiltration is limited accordingly. 

At the end of each day, SWR and maximum soil wetting are then updated according to SMC, 

using the above-mentioned site-specific SWR-SMC relationships. 
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In situ measurements of SWR, SMC and soil properties 

In-situ measurements in the study sites were used in this work for parameter estimation and 

model calibration. A summary is given underneath; further details can be found in Santos et al. 

(2013) for Serra de Cima and Keizer et al. (2008) for Albergaria. 

Meteorology was measured by the Pousadas automatic meteorological station at 1 Km distance 

from the Serra de Cima site and 10 Km distance from the Albergaria site. In addition, rainfall was 

recorded by a tipping-bucket rain gauge at the Albergaria site as well as by one storage rainfall 

gauge at each site, mainly for validation of the automatic gauges. PET was calculated from these 

values using the Penman-Monteith equation (Allen et al., 1998). 

Soil water retention was measured in the laboratory (pressure plate method and, for Serra de 

Cima, also evaporation method) for Field Capacity (FC; pF 2) and Wilting Point (WP; pF 4.2); soil 

AWC was determined as the difference between both (Allen et al., 1998). At Serra de Cima, a 

total of 5 pF rings were collected from one soil profile. At Albergaria, 2 pF rings were collected 

at 3 depths (0-50, 50-100 and 100-200 mm) from two soil profiles in each of the two plantations; 

profile-averaged values were calculated using a weighted average of measurements according 

to their representative depth. In addition to the pF rings, soil samples were collected to 

determine soil texture and organic matter content in the laboratory. Furthermore, soil depth 

was determined in the soil profile plus four auxiliary sampling points in Serra de Cima, and in 

each of the four soil profiles in Albergaria. 

SWR and SMC were measured along transects at regular 1- to 2- weekly intervals. For each 

sampling date, a transect was laid out along the slope length at shifting positions. The transects 

were 80 m at Serra de Cima, 20-25 m at Albergaria A1 and 30-40 m at Albergaria A2. Along each 

transect, 3-5 sampling plots were selected at equal distances and, at each sampling plots, 3 

measurement points were selected at fixed positions within an area of 50x60 cm. At each 

measurement point, both SWR and SMC were determined at two depths (0-50 and 50-100 mm) 

and, in the case of Albergaria, at a third depth of 100-200 mm. SWR was measured using the 

Molarity of Ethanol Droplet (MED) test (King, 1981), while SMC was recorded using a hand-held 

probe (Decagon at Serra de Cima and ThetaProbe at Albergaria). The SMC readings were then 

calibrated to fall between the SMCs at field capacity and at the wilting point, as obtained from 

the pF rings. The same depth-weighted average method was used to calculate profile-averaged 

values. At Serra de Cima, SMC was also recorded continuously (15-min intervals) between 

January 2010 and October 2012, using Decagon probes linked to a Decagon data logger. This 

was done at two points and at two depths (25 and 75 mm) per point. Recordings were, however, 

interrupted from March to June 2011 due to stolen sensors. These SMC values were also 

calibrated, but fall between the SMCs at saturation (calculated from measured bulk density) and 

at wilting point, using a depth-weighted average method to calculate profile-averaged values. 

The continuous SMC data were used to estimate daily transpiration at the study sites by means 

of Equation 1, assuming that: (i) soil evaporation was negligible; (ii) the maximum ET was 

1.2×PET (see David et al., 1997); (iii) decreases in soil moisture were due to ET when SMC was 

below field capacity, i.e. in these days Qo was negligible; (iv) eucalypt had no access to possible 

groundwater, given the relatively impermeable bedrock. 
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Remote sensing of vegetation cover parameters 

Vegetation cover was characterized using Normalized Differential Vegetation Index (NDVI) data 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the Terra 

platform (Huete et al., 1999). NDVI is a vegetation index which yield a proxy for radiation 

absorption by chlorophyll and has commonly been used for the characterization of vegetation 

cover through remote sensing (Carlson and Ripley, 1997). The MOD13Q1 product has been 

selected for this study, since it provides an adequate spatial and temporal resolution of 

respectively 250 m and 16 days (Solano et al., 2010). It was used to characterize parameters Kc 

and Sc for the model (Table 1). 

The NDVI value for each composite and study site was generated as the average of a kernel of 

3x3 250 m pixels centered in the study site, to minimize the impact of geolocation errors; the 

sites were judged to be sufficiently homogenous for representation at this scale (750x750 m). 

Pixels were filtered based on available information for reliability (see Solano et al., 2010); only 

pixels with a reliability index of 0 or 1 (indicating respectively good quality or marginal quality) 

were used in this calculation, while pixels with a reliability index of 2 or 3 (indicating respectively 

snow/ice or clouds) were rejected. The time series still showed noise (i.e. unexpected short-

term variability), which can usually be attributed to atmospheric variability and other issues 

associated with the lower quality pixels such as cloud contamination (Gu et al., 2009). Therefore 

a smoothing algorithm was applied to the series based on the 3-P filter described by Gu et al. 

(2009), where the value for each 16-day composite was replaced by a weighted average of the 

current value (50% weight) and the values of the time composites immediately before and after 

(25% weight each). Finally, a daily time series of NDVI was created by linear interpolation 

between the 16-day composites. 

Leaf Area Index (LAI) time-series were calculated from NDVI using a semi-empirical approach 

based on light extinction (Baret and Guyot, 1991). Equation 2 was adjusted for the Serra de Cima 

NDVI data using a light extinction coefficient of 0.42 and assuming local LAI stand values 

between 4 and 5.5 (Ferreira, 1996; Valente et al., 1997). Given the strong relationship between 

LAI and canopy storage parameter Sc (van Dijk and Bruijnzeel, 2001), published values were used 

to calculate a value of Sc = 0.44 mm per unit LAI (de Coninck, 2003; Ferreira, 1996; Valente et al., 

1997). This relationship was used to calculate a LAI-derived time-series of Sc for each site, which 

was then used in the calculation of interception for the T-M method (Figure 1). 

Equation 2. LAI = -K-1 ∙ ln[(NDVI - NDVImax_LAI) ∙ (NDVImin_LAI - NDVImax_LAI))-1]; 

where: LAI = Leaf Area Index; K = Light extinction coefficient; NDVI = Normalized 

Differential Vegetation Index values, NDVImax_LAI = limiting NDVI for large LAI values; 

NDVImin_LAI = NDVI for LAI=0, 

NDVI was correlated with the crop coefficient parameter Kc following the approach developed 

by Duchemin et al. (2006), which is summarized in Equation 3. This approach assumes that soil 

evaporation is negligible and that the crop coefficient is only determined by the basal crop 

coefficient (Allen et al., 1998). Equation 3 was adjusted to values of daily basal crop coefficient 

for Serra de Cima, calculated from PET and transpiration data, with the limitations proposed by 

Duchemin et al. (2006): (i) using only the wetter period, when transpiration was correlated with 

PET, to avoid the effect of soil water limitations; (ii) avoiding periods with large rainfall, where 
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evaporation from the canopy and soil is important and hence the assumptions of the method 

are not valid (a rainfall threshold was selected to provide the best correlation between NDVI and 

Kc). 

Equation 3. Kc = a ∙ (NDVI - NDVImin_Kc); 

where: Kc = crop coefficient; a = empirical scaling coefficient; NDVI = Normalized 

Differential Vegetation Index values; NDVImin_Kc = NDVI for Kc=0. 

Model assessment approach 

Initially, the T-M model was applied without the SWR modification, to provide a baseline value 

for comparison. The model modified for SWR was then calibrated against the measured SMC 

values (daily values for Serra de Cima, and 1- to 2-weekly values for Albergaria) with the help of 

an automatic optimization method (Non-Linear Generalized Reduced Gradient approach; 

Lasdon et al., 1978). The AWC parameter was not modified from the measured value, so that 

optimization focused on the parameters AWCmin, SMC_WRmin, SMC_WRmax, SMC_lAWCmin and 

SMC_lAWCmax from Table 1. It was not possible to estimate values for AWCmin from 

measurements, so this parameter was allowed to range between 1 and 100% of AWC. The 

remaining parameters were optimized within a range taken from the observations described 

above. The relationship between SWR intensity and persistence was kept by limiting differences 

between thresholds, i.e. by not allowing SMC_WRmin and SMC_WRmax to vary more than 25% 

from SMC_lAWCmin and SMC_lAWCmax, respectively. Optimization focused first and foremost on 

optimizing the simulation of SMC, with the optimization of SWR as a secondary objective. The 

Nash-Sutcliffe Efficiency index (NSE; Nash and Sutcliffe, 1970) was used to assess model 

performance, with an NSE ≥ 0.5 indicating a satisfactory performance (Moriasi et al., 2007). 

Results 

In situ measurements of SWR, SMC and soil properties 

Table 2 shows the measured soil properties at the three eucalypt plantations studied here. AWC 

(in mm) – used directly as a parameter in the T-M water balance calculation method – was higher 

at Serra de Cima than at the two Albergaria plantations. This was mostly due to a lower wilting 

point, although the deeper soils also contributed to the higher absolute AWC. The relationship 

between SMC and SWR was well-defined for all three plantations (Figure 2), with the threshold 

for wettable soils inside the range of 20 to 30% SMC, although measurements for Serra de Cima 

indicated that the threshold could be above 30%. Further analysis can be found in Santos et al. 

(2013) for Serra de Cima and in Keizer et al. (2008) for Albergaria. Based on this data, the 

optimization range for parameters SMC_WRmin and SMC_IAWCmin was set between 9 and 25% 

for site Serra de Cima, and between 15 and 25% for sites Albergaria A1 and A2. The range for 

parameters SMC_WRmax and SMC_IAWCmax was set between 25 and 35% for all sites. 
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Figure 2. Relationship between Soil Water Content and Soil Water Repellency in the three eucalypt plantations. 
SWR is given in the MED classes proposed by Keizer et al. (2008): 0-2 = non-repellent; 3 = slightly repellent; 4 = 
moderately repellent; 5 = strongly repellent; 6-7 = very strongly repellent; 8 = extremely repellent. 

 

Table 2. Soil properties at the long-unburned and the two recently burned eucalypt plantations. 

Site 

Soil 

depth  

(mm) 

Field capacity 

SMC at pF 2 

(% vol.) 

Wilting point 

SMC at pF 4.2 

(% vol.) 

AWC 

SMC between 

pF2 and pF 4.2 

 (% vol.) 

Sand 

(% fines) 

Silt 

(% fines) 

Clay 

 (% fines) 

Organic 

Matter 

content (% ) 

Serra de Cima 350 30.3% 9.4% 20.9% 23.2% 57.4% 19.4% 16.3% 

Albergaria A1 200 29.4% 16.7% 12.8% 35.7% 24.1% 33.7% 10.7% 

Albergaria A2 225 34.3% 18.1% 16.2% 39.9% 20.9% 28.9% 11.4% 

 

Remote sensing of vegetation cover parameters 

The adjustment of Equation 2 to estimate LAI led to values of K = 0.42, NDVImax_LAI = 0.9 and 

NDVImin_LAI = 0.1. Canopy storage Sc, estimated from LAI, ranged between 1.1 and 2.5 mm in Serra 

de Cima, and between 0.6 and 1.4 mm in Albergaria, the latter values being smaller due to the 

fire occurrence, and increasing with time due to post-fire vegetation recovery. 

The adjustment of Equation 3 used NDVI and Kc values between the wet and dry periods, as 

shown in Figure 3a; the wet period used composites where bi-weekly rainfall  ≤ 90 mm, as this 

led to the best relationship between NDVI and Kc (r = 0.81, p < 0.01). This relation is shown in 

Figure 3b, and led to an adjustment of Equation 3 with parameters a = 2.74 and NDVImin_Kc = 

0.40. The coefficient of determination for Equation 3 was r2 = 0.66, but it should be noted that 

the exclusion of one outlier could have led to a large improvement (r2 = 0.85). 
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The adjusted parameters led to a steeper NDVI-Kc relation than would have been derived from 

values in literature on Mediterranean crops (Figure 3b): wheat with a = 1.63 and NDVImin_Kc = 

0.15 (Duchemin et al., 2006), and vineyards with a = 1.44 and NDVImin_Kc = 0.07 (Campos et al., 

2010). However, the three parameter sets led to a similar range of Kc estimates for eucalypts in 

Serra de Cima. This similarity, together with the fact that the data covered the full range of 

estimated Kc values, indicates the validity of this relation for eucalypts at Serra de Cima. 

However, the minimum observed NDVI was c. 0.6 which could limit the validity of Kc values 

estimated for the first post-fire year in Albergaria, when NDVI ranged between 0.4 and 0.6; in 

the second year NDVI reached values between 0.55 and 0.7, in line with the ones in Serra de 

Cima. The final Kc values ranged between 0.61 and 1.17 at Serra de Cima and between 0.4 and 

0.8 at Albergaria. 

 

 

Figure 3. a: accumulated rainfall, PET and transpiration for the MODIS composites in Serra de Cima, and selected 
transpiration values to calculate the NDVI-Kc relation; b: relation between NDVI and crop coefficient Kc at Serra 
de Cima, compared with Kc values estimated for wheat and vine using published parameters (respectively by 
Duchemin et al., 2006, and Campos et al., 2010). 

 

Figure 4 shows the original PET, crop-adjusted PET (for eucalypts) and NDVI in Serra de Cima and 

Albergaria. In Serra de Cima, crop-adjusted PET tends to follow PET in winter and be slightly 

lower in summer, which can be attributed to stomatal closure under dry conditions (see David 

et al., 1997). In Albergaria, crop-adjusted PET began much lower than PET but approached PET 

as vegetation recovered, although at the end of the second year the values were still not at the 

level observed in Serra de Cima. Annual crop-adjusted PET was estimated as being between 81 

and 87% of PET in Serra de Cima, while in Albergaria it was estimated at 43% in the first year 

after the fire and 63% in the second year. 
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Figure 4. Daily crop-adjusted PET calculated using Kc (PET eucalypts), unadjusted PET, and NDVI for a) Serra de 
Cima and b) Albergaria. 

 

Figure 5 shows rainfall, calculated interception and NDVI in both study sites. Annual rainfall 

ranged between 1000 and 1600 mm in both sites. Interception in Serra de Cima was calculated 

as being between 22 and 24%; in Albergaria, interception in the first year was calculated as 18%, 

and as 20% in the second year as vegetation recovered. 
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Figure 5. Daily rainfall, interception calculated using the Gash model and Sc, and NDVI for a) Serra de Cima and b) 
Albergaria. 

 

Water balance calculations 

Figure 6 and Figure 7 show meteorological parameters and water balance calculations for 

respectively the Serra de Cima and Albergaria study sites, while Table 3 shows the model 

performance (NSE) for both the original and SWR-modified versions of the T-M method. In Serra 

de Cima, model performance was already acceptable for the original version; hence, the SWR-

modified method led to only a small improvement, especially for daily simulations. 

Improvements were mostly for the start of the wet season at the end of 2010 (Figure 6), where 

the modified method was able to simulate the slower soil wetting; a larger improvement was 

not possible without decreasing model performance for the drier part of the dataset (autumn 

2011). For the Albergaria sites, however, the SWR-modified method led to marked 

improvements, leading from clearly unacceptable (negative NSE values; see Nash and Sutcliffe, 

1970) to acceptable model performance (NSE ≥ 0.5; Moriasi et al., 2007). This was mostly due 

to the slower soil wetting which occurred in both study sites (Figure 7), although model 

performance during the early dry season (spring) of 2006 and 2007 was worse. 
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Figure 6. For the Serra de Cima study site: a) useful rainfall and PET; b) simulated (original and SWR-modified) and 
measured (in transects and daily) SMC. 

 

 

Figure 7. For the Albergaria study sites: a) useful rainfall and PET; b) and c) simulated (original and SWR-modified) 
and measured (in transects and daily) SMC for A1 and A2 sites respectively. 
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Table 3. Nash-Sutcliffe Efficiency for calculated SMC and SWR using the original and SWR-modified T-M method 
at all study sites. 

Study site Parameter 
NSE 
Original SWR-modified 

Serra de Cima Transect SMC 0.57 0.66 

Daily SMC 0.71 0.74 
SWR - 0.10 

Albergaria A1 Transect SMC -0.55 0.55 
SWR - 0.41 

Albergaria A2 Transect SMC -0.49 0.65 
SWR - 0.46 

 

In contrast, the simulated SWR values were worse, especially for Serra de Cima, but also below 

the threshold for acceptable performance in Albergaria (Table 3). However, measured SWR 

values showed a high degree of spatial variability between transect points, especially during 

transition periods between repellent and non-repellent conditions (see discussion in Keizer et 

al., 2008, and Santos et al., 2013), as seen in Figure 8. Therefore, SWR patterns might not be 

fully represented by median SWR, which complicated the evaluation of simulated SWR. 

 

 

Figure 8. Simulated and measured (median) SWR; shaded bars represent the range between the first and third 
quartile of measured values. 
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Figure 8 also shows that simulated SWR in Serra de Cima tended not to go under MED class 1 

(still considered non-repellent), while in Albergaria it tended not to go above MED class 7 (still 

considered strongly repellent). However, in Serra de Cima, different parameterizations led to 

nearly identical SMC simulations (and respective NSE values) with lower SWR values (ranging 

between MED classes 0 and 6-7) and similar NSE for SWR simulation, but were rejected since 

the values for SWR_SMmin were below the optimization range defined from observations. If, 

however, a wider parameter range is considered, this might represent an instance of equifinality 

(Beven, 2012). 

Calibrated model parameters (Table 4) showed a remarkable consistency when analyzed as a 

fraction of field capacity and wilting point (according to the soil characteristics shown in Table 

2). Parameter AWCmin (soil AWC adjusted for repellent conditions) appeared to be a consistent 

fraction of field capacity, between 0.4 and 0.6. The lower SMC thresholds for both SWR and AWC 

(parameters SMC_WRmin and SMC_lAWCmin) appeared to have a consistent relation with wilting 

point, between 0.7 and 0.9 for SWR and between 0.8 and 1 for AWC. The upper SMC threshold 

for SWR (parameter SMC_WRmax) also appeared as a fraction of field capacity, between 0.7 and 

0.9. However, the upper SMC threshold for AWC (parameter SMC_lAWCmax) was less consistent: 

it was a smaller fraction of field capacity for Serra de Cima (0.62) than for Albergaria (0.96-0.98). 

In absolute terms, the values for AWCmin were similar for all three plantations, and the SMC 

thresholds from repellent to wettable soils concurred with the 20% to 30% interval shown in 

Figure 2. 

 

Table 4. Calibrated T-M parameters for Serra de Cima (SdC) and Albergaria A1 and A2, expressed in volume and in 
fractions of Wilting Point and Field Capacity; parameter definitions are in Table 1. 

Parameter 
SMC (% vol.) SMC (fraction of WP) SMC (fraction of FC) 
SdC A1 A2 SdC A1 A2 SdC A1 A2 

AWCmin 19.0% 16.8% 18.2% 1.48 1.01 1.01 0.42 0.57 0.53 
Repellency 
thresholds 

SMC_WRmin 9.6% 15.1% 16.4% 0.75 0.91 0.91 0.21 0.51 0.48 
SMC_lAWCmin 10.5% 16.7% 18.2% 0.82 1.00 1.01 0.23 0.57 0.53 

Wettable 
thresholds 

SMC_WRmax 34.1% 24.5% 28.1% 2.67 1.47 1.56 0.75 0.83 0.82 
SMC_lAWCmax 28.2% 28.8% 33.0% 2.21 1.73 1.83 0.62 0.98 0.96 

 

Finally, the SWR modification to the T-M method had impacts in other model results, namely ET 

and Qo in Equation 1. The limitations on soil wetting led to a decrease of ET, by -12% in Serra de 

Cima, and by -54 to -56% in Albergaria. Concurrently, this led to an increase of Qo, by 15% in 

Serra de Cima and by 21 to 23% in Albergaria. Given the characteristics of the studied soils such 

as their high stoniness (leading to preferential flow paths for infiltration) and their relatively 

impermeable bedrock, most of Qo can be considered as subsurface runoff, rather than surface 

runoff or percolation. This decrease of ET and increase in Qo occurred mostly at the start of the 

wet season, before soils became wettable. 
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Discussion 

Model calibration and performance 

The calibration process of the SWR-modified T-M method improved model performance in the 

wet seasons at all plantations, but also decreased model performance during the start of the dry 

season in Albergaria at the A1 plantation (Figure 7). In fact, the same probably did not happen 

for Serra de Cima due to the occurrence of only one wet season in the dataset, which allowed 

for a balance; improving model performance for autumn 2010 led to decreased performance for 

the dry periods of 2011 and 2012 (see Figure 6). This could be attributed to a hysteretic relation 

between SWR and AWC, with different modes for wetting and drying, as has been found for 

repellent soils (Czachor et al., 2010; Davis et al., 2009); in particular, the finding of Czachor et al. 

(2010) of repellent and non-repellent soils behaving differently only during wetting might 

indicate why the simulation problems were confined to the dry period of the dataset. 

Introducing an improved model for the relation between SMC and SWR (e.g. Regalado and 

Ritter, 2009a, 2009b) could be a step towards addressing this issue. In this work, linear relations 

were used due to their simplicity, and to the fact that there is little literature regarding the 

variability of these processes in the study sites, therefore requiring a conservative approach to 

their simulation. 

The high spatial variability of SWR (see Figure 8) limited the evaluation of model performance 

for this parameter. It is difficult to represent SWR in a site with a single value during transition 

periods, since SWR often ranges from no/low to strong/extreme intensity without midpoint 

values (see details in Keizer et al., 2008, and Santos et al., 2013). As discussed earlier, the single 

SWR value simulated for a site should be understood as an “effective” parameter. Prior 

knowledge of this issue informed the selection of SMC instead of SWR for optimization. A more 

complex soil water model might require the simulation of the spatial variability of SWR in some 

way. 

The lower limit on SWR for Serra de Cima (Figure 8) did not affect simulations of SWR persistence 

nor SMC; it could, however, have been eliminated by relaxing the optimization range for the 

lower thresholds. This could be due to the poorer quality of the SWR dataset collected in Serra 

de Cima (see below), which was biased towards high SWR intensity. 

Variability between study sites 

The three plantations showed remarkable differences in model parameterization and results. 

Parameterization for the two Albergaria plantations was very similar when considered as 

fractions of field capacity and wilting point, and when compared with that for Serra de Cima 

(Table 4). In fact, the parameters for Albergaria A1 provided reasonable simulations for 

Albergaria A2, and vice-versa. This was not the case for the parameterization for Serra de Cima. 

Furthermore, the parameterization and results indicated that SWR had a greater impact on soil 

water balance in Albergaria than in Serra de Cima. 

This could indicate actual differences between the two study sites but also differences between 

the measurements for both. As shown in Table 2, soils in Serra de Cima have markedly higher 

silt fractions and organic matter contents than soils in Albergaria. While higher organic matter 

contents could indicate higher SWR in the case of Serra de Cima, higher sand contents could 
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lead to higher SWR in the case of Albergaria (see Doerr et al., 1996; Jiménez-morillo et al., 2014; 

Mataix-solera et al., 2013; Santos et al., 2013), and therefore further work would be required to 

assess the impact of these differences in SWR. 

As for differences in measurements, both sites showed similar SWR patterns (Figure 8) and SWR-

SMC relationships (Figure 2). However, differences in soil texture might influence the results of 

the MED test (Hamlett et al., 2011), and therefore there might be differences in SWR intensities 

between sites despite the similar patterns. Furthermore, similar values of SWR intensity 

measured with the MED test, as done for this work, do not necessarily indicate similar SWR 

persistence, as discussed earlier (Chau et al., 2014). In similar conditions in central Portugal but 

for shrublands, Stoof et al. (2011) found that fire enhanced the persistence of SWR. Together, 

this suggests that despite similar SWR intensity in Serra de Cima and Albergaria, SWR persistence 

could be higher in the latter due to the effects of the fire. This would explain: (i) why soil wetting 

in Albergaria after the start of the wet season is slower (compare Figure 7 with Figure 6); (ii) why 

the model for Albergaria indicates a greater impact of SWR on soil water retention; (iii) why the 

SWR-modified T-M method produces much larger improvements in Albergaria than in Serra de 

Cima. Further work is required to assess these differences. It is, however, possible, that the 

optimization procedure attempted to capture differences in SWR persistence between both 

sites which were not apparent in the measured data, leading to the different parameterizations 

shown in Table 4. 

Finally, the differences in parameterization – and possibly the differences in SWR persistence – 

can explain the higher impact of SWR on ET for Albergaria indicated by the simulations. 

However, the shallower soils should also be taken into account, as the lower absolute AWC 

would suffer a larger limitation to supply ET demands than in Serra de Cima. 

Limitations 

This work had some limitations due to the available datasets, which could have influenced the 

modeling evaluation and remote sensing parameterization. 

At Serra de Cima, the dataset of Santos et al. (2013) was compiled during the winter drought of 

2011-2012, leading to an unusual decrease of SMC and, possibly, unusually high SWR. 

Furthermore, the continuous SMC dataset only had one regular wetting season – that of autumn 

2010 – which is the period where the impacts of SWR on initial wetting were most noted (Figure 

6). Including additional continuous SMC data for years with normal rainfall, and perhaps also a 

SWR dataset for a normal rainfall year, would possibly lead to a larger differentiation between 

the original and SWR-modified T-M method. 

Furthermore, the Serra de Cima dataset only sampled the top third of the soil, which might have 

over-represented ET and under-represented SMC and SWR. This is particularly important given 

the trend of decreasing SWR with depth found by Santos et al. (2013). Therefore, the data might 

have misrepresented SMC and SWR with consequences for the calibration of the T-M method. 

This dataset also limited the remote sensing approach for the crop coefficient Kc, especially due 

to the estimation of ET using soil moisture from the top third of the profile, and using only data 

from the unburned site. Furthermore, the very limited LAI data prevented an in-depth 
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assessment of NDVI-LAI relations, and exploring more detailed approaches for interception 

modeling (see Cui and Jia, 2014). 

In Albergaria, the dataset was more representative of soil depth and meteorology. However, the 

fact that there were no continuous soil moisture measurements might also have impacted the 

results, since the unmodified T-M method performed better for continuous than transect 

measurements at Serra de Cima (Table 2); in fact, model optimization for continuous 

measurements led to different results that that for transect measurements. 

Finally, additional NDVI data from the MODIS Aqua could have been combined with the Terra 

dataset to improve the temporal resolution to 8-day, although the use of a temporal smoothing 

algorithm would necessarily limit the improvements gained by an increase in temporal 

resolution. 

Overall, additional data on LAI and continuous soil moisture measurements, especially for 

burned areas, might lead to an improved calibration and assessment of the SWR-modified T-M 

method. Nevertheless, the existing dataset can be considered sufficient to demonstrate the 

applicability of the T-M modification and the usefulness of satellite imagery for this region. 

Integrating SWR in existing water balance models 

The results from this work show that the SWR-adapted T-M method can improve the simulation 

of soil moisture in water repellent soils by adding a reasonable, if simplified, simulation of the 

processes relating SWR with SMC. Several factors point to this: 

• the optimization of SMC occurred mostly in periods where SWR was present (compare 

Figure 6 and Figure 7 with Figure 8); 

• in the Albergaria A1 and A2 sites, the parameters led to an adequate simulation of both 

SMC and SWR; 

• the range of most parameters could be deducted from field observations; 

• the optimized parameters were consistent between sites when considering the soil 

water retention curves for each soil; 

• parameters optimized for Albergaria A1 were usable in A2 and vice-versa, indicating that 

they were not fitted to a single dataset. 

This SWR adaptation can be used as a template for adapting other simple soil water balance 

models for regions with soil water repellency, probably requiring a daily time-step approach to 

account for relatively fast changes in SWR (Figure 8). While the presented model appears to be 

simple enough to be generalized, further testing with different data would be required. 

One challenge would be to establish methods to parameterize the model application for 

different soils. The results of this work indicate that soil water retention properties would help 

parameterize the model (Table 4). Work by other authors linking the relation between soil 

moisture and repellency to the water retention curve (Diamantopoulos et al., 2013; Kajiura et 

al., 2012) and specifically to the field capacity and wilting point (Deurer and Bachmann, 2007; 

Regalado et al., 2008) point this as a promising approach. Another challenge would be to link 

parameterization with both the intensity and persistence of SWR. This would also require the 

exploration of more datasets. 
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Finally, the present method generalizes outflow, but there is a specific interest in the impact of 

SWR on surface runoff due to the subsequent impacts on soil erosion, particularly for recently 

burned forests (Malvar et al., 2013, 2011; Prats et al., 2013, 2012; Vieira et al., 2014). Further 

work should focus on linking SMC or SWR with surface runoff generation, for which existing 

datasets for the same study sites can be used. 

Conclusions 
This work demonstrated that a simplified approach for water balance calculations could be 

adapted for soil water repellent conditions, by limiting soil wetting in repellent conditions. The 

adapted method was assessed using field measurements for one unburned and two recently 

burned eucalypt plantations. The results indicated that the burned and unburned areas required 

different parameterizations, possibly due to both differences in soil properties and the impacts 

of fire on repellency itself. The modified method led to important improvements to soil water 

content simulation at the burned sites, and modest improvements at the unburned site. Model 

parameters were related with points in the soil water retention curve, indicating a potential 

approach for parameter estimation in different sites. The method presented herein appears 

capable of being incorporated in more complex eco-hydrological models with simple approaches 

to soil water balance. 
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